JP2021185729A - Dabコンバータ - Google Patents

Dabコンバータ Download PDF

Info

Publication number
JP2021185729A
JP2021185729A JP2020090354A JP2020090354A JP2021185729A JP 2021185729 A JP2021185729 A JP 2021185729A JP 2020090354 A JP2020090354 A JP 2020090354A JP 2020090354 A JP2020090354 A JP 2020090354A JP 2021185729 A JP2021185729 A JP 2021185729A
Authority
JP
Japan
Prior art keywords
bridge circuit
dab converter
winding
input
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020090354A
Other languages
English (en)
Other versions
JP7306326B2 (ja
Inventor
哲也 坂井
Tetsuya Sakai
太一 井浦
Taichi IURA
洋成 ▲やなぎ▼
Hiroshige Yanagi
一生 岩谷
Kazuo Iwatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2020090354A priority Critical patent/JP7306326B2/ja
Priority to US17/326,157 priority patent/US11532988B2/en
Priority to CN202110557498.1A priority patent/CN113726168A/zh
Publication of JP2021185729A publication Critical patent/JP2021185729A/ja
Application granted granted Critical
Publication of JP7306326B2 publication Critical patent/JP7306326B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

【課題】インダクタンスの個体差によって電力の伝送効率が低下してしまうことを抑制することができるDABコンバータを提供する。【解決手段】1次側の巻線と2次側の巻線とを有するトランスと、第1フルブリッジ回路と、第2フルブリッジ回路と、第1コンデンサと、第2コンデンサと、制御部と、を備えるDABコンバータであって、第1フルブリッジ回路の第11中点と第12中点との間には、1次側の巻線が接続され、第2フルブリッジ回路の第21中点と第22中点との間には、2次側の巻線が接続され、第1フルブリッジ回路が有する2つの入出力端子間には、第1コンデンサが接続され、第2フルブリッジ回路が有する2つの入出力端子間には、第2コンデンサが接続され、制御部は、DABコンバータのインダクタンスの推定値に基づいて、第1フルブリッジ回路のスイッチングと、第2フルブリッジ回路のスイッチングとの位相差を調整する、DABコンバータ。【選択図】図1

Description

本発明は、DABコンバータに関する。
トランスとともに2つのフルブリッジ回路を備えた双方向絶縁型コンバータ、すなわち、DABコンバータについての研究、開発が行われている。
これに関し、1次側の巻線と2次側の巻線とを有するトランスと、2つのフルブリッジ回路とを備え、これら2つのフルブリッジ回路それぞれのスイッチングを制御し、1次側の巻線から2次側の巻線への電力の伝送効率が低下してしまうことを抑制するDABコンバータが知られている(特許文献1参照)。
特開2013−251998号公報
ここで、特許文献1に記載されたようなDABコンバータは、1次側の巻線を含む第1部分のインダクタンスと、2次側の巻線を含む第2部分のインダクタンスとの合成インダクタンスを、当該DABコンバータのインダクタンスとして有する。しかしながら、当該DABコンバータのインダクタンスは、個体差が大きく、設計値と異なるインダクタンスを有することも少なくない。その結果、当該DABコンバータは、1次側の巻線から2次側の巻線への電力の伝送効率が低下してしまうことを抑制することが困難な場合があった。
本発明は、このような事情を考慮してなされたもので、インダクタンスの個体差によって電力の伝送効率が低下してしまうことを抑制することができるDABコンバータを提供することを課題とする。
