JP2022101559A - シリコン微細ナノ粒子、並びに食品の製造方法及び添加剤の製造方法 - Google Patents

シリコン微細ナノ粒子、並びに食品の製造方法及び添加剤の製造方法 Download PDF

Info

Publication number
JP2022101559A
JP2022101559A JP2022051528A JP2022051528A JP2022101559A JP 2022101559 A JP2022101559 A JP 2022101559A JP 2022051528 A JP2022051528 A JP 2022051528A JP 2022051528 A JP2022051528 A JP 2022051528A JP 2022101559 A JP2022101559 A JP 2022101559A
Authority
JP
Japan
Prior art keywords
silicon fine
water
hydrogen
fine particles
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022051528A
Other languages
English (en)
Inventor
光 小林
Hikaru Kobayashi
悠輝 小林
Yuki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kit KK
Original Assignee
Kit KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015237328A external-priority patent/JP2016155118A/ja
Application filed by Kit KK filed Critical Kit KK
Publication of JP2022101559A publication Critical patent/JP2022101559A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Silicon Compounds (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Medicinal Preparation (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Detergent Compositions (AREA)

Abstract

【課題】低コストで安全に、オンサイトで所定の水素濃度を有する水素水を得る、水素水の製造方法を提供する。【解決手段】シリコン微細粒子又はシリコン微細粒子をエタノール溶媒中でビーズミル機により粉砕したシリコン微細ナノ粒子及び/又はその一部が凝集体となったものを含むものを、さらに、過酸化水素(H2O2)水溶液で表面シリコン酸化膜の一部または全部を処理後、密封容器内で水又は水溶液に接触及び/又は該水又は該水溶液中に分散させることにより水素を発生させて、水溶液中に所定の制御された水素濃度を有する水素水を得る。【選択図】図9b

