JP2022153571A - ガラス物品の製造方法 - Google Patents

ガラス物品の製造方法 Download PDF

Info

Publication number
JP2022153571A
JP2022153571A JP2022121243A JP2022121243A JP2022153571A JP 2022153571 A JP2022153571 A JP 2022153571A JP 2022121243 A JP2022121243 A JP 2022121243A JP 2022121243 A JP2022121243 A JP 2022121243A JP 2022153571 A JP2022153571 A JP 2022153571A
Authority
JP
Japan
Prior art keywords
melting furnace
glass
manufacturing
molten glass
glass article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022121243A
Other languages
English (en)
Inventor
達 櫻林
Tatsu Sakurabayashi
洋司 門谷
Yoji KADOTANI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2022121243A priority Critical patent/JP2022153571A/ja
Publication of JP2022153571A publication Critical patent/JP2022153571A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

Figure 2022153571000001
【課題】ガラス物品の製造方法において移送流路が急な故障や劣化等によって使用不能となった場合、溶融炉をそのまま残して移送流路を安全に交換する、ガラス物品の製造方法を提供する。
【解決手段】溶融炉1でガラス原料を溶融して溶融ガラスGmを形成する溶融工程と、溶融炉1の流出口1aから流出する溶融ガラスGmを移送流路で移送する移送工程と、移送流路で移送された溶融ガラスGmを成形装置でガラスリボンに成形する成形工程とを備えたガラス物品の製造方法であって、流出口1aを塞ぐように遮断部材14を配置した状態で、移送流路を交換する交換工程を更に備えている。
【選択図】図5

