JP2021521644A - ミクロンサイズの発光ダイオード設計 - Google Patents

ミクロンサイズの発光ダイオード設計 Download PDF

Info

Publication number
JP2021521644A
JP2021521644A JP2020555799A JP2020555799A JP2021521644A JP 2021521644 A JP2021521644 A JP 2021521644A JP 2020555799 A JP2020555799 A JP 2020555799A JP 2020555799 A JP2020555799 A JP 2020555799A JP 2021521644 A JP2021521644 A JP 2021521644A
Authority
JP
Japan
Prior art keywords
layer
light
doping
type
mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020555799A
Other languages
English (en)
Other versions
JP7284188B2 (ja
Inventor
デーヴィッド マスーブル,
デーヴィッド マスーブル,
スティーヴン リュートゲン,
スティーヴン リュートゲン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Technologies LLC
Original Assignee
Facebook Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Facebook Technologies LLC filed Critical Facebook Technologies LLC
Publication of JP2021521644A publication Critical patent/JP2021521644A/ja
Application granted granted Critical
Publication of JP7284188B2 publication Critical patent/JP7284188B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • H01L33/285Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

発光ダイオード(LED)が、ベースおよびベース上のメサを画定するエピタキシャル構造を含む。ベースは、LEDの発光表面を画定し、そして電流拡がり層を含む。メサは、厚い閉込め層、光を発する厚い閉込め層上の光発生領域、光発生領域上の薄い閉込め層、および薄い閉込め層上のコンタクト層を含み、コンタクト層がメサの上部を画定する。光発生領域から発される光の一部分を反射するためにコンタクト層上に反射コンタクトがあり、反射光はメサでコリメートされ、そしてベースを通して発光表面に導かれる。一部の実施形態において、エピタキシャル構造は非透過性基板上に成長される。基板は除去される、または光をコリメートする拡張反射体を形成するために使用される。【選択図】図13