Description

本発明は、シリコン微細ナノ粒子及び/又はその凝集体及び生体用水素発生材及びその製造方法並びに水素水とその製造方法及び製造装置に関する。
水素を水に溶解させた水素水は、1ppm以上の溶存水素濃度が必要とされ、活性酸素を除去することが可能となり、健康飲料水、洗顔水、入浴水、医療分野や電子部品の洗浄水また植物の生育促進水などの多方面の利用が進みつつあるが、水素水の製造技術や製造装置としては、水素ガスを水に導入することや水の電気分解法によって行われている(例えば、特許文献1)。
特開2006-95389号公報
しかしながら、従来技術で開示されている水素水を製造する技術においては、水素ガスを直接導入する過程を要し、その制御及び取扱いに課題がある。更に、低コストで生体及び生体内への安全性の高い水素発生材料を用いて、オンサイトで簡便な水素水、その製造方法及びその製造装置が求められている。
本発明は、上述の技術課題の少なくとも1つを解消し、シリコン微細粒子を有効活用し、安全性、経済性及び工業性に優れた製造方法により水素発生を行うことにより、簡単かつ安全な水素水の製造及びその製造装置に大いに貢献するものである。
本願発明者らは、半導体や発光素子において、シリコン微細粒子の有効活用に着眼し研究を進めてきた。一方、かかるシリコン微細粒子から、実用性及び工業性に優れた水素の製造技術について、鋭意研究に取り組んだ。その結果、室温で温和な条件下であっても、低コストで安全な材料であるシリコン微細粒子を水中に分散して、その水中から水素を発生し得ることを見出し、この水素を水中で溶存させ、制御された水素濃度を有する水素水を実現できることを見出した。
本発明は、上述の視点に基づいて創出されたものである。
本発明の1つは、シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細粒子(以下、シリコン微細ナノ粒子と呼ぶ)及び/又はその凝集体を水中に接触もしくは分散させて発生の水素を、直接的に前記水中に溶存させて容器に密封した水素水である。
本発明の1つの水素水の製造装置は、シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する粉砕部とそのシリコン微細ナノ粒子及び/又はその凝集体を水又は水溶液内で接触もしくは分散させて直接的に前記水中に溶存させて密封する水素水発生部とを備える。
この水素水の製造装置によれば、シリコン微細ナノ粒子及び/又はその凝集体を密封容器中で水又は水溶液中に接触もしくは分散させて、実用に耐え得る水素濃度と量の水素水を確度高く低コストで安全にオンサイトで製造することが可能である。この水素水の製造装置によれば、水素水の製造における工業生産性を格段に向上させることができる。
また、本発明の1つの水素水の製造方法は、シリコン微細粒子を形成する粉砕工程と、シリコン微細ナノ粒子及び/又はその凝集体を水又は水溶液で接触もしくは分散させて水素を発生し、その水素を前記水中に溶存させて密封する水素水の生成工程を含む。
この水素水の製造方法によれば、シリコン微細粒子を出発材料として、実用に耐え得る水素濃度と量の水素水を製造することが可能であり、この水素水の製造方法は、シリコン微細ナノ粒子を有効活用し、環境保護に大きく貢献するのみならず、飲料水等ともなる。その水素水の製造コストを大幅に削減することができ、工業生産性を格段に向上させることができる。
また、本発明の1つの水素水の製造に使用するシリコン微細ナノ粒子及び/又はその凝集体は、その結晶子径の分布が100nm(ナノメートル)以下、好ましくは50nm以下の範囲であることが、水中で水素を発生し、その水素を前記水中に溶存させて容器に密封する,水素水の生成に好適である。
なお、シリコン微細ナノ粒子の中でも、化学的処理(代表的には、後述する各実施形態における、フッ酸水溶液及び/又はフッ化アンモ二ウム水溶液による酸化膜の除去処理)されたものは、水素水の製造用シリコン微細ナノ粒子として好適な一例であり、本発明の1つの水素水の製造方法は、シリコン微細ナノ粒子を形成する粉砕工程を含む。
なお、シリコン微細ナノ粒子の中でも、化学的処理(代表的には、後述する各実施形態における、過酸化水素水溶液による加熱処理)されたものは、生体及び生体内での水素水の製造用シリコン微細ナノ粒子として好適な一例であり、本発明の1つの水素水の製造方法は、シリコン微細ナノ粒子を形成するエタノール中での粉砕工程を含む。
上述の水素水製造用シリコン微細ナノ粒子、及びその製造方法によれば、シリコン微細ナノ粒子及び/又はその凝集体が、実用に耐え得る水素濃度と量の水素水を効率よく製造するための生体安全性を有する材料として提供される。
本発明の1つの水素水の製造装置及び本発明の1つの水素水の製造方法によれば、シリコン微細ナノ粒子が、水素水生成の出発材料として、実用に耐え得る水素濃度と量の水素水を確度高く低コストで安全に、オンサイトで製造することに利用される。したがって、シリコン微細ナノ粒子及び/又はその凝集体が有効活用されて、環境保護や生体安全性に貢献するとともに、水素水の製造コストの大幅削減に貢献する。
実施例における一段階粉砕後のシリコン微細ナノ粒子の結晶構造例を示す断面TEM(透過型電子顕微鏡)写真図である。 個別のシリコン微細ナノ粒子に着目した拡大TEM写真図である 実施例の1段階粉砕で得られるシリコン微細ナノ粒子のX線回折装置(XRD)による結晶子径分布図である。 実施例の2段階粉砕で得られるシリコン微細ナノ粒子のXRDによる結晶子径分布図である。 実施例で得られる水素水中の溶存水素濃度特性図である。 実施例で得られる水素水中の溶存水素濃度特性図である。 実施例で得られる水素水中の溶存水素濃度特性図である。 実施例で得られる水素水中の溶存水素濃度特性図である。 他の実施例で得られる水素水中の溶存水素濃度特性図及び水素発生量特性図である。 他の実施例で得られる水素水中の水素発生量特性図で、Si1g当たりに換算した水素発生量ある。
本発明の実施形態を、添付する図面に基づいて詳細に述べる。
シリコン微細粒子には、市販の高純度Si粉末(高純度化学社製、粒度分布<φ0.5μm、純度99.9%、i型シリコン))と、高純度Si粉末からビーズミル法で作製したシリコン微細ナノ粒子を用いて、水溶液にはpH8の弱アルカリのほう酸カリウムバッファー溶液混合の水溶液、pH7の超純水、並びにpH7.1~7.3の標準的な水道水を個別に選択して用いて、密閉容器内で反応させる。
上述のシリコン微細ナノ粒子は、ビーズミル装置(アイメックス株式会社製:RMB型バッジ式レディーミル)を用いて、高純度Si粉末15gを99%以上のイソプロピルアルコール(IPA)300mlに分散させ、φ;0.5μmのジルコニア製ビーズ(容量300ml)を加えて4時間、回転数2500rpmで粉砕(一段階粉砕)を行い、X線回折装置(XRD)による測定により、平均結晶子径(体積分布)20.0nmを得た。それをさらにφ;0.3mmのジルコニア製ビーズ(容量300ml)を用いて、4時間、回転数2500rpmで粉砕(二段階粉砕)を行い、XRDによる測定により平均結晶子径(体積分布)10.9nmを得た。