Description

本発明は、ガラス物品の製造方法に関する。
ガラス物品の製造方法では、溶融炉でガラス原料を溶融して溶融ガラスを形成した後、溶融炉の下流側に設けられた流出口から流出する溶融ガラスを移送流路(フィーダともいう)によって成形装置まで移送すると共に、移送された溶融ガラスを成形装置でガラス物品に応じた所定形状(例えば、板状)に成形する。
ここで、溶融炉では、電極による通電加熱によって、ガラス原料及び/又は溶融ガラスを加熱する場合がある(例えば、特許文献1を参照)。
特開2003-183031号公報
ところで、移送流路が急な故障や劣化等によって使用不能となった場合、その使用不能となった移送流路を新しい移送流路と交換し、使用可能な溶融炉についてはそのまま継続使用することが経済的である。
しかしながら、従来においては、溶融炉をそのまま残して移送流路を安全に交換する方法がなく、移送流路が使用不能となった時点で、移送流路と共に溶融炉も解体する場合がある。
本発明は、溶融炉をそのまま残して移送流路を安全に交換することを課題とする。
上記の課題を解決するために創案された本発明は、溶融炉でガラス原料を溶融して溶融ガラスを連続形成する溶融工程と、溶融炉の流出口から流出する溶融ガラスを移送流路で移送する移送工程と、移送流路で移送された溶融ガラスを成形装置でガラス物品に成形する成形工程とを備えたガラス物品の製造方法において、流出口を塞ぐように遮断部材を配置した状態で、移送流路を交換する交換工程を更に備えていることを特徴とする。このような構成によれば、遮断部材によって溶融炉の流出口が塞がれるため、移送流路を交換する際に、溶融炉内の溶融ガラスが流出口から流出するのを防止することができる。従って、溶融炉をそのまま残して移送流路を安全に交換することができる。
上記の構成において、交換工程では、遮断部材で流出口を塞ぐ前に、少なくとも最上流部の移送流路内で、溶融ガラスを降温することが好ましい。このようにすれば、最上流部の移送流路内で、溶融ガラスを降温するのに伴い、溶融炉の流出口周辺の溶融ガラスが高粘度になり、その流動性が低下する。これにより、溶融炉内の溶融ガラスは、溶融炉の流出口からゆっくりと流れ出すため、遮断部材の配置作業を容易に行うことができる。
上記の構成において、遮断部材が冷却構造を備えていることが好ましい。このようにすれば、遮断部材によって溶融炉の流出口周辺の溶融ガラスが冷却され、流出口周辺の溶融ガラスが高粘度に維持される。このため、遮断部材を配置した溶融炉の流出口から溶融ガラスが漏出するのを確実に防止することができる。また、遮断部材の熱変形も防止することができるため、遮断部材によって溶融炉の流出口を塞いだ状態を安定して維持することができる。
上記の構成において、溶融炉は、溶融ガラスを通電加熱する電極を備えてもよい。この場合、電極を用いた通電加熱と、バーナー(ガス燃料の燃焼)等の他の加熱手段による加熱とを併用してもよい。
上記の構成において、遮断部材が絶縁構造を備えていることが好ましい。このようにすれば、交換工程中に溶融炉で電極による通電加熱を継続しても、移送流路側への漏電を防止することができる。このため、移送流路の交換作業を安全に行うことができる。
上記の構成において、電極が溶融炉の底壁に設けられたボトム電極からなることが好ましい。このようにすれば、溶融炉の浸食が改善され、溶融炉の長寿命化を図ることができる。このため、溶融炉の寿命を移送流路の寿命よりも大幅に長くすることができ、溶解炉を残して移送流路を交換する効果がより顕著となる。
上記の構成において、溶融工程では、電極を用いた通電加熱のみで、ガラス原料を溶融することが好ましい。このようにすれば、溶融炉内におけるガス燃料の燃焼に起因する水蒸気量の上昇がないため、溶融ガラス中の水分量を低下させやすい。従って、ガラス物品の水分量も必然的に低くなり、その熱的寸法安定性が向上するという利点がある。
上記の構成において、溶融炉がジルコニア系耐火物を含むことが好ましい。このようにすれば、溶融炉の浸食が改善され、溶融炉の長寿命化をさらに図ることができるので、溶解炉を残して移送流路を交換する効果がより顕著となる。
上記の構成において、溶融炉に接続する移送流路の数が、一つであってもよい。
上記の構成において、溶融炉のガラス原料を溶融する溶融空間が単一の空間からなっていてもよい。
本発明によれば、溶融炉をそのまま残して移送流路を安全に交換することができる。
第一実施形態に係るガラス物品の製造装置を示す側面図である。 第一実施形態に係るガラス物品の製造装置の溶融炉周辺を示す断面図である。 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。 第一実施形態に係るガラス物品の製造方法に用いられる遮断部材の絶縁構造を説明するための図であって、遮断部材周辺の断面図である。 第一実施形態に係るガラス物品の製造方法に用いられる遮断部材の冷却構造を説明するための図であって、遮断部材の正面図である。 第二実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。 第二実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。 第三実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。 第三実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。
以下、本発明の実施形態に係るガラス物品の製造方法について図面を参照しながら説明する。
(第一実施形態)
図1に示すように、第一実施形態に係るガラス物品の製造方法に用いられる製造装置は、上流側から順に、溶融炉1と、移送流路2と、成形装置3とを備えている。