Description

発光ダイオード(LED)の効率は、典型的に波長(グリーンギャップ)、接合温度Tおよび電流密度に依存している。小型(ミニ/マイクロ)LEDの利点は、良好な内部3D熱拡がり(例えば、<60μm直径)および低いTである。これが、小型LEDの電流密度およびより長いデバイス寿命でのより高い効率の説明になる。より低い駆動電流(例えば、1nA〜1μA)での拡張現実感(AR)用の2D表示またはより高い駆動電流(例えば、1〜300μA)での1D走査におけるような、一層小型のμLED(例えば、<10μm)の応用に関して、μLEDの異なる電流密度およびサイズで異なる損失メカニズムがある。低電流密度(例えば、1μA/mm未満)を使用するμLEDに関しては、効率は5%未満であり得る。対照的に、より大電力のLEDは、最高60%の効率で、かつ0.35A/cmを超える中電流密度で動作することができる。エピタキシャル構造における非放射再結合およびエッチングされたメサ面での表面再結合損失を低減させ、そして低い(2D表示)または非常に高い(1D配列)電流密度で動作させつつ光取出し効率(LEE)を増加させることによって、μLED動作は改善され得る。
実施形態は、低または高電流密度で高LEEを有する、μLEDなどの、LEDに関した。LEDが、ベースおよびベース上のメサを画定するエピタキシャル構造を含む。ベースは、マイクロLEDの発光表面を画定し、そして電流拡がり層を含む。メサは、厚い閉込め層、光を発する厚い閉込め層上の光発生領域(例えば、多重量子井戸(MQW)を含む)、光発生領域上の薄い閉込め層、および薄い閉込め層上のコンタクト層を含み、コンタクト層がメサの上部を画定する。光発生領域からの後方放出光の一部分を反射するためにコンタクト層上に反射コンタクトがある。光発生領域からの側方進行光が、メサ面および反射コンタクト(または他の反射体層)で(放物面メサにおいて90°)反射され、そしてベースを通して(放物面または円錐反射体型などの場合、平行ビームとして)発光表面に導かれる。
一部の実施形態は、基板上にエピタキシャル構造を成長させることによってLEDを製造することに関する。エピタキシャル構造は、電流拡がり層、厚い閉込め層、薄い閉込め層、厚い閉込め層と薄い閉込め層との間の光発生領域、およびコンタクト層を含む。エピタキシャル構造にベースおよびベース上のメサが形成される。ベースは、LEDの発光表面を画定し、そして電流拡がり層を含む。メサは、薄い閉込め層、光発生領域、およびメサの上部を画定するコンタクト層を含む。光発生領域から発される光の一部分を反射するためにコンタクト層上に反射コンタクトが形成されるが、反射光はメサでコリメートされ、そしてベースを通して発光表面に導かれる。
本発明に係る実施形態が、特に発光ダイオード(LED)および方法を対象とする添付の特許請求の範囲に開示されるが、ここでは1つの請求項カテゴリ、例えば方法において言及されるいずれの特徴も、別の請求項カテゴリ、例えばLED、システム、記憶媒体およびコンピュータプログラム製品で同様に特許請求されることができる。添付の特許請求の範囲において遡る従属または引用は、形式的理由だけで選ばれている。しかしながら、いずれかの先行する請求項(特に多項従属)に遡る意図した引用から生じるいずれの主題も同様に特許請求されることができ、その結果、請求項およびその特徴のいずれの組合せも開示され、そして添付の特許請求の範囲において選ばれた従属に関係なく特許請求されることができる。特許請求されることができる主題は、添付の特許請求の範囲に述べられる特徴の組合せだけでなく請求項における特徴のいずれの他の組合せも含み、ここでは請求項において言及される各特徴は、請求項におけるいずれの他の特徴または他の特徴の組合せとも組み合わされることができる。更には、本明細書に記載または描写される実施形態および特徴のいずれも、別々の請求項でおよび/あるいは本明細書に記載もしくは描写されるいずれかの実施形態もしくは特徴とのまたは添付の特許請求の範囲の特徴のいずれかとのいずれの組合せでも特許請求されることができる。
本発明に係る実施形態において、発光ダイオード(LED)が、
エピタキシャル構造であって、
マイクロLEDの発光表面を画定するベースであり、第1の型のドーピングを伴う電流拡がり層を含むベースと、
ベース上のメサであり、
第1の型のドーピングを伴う第1の閉込め層と、
光を発する第1の閉込め層上の光発生領域と、
第1の型のドーピングと反対の第2の型のドーピングを伴う光発生領域上の第2の閉込め層と、
第2の閉込め層上の第2の型のドーピングを伴うコンタクト層であり、コンタクト層がメサの上部を画定し、第2の閉込め層およびコンタクト層が第1の閉込め層より薄い、コンタクト層と
を含むメサとを画定する、エピタキシャル構造と、
光発生領域から発される光の一部分を発光表面に反射するコンタクト層上の反射コンタクトとを備えてもよい。
第1の型のドーピングはn型ドーピングでもよく、そして第2の型のドーピングはp型ドーピングでもよい。
第1の型のドーピングはp型ドーピングでもよく、そして第2の型のドーピングはn型ドーピングでもよい。
ベースは、電流拡がり層上の第1の型のドーピングを伴うエッチストップ層を含んでもよく、第1の閉込め層がエッチストップ層上であり、そしてマイクロLEDは、エッチストップ層上の第2のコンタクトを含んでもよい。
マイクロLEDは、
電流拡がり層上の第2のコンタクトと、
反射コンタクト上の第1のバンプと、
第2のコンタクト上の第2のバンプと
を含んでもよい。
ベースは、発光表面を画定する第1の型のドーピングを伴うエッチストップ層を含んでもよく、電流拡がり層はエッチストップ層上でもよい。
第1の閉込め層は電流拡がり層より厚くてもよい。
電流拡がり層は光発生領域より厚くてもよい。
メサは、
メサの上部が切頭上部を画定する放物面形状か、
メサの上部が切頭上部を画定する円筒形状か、
メサの上部が切頭上部を画定する円錐形状か、
垂直メサ形状か
のうちの1つとして形成されてもよい。
本発明に係る実施形態において、LEDが、ベースを通して導かれる光の一部分を反射してコリメートするためにベースに形成される拡張反射体を備えてもよい。
拡張反射体は、ベースに発光表面の発光部周りに画定される複数のエアギャップまたは反射充填材料を含んでもよい。
本発明に係る実施形態において、LEDが基板を備えてもよく、エピタキシャル構造は基板上に形成されてもよい。
基板は、光に対して非透過性でもよく、そして発光表面での光の伝達を許容する開口を含んでもよい。
基板は、発光表面を通して伝達される光の一部分を反射してコリメートする拡張基板反射体を含んでもよい。
拡張基板反射体は、基板に画定される開口の表面上の反射材料を含んでもよい。
拡張基板反射体の開口は、放物面形状または傾斜形状の1つを含んでもよい。
メサは、高さが1から400μmの間でかつ幅が30から1500μmの間でもよい。
コンタクト層および第2の閉込め層は第2のクラッドを形成してもよく、第2のクラッドは580nm未満である。
電流拡がり層および第1の閉込め層は第1のクラッドの少なくとも一部分を形成してもよく、第1のクラッドは2μmより大きい。
第2のクラッドは55から580nmの間でもよい。
第1のクラッドは2から12μmの間でもよい。
光発生領域はメサの放物面焦点に配置されてもよい。
光発生領域は、反射コンタクトによって反射される光の波腹に配置されてもよい。
光は赤色または赤外光を含んでもよい。
メサは、10μm未満のベースでの直径を有する放物面形状を含んでもよい。
第2の閉込め層およびコンタクト層は合わせて300nm未満でもよい。
本発明に係る実施形態において、発光ダイオード(LED)を製造するための方法が、
基板上に、第1の型のドーピングを伴う電流拡がり層、第1の型のドーピングを伴う第1の閉込め層、第1の型のドーピングと反対の第2の型のドーピングを伴う第2の閉込め層、第1の閉込め層と第2の閉込め層との間の光発生領域、および第2の型のドーピングを伴うコンタクト層を含み、第2の閉込め層およびコンタクト層が第1の閉込め層より薄い、エピタキシャル構造を成長させることと、
エピタキシャル構造にベースおよびベース上のメサを形成することであって、ベースがマイクロLEDの発光表面を画定し、かつ電流拡がり層を含み、メサが第2の閉込め層、光発生領域、およびメサの上部を画定するコンタクト層を含む、ベースおよびベース上のメサを形成することと、
光発生領域から発される光の一部分を発光表面に反射するコンタクト層上の反射コンタクトを形成することとを含んでもよい。
第1の型のドーピングはn型ドーピングでもよく、そして第2の型のドーピングはp型ドーピングでもよい。
第1の型のドーピングはp型ドーピングでもよく、そして第2の型のドーピングはn型ドーピングでもよい。
本発明に係る実施形態において、方法が、エピタキシャル構造から基板を分離して発光表面を露出させることを含んでもよい。
光発生領域は、メサの放物面焦点に配置される量子井戸を含んでもよい。
光発生領域は、反射コンタクトによって反射される光の波腹に配置される量子井戸を含んでもよい。
光は赤色または赤外光を含んでもよい。
メサは、10μm未満の直径を有する放物面形状を含んでもよい。
第2の閉込め層およびコンタクト層は合わせて300nm未満でもよい。
一実施形態に従う、マイクロLED(μLED)の断面図である。 一実施形態に従う、μLEDを製造するための工程のフローチャートである。 一実施形態に従う、半導体構造および半導体構造から製造されるμLEDを図示する。 一実施形態に従う、半導体構造および半導体構造から製造されるμLEDを図示する。 一実施形態に従う、半導体構造および半導体構造から製造されるμLEDを図示する。 一実施形態に従う、半導体構造および半導体構造から製造されるμLEDを図示する。 一実施形態に従う、エピタキシャル構造に画定される拡張反射体を含むμLEDの断面側面図、上面図および下面図をそれぞれ図示する。 一実施形態に従う、基板開口を伴うμLEDを製造するための工程のフローチャートである。 一実施形態に従う、基板開口を含むμLEDの断面図である。 一実施形態に従う、拡張基板反射体を伴うμLEDを製造するための工程のフローチャートである。 一実施形態に従う、拡張基板反射体を含むμLEDの断面図である。 一実施形態に従う、拡張基板反射体を含むμLEDの断面図である。 一実施形態に従う、拡張基板反射体を含むμLEDの断面側面図、上面図および下面図をそれぞれ図示する。 一実施形態に従う、μLED例の断面図である。 一実施形態に従う、μLED例の断面図である。 一部の実施形態に従う、μLEDを形成するために使用される半導体構造である。 一部の実施形態に従う、μLEDを形成するために使用される半導体構造である。 一実施形態に従う、μLEDのメサの断面図である。 一実施形態に従う、歪および無歪量子井戸のバンドギャップ図である。 一部の実施形態に従う、μLEDの電界に対する量子井戸の位置の伝達行列シミュレーションを図示するチャートである。
実施形態は、エピタキシャル構造が成長される非透過性基板(例えば、赤色LED用のヒ化ガリウム(GaAs)基板)上にマイクロLEDを製造することに関する。エピタキシャル構造は、ベース上にメサを画定してもよい。ベースは、メサの上部の薄い閉込め層、光発生領域(例えば、多重量子井戸、量子ドット、量子細線、ナノワイヤ、またはナノフィン−ウォール)、およびメサの下部の厚い閉込め層を含む。光発生領域から発される光の一部分を反射するためにメサ上に反射コンタクトがあり、反射光はメサでコリメートされ、そしてベースを通して発光表面に導かれる。メサは、切頭上部を伴う放物面、切頭上部を伴う円錐、または切頭上部を伴う円筒など、反射光のコリメーションを促進する様々な形状へエッチングされてもよい。基板は、発光表面を露出させるためにμLEDの形成後に除去されてもよい。
本明細書に記載されるマイクロLED(「μLED」または「MicroLED」)とは、直径が0.2〜10μm、10〜100μmまたは100〜2000μm間などの、小さな活性発光領域を有する特定の種類の発光ダイオードを指す。一例では、直径は、μLEDの放物面、円錐または超放物面上部先端プロファイルに対する矩形または円形直径の2.5〜30μmを含む。
マイクロLED例の概観