本発明の一態様は、1次側の巻線と2次側の巻線とを有するトランスと、第1フルブリッジ回路と、第2フルブリッジ回路と、第1コンデンサと、第2コンデンサと、前記第1フルブリッジ回路のスイッチングと、前記第2フルブリッジ回路のスイッチングとを制御する制御部と、を備えるDAB(Dual Active Bridge)コンバータであって、前記第1フルブリッジ回路が有する2つの中点のうちの第11中点と、前記第1フルブリッジ回路が有する2つの中点のうちの第12中点との間には、前記1次側の巻線が接続され、前記第2フルブリッジ回路が有する2つの中点のうちの第21中点と、前記第2フルブリッジ回路が有する2つの中点のうちの第22中点との間には、前記2次側の巻線が接続され、前記第1フルブリッジ回路が有する2つの入出力端子間には、前記第1コンデンサが接続され、前記第2フルブリッジ回路が有する2つの入出力端子間には、前記第2コンデンサが接続され、前記制御部は、前記DABコンバータのインダクタンスの推定値に基づいて、前記第1フルブリッジ回路のスイッチングと、前記第2フルブリッジ回路のスイッチングとの位相差を調整する、DABコンバータである。
本発明によれば、インダクタンスの個体差によって電力の伝送効率が低下してしまうことを抑制することができる。
実施形態に係るDABコンバータ1の回路構成の一例を示す図である。 推定値が設計値よりも大きい場合において制御部11により調整された後の位相差の一例を示す図である。 推定値が設計値よりも小さい場合において制御部11により調整された後の位相差の一例を示す図である。 第1電流検出部DC1に代えて第2電流検出部DC2が取り付けられたDABコンバータ1の構成の一例を示す図である。 制御部11が位相差を調整する処理の流れの一例を示す図である。 実施形態の変形例に係るDABコンバータ1の構成の一例を示す図である。 図6に示したDABコンバータ1が有する部分のうち第1部分PT1と第2部分PT2とを含む部分の等価回路である。 実施形態の変形例において推定値を推定する場合に制御部11が行う処理を説明するための図である。 2次側の回路が短絡している場合における、DABコンバータ1が有する部分のうち第1部分PT1と第2部分PT2とを含む部分の等価回路である。
<実施形態>
以下、本発明の実施形態について、図面を参照して説明する。ここで、実施形態では、直流電力に応じた電気信号、又は交流電力に応じた電気信号を伝送する導体のことを、伝送路と称して説明する。伝送路は、例えば、基板上にプリントされた導体であってもよく、導体が線状に形成された導線であってもよく、他の導体であってもよい。また、実施形態では、電圧と称した場合、所定の基準となる電位からの電位差を意味し、基準となる電位についての図示及び説明を省略する。ここで、基準となる電位は、如何なる電位であってもよい。実施形態では、一例として、基準となる電位がグラウンド電位である場合について説明する。また、実施形態では、説明の便宜上、ある電界効果トランジスタの状態のうちドレイン端子とソース端子との間が通電している状態のことを、オン状態と称して説明する。また、実施形態では、説明の便宜上、ある電界効果トランジスタの状態のうちドレイン端子とソース端子との間が通電していない状態のことを、オフ状態と称して説明する。
<DABコンバータの概要>
まず、実施形態に係るDABコンバータの概要について説明する。当該DABコンバータは、1次側の巻線と2次側の巻線とを有するトランスと、第1フルブリッジ回路と、第1インダクタと、第2フルブリッジ回路と、第1コンデンサと、第2コンデンサと、制御部を備える。ここで、第1フルブリッジ回路が有する2つの中点のうちの第11中点と、第1フルブリッジ回路が有する2つの中点のうちの第12中点との間には、1次側の巻線が接続される。また、第2フルブリッジ回路が有する2つの中点のうちの第21中点と、第2フルブリッジ回路が有する2つの中点のうちの第22中点との間には、2次側の巻線が接続される。また、第1フルブリッジ回路が有する2つの入出力端子間には、第1コンデンサが接続される。また、第2フルブリッジ回路が有する2つの入出力端子間には、第2コンデンサが接続される。そして、制御部は、第1フルブリッジ回路のスイッチングと、第2フルブリッジ回路のスイッチングとを制御する。具体的には、制御部は、DABコンバータのインダクタンスの推定値に基づいて、第1フルブリッジ回路のスイッチングと、第2フルブリッジ回路のスイッチングとの位相差を調整する。
これにより、実施形態に係るDABコンバータは、インダクタンスの個体差によって電力の伝送効率が低下してしまうことを抑制することができる。以下では、当該DABコンバータの回路構成と、当該DABコンバータの動作について詳しく説明する。
<DABコンバータの回路構成>
以下、図1を参照し、実施形態に係るDABコンバータ1の回路構成について説明する。図1は、実施形態に係るDABコンバータ1の回路構成の一例を示す図である。
DABコンバータ1は、前述のDABコンバータの一例である。DABコンバータ1は、双方向絶縁型コンバータである。