溶融炉1は、溶融ガラスGmを連続形成する溶融工程を実施するためのものである。本実施形態では、溶融ガラスGmは、無アルカリガラスからなる。無アルカリガラスは、ガラス組成として、例えば、質量%で、SiO 50~70%、Al 12~25%、B 0~12%、LiO+NaO+KO(LiO、NaO及びKOの合量) 0~1%未満、MgO 0~8%、CaO 0~15%、SrO 0~12%、BaO 0~15%を含む。無アルカリガラスからなる溶融ガラスGmの電気抵抗率は、一般的に高く、例えば溶融炉1の加熱温度1500℃において100Ω・cm以上となる。
溶融ガラスGmは、無アルカリガラスに限定されるものではなく、例えば、ソーダガラス、ホウケイ酸ガラス、アルミノシリケートガラスなどであってもよい。
移送流路2は、溶融炉1から成形装置3に向けて溶融ガラスGmを移送する移送工程を実施するためのものである。移送流路2は、清澄室4と、均質化室(攪拌室)5と、ポット6と、これら各部を接続する移送管7~10とを備えている。清澄室4、均質化室(攪拌室)5、ポット6及び移送管7~10は、白金又は白金合金から構成することができ、必要に応じて通電加熱される。ここで、清澄室4などの「室」及び「ポット」という用語には、槽状構造を有するものや、管状構造を有するものが含まれるものとする。
清澄室4は、溶融炉1から供給された溶融ガラスGmを清澄剤などの働きによって清澄(泡抜き)する清澄工程を実施するためのものである。
均質化室5は、清澄された溶融ガラスGmを攪拌翼5aによって攪拌し、均一化する均質化工程を実施するためのものである。均質化室5は、複数の均質化室を連ねたものであってもよい。この場合、隣接する二つの均質化室の一方の上端部と、他方の下端部を移送管で連ねることが好ましい。
ポット6は、溶融ガラスGmを成形に適した状態(例えば粘度)に調整する状態調整工程を実施するためのものである。ポット6は省略してもよい。
移送管7~10は、例えば円筒管で構成されており、溶融ガラスGmを横方向(略水平方向)に移送する。本実施形態では、移送流路2のうち、最上流部に位置する移送管7は、下流端が上流端よりも上方に位置するように傾斜している。
成形装置3は、溶融ガラスGmを所望の形状に成形する成形工程を実施するためのものである。本実施形態では、成形装置3は、オーバーフローダウンドロー法によって、溶融ガラスGmからガラスリボンGを連続成形する成形体からなる。
成形装置3は、スロットダウンドロー法などの他のダウンドロー法や、フロート法を実施するものであってもよい。
オーバーフローダウンドロー法の場合、成形装置3に供給された溶融ガラスGmは成形装置3の頂部に形成された溝部から溢れ出た溶融ガラスGmが成形装置3の断面楔状をなす両側面を伝って下端で合流することで、板状のガラスリボンGが連続成形される。成形されたガラスリボンGは、徐冷(アニール)及び冷却された後に所定サイズに切断され、ガラス物品としての板ガラスが製造される。
製造された板ガラスは、例えば、厚みが0.01~10mm(好ましくは0.1~3mm)であって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。
図2に示すように、溶融炉1は、生産段階において、通電加熱を含む加熱によって、ガラス原料(カレットを含んでもよい)Grを溶融して溶融ガラスGmを連続形成する。溶融炉1で連続形成された溶融ガラスGmは、溶融炉1の流出口1aから移送管7内に流入するようになっている。
溶融炉1は、耐火物で構成された壁部によって炉内の溶融空間を区画形成する。耐火物としては、例えば、ジルコニア系電鋳煉瓦やアルミナ系電鋳煉瓦、アルミナ・ジルコニア系電鋳煉瓦、AZS(Al-Zr-Si)系電鋳煉瓦、デンス焼成煉瓦などが挙げられるが、本実施形態では、溶融炉1は、少なくとも溶融ガラスGmと接触する壁部が高温でも浸食しにくいジルコニア系電鋳煉瓦(ジルコニア系耐火物)を含む。ジルコニア系耐火物は、ジルコニアの含有量が80~99%の高ジルコニア系耐火物であることが好ましい。
溶融炉1の底壁部1bには、通電加熱のために、溶融ガラスGmに浸漬された状態で複数のボトム電極11が設けられている。本実施形態では、溶融ガラスGmを連続形成する生産段階(溶融工程)において、ボトム電極11の通電加熱のみでガラス原料Grを連続溶融する、いわゆる全電気溶融が行われる。全電気溶融の場合、排ガスによる環境負荷が小さいこと、製造される板ガラスの水分量が低くなり、その熱的寸法安定性が向上することなどの利点がある。
ボトム電極11は、例えば、モリブデン(Mo)から形成される。ボトム電極11の形状は、特に限定されるものではなく、板状やブロック状などであってもよいが、本実施形態では棒状である。
電極は、溶融炉1の側壁部1cに設けられたサイド電極(図示省略)であってもよい。あるいは、ボトム電極11とサイド電極を併用してもよい。ただし、溶融炉1の側壁部1cは、もともと溶融ガラスGmの対流等の影響によって浸食されやすい部位であるため、サイド電極を設けて側壁部1cを高温にすると、より浸食されやすくなる。従って、電極は、溶融炉1の浸食が進行しにくいボトム電極11のみとし、溶融炉1の長寿命化を図ることが好ましい。この場合、溶融炉1の耐用年数(寿命)は、移送流路2の耐用年数(寿命)よりも長くなる傾向にある。このため、溶融炉1よりも移送流路2が先に劣化する場合が多くなり、溶融炉1をそのまま残して移送流路2を交換することが特に有用となる。
溶融炉1の上流側には、原料投入装置12が設けられている。原料投入装置12は、特に限定されるものではなく、例えばプッシャーや振動フィーダなどであってもよいが、本実施形態ではスクリューフィーダである。