図1は、一実施形態に従う、マイクロLED100(以下「μLED」と称される)の断面の概要図である。μLED100は、他の構成要素の中で、厚いクラッド104、薄いクラッド106、および厚いクラッド104と薄いクラッド106との間の光発生領域108を含む半導体構造を含んでもよい。μLED100は、半導体構造上の誘電体層114、誘電体層114上のpコンタクト112、および厚いクラッド104上のnコンタクト116を更に含む。半導体構造は、エッチプロセスを介してなど、メサ120およびメサ120のベース124へ成形される。光発生領域108は、メサ120の構造に含まれる活性光発生領域である。活性光発生領域は、量子井戸、量子ドット、量子細線、ナノワイヤ、またはナノフィン−ウォールを含んでもよい。メサ120は、μLED100の発光表面118に反対の側に画定される切頭上部を含んでもよい。一部の実施形態において、厚いクラッド104、光発生領域108および薄いクラッド106を含む半導体構造は、基板上に成長されるエピタキシャル構造を画定する。薄いクラッド106および厚いクラッド104は異なるドープ半導体材料層を含む。例えば、薄いクラッド106はpドープ半導体材料層を含んでもよく、そして厚いクラッド104はnドープ半導体材料層を含んでもよい。
別の例では、薄いクラッド106はnドープ半導体材料層を含んでもよく、そして厚いクラッド104はpドープ半導体材料層を含んでもよい。ここで、pコンタクト112はnコンタクトであり、そしてnコンタクト116はpコンタクトである。
μLED100の半導体構造が、非透過性基板などの基板上に成長される場合、基板は、発光表面118を現すために除去されてもよい。別の例では、発光表面118から伝達される光を更にコリメートする放物面光反射体を形成するために、基板の一部分が除去される。
メサ120は、μLED100内で発生する光122のための反射容器を形成する、切頭上部を伴う放物面形状などの、様々な形状を含んでもよい。他の実施形態において、メサ120は、切頭上部を伴う円筒形状または切頭上部を伴う円錐形状を含んでもよい。矢印は、光発生領域108から発される光122がどのようにして、光がμLEDデバイス100から出るのに十分な角度(すなわち、全内部反射の臨界角内)で発光表面118に向けてpコンタクト112およびメサ120の内壁から反射されるかを図示する。pコンタクト112およびnコンタクト116は、μLED100用の制御回路を含む表示基板になど、μLED100を接続する。nコンタクトはベース124に形成されており、発光表面118と反対の厚いクラッド104の表面によって画定される。
μLED100は、光発生領域108によって画定される活性発光領域を含んでもよい。μLED100は、光発生領域108からの光出力に指向性を持たせ、そして光出力の輝度レベルを増加させる。特に、メサ120およびpコンタクト112は、光発生領域108からの光122の反射が、発光表面118から出現する平行または準平行光ビームを形成するようにする。
メサ120は、ウエハ処理ステップ中に、厚いクラッド104、光発生領域108および薄いクラッド106を含む半導体構造へエッチングすることによって形成されてもよい。エッチングの結果として、光発生領域108がメサ120の構造内にあり、かつ光122のコリメーションを促進するpコンタクト112への特定の距離にある。発生した光122の一部分がメサ120で反射されて、発光表面118から発される準平行光ビームを形成する。一部の実施形態において、メサ120は、高さが10から400μmの間でかつ幅が30から400μmの間である。一部の実施形態において、メサ120は、高さが0.5から10μmの間でかつ幅が1から30μmの間である。一部の実施形態において、メサ120は3μm幅を有する。
基板除去を伴うμLED製造
図2は、一実施形態に従う、μLEDを製造するための工程200のフローチャートである。工程200は、成長基板が非透過性であり(例えば、GaAs基板上に製作される赤色LEDなどのμLEDによって発される光に対して)、そしてエピタキシャル構造の発光表面を露出させるために除去される、μLEDを製造するために行われてもよい。非透過性基板の一部の例が、赤色LED用のヒ化ガリウム(GaAs)基板、または窒化ガリウム(GaN)−on−Si系青および緑色LED用のシリコン(Si)基板を含む。
工程200は図3A、3B、3Cおよび3Dを参照しつつ述べられるが、同図は、一実施形態に従う、μLED300の製造を図示する。一部の実施形態において、基板除去後に、光をコリメートするために拡張反射体がμLEDの発光表面の発光部周りでエピタキシャル構造に画定される。工程200は図4A、4Bおよび4Cも参照しつつ述べられるが、同図は、一実施形態に従う、エピタキシャル構造に画定される拡張反射体を含むμLED400の断面側面図、上面図および下面図をそれぞれ図示する。
半導体構造300が、基板および基板上のエピタキシャル構造を含んで形成される210。半導体構造300は、μLED100などのLEDのメサを形成するためにエッチングされる初期構造である。一部の実施形態において、基板は、ヒ化ガリウム(GaAs)基板などの非透過性基板でもよい。エピタキシャル構造は、μLED100の厚いクラッド104、光発生領域108および薄いクラッド106などの、基板上に成長される半導体層を含んでもよい。以下に更に詳述されるように、基板、または基板の一部分は、μLED100の発光面118を露出させるために除去されてもよい。エピタキシャル構造は、分子線エピタキシ(MBE、PAMBE)または金属有機化学蒸着(MOCVD)などの技術を使用して成長されてもよい。
図3Aは、一実施形態に従う、μLED100のための半導体構造300の断面である。半導体構造300は、赤、赤外、緑、青または紫外μLEDなどの異なる色のμLED用の様々な厚さおよび材料例の層を有することができる。半導体構造300は、基板302、ならびにn型半導体層を画定する基板302上の厚いクラッド104、厚いクラッド104上の光発生領域108、および光発生領域108上のp型半導体層を画定する薄いクラッド106を含むエピタキシャル構造320を含む。
基板302はn型基板でもよい。赤または赤外色μLEDの場合、基板302はGaAs基板でもよい。GaAs基板は、830ナノメートル(nm)未満の波長に対して不透過性であり、かつ850nmより大きい波長に対して透過性である。基板302は、結晶構造を含んでもよく、そして基板302の表面上のエピタキシャル成長を促進するためにスライスされてもよい(例えば、<111>面から6度オフ)。一部の実施形態において、方位は、異なる方向に0°と20°との間、例えば<111>または<110>に対して15°オフである。紫外(例えば、AlGaN系)または青緑(InGaN系)色μLEDの場合、基板302は、炭化ケイ素(SiC)、サファイア、GaNなどの透過性基板、またはシリコン(Si)などの吸収基板でもよい。
厚いクラッド104は、半導体構造300のn型層を含む。厚いクラッド104は、他の層の中で、エッチストップ層(「ESL」)304、電流拡がり層306、ESL308および厚い閉込め層310を含んでもよい。ESL304は基板302上に成長されてもよく、電流拡がり層306はESL304上に成長されてもよく、ESL308は電流拡がり層306上に成長されてもよく、そして厚い閉込め層310はESL308上に成長されてもよい。
一部の実施形態において、ESL304はT1の厚さを有し、電流拡がり層306はT2の厚さを有し、ESL308はT3の厚さを有し、そして厚い閉込め層310は厚さT4を有する。一部の実施形態において、T1は、20〜100nmなど、50から400nmの間である。T2は、500〜2000nmなど、50から6000nmの間である。T3は、20〜100nmなど、50から400nmの間である。T4は、300〜1000nmなど、100から6000nmの間である。これらの層の他に、本明細書で述べられるその他の層の厚さは、製造公差または他のパラメータ調整のためなど、変化してもよい。
材料およびドーピング濃度例が赤または赤外μLEDに対して以下に更に詳述される。ESL304は、リン化ガリウムインジウム(GaInP)半導体エッチストップ層でもよく、1x1018cm−3など、0.3x1018cm−3と9x1018cm−3との間のn型シリコン(Si)ドーピング濃度を伴う。ESL304は、μLED100の発光表面118を露出させるGaAs基板302の選択除去のために使用されてもよい。ESL304は、例えば、発光表面118の発光部を露出させ、そして基板302に放物面光反射体を形成するために基板302の一部分を選択除去するために使用されてもよい。一部の実施形態において、基板302が完全に除去されるときなど、ESL304は省略されてもよい。ここで、電流拡がり層306は、ESL304の代わりに基板302上に成長されてもよい。
電流拡がり層306は、リン化アルミニウムインジウム(AlInP)半導体層でもよく、1x1018cm−3〜5x1018cm−3など、0.5x1018cm−3と10x1018cm−3との間のn型Siまたはテルル(Te)ドーピング濃度を伴う。AlInPは、Al0.51In0.49P(より高い材料品質のための格子整合GaAs基板成長に近いように選ばれた、より厚い層のためのIn含有量)によって定められるリン化アルミニウムおよびリン化インジウムの固溶体でもよい。電流拡がり層306は、μLED100における電流拡がりを強化する厚い残留(例えば、2μm)n材料層である。
ESL308は、リン化ガリウムインジウム(GaInP)半導体エッチストップ層でもよく、5x1018cm−3のn型シリコン(Si)ドーピング濃度を伴う。ESL308は、メサ120およびベース124を形成する薄いクラッド106から厚いクラッド104までの選択エッチングのために使用されてもよい。nコンタクト116は、ESL308上、または電流拡がり層306上(例えば、ESL308が省略もしくはエッチング除去される場合)に形成されてもよい。一部の実施形態において、ESL308は省略されてもよく、そして厚い閉込め層310は電流拡がり層306上に成長される。
厚い閉込め層310は、Al0.51In0.49P半導体層でもよく、n型SiまたはTeドーピングを伴う。別の例では、厚い閉込め層310は、ヒ化アルミニウムガリウム(AlGaAs)半導体層でもよく、n型SiまたはTeドーピングを伴う。厚い閉込め層310は、光発生領域108に電子/正孔を閉じ込める光発生領域108に対するバリア材料を提供し、かつAlGaAs、AlInP等のような異種材料の組合せであり得る。
光発生領域108は、3から10の間の量子井戸などの、多重量子井戸を含んでもよい。光発生領域108は、Ga0.41In0.59P/(Al0.50Ga0.500.51In0.49Pヘテレオ構造を含んでもよい。例えば、光発生領域108は、5から10nm間の幅を各々有する引張歪Ga0.41In0.59P量子井戸(または格子整合AlGaInP)を含んでもよい。井戸は、5から10nm間の幅を各々有する(Al0.50Ga0.500.51In0.49Pバリア間に画定される。Ga0.41In0.59P井戸は、(Al0.50Ga0.500.51In0.49Pバリアのバンドギャップより狭いバンドギャップを有する。一部の実施形態において、光発生領域108は、0.05および0.2μm間のT5の厚さを有する。
薄いクラッド106は、半導体構造300のp型層を含む。薄いクラッド106は、薄い閉込め層312およびコンタクト層314を含む。薄い閉込め層312は、Al0.51In0.49P半導体層でもよく、p型マグネシウム(Mg)ドーピングを伴う。別の例では、薄い閉込め層312は、AlGaAsでもよく、p型亜鉛(Zn)または炭素(C)ドーピングを伴う。薄い閉込め層312は、厚い閉込め層310同様に、光発生領域108に電子を閉じ込める光発生領域108に対するバリア材料を提供する。しかしながら、薄い閉込め層312は、メサ120(例えば、放物面反射体)でのビームコリメーションのための薄いp側クラッド106を提供するために厚い閉込め層310(例えば、6μm前後)より薄い(例えば、250nm前後)。
放物面メサ形状を伴う小さなμLED(例えば、特に赤およびIR−LED用にエピが<1μm)用の非常に薄いp側クラッドを達成することが望ましいが、高性能で達成するのは非常に困難である。典型的な平面IRまたは赤色/黄色高出力LEDは非常に大きなp側厚さを有する。エピタキシャル設計における非常に薄いp側には、p側への電子の損失を低減させ、かつ可能であれば、IQE=90%の高さを実現するために、キャリア閉込めの慎重な最適化を使用する。
一部の実施形態において、薄い閉込め層312はT6の厚さを有し、そしてコンタクト層はT7の厚さを有する。T6は、5〜50nm(赤色:HVPEによる最大20μmの厚さを伴うGaPまたはAlGaAs−コンタクト+窓層)、典型的に、20nmなど、10〜100nm間である。T7は、50〜2000nm、典型的に、200nmなど、50〜300nm間の厚さを有する。