DABコンバータ1は、トランスTと、第1フルブリッジ回路B1と、第1インダクタL1と、第1コンデンサC1と、第2フルブリッジ回路B2と、第2インダクタL2と、第2コンデンサC2と、2つの入出力端子TIと、2つの入出力端子TOと、制御部11を備える。そして、図1に示した例では、DABコンバータ1は、情報処理装置2と接続されている。なお、DABコンバータ1は、第1インダクタL1と、第2インダクタL2との少なくとも一方を備えない構成であってもよい。また、以下では、説明の便宜上、2つの入出力端子TIのうちの一方を入出力端子TI1と称し、2つの入出力端子TIのうちの他方を入出力端子TI2と称して説明する。また、以下では、説明の便宜上、2つの入出力端子TOのうちの一方を入出力端子TO1と称し、2つの入出力端子TOのうちの他方を入出力端子TO2と称して説明する。また、図1では、図が煩雑になるのを防ぐため、DABコンバータ1において制御部11と他の回路とを接続する伝送路が描かれていない。
ここで、前述した通り、DABコンバータ1は、双方向絶縁型コンバータである。このため、2つの入出力端子TIは、直流電源が接続された場合、DABコンバータ1の入力端子として機能する。一方、2つの入出力端子TIは、負荷が接続された場合、DABコンバータ1の出力端子として機能する。また、2つの入出力端子TOは、直流電源が接続された場合、DABコンバータ1の入力端子として機能する。一方、2つの入出力端子TOは、負荷が接続された場合、DABコンバータ1の出力端子として機能する。
トランスTは、1次側の巻線T1と、2次側の巻線T2を有する。
第1フルブリッジ回路B1は、4つのスイッチング素子S1を備えるHブリッジ回路である。以下では、説明の便宜上、これら4つのスイッチング素子S1のそれぞれを、スイッチング素子S11、スイッチング素子S12、スイッチング素子S13、スイッチング素子S14と称して説明する。また、以下では、説明の便宜上、図1に示したように、第1フルブリッジ回路B1が有する2つの中点のうちの一方を中点P11と称し、第1フルブリッジ回路B1が有する2つの中点のうちの他方を中点P12と称して説明する。図1に示した例では、中点P11は、スイッチング素子S11とスイッチング素子S12との接続点のことである。また、当該例では、中点P12は、スイッチング素子S13とスイッチング素子S14との接続点のことである。
スイッチング素子S1は、制御部11からの制御に応じてスイッチング可能なスイッチング素子であれば、電界効果トランジスタ、バイポーラトランジスタ、リレースイッチ等の如何なるスイッチング素子であってもよい。以下では、一例として、スイッチング素子S1が電界効果トランジスタである場合について説明する。
また、図1に示した第1フルブリッジ回路B1では、スイッチング素子S11とスイッチング素子S13とが、第1フルブリッジ回路B1の上アームA11を構成している。以下では、説明の便宜上、スイッチング素子S11とスイッチング素子S13との接続点を、入出力端子P13と称して説明する。入出力端子P13は、第1フルブリッジ回路B1が有する2つの入出力端子のうちの一方である。ここで、入出力端子P13は、2つの入出力端子TIに直流電源が接続された場合、第1フルブリッジ回路B1が有する2つの入力端子のうちの一方として機能する。一方、入出力端子P13は、2つの入出力端子TIに負荷が接続された場合、第1フルブリッジ回路B1が有する2つの出力端子のうちの一方として機能する。
また、図1に示した第1フルブリッジ回路B1では、スイッチング素子S12とスイッチング素子S14とが、第1フルブリッジ回路B1の下アームA12を構成している。以下では、説明の便宜上、スイッチング素子S12とスイッチング素子S14との接続点を、入出力端子P14と称して説明する。入出力端子P14は、第1フルブリッジ回路B1が有する2つの入出力端子のうちの他方である。ここで、入出力端子P14は、2つの入出力端子TIに直流電源が接続された場合、第1フルブリッジ回路B1が有する2つの入力端子のうちの他方として機能する。一方、入出力端子P14は、2つの入出力端子TIに負荷が接続された場合、第1フルブリッジ回路B1が有する2つの出力端子のうちの他方として機能する。
このような第1フルブリッジ回路B1は、入出力端子TI1と入出力端子TI2との間において、第1コンデンサC1と並列に接続される。図1に示した例では、第1コンデンサC1が有する2つの端子のうちの一方と、前述の入出力端子P13とは、入出力端子TI1と接続されている。また、当該例では、第1コンデンサC1が有する2つの端子のうちの他方と、前述の入出力端子P14とは、入出力端子TI2と接続されている。なお、第1コンデンサC1と入出力端子TI1との間には、他の回路素子が直列又は並列に接続される構成であってもよい。また、入出力端子P13と入出力端子TI1との間には、他の回路素子が直列又は並列に接続される構成であってもよい。また、第1コンデンサC1と入出力端子TI2との間には、他の回路素子が直列又は並列に接続される構成であってもよい。また、入出力端子P14と入出力端子TI2との間には、他の回路素子が直列又は並列に接続される構成であってもよい。