原料投入装置12は、生産段階において、溶融ガラスGmの液面Gm1の一部にガラス原料Grに覆われていない部分が形成されるようにガラス原料Grを順次供給する。すなわち、溶融炉1は、いわゆるセミホットトップタイプである。
溶融炉1は、生産段階において、溶融ガラスGmの液面Gm1の全部がガラス原料Grに覆われた、いわゆるコールドトップタイプでもよい。
溶融炉1には、溶融炉1内の気体を外部に排出するための気体排出路としての煙道13が設けられている。煙道13内には、気体を外部に送るためのファン13aが設けられている。
本実施形態では、溶融炉1の溶融空間は単一の空間からなるシングルメルターであり、溶融炉1に接続される移送流路2の数が一つであるシングルフィーダである。
次に、以上のように構成された製造装置によるガラス物品の製造方法を説明する。
本製造方法は、上述のように、生産段階において、溶融工程と、移送工程と、成形工程とを備えている。このうち、移送工程は、清澄工程と、均質化工程と、状態調整工程とを含む。溶融工程、移送工程及び成形工程は、上述の製造装置の構成に併せて説明した通りであるので、詳しい説明は省略する。
図3~図5に示すように、本製造方法は、溶融炉1の流出口1aを塞ぐように遮断部材14を配置した状態で、移送流路2を交換する交換工程を更に備えている。この交換工程は、移送流路2の故障や劣化などの何らかの事由によって、移送工程が実施されない非生産段階で実施する工程である。
交換工程では、まず、図3に示すように、最上流部に位置する移送管7の通電加熱のための電力供給量を生産段階よりも少なくすることにより、移送管7内の溶融ガラスGmを降温する。ここで、「通電加熱のための電力供給量を生産段階よりも少なくする」という用語には、通電加熱を停止する場合も含まれるものとする。エネルギーコストの観点からは、移送管7内の溶融ガラスGmを降温するために、移送管7の通電加熱を停止することが好ましく、移送流路2における全ての通電加熱を停止することが更に好ましい。なお、移送流路2を外部から水や空気等の冷却流体によって積極的に冷却してもよい。
このように移送管7内の溶融ガラスGmを降温することにより、溶融炉1の流出口1a周辺の溶融ガラスGmが高粘度になり、その流動性が低下する。この結果、例えば、移送管7内及び流出口1a周辺に、高粘度ガラス層Gsが形成される。なお、移送管7内の溶融ガラスGmの降温は、移送管7内で溶融ガラスGmの流動が完全に停止するまで行うことが好ましい。
ここで、高粘度ガラス層Gsとは、生産段階の溶融ガラスGmと比べて流動性が著しく低下したガラス層、あるいは、流動性が全くないガラス層(冷却固化されたガラスを含む)である。高粘度ガラス層Gsの粘度は、例えば10~1030dPa・sである。
シングルフィーダの場合、交換工程中は、溶融ガラスGmを下流側に供給することができないため、図3の状態のように、原料投入装置12によるガラス原料Grの投入は停止することが好ましい。
次に、溶融炉1の流出口1a周辺に高粘度ガラス層Gsを形成した状態で、図4に示すように、移送管7や清澄室4を含む移送流路2を溶融炉1から分離する。
更に、移送流路2を溶融炉1から分離すると同時又はその後に、図5に示すように、溶融炉1の流出口1aを塞ぐように遮断部材14を配置する。このように遮断部材14で溶融炉1の流出口1aを塞いだ状態で、移送流路2を新しいものに交換する。本実施形態では、移送流路2と共に成形装置3も新しいものに交換する。ただし、遮断部材14は、新しい移送流路2を溶融炉1の流出口1aに接合する直前に、溶融炉1の流出口1aから取り除く。このようにすれば、交換工程のほとんど全ての期間において、遮断部材14によって溶融炉1の流出口1aが塞がれるため、移送流路2を交換する際に、溶融炉1内の溶融ガラスGmが流出口1aから流出するのを防止することができる。従って、溶融炉1をそのまま残して移送流路2を安全に交換することができる。
また、本実施形態では、遮断部材14を配置する際に、移送管7内の溶融ガラスGmを降温することにより、溶融炉1の流出口1a周辺に高粘度ガラス層Gsが形成されているため、溶融炉1内の溶融ガラスGmが流出口1aから流出しにくい。特に、溶融炉1の流出口1aが高粘度ガラス層Gsによって完全に塞がれていると、溶融炉1内の溶融ガラスGmが流出口1aからより流出しにくくなる。従って、遮断部材14の配置作業を容易に行うことができる。
ここで、溶融炉1の壁部がジルコニア系耐火物(特に、高ジルコニア系耐火物)を含む場合、溶融ガラスGmと接触している部分において、温度が下がりすぎると結晶構造が変化する。これにより、ジルコニア系耐火物の表層部が層状剥離する事態が生じ得る。このような層状剥離が生じると、溶融炉1の耐火物の交換も必要になるため、交換工程に要する費用が増大する。従って、交換工程中も、溶融ガラスGmをボトム電極11で通電加熱するなどして、溶融炉1内の温度を所定温度以上に保つことが好ましい。
溶融炉1の層状剥離を防止する観点からは、溶融炉1内の温度は1200℃以上であることが好ましく、1250℃以上であることがより好ましく、1300℃以上であることが更に好ましい。ただし、シングルフィーダの場合、交換工程中は溶融ガラスGmを連続形成しないため、エネルギーコストの観点からは、生産段階よりも通電加熱のための電力供給量を少なくし、溶融炉1内の温度を、生産段階の温度よりも低くすることが好ましい。溶融炉1内の温度は1600℃以下であることが好ましく、1500℃以下であることがより好ましく、1450℃以下であることが更に好ましい。ここで、溶融炉1内の温度は、高粘度ガラス層Gs及びその周辺を除く溶融ガラスGmの温度を意味する。