コンタクト層314は、半導体構造300のためのpコンタクト112(例えば、酸化インジウム錫(ITO)または金属を含む)への界面を提供する。コンタクト層314は、透過性のリン化ガリウム(GaP)層でもよく、p型ドーピングを伴う。コンタクト層314および薄い閉込め層312の組合せの結果として、300nm未満、典型的に150〜400nmの厚さを有する薄いクラッド106になる。比較として、厚いクラッド104は、2μmと12μmとの間など、1μmを超える厚さを有する。
図3の例では、厚いクラッド104は、基板302上に成長される「下部」クラッドであり、そして薄いクラッド106は、厚いクラッド104および光発生領域108上方に成長される「上部」クラッドである。半導体構造300内へメサ120をエッチングした後、薄いクラッド106は、メサ120の切頭上部を含むμLED100の側を画定し、そして厚いクラッド104は、発光表面118を含むμLED100の側を画定する。図12A〜12Dと関連して以下に更に詳述されるように、一部の実施形態において、基板上方に形成される下部クラッドが薄いクラッドでもよく、そして下部クラッド上方に形成される上部クラッドが厚いクラッドでもよい。上部クラッドは、厚いクラッド104に対して本明細書で述べられるような特徴を含んでもよく、そして下部クラッドは、薄いクラッド106に対して本明細書で述べられるような特徴を含んでもよい。基板は半導体構造から除去され、次いで半導体構造は、薄い下部クラッドを含む側からエッチングされてメサを形成し、そして厚い上部クラッドを含む側は発光表面を画定する。一部の実施形態において、薄いクラッドがn型層を含む一方、厚いクラッドはp型層を含む。
図2に戻り、エピタキシャル構造320が薄いクラッド106からESL308または電流拡がり層306までエッチングされて220、エピタキシャル構造320にメサ120およびベース124を形成する。例えば、メサ120およびベース124を形成するために、誘導結合プラズマ(ICP)エッチなどのドライエッチングプロセスが使用されてもよい。ICPエッチは、切頭上部の有無にかかわらず放物面、超放物面、円筒または円錐形状などの、メサ120およびベース124の形状を形成するパラメータを変化させることによって制御可能な等方性または異方性エッチングを提供するために使用されてもよい。一部の実施形態において、ESL304でのその場アルミニウム(Al)または(P)プラズマ蛍光シグナルが、メサ120およびベース124のICPエッチ中にエッチ深さ制御を提供する。
図3Bを参照すると、薄いクラッド106のコンタクト層314が、メサ120へ形成されることになる半導体構造300の部分上方にポジ型フォトレジストマスク322を使用してパターン化される。エッチプロセスは、メサ120の形状を画定するメサ120のための傾斜側壁をエッチングするように制御される。フォトレジストマスクによって保護されていない、ベース124へ形成されることになる半導体構造300の部分に対して、薄いクラッド106のコンタクト層314からのエッチングが、厚いクラッド104、特に厚いクラッド104のESL308に達するまで行われる。半導体構造300がESL308を含まない実施形態において、エッチングは、電流拡がり層306または所望の設計深さに達するまで行われてもよい。エッチングプロセスを使用して半導体構造にメサを形成することに関する追加の詳細が、2009年10月6日に発行された、「Micro−leds」と題する、米国特許第7,598,148号で述べられており、同特許の全体が本明細書に引用により援用される。
メサ120上に誘電体層114およびpコンタクト112が形成され230、そしてベース124上にnコンタクト116が形成される230。図3Cを参照すると、マスク322は除去されてもよく、そして誘電体層114(例えば、+金属)は、半導体基板300内へエッチングされるメサ120上に形成されてもよい。pコンタクト112は誘電体層114上に形成される。pコンタクト112は、誘電体層114を通して延在して薄いクラッド106のコンタクト層314の一部分に接触してもよい。一部の実施形態において、pコンタクトはITO/金属または金属スタックを含む。
一部の実施形態において、nコンタクト116またはpコンタクト112の上部に、電気めっきによってなど、バンプが形成されてもよいが、電気不足を回避するコンタクト112、116のバンプ間のギャップ(例えば、空気または電気絶縁材料で充填される)を開ける。
一部の実施形態において、nコンタクト116は、発光表面118上に、エッチストップ層304上に、または電流拡がり層306の局所凹部分上にあってもよい。
基板302がエピタキシャル構造320から分離されて240、エピタキシャル構造320の発光表面118を露出させる。図3Cを参照すると、基板302は、ESL304のウェットエッチ、ドライエッチまたはレーザ加熱(例えば、レーザリフトオフ(LLO)もしくはアブレーション)を使用してエピタキシャル構造320から分離されてもよい。例えば、ESL304は、HCl:HPO(3:1)を使用してエッチングされるGaInPを含んでもよい。他の実施形態において、基板302は、第1のステップで研削によって、および/または第2のステップで基板302の選択ウェットエッチングによって部分的に除去されてもよい。一部の実施形態において、エッチングは、GaAs、InPもしくはSi基板に対してウェットエッチングを、またはサファイア基板に対して誘導結合プラズマ(ICP)エッチ、反応性イオンエッチ(RIE)もしくはレーザリフトオフ(LLO)を含んでもよい。例えば、基板302は、高選択性のHPO:H:脱イオンHO(3:1:25)を使用して選択エッチングされるGaAsを含んでもよい。ESL304は、エピタキシャル構造のエッチングを防止するために使用されてもよく、または半導体構造300から省略されてもよい。
一部の実施形態において、半導体構造はμLEDのアレイを含む。メサ120のエッチング後かつ基板302の除去前など、μLEDを個々のダイへ単体化するためにICPエッチングまたはレーザダイシングが使用されてもよい。
一部の実施形態において、メサ120の側面上にパッシベーション層324が形成される。パッシベーション層324は、メサ120を損傷から保護する酸化物などの保護材料を含んでもよい。
発光表面118の発光部330に向けて光発生領域108からの光を反射してコリメートするために、メサ120下方のエピタキシャル構造320のベース124に拡張反射体が形成されてもよい250。図3Dを参照すると、拡張反射体326は、発光表面118の発光部330周りに画定され、かつベース124の上部(例えば、メサ120の下部)から発光表面118に延在する選択エッチングされた開口から形成される。拡張反射体326は、光発生領域108から発される光328を反射し、そして光328を追加的にコリメートする、ベース部分124の層とは異なる屈折率およびメサ/反射体エッチプロファイルを含む。光発生領域108からの光328は、メサ120の上部で反射され、そこでコリメートされ、次いで発光部330での発光表面118からの伝達前に拡張反射体326によって更にコリメートされてもよい。一部の実施形態において、拡張反射体326は、ベース124の周囲の材料より低い屈折率を有する材料の注入によって形成される。一部の実施形態において、拡張反射体326は、リセスエッチングによってベース124に形成されるエアギャップによって画定される。一部の実施形態において、拡張反射体326を画定するために、ベース124の周囲の材料より低い屈折率を有する反射充填材料がエアギャップへ充填されてもよい。一部の実施形態において、拡張反射体326の形成は省略される。
図4A、4Bおよび4Cは、一実施形態に従う、拡張反射体326を含むμLED400のそれぞれ断面、上面および下面図である。μLED100に関する上記の記述がμLED400に適用可能であり得る。例えば、μLED400は、μLED100の円筒メサ120よりむしろ放物面メサ120を含み、同メサは、エピタキシャル構造320にメサ120を画定するときにICPエッチ(任意選択のマルチエッチステップおよびレジスト層)を制御することによって形成されてもよい。nコンタクト166上に導電材料が形成されて、nコンタクト116をpコンタクト112と合わせる延長部(典型的に電気めっきバンプAuSn、AuIn等)を形成する。厚いnコンタクト116、またはpコンタクト112と合わせる、より厚い導電性金属バンプを伴うnコンタクトがあってもよい。これにより、μLED400は、裏側112のnコンタクトおよびpコンタクトが正面または裏側のいかなるワイヤ接合も必要とされることなく表示基板に面し、かつ表示基板に電気接合されて、表示基板上に平らに置かれることが可能になる。表示基板は、pコンタクト112およびnコンタクト116を介して信号を提供することによってμLED400を制御する制御回路(CMOSバックプレーン)を含んでもよい。図4Cを参照すると、μLED400の下側を図示しており、拡張反射体326は、発光表面118の発光部330周りに形成される反射材料の離間した部分によって画定されてもよい。
オンウエハテストのための基板開口を伴うμLED
図5は、一実施形態に従う、基板開口を伴うμLEDを製造するための工程500のフローチャートである。μLEDの発光表面を露出させるために非透過性基板全体を除去するよりむしろ、μLEDまたはμLEDアレイの発光表面上の発光部にわたる基板の一部分が除去されて、光が発光部から伝達されることを可能にする基板開口を画定してもよい。薄化された(50〜150μmにまで)基板はμLEDに取り付けられたままであり、μLEDをテストするウエハのためになど、機械的に安定したキャリアを提供する。工程500は図6を参照しつつ述べられるが、同図は、一実施形態に従う、基板開口602を含むμLED600を図示する。
μLEDが製造され510、μLEDは、基板および発光表面を画定するエピタキシャル構造を有する半導体構造を含む。例えば、LEDは、図2を参照しつつ詳細に上記したように、エッチング210から誘電層およびpコンタクトを形成する230の工程を使用して製造されてもよい。
発光表面の発光部から発される光を伝達する開口を形成するために、基板の一部分が除去される520。図6を参照すると、μLED600は、基板302に形成される基板開口602を含む。基板302の一部分は、GaAs基板の選択ウェットエッチングを使用してエッチストップ層304まで除去されてもよい。基板開口602は発光表面118の発光部330を露出させる。一部の実施形態において、基板材料は他の(例えば、受動、非発光)部分基板302において除去される。除去されない基板302の部分は、μLED600に対して機械的な安定したキャリア支持の役割をする。
μLEDは、基板の残存部分を機械的な安定したキャリアとして使用して発光をテストされ530、ここでμLEDから発される光はテスト中に発光部から基板開口602を通して伝達される。例えば、pコンタクト112およびnコンタクト116を通してμLEDに信号が提供されて、μLEDに光を発させ、その光が光学センサによって取得されてμLEDの光学的性質をテストする。基板開口602を伴う基板302は、μLEDのオンウエハテストを想定している。一部の実施形態において、μLEDは、1Dまたは2Dアレイに製造され、そして工程500で述べたようにオンウエハテストを使用してテストされる(単体化前または後に)。テストに合格したμLEDが表示基板(または中間キャリア基板)上へのピックアンドプレースのために選択される一方、テストに落ちたμLEDは表示基板へのプレースメントのためには選択されない。したがって、オンウエハテストは、製造工程からの欠陥を有するμLEDのピックアンドプレースを回避するために使用されることができる。1画素に対する複数μLEDが単一μLEDの欠陥を補償し得る。
一部の実施形態において、基板はオンウエハテスト後に除去される。他の実施形態において、基板はμLEDのエピタキシャル構造に取り付けられたままにされ、そしてμLEDからの光が基板開口から発されるので、μLEDは、基板が取り付けられたまま表示基板上へピックアンドプレースされる。
拡張基板反射体を伴うμLED
図7は、一実施形態に従う、拡張基板反射体を伴うμLEDを製造するための工程700のフローチャートである。μLEDは、基板に形成される拡張基板反射体を含んでもよい。例えば、μLEDから発される光のビーム成形のための拡張放物面(例えば、狭/集束ビーム用)または傾斜(例えば、広幅ランバートビーム用)ミラーなどの反射体を形成する形状で基板に開口がエッチングされてもよい。工程700は図8Aおよび8Bを参照しつつ述べられるが、同図は、一実施形態に従う、拡張基板反射体802を含むμLED800およびμLED850をそれぞれ図示する。工程700は図9A、9Bおよび9Cも参照しつつ述べられるが、同図は、一実施形態に従う、拡張基板反射体を含むμLED900の断面側面図、上面図および下面図をそれぞれ図示する。