図1は、本実施例におけるビーズミルの一段階粉砕工程後で得られたシリコン微細ナノ粒子の結晶構造例を示す断面TEM(透過型電子顕微鏡)写真である。図1は、シリコン微細ナノ粒子が一部凝集して、不定形の0.5μm程度以下のやや大きな微粒子が形成されている状態を示している。また、図2は、個別のシリコン微細ナノ粒子に着目して拡大したTEM写真図である。図2中の白線で囲んで示すように、約5nmから10nmの大きさのシリコン微細ナノ粒子が確認された。また、このシリコン微細粒子は結晶性((111)面)を有していることが確認された。外観は不定形の形状で、一部にはシリコン微細ナノ粒子の凝集体も見られる。図示していないが、二段階粉砕後のTEM解析により、一段階粉砕後の約1/2程度以下の結晶性((111)面)を有するシリコン微細ナノ粒子が得られた。
図3は、一段階粉砕での実施例で得られたシリコン微細ナノ粒子の結晶子径分布をX線回折装置(リガク電機製スマートラボ)によって、測定解析した結果を示す図である。図3では、横軸が結晶子径(nm)を表し、縦軸は、頻度を表している。また、実線は個数分布基準の結晶子径分布を示し、破線は体積分布基準の結晶子径分布を示している。個数分布においては、モード径が0.29nm、メジアン径(50%結晶子径)が0.75nm、平均径が1.2nmであった。また、体積分布においては、モード径が4.9nm、メジアン径が12.5nm、平均径が上述したように20.0nmであった。
図4は、二段階粉砕での実施例で得られたシリコン微細ナノ粒子の結晶子径分布をX線回折装置によって、測定解析した結果を示す図である。図4では、横軸が結晶子径(nm)を表し、縦軸は、頻度を表している。また、実線は個数分布基準の結晶子径分布を示し、破線は体積分布基準の結晶子径分布を示している。個数分布においては、モード径が0.14nm、メジアン径(50%結晶子径)が0.37nm、平均径が0.6nmであった。また、体積分布においては、モード径が2.6nm、メジアン径が6.7nm、平均径が上述したように10.9nmであった。これらの結果により、二段階粉砕後に得られるシリコン微細ナノ粒子は、一段階粉砕より、約1/2以下の微細化が達成されていることが分かった。これらのビーズミル法での粉砕処理で結晶子径が、100nm以下の範囲で、特に50nm以下に分布しているシリコン微細ナノ粒子が得られることが確認された。
以下、一段階粉砕と二段階粉砕で作製されたシリコン微細ナノ粒子を用いた水素水の生成とその溶存水素濃度の制御について詳細に述べる。
上述の一段階粉砕と二段階粉砕で作製されたビーズを含むシリコン微細ナノ粒子は、ビーズ分離容器(アイメックス株式会社製)に装着したSUSフィルター(φ:0.5mmのビーズの場合はフィルターのメッシュは0.35mm、φ:0.3mmのビーズの場合はメッシュ0.06mmを使用)を用いて、その上部からビーズを含むシリコン微細ナノ粒子を含むイソプロピルアルコール(IPA)溶液を注いで、分級処理して、吸引濾過しビーズを分離して、シリコン微細ナノ粒子を含むIPA溶液を得た。その後、減圧蒸発装置を用いて、40℃でIPAを蒸発処理して、シリコン微細ナノ粒子を得た。
次いで、フッ酸処理を行う場合は以下の処理を追加した。得られたシリコン微細ナノ粒子を5%濃度のフッ酸溶液中に10分間浸漬させた。その後、100nmのフッ素樹脂製のメンブレンフィルターで大気中濾過処理を行い、シリコン微細ナノ粒子をメンブレンフィルター上にトラップし層状に残存させた。このメンブレンフィルター上のシリコン微細ナノ粒子をフッ素樹脂製ビーカー上に保持して、フッ酸処理を行った場合はその上からエタノールを滴下して、フッ酸成分を除去した。メンブレンフルター上のシリコン微細ナノ粒子を空気中で30分程度乾燥処理し、フッ酸処理したシリコン微細ナノ粒子を得た。
これらのシリコン微細ナノ粒子表面のシリコン酸化膜厚の測定をXPS法により実施した。フッ酸処理しない場合は膜厚が1.6nm程度のシリコン酸化膜を有している。フッ酸処理をした場合は酸化膜がエッチング除去され、0.07nm以下となり、酸化膜をほとんど有していないことが分かった。
得られたシリコン微細ナノ粒子10mgを容量30mlのガラス瓶(硼ケイ酸ガラス厚さ1mm程度、ASONE社製ラボランスクリュー管瓶)に入れて、その後、エタノール1mlを投入して、分散させ、全量が30mlになるように所定の水溶液約29mlを加え、ガラス瓶の口まで一杯にして、空気が入らないように内蓋をして、キャップ(長さ1cm)をし、完全密封をした。キャップはポリプロピレン(厚さ2mm)で、内蓋はポリエチレンとポリプロピレンの多層フィルター製を用いた。これらにより、発生する水素の透過や漏れを充分に抑えることができた。
この状態に保ったままで、室温にて、密閉したガラス瓶中でシリコン微細ナノ粒子から徐々に水素が発生し、水溶液中に所定の濃度を有する水素を溶存させることができ、安全な水素水を得ることができた。
水溶液中の溶存水素濃度の反応時間依存性の測定には東亜DKK社製のポータブル溶存水素濃度計を使用した。まず、図5にフッ酸処理しない場合のシリコン微細ナノ粒子を用いたpH7の超純水の場合の測定結果を示す。
図5の超純水溶液中の溶存水素濃度は、未粉砕高純度Si粉末、一段階粉砕(平均結晶粒子径20.0nm)と二段階粉砕(平均結晶粒子径10.9nm)での測定値を示す。粒子径(結晶子径)が小さくなることにより、シリコン微細ナノ粒子の表面積が増大し、表面で反応発生する水素が増加し、溶存水素濃度が増加していることが分かる。また、反応時間の増加とともに得られる溶存水素濃度が大きくなり、400分(約7時間)程度の反応で、超純水中でも0.4ppm程度の溶存水素濃度を達成した。1ppm以上の溶存水素濃度を得るためには、シリコン微細ナノ粒子の量を増やせば良い。
また、水溶液中の溶存水素濃度は、水溶液のpH値にも依存性が見られ、pH値8.0にすると、水溶液中の溶存水素濃度が超純水に比べて、大きく増大することも明確になった。
図6に、一段階粉砕(平均結晶子径20.0nm)のシリコン微細ナノ粒子を、フッ酸溶液中に浸漬して酸化膜を除去した場合とそうでない場合を比較して示す。
フッ酸処理をしたシリコン微細ナノ粒子を用いた場合、20分程度で1ppmを超え、100分で1.4ppmを超える溶存水素濃度を達成した。更に短時間化したい場合はシリコン微細ナノ粒子の投入量を増加すれば良い。
また、標準的な飲料可能な水道水(pH値7.1~7.3程度)を使用して、一段階粉砕(平均結晶子径20.0nm)のフッ酸処理しない場合のシリコン微細ナノ粒子を水道水に混合して水素水を作製した。図7にその測定値を示す。
図7に示すように、超純水(pH値7.0)に混合したときの溶存水素濃度よりも顕著な増大を示し、200分程度で1ppmを達成した。
なお、シリコン微細ナノ粒子として、二段階粉砕(平均結晶子径10.9nm)のものを水道水に混合して水素水を作製したところ、図示していないが、一段階粉砕のシリコン微細ナノ粒子を用いた場合の溶存水素濃度よりも更に1.4~1.6倍程度は増加することが分かった。