溶融炉1の流出口1a周辺には高粘度ガラス層Gsを形成するので、溶融炉1の流出口1aのジルコニア系耐火物も1200℃未満となり、ジルコニア系耐火物の表層部が層状剥離する事態が生じ得る。これを防止するため、溶融炉1の流出口1aは、ジルコニア系耐火物の表面を白金又は白金合金で覆うことが好ましい。また、溶融炉1の壁部のうちで、高粘度ガラス層Gs及びその周辺の低温の溶融ガラスGmと接触して1200℃未満となる部位についても、ジルコニア系耐火物の表面を白金又は白金合金で覆うことが好ましい。ジルコニア系耐火物の表面を白金又は白金合金で覆うことにより、ジルコニア系耐火物が溶融ガラスGmと直接接触することなく、白金又は白金合金を介して溶融ガラスGmと接触するので、層状剥離を防止できる。
図6に示すように、遮断部材14は、絶縁構造を有する。本実施形態では、遮断部材14は、絶縁構造として、本体部材15と、本体部材15に当接する絶縁部材16と、絶縁部材16を介して本体部材15を溶融炉1側に押圧しながら保持する保持部材17とを備えている。これにより、交換工程において、溶融炉1で電極による通電加熱を継続しても、移送流路2側への漏電を防止することができる。
本体部材15は、例えばステンレス等の金属板で形成され、絶縁部材16は、例えばセラミックスなどを備える。本体部材15は、ガラスや耐火物で形成してもよいが、ガラスや耐火物の場合、溶融炉1内の溶融ガラスGmと接着しやすく、交換工程後に、本体部材15を溶融炉1の流出口1aから分離しにくくなるおそれがある。従って、本体部材15は、金属板であることが好ましい。
シングルメルターの場合、溶融空間が小さく、電極11で通電加熱する領域と溶融炉1の流出口1aとが接近することが多いため、このような絶縁構造が特に有用になる。遮断部材14は、接地(アース)されていることが好ましい。なお、高粘度ガラス層Gsも絶縁作用を有するので、高粘度ガラス層Gsの温度を十分に低下させることにより、絶縁を行ってもよい。また、高粘度ガラス層Gsの絶縁作用と、遮断部材14の絶縁構造とを併用してもよい。
図7に示すように、遮断部材14は、冷却構造を有する。本実施形態では、遮断部材14の本体部材15は、冷却構造として、その内部に水や空気などの冷却流体を流通する冷却流路15aを備えている。本体部材15は、水冷板であることが好ましい。冷却流路15aは、一端側から冷却流体が供給されると共に、他端側から冷却流体が排出されるようになっている。冷却流路15aは、本体部材15のうち、少なくとも溶融炉1の流出口1aに対応する領域に形成される。冷却流体を給排するために冷却流路15aに接続される給排管18も、少なくとも一部がセラミックスやゴム等からなる絶縁管で構成されていることが好ましい。給排管18の一部にゴムからなる絶縁管を用いる場合、熱源である溶融炉1や冷却流路15aから絶縁管を離間し、熱による絶縁管の破損を防止することが好ましい。
遮断部材14の冷却構造は、冷却流体を冷却流路15aに流通させるものに限定されるものではなく、例えば、本体部材15に対して外部から冷却流体を吹き付けるものであってもよい。
なお、以上のような交換工程の終了後は、生産(溶融工程、移送工程及び成形工程)を再開する。生産の再開時は、例えば、遮断部材14を取り外し、移送流路2を溶融炉1に接続した後、通電加熱によって移送流路2を昇温すればよい。これにより、溶解炉1から溶融ガラスGmが移送流路2に供給される。また、流出口1a周辺の高粘度ガラス層Gsは、粘度が次第に低下して消滅する。シングルフィーダでガラス原料Grの投入は停止している場合、溶融炉1と移送流路2の接続に応じてガラス原料の投入を再開する。シングルフィーダで溶融炉1内の温度を生産段階の温度よりも低くしている場合、溶融炉1と移送流路2の接続前に、溶融炉1内の温度を生産段階の温度まで上昇させる。
(第二実施形態)
図8及び図9に示すように、第二実施形態に係るガラス物品の製造方法が、第一実施形態に係るガラス物品の製造方法と相違するところは、移送流路2を交換する交換工程である。以下では、第一実施形態との相違点を中心に説明し、第一実施形態との共通点の詳しい説明は省略する。
第二実施形態に係るガラス物品の製造方法に用いられる製造装置は、円滑な交換工程を実施するために、溶融炉1の流出口1aの直下流、すなわち、溶融炉1の流出口1aと、移送流路2の移送管7の上流端との間に、遮断部材14が上下移動可能に収容された収容室21を備えている。遮断部材14を上げた状態で収容室21の流路が開き、遮断部材14を下げた状態で収容室21の流路が閉じるようになっている。
遮断部材14は、収容室21の流路を開閉できれば上下移動する構成に限定されない。遮断部材14は、例えば水平移動する構成などであってもよい。
遮断部材14は、第一実施形態と同様に、絶縁構造及び冷却構造を有することが好ましい。
第二実施形態に係るガラス物品の製造方法に含まれる交換工程では、図8に示すように、移送管7の通電加熱の電力供給量を生産段階よりも少なくして溶融ガラスGmを降温した後に、遮断部材14を下げて収容室21の流路を閉じる。これにより、溶融炉1の流出口1aが遮断部材14によって塞がれた状態となる。
このように遮断部材14を下げて収容室21の流路を閉じた状態で、図9に示すように、移送流路2を収容室21から分離し、移送流路2(又は移送流路2と成形装置3)を新しいものと交換する。
交換工程の終了後は、収容室21の昇温後に遮断部材14を上げて収容室21の流路を再び開き、生産を再開する。
収容室21に収容された遮断部材14は、溶融ガラスGmの低粘度の状態でも、収容室21の流路を簡単に閉じることができる。このため、遮断部材14を下げて収容室21の流路を閉じた後に、移送管7の通電加熱のための電力供給量を生産段階よりも少なくすることにより、溶融管7内の溶融ガラスGmを降温してもよい。