μLEDが製造され710、μLEDは、基板および発光表面を画定するエピタキシャル構造を有する半導体構造を含む。例えば、LEDは、図2を参照しつつ詳細に上記したように、エッチング210から誘電層およびpコンタクトを形成する230の工程を使用して製造されてもよい。
発光表面の発光部から発される光をコリメートする基板における光反射体形状を形成するために、基板の一部分が除去される720。例えば、発光表面の発光部を露出させ、そして光反射体形状を形成するために、基板の一部分が除去されてもよい。基板302の一部分は、光反射体形状を画定するために、GaAs基板の選択ウェットエッチングを使用してエッチストップ層304まで除去されてもよい。光をコリメートするのに適する形状例は、拡張放物面または傾斜形状を含んでもよい。
発光表面から伝達される光をコリメートする光反射体形状を画定する基板の表面上に反射材料が形成される730。図8Aを参照すると、μLED800は、基板302に形成される拡張基板反射体802を含む。拡張基板反射体802は、放物面光反射体形状を有し、そして基板反射体802表面上に反射材料804を含む。反射材料804は、発光表面118から発される光に対して反射性であり、かつ光のコリメーションを促進する。一部の実施形態において、反射材料804は、光吸収基板(例えば赤色μLED用のGaAs)の壁上に、窒化ケイ素(SiN)または酸化ケイ素(SiO)ならびに銀(Ag)、紫外(UV)または可視光に対するアルミニウム(Al)および赤+赤外(IR)光に対する金(Au)のような反射性金属などの光反射被膜層を含む。
図8Bを参照すると、μLED850も、基板302に形成される拡張基板反射体802を含む。μLED850は、放物面メサ804を更に有する。μLED850の光発生領域108は光828を発する。光の一部がメサ804に向けて発され、そこでコリメートされて発光部330に向けて反射される。光828は発光部330から伝達される。拡張基板反射体802の反射材料804に入射する透過光828の一部分がμLED850の出力光として反射されてコリメートされる。
図9A、9Bおよび9Cは、一実施形態に従う、拡張基板反射体802を含むμLED900のそれぞれ断面、上面および下面図である。μLED900は、メサ902に傾斜反射体を提供する切頭上部を伴う円錐形状を有するメサ902を含む。上述したように、メサ902の形状は、エピタキシャル構造320にメサを画定するときにICPエッチを制御することによって形成されてもよい。図9Cを参照すると、基板302に画定される拡張基板反射体802は、発光部330周りに反射面を形成する反射材料804を含む。一部の実施形態において、拡張基板反射体は、拡張基板反射体802に対して図示される放物面形状よりむしろ傾斜形状などの何らかの他の形状を有する。
μLEDの追加例
図10は、一実施形態に従う、μLED1000である。μLED1000は、電流拡がり層306上に形成される厚い閉込め層310を有する。図3Cに図示されるなどのESL308は省略され、そして半導体構造が製造されるとき、厚い閉込め層310は電流拡がり層306上にある。メサ1002およびベース1004を形成するために、半導体構造がエッチングされる。ESL308がないので、深さ制御のために時限エッチが使用されてもよい。nコンタクト116は、ESL308よりむしろ電流拡がり層306上に形成される。
この例では、μLED1000は切頭上部を伴う放物面形状を有するが、しかし他の光コリメート構造または形状が使用されてもよい。
図11は、一実施形態に従う、μLED1100である。μLED1100は、切頭上部を伴う円錐形状を有するメサ1102を有する。メサ1102は、放物面形状を伴うメサより光取出し効率および広いビーム発散/視角(例えば、2次元表示用途のため)を改善する傾斜反射体メサ側壁を含む。
様々な実施形態において、基板が除去されたμLEDは拡張反射体を含んでもよい。他の実施形態において、本明細書で述べられるように、基板はμLEDの発光表面118に取り付けられており、オンウエハテストを容易にするためまたは拡張基板反射体を提供するために基板に1つまたは複数の開口が形成される。
μLEDの上部または下部側製作
工程200で述べたように、μLEDは、基板上にエピタキシャル層を形成することによって製造されることができ、エピタキシャル構造は、基板上の厚いクラッド、厚いクラッド上の光発生領域、および光発生領域上方の薄いクラッドを含む。基板と反対の薄いクラッド側のエピタキシャル構造が、次いでメサおよびベースを形成するためにエッチングされる。基板は次いで除去されてもよい。他の実施形態において、基板上方に薄いクラッドがあり、光発生領域は薄いクラッド上方にあり、そして光発生領域上方に厚いクラッドがある。基板はエピタキシャル構造の形成後に除去され、次いで基板が除去された薄いクラッド側からメサおよびベースがエピタキシャル構造内へエッチングされる。工程200で述べたように、μLEDを形成するために使用される半導体構造300はp型薄いクラッドおよびn型厚いクラッドを含む。他の実施形態において、薄いクラッドはn型であり、そして厚いクラッドはp型である。
図12A、12B、12Cおよび12Dは、それぞれ、μLEDを形成するために使用されてもよい半導体構造1200、1220、1240および1260の断面である。図12Aを参照すると、半導体構造1200は、基板302、基板302上のn型下部厚いクラッド1204、n型下部厚いクラッド1204上の光発生領域108、および光発生領域108上のp型上部薄いクラッド1206を含む。図12Bを参照すると、半導体構造1220は、基板302、基板302上のp型下部厚いクラッド1208、p型下部厚いクラッド1208上の光発生領域108、および光発生領域108上のn型上部薄いクラッド1210を含む。半導体構造1200および1220は、メサを形成するために上部薄いクラッドからエッチングされてもよい。基板302は、メサの形成の間、取り付けられたままでもよい。
図12Cを参照すると、半導体構造1240は、基板302、基板302上のn型下部薄いクラッド1212、n型下部薄いクラッド1212上の光発生領域108、および光発生領域108上のp型上部厚いクラッド1214を含む。図12Dを参照すると、半導体構造1260は、基板302、基板302上のp型下部薄いクラッド1216、p型下部薄いクラッド1216上の光発生領域108、および光発生領域108上のn型上部厚いクラッド1218を含む。基板302は除去されてもよく、そして半導体構造1240および1260は、メサを形成するために下部薄いクラッドからエッチングされてもよい。
多重量子井戸構造
図13は、一実施形態に従う、μLED1300の断面図である。μLED1300は、メサ1320およびベース1324を含む。メサ1320は、5と10μmの間の高さを有し、かつ5と20μmの間の幅を有する。メサ1320では、光発生領域108は、光発生領域108の中央に画定される量子井戸(QW)活性部1306、およびメサ1320の外端へ活性部1306の外に画定されるQW端部1308を含む。QW活性部1306は正面発光円錐1302の直接光を発し、そして端部1308は端発光円錐1304の間接光を発する。
光発生領域108は複数方向に光を発し得、光の一部分が、薄い閉込め層312およびコンタクト層314を通して上方へ発され、メサ1320の上部で反射コンタクト1324(例えば、薄い閉込め層312およびコンタクト層314のドーピングに応じてn型またはp型コンタクト)によって下方へ反射され、薄い閉込め層312およびコンタクト層314を通じ、そしてベース1324を通じてμLED1300から発光する。光の別の一部分が、厚い閉込め層およびベース1324を通して下方へ発されてμLED1300から発光する。
反射コンタクト1324は反射体金属ミラーであり、そして反射率を改善するパラジウム(Pd)、プラチナ(Pt)、ニッケル(Ni)、銀(Ag)または金(Au)の薄層を含んでもよい。一部の実施形態において、UV、青、緑および赤色μLED1300に対してはAgが使用されてもよく、そして赤外μLED1300に対してはAgまたは金(Au)が使用されて、光の発光波長に対する高金属反射率および低吸収を達成し得る。例えば、青色μLEDはAgミラーまたはPdミラーを含んでもよく、AgミラーがPdミラーより20〜30%反射性である。
光発生領域108における量子井戸の構造および位置は、とりわけ、取出し効率、電流閉込めを改善し、かつ非放射吸収および側方光再吸収を低減させる様々な仕方で最適化されることができる。
一部の実施形態において、光発生領域108は、正面発光円錐1302内の建設的光干渉からより高い光取出し効率を提供するためにメサ1320で(例えば、反射コンタクト1324から)反射される光の電界の波腹に配置される。メサ1320内のかつ反射コンタクト1324に対する光発生領域108の位置は、裏側反射コンタクト1324から後方反射される光と発光表面118に向けて発される光との間の相殺的干渉を減少させ、かつ建設的干渉を増加させるように設定されてもよい。一部の実施形態において、量子井戸はメサ1320の放物面焦点に配置される。一部の実施形態において、量子井戸はくぼみ効果(サイズが1μm未満の薄いくぼみなど)を使用してもよい。
一部の実施形態において、μLED1300は、誘電体層114(pn領域における電気絶縁)の上部に反射金属層を有する。反射金属層は、改善された付着および反射特性を伴う金属層スタックなど、反射コンタクト1324の金属層と異なってもよい。
一部の実施形態において、より高いLEEのために光のその他の部分を反射するために、反射体層(典型的に誘電体層+金属)がメサ面上におよび上部平坦領域上に堆積された。メサ1320で反射される光に基づく端発光円錐1304は、平面、垂直メサ形状およびHWHM>±60°のビームプロファイルを伴う典型的なランバート型高出力LEDまたはミニ/μLEDより非常に小さいビーム発散(5〜30°、<60°)を伴う狭いビームプロファイルのために典型的に最適化される。放物面または円錐μLEDの狭いビームプロファイルは、光学およびARのようなモバイル用途へのより効果的な光の結合のために有益である。
図15は、一部の実施形態に従う、μLEDの電界1504に対する量子井戸1502の位置の伝達行列シミュレーションを図示するチャート1500である。上のグラフは、裏側のAgミラー1506に近距離の量子井戸1502の個々の位置を表す屈折率を示す。同じスケールであるのが、下のグラフに示される光波または電界1504である。全ての層界面が短く黒い垂直線によって表される。薄いQW1502の境界が、互いに近いこれらの黒線の2つによって表される。3つのQW1502のうち中央のものは波腹1508に置かれている。薄いQBバリア層によって分離される2つの周囲のQW1502は、それでも定在波の波腹1508の上部に近い。裏側に向けて進行してAgミラー1506で反射される、QW1502内で発される光は、正面に直接発される光と建設的干渉関係にある。
一部の実施形態において、光発生領域108は、より低い電流(例えば、1μA未満)での高ピーク内部量子効率(IQE)のための単一量子井戸(SWQ)、二重量子井戸(DQW)または三重量子井戸(TQW)エピ設計を有する量子井戸を含む。一部の実施形態において、量子井戸は、より小さな幅(例えば、直径5μm未満)を伴うμLEDの垂直および側方閉込めのための量子ドットを含んでもよい。量子ドットは、寄生表面再結合を伴うエッチングされたメサ面に向けたキャリアの側方拡散を抑制し得る。幾つかの量子井戸にわたる垂直電流拡がりおよび不均質キャリア輸送が低減される。
一部の実施形態において、QW活性部1306における量子井戸は低転位密度および低不純物準位を有する。例えば、量子井戸は、GaN−on−Siのようなヘテロエピタキシに対して3x10cm−2未満の貫通転位密度(TDD)、およびGaN−on−GaNのようなホモエピタキシに対して3x10cm−2未満のTDを含み得る。量子井戸は、低不純物準位(例えば、1017cm−2未満の酸素、炭素等の濃度)も含み得る。そのため、光発生領域108は、μLED1300のための低電流(例えば、1nAから1μA)での高ピークIQEのための低非放射吸収(A*N)を有する。