水道水を用いて、フッ酸処理しないで、低コストで安全な水素濃度1ppm以上の水素水を得ることが可能であることが分かった。更に短時間化したい場合はシリコン微細ナノ粒子の投入量を増やせば良い。
図8に一段階粉砕のシリコン微細ナノ粒子を用いて、超純水(pH値7.0)に分散したときの溶存水素濃度の長時間での測定結果を示す。フッ酸処理をした場合は20時間で1ppmを達成した。フッ酸処理しない場合には、160時間以上で(1週間程度)で1ppmを達成した。
これは、フッ酸処理をしていない場合のシリコン微細ナノ粒子による超純水中での水素発生反応は表面にシリコン酸化膜があるため、シリコン酸化膜が超純水中に徐々に溶け出しながら、極めてゆっくり起こるため、水素濃度が長時間増大しながら持続すると考えられることを示している。
本発明の他の実施形態(実施例2)を、添付する図面に基づいて詳細に述べる。
シリコン微細ナノ粒子は、ビーズミル装置(アイメックス株式会社製:RMB型バッジ式レディーミル)を用いて、高純度シリコン(Si)粉末(高純度化学社製、粒度分布<φ0.5μm、純度99.9%、i型シリコン))60gを99・5wt%のエタノール250mlに分散させ、φ;0.5μmのジルコニア製ビーズ(容量300ml)を加えて4時間、回転数2500rpmで粉砕(一段階粉砕)を行い作製した。
本実施例におけるビーズミルの一段階粉砕工程後で得られた体積分布やシリコン微細ナノ粒子の結晶構造は実施例1とほとんど同様の結果が得られると考えられる。
以下、エタノール中の一段階粉砕で作製され、過酸化水素処理されたシリコン微細ナノ粒子を用いた水素水の生成とその溶存水素濃度及び水素発生量の制御について詳細に述べる。
上述のエタノール中の一段階粉砕で作製されたビーズを含むシリコン微細ナノ粒子は、ビーズ分離容器(アイメックス株式会社製)に装着したSUSフィルター(φ:0.5mmのビーズの場合はフィルターのメッシュは0.35mm、φ:0.3mmのビーズの場合はメッシュ0.06mmを使用)を用いて、その上部からビーズを含むシリコン微細ナノ粒子を含むエタノール溶液を注いで、分級処理して、吸引濾過しビーズを分離して、シリコン微細ナノ粒子を含むエタノール溶液を得た。その後、減圧蒸発装置を用いて、30℃~35℃でエタノールを蒸発処理して、シリコン微細ナノ粒子及び/又はその凝集体(以下シリコン微細ナノ粒子ともいう)を得た。
得られたシリコン微細ナノ粒子を過酸化水素水(3.5wt%100ml)を入れた耐熱性ガラス中に投入し、30分間加熱処理(温度約75℃)した。処理したシリコン微細ナノ粒子を遠沈管に移し替えて、遠心分離処理で、固液分離し、液体を廃棄して、新たにエタノール(3.5%100ml)を投入し、シリコン微細ナノ粒子を撹拌して、同様の遠心分離を行い、同様の処理をした。その後、同じく、同量のエタノールを加えて、同様の遠心分離処理を行い、シリコン微細ナノ粒子を得た。
その後、自然乾燥を1日程度長時間行った。この状態で、エタノールや過酸化水素水は完全に除去されていると考えられる。また、過酸化水素水60分間加熱処理(温度約75℃)し、同様の遠心分離処理し、シリコン微細粒子を得た
得られたシリコン微細ナノ粒子11mg(過酸化水素水30分処理)を容量115mlのガラス瓶(硼ケイ酸ガラス厚さ1mm程度、ASONE社製ラボランスクリュー管瓶)に入れて、分散させ、全量が115mlになるように所定の水溶液約115mlと炭酸水素ナトリウム(日本薬局方準拠のもの約20g投入し1.88wt%とし、pH約8.3を得た)を加え、ガラス瓶の口まで一杯にして、空気が入らないように内蓋をして、キャップ(長さ1cm)をし、完全密封をした。キャップはポリプロピレン(厚さ2mm)で、内蓋はポリエチレンとポリプロピレンの多層フィルター製を用いた。これらにより、発生する水素の透過や漏れを充分に抑えることができた。シリコン微細ナノ粒子はそのままで均一に水溶液全体に混ざった状態となった。これは過酸化水素処理により、シリコン微細ナノ粒子が有効に親水性となってためと考えられる。過酸化水素水60分処理はシリコン微細ナノ粒子5mgを用いて、水素発生の実験を行った。
この状態に保ったままで、室温にて、密閉したガラス瓶中でシリコン微細ナノ粒子から徐々に水素が発生し、水溶液中に所定の濃度を有する水素を溶存させることができ、実施例1のようにIPAやフッ酸を使用していないため、生体や生体内でより安全安心な薬液とプロセス処理によりシリコン微細ナノ粒子及び水素水を得ることができたことは特筆に値する。
水溶液中の溶存水素濃度の反応時間依存性の測定には東亜DKK社製のポータブル溶存水素濃度計を使用した。図9aと図9bの各図では、過酸化水素水処理しない場合のシリコン微細ナノ粒子、過酸化水素水で30分処理したシリコン微細ナノ粒子、並びに過酸化水素水で60分処理したシリコン微細ナノ粒子を用いた溶存水素濃度の測定結果を示し、また、図9bではSi1g当たりに換算した水素発生量でそれぞれを示す。図9a、図9bとも、縦軸は溶存水素濃度、横軸は反応時間(h:時間)を示す。過酸化水素水処理により、水素発生が加速増大することが示された。これはシリコン微細ナノ粒子が親水性となり、水溶液に均一に分散されたためである。過酸化水素水30分処理で、2時間で400ppb、4時間で1000ppm近くの特筆すべき濃度を得た。24時間で2000ppmに達した。60分処理では水素発生量は30分より、低減された。60分処理により、シリコン微細ナノ粒子の表面酸化膜が30分より膜厚が厚く、水素発生量が抑圧されたと考えられる。図示していないが、15分処理で同様の実験を行ったが、30分とほとんど同一の実験結果を得た。1分~2分処理では処理無と同程度で有効な水素発生が得られなかった。従って、過酸化水素水処理時間は5分~30分が適当である。炭酸水素ナトリウムを混入することは、通常生体の小腸のpH状態に匹敵し、体内で有効な水素発生が起こることになる。図9bはSi1g当たりに換算した水素発生量を示している。縦軸はSi1g当たりの水素発生量(ml)、横軸は反応時間(h:時間)を示す。30分の処理で極めて有効な水素発生量(40ml)が2時間以上で継続的に得られている。
本実験結果から、IPAやフッ酸を用いずに、生体に用いても、より安全で安心なシリコン微細ナノ粒子を作製でき、生体内で安全に水素発生させることが可能となる。更に、このシリコン微細ナノ粒子を用いて、公知の添加剤や食品に含有させて生体用水素発生材を作製することが可能となる。反応時間数時間以内で1ppm以上の溶存水素濃度を得るためには、シリコン微細ナノ粒子の量を増やせば良い。
シリコン微細粒子として、高純度シリコン(Si)粉末以外に、太陽電池グレードのシリコン基板の切削加工から発生するシリコン切粉や半導体グレードの研磨屑を利用しても、水素水の生成は可能である。また、i型のみならず、n型、p型でも使用可能である。
本発明は、生体安全性を有するシリコン微細ナノ粒子を作製でき、それを有効活用して、安全性、実用性及び経済性に優れた水素水とその製造技術に展開できるものであり、特に、健康・医療用のシリコン微細ナノ粒子を含有した水素発生材(剤)や洗浄水や健康飲料水等の健康・医療食品、製品分野への利用が可能である。