生産段階では、遮断部材14は収容室21の外側に配置されると共に、交換工程の際に遮断部材14を挿入するために収容室21に設けられた開口部(図示省略)は蓋などによって塞がれていることが好ましい。
(第三実施形態)
図10及び図11に示すように、第三実施形態に係るガラス物品の製造方法が、第一実施形態に係るガラス物品の製造方法と相違するところは、移送流路2を交換する交換工程である。以下では、第一実施形態との相違点を中心に説明し、第一実施形態との共通点の詳しい説明は省略する。
第三実施形態に係るガラス物品の製造方法に含まれる交換工程は、まず、図10に示すように、溶融炉1の底壁部1bに設けられた排出口(図示省略)から溶融炉1内の溶融ガラスGmを排出する。これにより、溶融ガラスGmの液面Gm1の高さを流出口1aよりも下げる。もちろん、溶融炉1から溶融ガラスGmを全て排出してもよい。
次に、図11に示すように、溶融炉1から移送流路2を分離すると共に、流出口1aを遮断部材14で塞ぐ。このように遮断部材14で流出口1aを塞いだ状態で、移送流路2(又は移送流路2と成形装置3)を新しいものに交換する。
遮断部材14は、第一実施形態と同様に、絶縁構造及び冷却構造を有することが好ましい。
遮断部材14は、新しい移送流路2を溶融炉1の流出口1aに接合する直前に、溶融炉1の流出口1aから取り除く。例えば、溶融炉1内で溶融ガラスGmを形成し、溶融ガラスGmの液面Gm1を所定高さ(例えば、生産段階の液面の高さ)まで再び上昇させた後に、遮断部材14を取り除いて新しい移送流路2を溶融炉1の流出口1aに接合してもよい。これとは逆に、例えば、遮断部材14を取り除いて新しい移送流路2を溶融炉1の流出口1aに接合した後に、溶融炉1内で溶融ガラスGmを形成し、溶融ガラスGmの液面Gm1を所定高さまで再び上昇させてもよい。
交換工程の終了後は、生産を再開する。本実施形態では、交換工程で溶融炉1内の溶融ガラスGmの量を少なくしているため、生産を再開する際に、異なるガラス組成を有する溶融ガラスGmに入れ替えてもよい。
ここで、溶融炉1の壁部がジルコニア系耐火物を含む場合、層状剥離を防止するために、交換工程中も溶融炉1内の温度を所定温度以上に保つことが好ましい。しかしながら、溶融炉1内の溶融ガラスGmの液面Gm1の高さを下げると、ボトム電極11の一部が空気中に露出する場合がある。この状態でボトム電極11による通電加熱を行うと、ボトム電極11が酸化により早期に損耗するおそれがある。従って、ボトム電極11による通電加熱は行わずに、バーナー等の別の加熱手段で溶融炉1内を加熱することが好ましい。このように交換工程中に溶融炉1内で電極による通電加熱を行わない場合、遮断部材14は絶縁構造を有していなくてもよい。
本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
上記の実施形態では、シングルメルターである場合を説明したが、複数の溶融空間を連ねたマルチメルターであってもよい。マルチメルターの場合は、例えば、最上流部の溶融空間のみが電極で通電加熱され、その下流側の溶融空間は電極で通電加熱されないことがある。この場合、電極で通電加熱する領域と溶融炉の流出口とが、抵抗体として機能する溶融ガラスGmを介して大きく離反するため、遮断部材は絶縁構造を有していなくてもよい。
上記の実施形態では、シングルフィーダである場合を説明したが、複数の成形装置に向かって延びる複数の移送流路が溶融炉に接続されたマルチフィーダであってもよい。マルチフィーダの場合、複数の移送流路の一部に対して交換工程を実施している間も、残りの移送流路に溶融炉から溶融ガラスを供給し、ガラス物品の製造を継続することができる。従って、複数の移送流路の一部に対して交換工程を実施している間も、溶融炉にガラス原料を投入することが好ましい。
上記の実施形態では、溶融炉の流出口に遮断部材を配置するが、移送流路の途中(例えば、清澄室の下流端と均質化室の上流端との間)にも、遮断部材を収容する収容室を設けてもよい。この場合、交換工程において、移送流路の途中に設けられた収容室の遮断部材を閉じれば、移送流路内の溶融ガラスの流動を簡単に停止することができる。移送流路内の溶融ガラスの流動を停止させる方法としては、例えば、棒状部材(プランジャー)の外周面でポッドなどの縦管部に栓をするなどの方法であってもよい。
上記の実施形態において、溶融ガラスの連続形成を開始する前の段階(溶融炉の立ち上げ段階)及び/又は生産段階で、例えばヒーター等の電気加熱手段で補助的に電気加熱してもよい。
上記の実施形態において、溶融炉は、生産段階において、通電加熱とガス燃料の燃焼とを併用してよい。ガス燃料の燃焼を用いる場合、溶融炉の側壁部等にバーナーが設けられる。生産段階において全電気溶融を行う場合でも、溶融炉の立ち上げ段階では、バーナーによる加熱を用いることができる。
上記の実施形態では、成形装置で成形されるガラス物品が板ガラスである場合を説明したが、これに限定されない。成形装置で成形されるガラス物品は、例えば、ガラスフィルムをロール状に巻き取ったガラスロール、光学ガラス部品、ガラス管、ガラスブロック、ガラス繊維などであってもよいし、任意の形状であってよい。
1 溶融炉
1a 流出口
1b 底壁部
2 移送流路(フィーダ)
3 成形装置
4 清澄室
5 均質化室
6 ポット
7~10 移送管
11 ボトム電極
12 原料投入装置
13 煙道
14 遮断部材
15 本体部材
15a 冷却流路
16 絶縁部材
17 保持部材
18 給排管
21 収容室
G ガラスリボン
Gm 溶融ガラス
Gr ガラス原料
Gs 高粘度ガラス層