一部の実施形態において、光発生領域108におけるより低い欠陥密度は、改善されたバッファ成長(GaN−on−サファイアヘテロエピタキシ)のより低い欠陥準位を使用して達成される:1)臨界核形成温度、2)欠陥源として作用する微結晶間の境界を伴う結晶成長の低回復および成長速度、ならびに3)より高い成長Tでの併合層。より厚い併合層およびバッファが貫通転位密度(TDD≧1x10cm)を改善するが、より高い歪およびウエハ反りにも至り得る。追加のSiNマイクロマスキング層が、GaNバッファ成長およびその後の新たな併合層としてのGaNの回復を妨げることにより、TDDを更に改善し得る。これらの技術は、1x1010cmから1x10cmにまで欠陥密度を低減させることができる。より低いTDDはELO成長と共にまたはGaN基板(例えば、HVPE)のようにバルクで可能であり、TDDが1x10cmから1x10cmの間である。
一部の実施形態において、光発生領域108は、μLED1300のMQW活性部1306外に画定されるQW端部1308で混合する量子井戸を含む。例えば、QW端部1308は無歪量子井戸および歪量子井戸を含んでもよい。無歪量子井戸はEgのバンドギャップを含み、そして歪量子井戸はEg”>Egのより高いバンドギャップを含み、μLED1300のQW活性部1306における側方キャリア局在化を提供し、そしてメサ1320の端に向けたQW端部1308での側方キャリア損失および寄生表面再結合を低減させるのを促進する。そのため、光発生領域108における側方光再吸収が低減される。
一部の実施形態において、QW端部1308での量子井戸は歪量子井戸を含み、バンドギャップEgを有するQW活性部1306における無歪量子井戸に対して、より大きなEg”へのバンドギャップの歪誘起シフトを提供する。歪へのメサ端部効果は2から3μm未満程度であり得る。例えば、μLED1300は、歪のない格子整合InGaPまたはAlGaInP量子井戸に対して少ないInを伴うGaInPまたはAlGaInPなどの引張歪量子井戸設計を使用する赤色μLEDでもよい。QW端部1308におけるより高いEg”>Egの結果として、μLED1300の内側部分でのQW活性部1306における側方キャリア局在化になり、そしてQW端部1308における側方キャリア損失および寄生表面再結合を低減させる。
図14は、一実施形態に従う、量子井戸のバンドギャップ図1400である。バンドギャップ図は、引張および圧縮歪量子井戸に対するバンドギャップならびに無歪量子井戸に対するバンドギャップを含む。引張歪量子井戸はEg’<Egによって定義されるバンドギャップを有し、無歪量子井戸はEgによって定義されるバンドギャップを有し、そして圧縮歪量子井戸はEg”>Egによって定義されるバンドギャップを有する。Vhhは重い正孔に対する価電子帯を指し、Vhlは軽い正孔に対する価電子帯を指す。Vdeltaoは、異なる歪に対する正孔遷移の算出のために必要とされる分裂価電子帯を指す。
AlGaInP QWは典型的に赤色LEDのために使用される。一部の実施形態において、高引張歪GaInP QWが使用されてもよい。エッチングされたメサ面でのGaInP−QWの部分緩和のため、歪の張力が少なくなり、結果としてメサ面での小員環においてより高いバンドギャップになる。歪は、新たな結晶欠陥の発生なしで柔らかなエッチングされたメサ面で解放する。
一部の実施形態において、μLED1300は、高正面発光のための光発生領域108における量子井戸の最適化された位置を伴う赤色LEDである。赤色μLEDは、反射コンタクト1324による裏側反射光との量子井戸において発される光の建設的干渉のために光の電界における波腹当たり3つ以下の一群の量子井戸を含んでもよい。より低い電流でのより高い内部量子効率のために、より少ない量子井戸および/またはより薄い量子井戸を伴う設計によって電流密度の好ましい増加が実現されることができる。一部の実施形態において、赤色μLEDは銀(Ag)反射コンタクト1324を含む。光発生領域108は、粗面処理なしで反射コンタクト1324への523nmの光学距離を伴う波腹にTQWを含んでもよい。別の例では、光発生領域108は、粗面処理なしで反射コンタクト1324への543nmの光学距離を伴う波腹に3つのSQWを含んでもよい。光学距離は、距離(d)および屈折率(n)などの材料性質の関数である。
一部の実施形態において、赤色μLEDに対する光取出し効率は、400nm未満までの薄いクラッド(例えば、p側)厚さの減少と共に改善される。TQWの場合、反射コンタクトへの光学距離は365nmでもよい。SQWの場合、反射コンタクトへの光学距離は385nmでもよい。
一部の実施形態において、μLED1300は、高正面発光のための光発生領域108における量子井戸の最適化された位置を伴う緑色LEDである。反射コンタクト1324は銀(Ag)ミラーを含んでもよい。光発生領域108は、粗面処理なしで反射コンタクト1324への134nmの光学距離を伴う波腹に3つのSQWまたは1つのTQWを含んでもよい。
一部の実施形態において、μLED1300は、高正面発光のための光発生領域108における量子井戸の最適化された位置を伴う青色LEDである。反射コンタクト1324はAgを含んでもよい。一部の実施形態において、青色LEDのための光発生領域108は、粗面処理なしで反射コンタクト1324への75nmの光学距離を伴う波腹に7つの均等に離間した量子井戸を含んでもよい。この結果として、放出光の建設的干渉および44度の正面発光円錐1302におけるより高い外部量子効率(EQE)になる。しかしながら、他の層設計が、より最適な効率を提供し得る。光発生領域108が粗面処理を含む場合、反射コンタクト1324への距離または他のパラメータはそれに応じて調節されてもよい。
一部の実施形態において、青色LEDのための光発生領域108は、粗面処理なしで反射コンタクト1324への99nmの距離を伴う波腹に3つのTQWを含んでもよい。この結果として、放出光の建設的干渉および25度の正面発光円錐1302におけるより高いEQEになる。裏側に非常に近い光波の波腹におけるQWの位置は、光の波長およびエピタキシャル設計における半導体材料の対応する屈折率に依存し得る。
一部の実施形態において、青色LEDのための光発生領域108は、粗面処理なしで反射コンタクト1324への111nmの光学距離を伴う波腹にSQWを含んでもよい。この結果として、放出光の建設的干渉および25度の正面発光円錐1302におけるより高いEQEになる。
低および高電流密度
μLEDの設計は、所望の電流密度に基づいて異なってもよい。低電流密度(例えば、2DμLED表示アーキテクチャ)の場合、青または縁色μLEDに対して1つと3つとの間の量子井戸が使用されてもよく、そして赤色μLEDに対して1つおよび5つの量子井戸が使用されてもよい。更には、大きな量子井戸厚さが使用されてもよい。例えば、緑色μLEDが2.2と3.2nmの間の量子井戸厚さを含んでもよく、青色μLEDが2.5と4.5nmの間(例えば、最高効率のために3.5nm)の量子井戸厚さを含んでもよく、そして赤色μLEDが最高効率のために(例えば、電流密度およびオーガ損失を最小化するために)8と15nmの間の量子井戸厚さを含んでもよい。
高電流密度(例えば、2Dアーキテクチャより1000倍高い明るさまたは電流が必要とされる1DμLED表示アーキテクチャ)の場合、緑または青色μLEDに対して3つと7つとの間の量子井戸が使用されてもよく、そして赤色μLEDに対して6つと30との間の量子井戸が使用されてもよい。更には、低電流密度に対してより薄い量子井戸厚さが使用されてもよい。例えば、緑色μLEDが1.5と2.5nmの間の量子井戸厚さを含んでもよい(例えば、最高効率のためおよびより高電流密度でブルーシフトを最小化するため)。青色μLEDが、より高電流密度でブルーシフトを最小化し、かつより少ない表面再結合を通じてより短いキャリア寿命を達成するために1.8と2.8nmの間(例えば、2.3nm)の量子井戸厚さを含んでもよい。赤色μLEDが最高効率のために5と15nmの間の量子井戸厚さを含んでもよい。小さな赤色μLEDは、高電流密度の場合、波長シフトアップを有しない。
一部の実施形態において、(例えば、620nm)赤色μLEDが、AlGaInP量子井戸の代わりに引張歪InGaP量子井戸を含んでもよい。一部の実施形態において、赤色μLEDは、引張歪InGaP量子井戸および圧縮歪AlGaInP量子バリアを含む。
赤外μLED
赤外μLED(例えば、λ=940nm)は、GaAs基板302の上面に約300nmに配置される中央量子井戸を含んでもよい。赤外μLEDは、圧縮歪InGaAs量子井戸の歪補償のために引張歪GaAsP量子バリアのない活性部を含んでもよい。エピタキシャル構造320は、オフ方位のない<100>でGaAs基板302上に成長されてもよい。
赤外μLEDは、AlGaAs(例えば、アルミニウム含有量X=40%)を含む閉込め層310、312を更に含んでもよい。AlGaAs層の厚さは建設的光干渉に対して補正される。ヘテロ界面は、最低順方向電圧および最高ウォールプラグ効率(pwe)のためにキャリアに対するポテンシャル障壁を低減させるために20nm層だけ異ならせる。
量子井戸は、導電性p金属ミラーとしての銀(Ag)のような裏側ミラーからの垂直反射光の建設的光干渉を達成するように配置されてもよい。多重量子井戸は、ミラーによって反射される光の電界の波腹に集められてもよい。更には、エピタキシャル構造における様々な層の光学層厚さ(n*d)は、活性部におけるMQWから発され、そして裏側反射体(例えば導電性p側Ag/Au金属ミラー)から後方反射される光の建設的光干渉を達成するように選択されてもよい。
電流拡がり層306はnドープGaAsを含んでもよい。厚いnドープGaAs電流拡がり層306は、n−GaAs基板302部分除去の有無にかかわらず、940nm発光のための自由キャリア吸収のため、より高い光学損失に至り得る。そのため、n−AlGaAs電流拡がり層306または無ドープnid−GaAs基板302が代替であり得、そしてIRμLEDのチップ設計と合わせられる。
一部の実施形態において、歪補償のための量子バリアとしての引張歪GaAsP層の使用によって、複数圧縮歪InGaAs量子井戸の改善された材料品質が実現されることができる。
一部の実施形態において、<100>GaAs基板(例えば、<±0。25°オフの厳密な方位)上の引張歪GaAsP量子バリアとの圧縮歪InGaAs量子井戸の代替は、優れた材料および光学性質を伴う最大50のMQWの成長を見込む。GaAsPバリア層におけるP含有量は、InGaAs量子井戸における良好な電子および正孔閉込めのために最適化される。InGaAs量子井戸の圧縮歪を補償するためにGaAsPバリア層厚さが計算される。
GaAs基板302の表面および結晶方位は、高歪InGaAs/GaAsP MQWの材料成長に影響を及ぼす。結晶表面は、(100)GaAsからのウエハ表面のオフ方位の場合、単原子表面ステップでステップバンチングに至り得る。高出力パワーおよび性能のための改善された設計を伴うIRμLEDは、より少ないQWでより高電流密度で非放射オーガ損失を最小化するために、QWの数から独立している高歪InGaAs QWの成長を使用する。
一部の実施形態において、歪補償(例えば、圧縮歪InGaAs QWおよび引張歪GaAsP量子バリア)を使用して、より高い出力パワー(>倍率2x)を有するIRμLEDが、非常に高電流密度まで8〜20xMQWで実現されることができる。対照的に、940nmで光を出力する片側圧縮歪InGaAs MQW LEDは、材料品質および性能の理由でしばしば3〜5QWに制限される。
一部の実施形態において、赤または赤外μLEDが、非常に薄いクラッド106(例えば、p側)および放物面メサを含む。従来の大きな平面赤色高出力LEDチップは、活性部におけるより良好な電子阻止および閉込めのために非常に厚いp側を有する。例えば、薄いクラッドは、小さな放物面メサ(例えば、直径が10μm未満)に対して300nm未満でもよい。QW位置も、放物面メサ形状設計と整合するべきである。例えば、量子井戸は、メサの放物面焦点に、または反射コンタクトによって反射される光の波腹に配置されてもよい。厚い電流拡がり層は、発光領域からの光に対して透過性である(T>80%)。
実施形態の以上の説明は例示の目的で提示されており、網羅的であるともまたは特許権を開示される厳密な形式に限定するとも意図されない。上記開示を考慮して多くの修正および変更が可能であることを当業者は認識することができる。
本明細書で使用される言葉は主に読みやすさおよび教授目的で選択されており、発明の主題を定義または制限するようには選択されていない。したがって、特許権の範囲がこの詳細な説明によってでなく、むしろ本明細書に基づく出願によって発行されるいずれかの請求項によって限定されることが意図される。それゆえに、実施形態の本開示は、例示であって、以下の特許請求の範囲に記載される特許権の範囲を限定するものではないと意図される。