Claims (11)

  1. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその凝集体から水に接触及び/又は分散させて水素を発生させ、かつその水素を直接的に前記水中に溶存させて容器に密封した、
    水素水。
  2. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその凝集体を水道水に接触及び/又は分散させて水素を発生させて、前記水道水中に水素を溶存させて容器に密封した、
    水素水。
  3. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する工程、そのシリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその凝集体を水又は水溶液に接触もしくは分散させて、直接的に水素水を生成する工程を備える、
    水素水の製造方法。
  4. 前記シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその凝集体をフッ酸又はフッ化アンモニウム水溶液に接触させる表面シリコン酸化膜除去の工程をさらに備えた、
    請求項1又は請求項2に記載の水素水の製造方法。
  5. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する粉砕工程、前記シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその凝集体をpH7の中性水又はpH8~9の水溶液に接触及び/又は分散させて水素を発生させて、前記中性水又は前記水溶液中に水素を溶存させる工程を含む、
    水素水の製造方法。
  6. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその凝集体を水道水に接触及び/又は分散させて水素を発生させて、前記水道水中に水素を溶存させる工程を含む、
    水素水の製造方法。
  7. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその凝集体をpH7の中性水又はpH8~9の水溶液又はpH7.1~7.5の水道水に接触及び/又は分散させて水素を発生させて、前記中性水又は前記水溶液または水道水中に水素を溶存させた、
    水素水。
  8. シリコン微細ナノ粒子及び/又はその凝集体のXRDによる結晶子径分布が100nm
    好ましくは50nm以下である、
    請求項1、請求項2、又は請求項7に記載の水素水。
  9. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する粉砕部と、
    そのシリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその凝集体を水又は水溶液内で接触もしくは分散させて発生した水素を直接的に前記水中又は前記水溶液中に溶存させて密封する水素水発生部と、を備える、
    水素水の製造装置。
  10. シリコン微細粒子又はシリコン微細粒子を更にエタノール中で粉砕し、過酸化水素水処理したシリコン微細ナノ粒子及び/又はその凝集体を水に接触及び/又は分散させて水素を発生させ、かつその水素を直接的に前記水中に溶存させて容器に密封した、
    水素水。
  11. シリコン微細粒子又はシリコン微細粒子を更にエタノール中で粉砕し、過酸化水素水処理したシリコン微細ナノ粒子及び/又はその凝集体並びにそれらを含有した、
    生体用水素発生材。
JP2022051528A 2015-12-04 2022-03-28 シリコン微細ナノ粒子、並びに食品の製造方法及び添加剤の製造方法 Pending JP2022101559A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015237328 2015-12-04
JP2015237328A JP2016155118A (ja) 2015-02-24 2015-12-04 水素水、その製造方法及び製造装置
JP2017135940A JP6889055B2 (ja) 2015-12-04 2017-07-12 生体用水素発生材の製造方法及び食品の製造方法
JP2021063404A JP7085668B2 (ja) 2015-12-04 2021-04-02 生体用水素発生材、食品及び医療用食品、並びに食品の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021063404A Division JP7085668B2 (ja) 2015-12-04 2021-04-02 生体用水素発生材、食品及び医療用食品、並びに食品の製造方法