Claims (10)

  1. 溶融炉でガラス原料を溶融して溶融ガラスを連続形成する溶融工程と、前記溶融炉の流出口から流出する前記溶融ガラスを移送流路で移送する移送工程と、前記移送流路で移送された溶融ガラスを成形装置でガラス物品に成形する成形工程とを備えたガラス物品の製造方法において、
    前記流出口を塞ぐように遮断部材を配置した状態で、前記移送流路を交換する交換工程を更に備えていることを特徴とするガラス物品の製造方法。
  2. 前記交換工程では、前記遮断部材で前記流出口を塞ぐ前に、少なくとも最上流部の前記移送流路内の前記溶融ガラスを降温することを特徴とする請求項1に記載のガラス物品の製造方法。
  3. 前記遮断部材が、冷却構造を備えていることを特徴とする請求項1又は2に記載のガラス物品の製造方法。
  4. 前記溶融炉は、前記溶融ガラスを通電加熱する電極を備えることを特徴とする請求項1~3のいずれか1項に記載のガラス物品の製造方法。
  5. 前記遮断部材が、絶縁構造を備えていることを特徴とする請求項4に記載のガラス物品の製造方法。
  6. 前記電極が、前記溶融炉の底壁に設けられたボトム電極からなることを特徴とする請求項4又は5に記載のガラス物品の製造方法。
  7. 前記溶融工程では、前記電極を用いた通電加熱のみで、前記ガラス原料を溶融することを特徴とする請求項4~6のいずれか1項に記載のガラス物品の製造方法。
  8. 前記溶融炉が、ジルコニア系耐火物を含むことを特徴とする請求項1~7のいずれか1項に記載のガラス物品の製造方法。
  9. 前記溶融炉に接続する前記移送流路の数が、一つであることを特徴とする請求項1~8のいずれか1項に記載のガラス物品の製造方法。
  10. 前記溶融炉の前記ガラス原料を溶融する溶融空間が、単一の空間からなることを特徴とする請求項1~9のいずれか1項に記載のガラス物品の製造方法。
JP2022121243A 2018-05-30 2022-07-29 ガラス物品の製造方法 Pending JP2022153571A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022121243A JP2022153571A (ja) 2018-05-30 2022-07-29 ガラス物品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103483A JP7118359B2 (ja) 2018-05-30 2018-05-30 ガラス物品の製造方法
JP2022121243A JP2022153571A (ja) 2018-05-30 2022-07-29 ガラス物品の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018103483A Division JP7118359B2 (ja) 2018-05-30 2018-05-30 ガラス物品の製造方法