Claims (41)

  1. 発光ダイオード(LED)であって、
    エピタキシャル構造を備え、前記エピタキシャル構造が、
    前記マイクロLEDの発光表面を画定し、かつ第1の型のドーピングを伴う電流拡がり層を含むベースと、
    前記ベース上のメサであって、
    前記第1の型のドーピングを伴う第1の閉込め層と、
    光を発する、前記第1の閉込め層上の光発生領域と、
    前記第1の型のドーピングと反対の第2の型のドーピングを伴う、前記光発生領域上の第2の閉込め層と、
    前記第2の閉込め層上の前記第2の型のドーピングを伴うコンタクト層であって、前記メサの上部を画定し、前記第2の閉込め層および前記コンタクト層が前記第1の閉込め層より薄い、コンタクト層と
    を含むメサとを画定し、前記LEDが更に
    前記光発生領域から発される前記光の一部分を前記発光表面に反射する、前記コンタクト層上の反射コンタクト
    を備える、LED。
  2. 前記第1の型のドーピングがn型ドーピングであり、かつ前記第2の型のドーピングがp型ドーピングであるか、または
    前記第1の型のドーピングがp型ドーピングであり、かつ前記第2の型のドーピングがn型ドーピングである、
    請求項1に記載のLED。
  3. 前記ベースが、前記電流拡がり層上の前記第1の型のドーピングを伴うエッチストップ層を更に含み、前記第1の閉込め層が前記エッチストップ層上にあり、
    前記マイクロLEDが、前記エッチストップ層上の第2のコンタクトを更に含む、
    請求項1に記載のLED。
  4. 前記マイクロLEDが、
    前記電流拡がり層上の第2のコンタクトと、
    前記反射コンタクト上の第1のバンプと、
    前記第2のコンタクト上の第2のバンプと
    を更に含む、請求項1に記載のLED。
  5. 前記ベースが、前記発光表面を画定する前記第1の型のドーピングを伴うエッチストップ層を更に含み、前記電流拡がり層が前記エッチストップ層上にある、請求項1に記載のLED。
  6. 前記第1の閉込め層が前記電流拡がり層より厚く、
    前記電流拡がり層が前記光発生領域より厚い、
    請求項1に記載のLED。
  7. 前記メサが、
    前記メサの前記上部が切頭上部を画定する放物面形状、
    前記メサの前記上部が切頭上部を画定する円筒形状、
    前記メサの前記上部が切頭上部を画定する円錐形状、または
    垂直メサ形状
    のうちの1つとして形成される、請求項1に記載のLED。
  8. 前記ベースを通して導かれる前記光の一部分を反射してコリメートするために前記ベースに形成される拡張反射体を更に備える、請求項1に記載のLED。
  9. 前記拡張反射体が、前記ベースの前記発光表面の発光部周りに画定される複数のエアギャップまたは反射充填材料を含む、請求項8に記載のLED。
  10. 基板を更に備え、前記エピタキシャル構造が前記基板上に形成される、請求項1に記載のLED。
  11. 前記基板が前記光に対して非透過性であり、かつ前記発光表面での光の伝達を許容する開口を含む、請求項10に記載のLED。
  12. 前記基板が、前記発光表面を通して伝達される光の一部分を反射してコリメートする拡張基板反射体を含む、請求項10に記載のLED。
  13. 前記拡張基板反射体が、前記基板において画定される開口の表面上の反射材料を含む、請求項12に記載のLED。
  14. 前記拡張基板反射体の前記開口が、放物面形状または傾斜形状の1つを含む、請求項13に記載のLED。
  15. 前記メサが、高さが1から400μmの間でかつ幅が30から1500μmの間である、請求項1に記載のLED。
  16. 前記コンタクト層および前記第2の閉込め層が第2のクラッドを形成し、前記第2のクラッドが580nm未満であり、かつ、
    前記電流拡がり層および前記第1の閉込め層が第1のクラッドの少なくとも一部分を形成し、前記第1のクラッドが2μmより大きい、
    請求項1に記載のLED。
  17. 前記第2のクラッドが55から580nmの間であり、かつ、
    前記第1のクラッドが2から12μmの間である、
    請求項16に記載のLED。
  18. 前記光発生領域が前記メサの放物面焦点に配置される、請求項1に記載のLED。
  19. 前記光発生領域が、前記反射コンタクトによって反射される前記光の波腹に配置される、請求項1に記載のLED。
  20. 前記光が赤色光または赤外光を含み、
    前記メサが、10μm未満の前記ベースでの直径を有する放物面形状を含み、かつ、
    前記第2の閉込め層および前記コンタクト層が合わせて300nm未満である、
    請求項1に記載のLED。
  21. 発光ダイオード(LED)を製造するための方法であって、
    基板上に、第1の型のドーピングを伴う電流拡がり層、前記第1の型のドーピングを伴う第1の閉込め層、前記第1の型のドーピングと反対の第2の型のドーピングを伴う第2の閉込め層、前記第1の閉込め層と前記第2の閉込め層との間の光発生領域、および前記第2の型のドーピングを伴うコンタクト層を含むエピタキシャル構造であって、前記第2の閉込め層および前記コンタクト層が前記第1の閉込め層より薄い、エピタキシャル構造を成長させることと、
    前記エピタキシャル構造にベースおよび前記ベース上のメサを形成することであって、前記ベースが前記マイクロLEDの発光表面を画定し、かつ前記電流拡がり層を含み、前記メサが前記第2の閉込め層、前記光発生領域、および前記メサの上部を画定する前記コンタクト層を含む、ベースおよび前記ベース上のメサを形成することと、
    前記光発生領域から発される光の一部分を前記発光表面に反射する、前記コンタクト層上の反射コンタクトを形成することと
    を含む、方法。
  22. 前記第1の型のドーピングがn型ドーピングであり、かつ前記第2の型のドーピングがp型ドーピングであるか、または
    前記第1の型のドーピングがp型ドーピングであり、かつ前記第2の型のドーピングがn型ドーピングである、
    請求項21に記載の方法。
  23. 前記エピタキシャル構造から前記基板を分離して前記発光表面を露出させることを更に含む、請求項21に記載の方法。
  24. 前記光発生領域が、前記メサの放物面焦点に配置される量子井戸を含む、請求項21に記載の方法。
  25. 前記光発生領域が、前記反射コンタクトによって反射される前記光の波腹に配置される量子井戸を含む、請求項21に記載の方法。
  26. 前記光が赤色光または赤外光を含み、
    前記メサが、10μm未満の直径を有する放物面形状を含み、かつ、
    前記第2の閉込め層および前記コンタクト層が合わせて300nm未満である、
    請求項21に記載の方法。
  27. 発光ダイオード(LED)であって、
    エピタキシャル構造を備え、前記エピタキシャル構造が、
    前記マイクロLEDの発光表面を画定し、かつ第1の型のドーピングを伴う電流拡がり層を含むベースと、
    前記ベース上のメサであって、
    前記第1の型のドーピングを伴う第1の閉込め層と、
    光を発する、前記第1の閉込め層上の光発生領域と、
    前記第1の型のドーピングと反対の第2の型のドーピングを伴う、前記光発生領域上の第2の閉込め層と、
    前記第2の閉込め層上の前記第2の型のドーピングを伴うコンタクト層であって、前記メサの上部を画定し、前記第2の閉込め層および前記コンタクト層が前記第1の閉込め層より薄い、コンタクト層と
    を含むメサとを画定し、前記LEDが更に
    前記光発生領域から発される前記光の一部分を前記発光表面に反射する、前記コンタクト層上の反射コンタクト
    を備える、LED。
  28. 前記第1の型のドーピングがn型ドーピングであり、かつ前記第2の型のドーピングがp型ドーピングであるか、または
    前記第1の型のドーピングがp型ドーピングであり、かつ前記第2の型のドーピングがn型ドーピングである、
    請求項27に記載のLED。
  29. 前記ベースが、前記電流拡がり層上の前記第1の型のドーピングを伴うエッチストップ層を更に含み、前記第1の閉込め層が前記エッチストップ層上にあり、
    前記マイクロLEDが、前記エッチストップ層上の第2のコンタクトを更に含む、
    請求項27または28に記載のLED。
  30. 前記マイクロLEDが、
    前記電流拡がり層上の第2のコンタクトと、
    前記反射コンタクト上の第1のバンプと、
    前記第2のコンタクト上の第2のバンプと
    を更に含む、請求項27から29のいずれか一項に記載のLED。
  31. 前記ベースが、前記発光表面を画定する前記第1の型のドーピングを伴うエッチストップ層を更に含み、前記電流拡がり層が前記エッチストップ層上にある、請求項27から30のいずれか一項に記載のLED。
  32. 前記第1の閉込め層が前記電流拡がり層より厚く、
    前記電流拡がり層が前記光発生領域より厚い、
    請求項27から31のいずれか一項に記載のLED。
  33. 前記メサが、
    前記メサの前記上部が切頭上部を画定する放物面形状、
    前記メサの前記上部が切頭上部を画定する円筒形状、
    前記メサの前記上部が切頭上部を画定する円錐形状、もしくは
    垂直メサ形状
    のうちの1つとして形成され、かつ/または、
    前記メサが、高さが1から400μmの間でかつ幅が30から1500μmの間である、
    請求項27から32のいずれか一項に記載のLED。
  34. 前記ベースを通して導かれる前記光の一部分を反射してコリメートするために前記ベースに形成される拡張反射体を更に備え、
    任意選択で、前記拡張反射体が、前記ベースの前記発光表面の発光部周りに画定される複数のエアギャップまたは反射充填材料を含む、
    請求項27から33のいずれか一項に記載のLED。
  35. 基板を更に備え、前記エピタキシャル構造が前記基板上に形成され、
    任意選択で、前記基板が前記光に対して非透過性であり、かつ前記発光表面での光の伝達を許容する開口を含み、かつ/または、
    任意選択で、前記基板が、前記発光表面を通して伝達される光の一部分を反射してコリメートする拡張基板反射体を含み、
    任意選択で、前記拡張基板反射体が、前記基板において画定される開口の表面上の反射材料を含み、
    任意選択で、前記拡張基板反射体の前記開口が、放物面形状または傾斜形状の1つを含む、
    請求項27から34のいずれか一項に記載のLED。
  36. 前記コンタクト層および前記第2の閉込め層が第2のクラッドを形成し、前記第2のクラッドが580nm未満であり、かつ、
    前記電流拡がり層および前記第1の閉込め層が第1のクラッドの少なくとも一部分を形成し、前記第1のクラッドが2μmより大きく、
    任意選択で、
    前記第2のクラッドが55から580nmの間であり、かつ、
    前記第1のクラッドが2から12μmの間である、
    請求項27から35のいずれか一項に記載のLED。
  37. 前記光発生領域が前記メサの放物面焦点に配置され、かつ/または、
    前記光発生領域が、前記反射コンタクトによって反射される前記光の波腹に配置され、かつ/または、
    前記光が赤色光または赤外光を含み、
    前記メサが、10μm未満の前記ベースでの直径を有する放物面形状を含み、かつ、
    前記第2の閉込め層および前記コンタクト層が合わせて300nm未満である、
    請求項27から36のいずれか一項に記載のLED。
  38. 発光ダイオード(LED)を製造するための方法であって、
    基板上に、第1の型のドーピングを伴う電流拡がり層、前記第1の型のドーピングを伴う第1の閉込め層、前記第1の型のドーピングと反対の第2の型のドーピングを伴う第2の閉込め層、前記第1の閉込め層と前記第2の閉込め層との間の光発生領域、および前記第2の型のドーピングを伴うコンタクト層を含む、エピタキシャル構造であって、前記第2の閉込め層および前記コンタクト層が前記第1の閉込め層より薄い、エピタキシャル構造を成長させることと、
    前記エピタキシャル構造にベースおよび前記ベース上のメサを形成することであって、前記ベースが前記マイクロLEDの発光表面を画定し、かつ前記電流拡がり層を含み、前記メサが前記第2の閉込め層、前記光発生領域、および前記メサの上部を画定する前記コンタクト層を含む、ベースおよび前記ベース上のメサを形成することと、
    前記光発生領域から発される光の一部分を前記発光表面に反射する、前記コンタクト層上の反射コンタクトを形成することと
    を含む、方法。
  39. 前記第1の型のドーピングがn型ドーピングであり、かつ前記第2の型のドーピングがp型ドーピングであるか、または
    前記第1の型のドーピングがp型ドーピングであり、かつ前記第2の型のドーピングがn型ドーピングである、
    請求項38に記載の方法。
  40. 前記エピタキシャル構造から前記基板を分離して前記発光表面を露出させることを更に含む、請求項38または39に記載の方法。
  41. 前記光発生領域が、前記メサの放物面焦点に配置される量子井戸を含み、かつ/または、
    前記光発生領域が、前記反射コンタクトによって反射される前記光の波腹に配置される量子井戸を含み、かつ/または、
    前記光が赤色光または赤外光を含み、
    前記メサが、10μm未満の直径を有する放物面形状を含み、かつ、
    前記第2の閉込め層および前記コンタクト層が合わせて300nm未満である、
    請求項38から40のいずれか一項に記載の方法。
JP2020555799A 2018-05-01 2018-05-31 ミクロンサイズの発光ダイオード設計 Active JP7284188B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/968,359 2018-05-01
US15/968,359 US10483430B1 (en) 2018-05-01 2018-05-01 Micron-sized light emitting diode designs
PCT/US2018/035480 WO2019212576A1 (en) 2018-05-01 2018-05-31 Micron-sized light emitting diode designs