Publications (1)

Publication Number Publication Date
JP2022101559A true JP2022101559A (ja) 2022-07-06

Family

ID=59061459

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2016162520A Pending JP2017104848A (ja) 2015-02-24 2016-08-23 シリコン微細ナノ粒子及び/又はその凝集体及び生体用水素発生材及びその製造方法並びに水素水とその製造方法及び製造装置
JP2017135940A Active JP6889055B2 (ja) 2015-12-04 2017-07-12 生体用水素発生材の製造方法及び食品の製造方法
JP2019131994A Pending JP2020007310A (ja) 2015-12-04 2019-07-17 水素供給材及び水素供給能を有するシリコン微細粒子及び/又は該シリコン微細粒子の凝集体の製造方法
JP2019181957A Pending JP2020037553A (ja) 2015-12-04 2019-10-02 水素供給材及びその製造方法、並びに水素供給方法
JP2019181958A Pending JP2020037554A (ja) 2015-12-04 2019-10-02 水素供給材及びその製造方法、並びに水素供給方法
JP2021063404A Active JP7085668B2 (ja) 2015-12-04 2021-04-02 生体用水素発生材、食品及び医療用食品、並びに食品の製造方法
JP2022051528A Pending JP2022101559A (ja) 2015-12-04 2022-03-28 シリコン微細ナノ粒子、並びに食品の製造方法及び添加剤の製造方法

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2016162520A Pending JP2017104848A (ja) 2015-02-24 2016-08-23 シリコン微細ナノ粒子及び/又はその凝集体及び生体用水素発生材及びその製造方法並びに水素水とその製造方法及び製造装置
JP2017135940A Active JP6889055B2 (ja) 2015-12-04 2017-07-12 生体用水素発生材の製造方法及び食品の製造方法
JP2019131994A Pending JP2020007310A (ja) 2015-12-04 2019-07-17 水素供給材及び水素供給能を有するシリコン微細粒子及び/又は該シリコン微細粒子の凝集体の製造方法
JP2019181957A Pending JP2020037553A (ja) 2015-12-04 2019-10-02 水素供給材及びその製造方法、並びに水素供給方法
JP2019181958A Pending JP2020037554A (ja) 2015-12-04 2019-10-02 水素供給材及びその製造方法、並びに水素供給方法
JP2021063404A Active JP7085668B2 (ja) 2015-12-04 2021-04-02 生体用水素発生材、食品及び医療用食品、並びに食品の製造方法

Country Status (2)