Publications (1)

Publication Number Publication Date
JP2022153571A true JP2022153571A (ja) 2022-10-12

Family

ID=68697593

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018103483A Active JP7118359B2 (ja) 2018-05-30 2018-05-30 ガラス物品の製造方法
JP2022121243A Pending JP2022153571A (ja) 2018-05-30 2022-07-29 ガラス物品の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018103483A Active JP7118359B2 (ja) 2018-05-30 2018-05-30 ガラス物品の製造方法

Country Status (4)

Country Link
JP (2) JP7118359B2 (ja)
KR (1) KR20210018195A (ja)
CN (1) CN112074488A (ja)
WO (1) WO2019230277A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022018815A (ja) * 2020-07-16 2022-01-27 日本電気硝子株式会社 ガラス物品の製造方法
JP2023082986A (ja) * 2021-12-03 2023-06-15 日本電気硝子株式会社 ガラス物品の製造方法
CN114057389A (zh) * 2021-12-17 2022-02-18 江苏正威新材料股份有限公司 一种点供式池窑拉丝装置及其工艺方法
CN114835379A (zh) * 2022-06-22 2022-08-02 武汉荣佳达光电科技有限公司 一种降低排放的载板玻璃电窑炉系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280320A (en) * 1975-12-27 1977-07-06 Central Glass Co Ltd Method of producing plate glass and glass fiber
JPH10297927A (ja) * 1997-04-24 1998-11-10 Nippon Electric Glass Co Ltd 異質ガラス排出装置
JP2003183031A (ja) 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd ガラス繊維製造用電気溶融炉及び繊維用ガラスの溶融方法
JP2009221106A (ja) 2003-02-10 2009-10-01 Nippon Electric Glass Co Ltd 溶融ガラス供給装置及びガラス成形品の製造方法
JP2009203133A (ja) 2008-02-28 2009-09-10 Ohara Inc 溶融ガラス供給装置、及び溶融ガラスの供給方法
JP2011162381A (ja) 2010-02-08 2011-08-25 Nippon Electric Glass Co Ltd ガラス棒成型方法およびガラス棒成型装置
JP2012162422A (ja) 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd ガラス物品の製造方法、及びガラス熔融炉
JP5888325B2 (ja) 2011-03-31 2016-03-22 旭硝子株式会社 減圧脱泡装置、ガラス製品の製造装置、およびガラス製品の製造方法
US20120275483A1 (en) 2011-04-26 2012-11-01 Gilbert De Angelis Electrode holder for electric glass melting
JP5691917B2 (ja) 2011-07-28 2015-04-01 株式会社Ihi ガラス溶融炉の炉底ノズル部構造
JP2013086991A (ja) 2011-10-14 2013-05-13 Asahi Glass Co Ltd 溶融ガラスの供給管及びガラスの成形装置
JP5731438B2 (ja) * 2012-04-06 2015-06-10 AvanStrate株式会社 ガラス板の製造方法および製造装置
CN203904196U (zh) * 2014-04-09 2014-10-29 台湾玻璃工业股份有限公司 一种一窑炉搭配多条浮法玻璃生产线的制作系统
CN104692646B (zh) 2015-03-26 2017-03-15 山东聚源玄武岩纤维股份有限公司 一种用于生产玄武岩连续纤维的窑炉拉丝系统

Also Published As

Publication number Publication date
KR20210018195A (ko) 2021-02-17
WO2019230277A1 (ja) 2019-12-05
CN112074488A (zh) 2020-12-11
JP7118359B2 (ja) 2022-08-16
JP2019206461A (ja) 2019-12-05

Similar Documents

Publication Publication Date Title
JP2022153571A (ja) ガラス物品の製造方法
TWI527779B (zh) A glass melting furnace, a manufacturing method of a molten glass, a manufacturing apparatus for a glass product, and a method for manufacturing a glass product
KR101971755B1 (ko) 용융 유리 제조 장치, 용융 유리 제조 방법 및 그것들을 사용한 판유리의 제조 방법
JP7025720B2 (ja) ガラス物品の製造方法及びガラス溶融炉
CN112119043B (zh) 玻璃物品的制造方法以及制造装置
KR102497517B1 (ko) 유리 물품의 제조 방법 및 용융로
JP5731437B2 (ja) ガラス板の製造方法
JP7174360B2 (ja) ガラス物品の製造方法、溶解炉及びガラス物品の製造装置
JP2014069983A (ja) ガラス基板の製造方法及びガラス基板の製造装置
JP6263355B2 (ja) ガラス熔解装置、ガラスシート製造装置、ガラス熔解装置用の電極およびガラスシート製造方法
JP6002526B2 (ja) ガラス基板の製造装置及びガラス基板の製造方法
JP6792825B2 (ja) ガラス物品の製造方法及び溶融炉
JP2013095639A (ja) ガラス溶融炉の予備加熱方法とガラス溶融装置およびガラス物品の製造方法
JP6498546B2 (ja) ガラス板の製造方法、および、熔解槽
JP6749123B2 (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
JP5668066B2 (ja) ガラス基板の製造方法
JP2017178731A (ja) ガラス板の製造方法
JP2017178760A (ja) ガラス板の製造方法及び熔解槽

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230921