Publications (2)

Publication Number Publication Date
JP2021521644A true JP2021521644A (ja) 2021-08-26
JP7284188B2 JP7284188B2 (ja) 2023-05-30

Family

ID=68385511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020555799A Active JP7284188B2 (ja) 2018-05-01 2018-05-31 ミクロンサイズの発光ダイオード設計

Country Status (6)

Country Link
US (4) US10483430B1 (ja)
EP (1) EP3565010B1 (ja)
JP (1) JP7284188B2 (ja)
KR (1) KR20200140381A (ja)
CN (1) CN112088431A (ja)
WO (1) WO2019212576A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909165B2 (ja) * 2018-01-15 2021-07-28 富士通株式会社 赤外線検出器、撮像素子、撮像システム、赤外線検出器の製造方法
US10790408B1 (en) * 2018-03-30 2020-09-29 Facebook Technologies, Llc Wafer bonding for laser lift-off
US10483430B1 (en) 2018-05-01 2019-11-19 Facebook Technologies, Llc Micron-sized light emitting diode designs
US11195973B1 (en) * 2019-05-17 2021-12-07 Facebook Technologies, Llc III-nitride micro-LEDs on semi-polar oriented GaN
US10840408B1 (en) * 2019-05-28 2020-11-17 Vuereal Inc. Enhanced efficiency of LED structure with n-doped quantum barriers
KR20220040101A (ko) * 2020-09-23 2022-03-30 삼성전자주식회사 마이크로 led 및 이를 구비한 디스플레이 모듈
CN112635452B (zh) * 2020-12-21 2022-09-06 中国电子科技集团公司第五十五研究所 一种出光角度可控的Micro-LED显示器件结构
WO2022240406A1 (en) * 2021-05-12 2022-11-17 Xuejun Xie Color tunable nano led with polarized light emission
WO2024006262A2 (en) * 2022-06-30 2024-01-04 Lumileds Llc Light-emitting device with reduced-area central electrode
CN115036402B (zh) * 2022-08-12 2022-10-25 江苏第三代半导体研究院有限公司 诱导增强型Micro-LED同质外延结构及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442989A (en) * 1977-08-30 1979-04-05 Nec Corp Semiconductor luminous element
JPS61108179A (ja) * 1984-11-01 1986-05-26 Oki Electric Ind Co Ltd 発光半導体装置及びその製造方法
US6258616B1 (en) * 1998-05-22 2001-07-10 Lucent Technologies Inc. Method of making a semiconductor device having a non-alloyed ohmic contact to a buried doped layer
JP2005228924A (ja) * 2004-02-13 2005-08-25 Toshiba Corp 半導体発光素子
JP2006157024A (ja) * 2004-11-30 2006-06-15 Osram Opto Semiconductors Gmbh 発光半導体素子
JP2006525669A (ja) * 2003-05-02 2006-11-09 ユニバーシティ・カレッジ・コークーナショナル・ユニバーシティ・オブ・アイルランド,コーク 発光ダイオード及びその製造方法
JP2007157852A (ja) * 2005-12-01 2007-06-21 Sony Corp 半導体発光素子およびその製造方法
JP2008159664A (ja) * 2006-12-21 2008-07-10 Rohm Co Ltd 半導体発光素子
JP2009010272A (ja) * 2007-06-29 2009-01-15 Oki Data Corp 発光パネル、表示装置及び光源装置
JP2010500751A (ja) * 2006-08-06 2010-01-07 ライトウェーブ フォトニクス インク. 1以上の共振反射器を有するiii族窒化物の発光デバイス、及び反射性を有するよう設計された上記デバイス用成長テンプレート及びその方法
JP2010205897A (ja) * 2009-03-03 2010-09-16 Hitachi Cable Ltd 発光ダイオード用エピタキシャルウェハの発光光度評価方法
JP2012209529A (ja) * 2011-03-14 2012-10-25 Showa Denko Kk 発光ダイオード及びその製造方法
US20150060880A1 (en) * 2012-06-21 2015-03-05 Xiamen Sanan Optoelectronics Technology Co., Ltd. GaN-Based LED
JP2016129189A (ja) * 2015-01-09 2016-07-14 信越半導体株式会社 赤外発光素子
WO2017037475A1 (en) * 2015-09-02 2017-03-09 Oculus Vr, Llc Assembly of semiconductor devices
CN107195747A (zh) * 2017-06-01 2017-09-22 华南理工大学 一种微米尺寸倒装led芯片及其制备方法
US20170373228A1 (en) * 2015-01-30 2017-12-28 Apple Inc. Micro-light emitting diode with metal side mirror
JP2018531504A (ja) * 2015-09-02 2018-10-25 オキュラス ブイアール,エルエルシー 半導体デバイスの組立

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3996408B2 (ja) 2002-02-28 2007-10-24 ローム株式会社 半導体発光素子およびその製造方法
US7598148B1 (en) 2004-10-15 2009-10-06 Fields Charles H Non-self-aligned heterojunction bipolar transistor and a method for preparing a non-self-aligned heterojunction bipolar transistor
US9064980B2 (en) 2011-08-25 2015-06-23 Palo Alto Research Center Incorporated Devices having removed aluminum nitride sections
WO2013121051A1 (en) 2012-02-16 2013-08-22 University College Cork, National University Of Ireland, Cork Micro -led array with filters
KR101733043B1 (ko) 2015-09-24 2017-05-08 안상정 반도체 발광소자 및 이의 제조방법
US10483430B1 (en) * 2018-05-01 2019-11-19 Facebook Technologies, Llc Micron-sized light emitting diode designs

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442989A (en) * 1977-08-30 1979-04-05 Nec Corp Semiconductor luminous element
JPS61108179A (ja) * 1984-11-01 1986-05-26 Oki Electric Ind Co Ltd 発光半導体装置及びその製造方法
US6258616B1 (en) * 1998-05-22 2001-07-10 Lucent Technologies Inc. Method of making a semiconductor device having a non-alloyed ohmic contact to a buried doped layer
JP2006525669A (ja) * 2003-05-02 2006-11-09 ユニバーシティ・カレッジ・コークーナショナル・ユニバーシティ・オブ・アイルランド,コーク 発光ダイオード及びその製造方法
JP2005228924A (ja) * 2004-02-13 2005-08-25 Toshiba Corp 半導体発光素子
JP2006157024A (ja) * 2004-11-30 2006-06-15 Osram Opto Semiconductors Gmbh 発光半導体素子
JP2007157852A (ja) * 2005-12-01 2007-06-21 Sony Corp 半導体発光素子およびその製造方法
JP2010500751A (ja) * 2006-08-06 2010-01-07 ライトウェーブ フォトニクス インク. 1以上の共振反射器を有するiii族窒化物の発光デバイス、及び反射性を有するよう設計された上記デバイス用成長テンプレート及びその方法
JP2008159664A (ja) * 2006-12-21 2008-07-10 Rohm Co Ltd 半導体発光素子
JP2009010272A (ja) * 2007-06-29 2009-01-15 Oki Data Corp 発光パネル、表示装置及び光源装置
JP2010205897A (ja) * 2009-03-03 2010-09-16 Hitachi Cable Ltd 発光ダイオード用エピタキシャルウェハの発光光度評価方法
JP2012209529A (ja) * 2011-03-14 2012-10-25 Showa Denko Kk 発光ダイオード及びその製造方法
US20150060880A1 (en) * 2012-06-21 2015-03-05 Xiamen Sanan Optoelectronics Technology Co., Ltd. GaN-Based LED
JP2016129189A (ja) * 2015-01-09 2016-07-14 信越半導体株式会社 赤外発光素子
US20170373228A1 (en) * 2015-01-30 2017-12-28 Apple Inc. Micro-light emitting diode with metal side mirror
WO2017037475A1 (en) * 2015-09-02 2017-03-09 Oculus Vr, Llc Assembly of semiconductor devices
JP2018531504A (ja) * 2015-09-02 2018-10-25 オキュラス ブイアール,エルエルシー 半導体デバイスの組立
CN107195747A (zh) * 2017-06-01 2017-09-22 华南理工大学 一种微米尺寸倒装led芯片及其制备方法

Also Published As

Publication number Publication date
WO2019212576A1 (en) 2019-11-07
US20220238755A1 (en) 2022-07-28
JP7284188B2 (ja) 2023-05-30
US20200127159A1 (en) 2020-04-23
CN112088431A (zh) 2020-12-15
US10847675B2 (en) 2020-11-24
US20190341521A1 (en) 2019-11-07
EP3565010B1 (en) 2022-03-23
US10483430B1 (en) 2019-11-19
US20210036184A1 (en) 2021-02-04
EP3565010A1 (en) 2019-11-06
KR20200140381A (ko) 2020-12-15
US11342483B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP7284188B2 (ja) ミクロンサイズの発光ダイオード設計
Streubel et al. High brightness AlGaInP light-emitting diodes
JP5496104B2 (ja) 半導体発光デバイス用コンタクト
KR101034053B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
US8653552B2 (en) Semiconductor light-emitting device
US9048385B2 (en) Nitride semiconductor light emitting diode
EP2033238B1 (en) Semiconductor light emitting device including porous layer
US8785905B1 (en) Amber light-emitting diode comprising a group III-nitride nanowire active region
JP5255745B2 (ja) 窒化物半導体発光素子
EP1168460A2 (en) Light emitting element, method of manufacturing the same, and semiconductor device having light emitting element
US20060237735A1 (en) High-efficiency light extraction structures and methods for solid-state lighting
KR20110128545A (ko) 발광 소자, 발광 소자의 제조방법 및 발광 소자 패키지
KR20070013299A (ko) SiC 기판상에 형성된 GaN막을 위한 리프트오프프로세스 및 그 방법을 이용하여 제조된 장치
US6936864B2 (en) Semiconductor light emitting element
US7884381B2 (en) Light emitting device and method for fabricating the same including a back surface electrode with an Au alloy
JP2007235122A (ja) 半導体発光装置及びその製造方法
JP2005276899A (ja) 発光素子
US20110121358A1 (en) P-type layer for a iii-nitride light emitting device
JP5440640B2 (ja) 窒化物半導体発光素子
WO2021261207A1 (ja) 発光装置
JP6697020B2 (ja) 窒素及びリンを含有する発光層を有する発光ダイオード
JP2004281825A (ja) 発光ダイオードの製造方法
JP2010186808A (ja) 発光ダイオード及び発光ダイオードランプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230214

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7284188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150