Country Link
JP (7) JP2017104848A (ja)
CN (2) CN113426312A (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017104848A (ja) * 2015-12-04 2017-06-15 小林 光 シリコン微細ナノ粒子及び/又はその凝集体及び生体用水素発生材及びその製造方法並びに水素水とその製造方法及び製造装置
CN108601798A (zh) 2016-01-29 2018-09-28 小林光 固体制剂、固体制剂的制备方法及析氢方法
WO2018037819A1 (ja) 2016-08-23 2018-03-01 小林 光 配合物及びその製造方法、並びに水素供給方法
WO2018037818A1 (ja) * 2016-08-23 2018-03-01 小林 光 水素供給材及びその製造方法、並びに水素供給方法
CN109126268B (zh) * 2017-06-16 2021-07-02 友达晶材股份有限公司 生物用水组成、其集合体、滤材、其滤芯与其净水系统
WO2019021769A1 (ja) * 2017-07-27 2019-01-31 国立大学法人大阪大学 薬剤及びその製造方法
TWI685372B (zh) * 2017-10-30 2020-02-21 友達晶材股份有限公司 濾材的製備方法、濾材及淨水系統
CN112351783A (zh) * 2018-06-07 2021-02-09 国立大学法人大阪大学 氧化应激诱发的疾病的预防或治疗药物
JP7333941B2 (ja) * 2018-06-07 2023-08-28 国立大学法人大阪大学 酸化ストレスに起因する疾患の予防又は治療剤
JP7345824B2 (ja) * 2018-07-02 2023-09-19 国立大学法人大阪大学 うつ病又はうつ状態の予防又は治療剤
JP7461003B2 (ja) * 2018-11-13 2024-04-03 国立大学法人大阪大学 パーキンソン病の予防又は治療剤
US20200188825A1 (en) * 2018-12-14 2020-06-18 Auo Crystal Corporation Filter, filter assembly, filter device and water purification system
JP7461009B2 (ja) * 2019-01-24 2024-04-03 国立大学法人大阪大学 糖尿病の予防又は治療剤
JP7461011B2 (ja) * 2019-01-24 2024-04-03 国立大学法人大阪大学 難聴の予防又は治療剤
JP7461006B2 (ja) * 2019-01-24 2024-04-03 国立大学法人大阪大学 関節炎の予防又は治療剤
JP7461007B2 (ja) * 2019-01-24 2024-04-03 国立大学法人大阪大学 内臓不快感の予防又は治療剤
JP7461004B2 (ja) * 2019-01-24 2024-04-03 国立大学法人大阪大学 記憶障害の予防又は治療剤
JP7461005B2 (ja) * 2019-01-24 2024-04-03 国立大学法人大阪大学 自閉スペクトラム症の予防又は治療剤
JP7461008B2 (ja) * 2019-01-24 2024-04-03 国立大学法人大阪大学 脊髄損傷後の障害もしくは症状の予防又は治療剤
CN111483977B (zh) * 2020-05-06 2022-07-05 深圳市霍沃科技有限公司 一种溶于水可瞬间产生高浓度氢的复合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502157A (ja) * 2005-07-27 2009-01-29 サイメデイカ リミテツド シリコンを含む食品
JP2010265158A (ja) * 2009-05-18 2010-11-25 Mitsubishi Electric Corp 珪素微粒子の製造方法
JP2011026211A (ja) * 2009-07-21 2011-02-10 Niigata Univ 水素発生粉末含有マイクロカプセルの製造方法
US20120275981A1 (en) * 2009-11-12 2012-11-01 John Stuart Foord Preparation Of Silicon For Fast Generation Of Hydrogen Through Reaction With Water
WO2015033815A1 (ja) * 2013-09-05 2015-03-12 株式会社Kit 水素製造装置、水素製造方法、水素製造用シリコン微細粒子、及び水素製造用シリコン微細粒子の製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527854A (en) * 1978-08-18 1980-02-28 Nippon Telegr & Teleph Corp <Ntt> Production of silicon dioxide thin film
DE3738651A1 (de) * 1987-11-13 1989-05-24 Wacker Chemitronic Verfahren zur hydrophilierenden und/oder kittreste entfernenden oberflaechenbehandlung von siliciumscheiben
JPH0466189A (ja) * 1990-07-06 1992-03-02 Asahi Chem Ind Co Ltd シリコン微粉含有排水の貯留方法
US6638491B2 (en) * 2001-09-21 2003-10-28 Neptec Optical Solutions, Inc. Method of producing silicon metal particulates of reduced average particle size
JP2004115349A (ja) * 2002-09-30 2004-04-15 Honda Motor Co Ltd 水素発生方法
US7850938B2 (en) * 2004-03-17 2010-12-14 Denki Kagaku Kogyo Kabushiki Kaisha Silicon particles, silicon particle superlattice and method for producing the same
WO2007026533A1 (ja) * 2005-08-30 2007-03-08 Tokyo Denki University ナノシリコン含有溶解錠剤とその製造方法
KR100644968B1 (ko) * 2005-10-28 2006-11-14 한국과학기술연구원 생체적합성 실리콘 나노입자의 제조 방법
US7560091B2 (en) * 2005-12-05 2009-07-14 Hidemitu Hayashi Water reforming method and water reformer
EP1984292A1 (en) * 2006-02-13 2008-10-29 Uop Llc Process for the production of hydrogen
DE102006035081A1 (de) * 2006-07-28 2008-01-31 Wacker Chemie Ag Verfahren und Vorrichtung zur Herstellung von klassiertem polykristallinen Siliciumbruch in hoher Reinheit
JP2011218340A (ja) * 2010-04-06 2011-11-04 Norihiko Kabayama 電子水の製造方法
JP5695842B2 (ja) * 2010-06-02 2015-04-08 シャープ株式会社 リチウム含有複合酸化物の製造方法
JP4744641B1 (ja) * 2010-10-18 2011-08-10 ミズ株式会社 生体適用液への水素添加器具
CN102260894A (zh) * 2010-10-25 2011-11-30 中国科学院理化技术研究所 一种可控制备硅纳米结构材料的电化学方法
CN102126724A (zh) * 2011-03-31 2011-07-20 上海交通大学 光滑表面硅纳米线阵列的制备方法
EP2762443A4 (en) * 2011-09-30 2015-07-01 Mitsubishi Gas Chemical Co PROCESS FOR PREPARING AN AQUEOUS HYDROGEN PEROXIDE SOLUTION
RU2598931C2 (ru) * 2012-01-23 2016-10-10 Кинг Абдалла Юниверсити Оф Сайенс Энд Текнолоджи Производство водорода
DE102012200992A1 (de) * 2012-01-24 2013-07-25 Wacker Chemie Ag Dotierstoffarmes polykristallines Siliciumstück
JP2013228319A (ja) * 2012-04-26 2013-11-07 Kurita Water Ind Ltd 純水の水質評価方法
KR101318939B1 (ko) * 2012-09-20 2013-11-13 한국화학연구원 실리콘 나노입자의 제조방법 및 실리콘 나노입자 분산액의 제조방법
GB201217525D0 (en) * 2012-10-01 2012-11-14 Isis Innovation Composition for hydrogen generation
JP2014084233A (ja) * 2012-10-19 2014-05-12 Seiji Endo 水素発生用乾燥シート
CN103011067A (zh) * 2012-12-28 2013-04-03 哈尔滨工业大学 介孔二氧化硅纳米马达及其制备方法和应用
CN104968719B (zh) * 2013-01-03 2018-11-06 信越化学工业株式会社 亲水化的有机硅颗粒及制造方法
CN103030100B (zh) * 2013-01-09 2015-10-21 华北电力大学 一种具有减反射特性的亚波长硅纳米线阵列的制备方法
WO2016010139A1 (ja) * 2014-07-18 2016-01-21 株式会社ヴェルシーナ 化粧用塗布剤、化粧用水素充填物の製造方法および化粧用水素充填物
JP2016155118A (ja) * 2015-02-24 2016-09-01 小林 光 水素水、その製造方法及び製造装置
JP2017104848A (ja) * 2015-12-04 2017-06-15 小林 光 シリコン微細ナノ粒子及び/又はその凝集体及び生体用水素発生材及びその製造方法並びに水素水とその製造方法及び製造装置
CN105152131B (zh) * 2015-09-30 2018-05-22 林建凌 氢气发生溶氢装置及溶氢、氢气发生方法
CN108601798A (zh) * 2016-01-29 2018-09-28 小林光 固体制剂、固体制剂的制备方法及析氢方法
WO2018037819A1 (ja) * 2016-08-23 2018-03-01 小林 光 配合物及びその製造方法、並びに水素供給方法
WO2018037818A1 (ja) * 2016-08-23 2018-03-01 小林 光 水素供給材及びその製造方法、並びに水素供給方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502157A (ja) * 2005-07-27 2009-01-29 サイメデイカ リミテツド シリコンを含む食品
JP2010265158A (ja) * 2009-05-18 2010-11-25 Mitsubishi Electric Corp 珪素微粒子の製造方法
JP2011026211A (ja) * 2009-07-21 2011-02-10 Niigata Univ 水素発生粉末含有マイクロカプセルの製造方法
US20120275981A1 (en) * 2009-11-12 2012-11-01 John Stuart Foord Preparation Of Silicon For Fast Generation Of Hydrogen Through Reaction With Water
WO2015033815A1 (ja) * 2013-09-05 2015-03-12 株式会社Kit 水素製造装置、水素製造方法、水素製造用シリコン微細粒子、及び水素製造用シリコン微細粒子の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EROGBOGBO, FOLARIN ,外: "On-Demand Hydrogen Generation using Nanosilicon: Splitting Water without Light, Heat, or Electricity", NANO LETTERS, vol. 13, JPN7019003226, 2013, pages 451 - 456, XP093093802, ISSN: 0005145241, DOI: 10.1021/nl304680w *
IMAMURA,KENTARO, ET AL.: "Hydrogen generation from water using Si nanopowder fabricated from swarf", JOURNAL OF NANOPARTICLE RESEARCH, vol. 18, no. 5, JPN6017032954, May 2016 (2016-05-01), pages 116 - 1, ISSN: 0005145240 *
松田 真輔 ほか: "シリコンナノ粒子による水の分解と水素濃度", 第62回応用物理学会春季学術講演会 講演予稿集, JPN6017008383, 2015, pages 27 - 6, ISSN: 0004984331 *

Also Published As

Publication number Publication date
JP2017104848A (ja) 2017-06-15
JP2020037553A (ja) 2020-03-12
JP2021121427A (ja) 2021-08-26
JP2020037554A (ja) 2020-03-12
CN113426312A (zh) 2021-09-24
JP2020007310A (ja) 2020-01-16
JP7085668B2 (ja) 2022-06-16
CN110225890A (zh) 2019-09-10
JP6889055B2 (ja) 2021-06-18
JP2017225972A (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
JP7085668B2 (ja) 生体用水素発生材、食品及び医療用食品、並びに食品の製造方法
WO2018037752A1 (ja) 水素含有液、水素含有液の製造方法、及び水素含有液の製造装置、並びに生体用水素発生材
US20220175826A1 (en) Solid preparation, method for producing solid preparation, and method for generating hydrogen
TWI316557B (ja)
JP7206695B2 (ja) シリカゾル、研磨組成物、シリコンウェーハの研磨方法、シリコンウェーハの製造方法、化学的機械的研磨組成物及び半導体デバイスの製造方法
JP2006249129A (ja) 研磨剤の製造方法及び研磨剤
JP6255471B1 (ja) シリカ粒子分散液及びその製造方法
JP6933976B2 (ja) シリカ系粒子分散液及びその製造方法
JP2012229146A (ja) シリコン微細粒子の製造方法及びそれを用いたSiインク、太陽電池並びに半導体装置
JP2013158727A (ja) フッ素除去剤、フッ素含有液の処理方法
JP2007061989A (ja) 研磨用複合酸化物粒子およびスラリー状研磨材
Huang et al. Flower-like nanostructure MNb2O6 (M= Mn, Zn) with high surface area: Hydrothermal synthesis and enhanced photocatalytic performance
Lavasani et al. Synthesis of well-ordered mesoporous nanoparticles of TiO2 from Ilmenite with enhanced photocatalytic activity
Zhang et al. Three‐dimensional hierarchical ZnO nanostructures with controllable building units: hydrothermal synthesis, growth process and photocatalytic activities for organic dyes
JP2019085312A (ja) 非晶質酸化チタン微粒子分散液の製造方法
JP2007038049A (ja) 混酸中のフッ素の処理方法
JP2020132478A (ja) シリカ粒子の製造方法、シリカゾルの製造方法及び研磨方法
CN107352505A (zh) 一种制备Si‑Cu2O异质结纳米线阵列的方法
JP7505304B2 (ja) シリカ粒子の製造装置、シリカ粒子の製造方法、シリカゾルの製造方法、シリカゾル中の中間生成物の抑制方法及び研磨方法
JP2024059837A (ja) シリカゾルの製造方法、中間生成物の除去方法及び研磨方法
WO2023019175A2 (en) Mxene materials with enhanced stability
JP2022109710A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
Shinde et al. Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application
Xu et al. Control synthesis and formation mechanism of sphere‐like titanium dioxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305