第2フルブリッジ回路B2は、4つのスイッチング素子S2を備えるHブリッジ回路である。以下では、説明の便宜上、これら4つのスイッチング素子S2のそれぞれを、スイッチング素子S21、スイッチング素子S22、スイッチング素子S23、スイッチング素子S24と称して説明する。また、以下では、説明の便宜上、図1に示したように、第2フルブリッジ回路B2が有する2つの中点のうちの一方を中点P21と称し、第2フルブリッジ回路B2が有する2つの中点のうちの他方を中点P22と称して説明する。図1に示した例では、中点P21は、スイッチング素子S21とスイッチング素子S22との接続点のことである。また、当該例では、中点P22は、スイッチング素子S23とスイッチング素子S24との接続点のことである。
スイッチング素子S2は、制御部11からの制御に応じてスイッチング可能なスイッチング素子であれば、電界効果トランジスタ、バイポーラトランジスタ、リレースイッチ等の如何なるスイッチング素子であってもよい。以下では、一例として、スイッチング素子S2が電界効果トランジスタである場合について説明する。
また、図1に示した第2フルブリッジ回路B2では、スイッチング素子S21とスイッチング素子S23とが、第2フルブリッジ回路B2の上アームA21を構成している。以下では、説明の便宜上、スイッチング素子S21とスイッチング素子S23との接続点を、入出力端子P23と称して説明する。入出力端子P23は、第2フルブリッジ回路B2が有する2つの入出力端子のうちの一方である。ここで、入出力端子P23は、2つの入出力端子TOに直流電源が接続された場合、第2フルブリッジ回路B2が有する2つの入力端子のうちの一方として機能する。一方、入出力端子P23は、2つの入出力端子TOに負荷が接続された場合、第2フルブリッジ回路B2が有する2つの出力端子のうちの一方として機能する。
また、図1に示した第2フルブリッジ回路B2では、スイッチング素子S22とスイッチング素子S24とが、第2フルブリッジ回路B2の下アームA22を構成している。以下では、説明の便宜上、スイッチング素子S22とスイッチング素子S24との接続点を、入出力端子P24と称して説明する。入出力端子P24は、第2フルブリッジ回路B2が有する2つの入出力端子のうちの他方である。ここで、入出力端子P24は、2つの入出力端子TOに直流電源が接続された場合、第2フルブリッジ回路B2が有する2つの入力端子のうちの他方として機能する。一方、入出力端子P24は、2つの入出力端子TOに負荷が接続された場合、第2フルブリッジ回路B2が有する2つの出力端子のうちの他方として機能する。
このような第2フルブリッジ回路B2は、入出力端子TO1と入出力端子TO2との間において、第2コンデンサC2と並列に接続される。図1に示した例では、第2コンデンサC2が有する2つの端子のうちの一方と、前述の入出力端子P23とは、入出力端子TO1と接続されている。また、当該例では、第2コンデンサC2が有する2つの端子のうちの他方と、前述の入出力端子P24とは、入出力端子TO2と接続されている。なお、第2コンデンサC2と入出力端子TO1との間には、他の回路素子が直列又は並列に接続される構成であってもよい。また、入出力端子P23と入出力端子TO1との間には、他の回路素子が直列又は並列に接続される構成であってもよい。また、第2コンデンサC2と入出力端子TO2との間には、他の回路素子が直列又は並列に接続される構成であってもよい。また、入出力端子P24と入出力端子TO2との間には、他の回路素子が直列又は並列に接続される構成であってもよい。
ここで、DABコンバータ1のインダクタンスは、DABコンバータ1の1次側の回路が有するインダクタンスと、DABコンバータ1の2次側の回路が有するインダクタンスとの合成インダクタンスである。
DABコンバータ1の1次側の回路が有するインダクタンスは、例えば、DABコンバータ1の1次側の回路が有する部分のうち、中点P11と中点P12との間に接続される部分のインダクタンスによって表される。以下では、説明の便宜上、当該部分を、第1部分PT1と称して説明する。なお、DABコンバータ1の1次側の回路が有するインダクタンスには、第1部分PT1のインダクタンスとともに、DABコンバータ1の1次側の回路が有する部分のうち第1部分PT1以外の部分のインダクタンスによって表される構成であってもよい。
図1に示した例では、中点P11と中点P12との間には、第1インダクタL1と1次側の巻線T1とが直列に接続されている。すなわち、当該例では、第1部分PT1には、第1インダクタL1と、第1インダクタL1と直列に接続された1次側の巻線T1とが含まれている。このため、当該例では、第1部分PT1のインダクタンスは、第1インダクタL1のインダクタンスと、1次側の巻線T1のリーケージインダクタンスとの合成インダクタンスである。なお、中点P11と中点P12との間には、第1インダクタL1及び1次側の巻線T1とともに、コンデンサ等の他の回路素子が直列又は並列に接続される構成であってもよい。また、DABコンバータ1が第1インダクタL1を備えない場合、第1部分PT1には、第1インダクタL1は含まれず、1次側の巻線T1が含まれる。この場合、第1部分PT1のインダクタンスは、1次側の巻線T1のリーケージインダクタンスである。
なお、DABコンバータ1では、1次側の巻線T1として巻回される導体の巻き始めと巻き終わりにおいて導体同士の間隔が密にならないように巻回することにより、1次側の巻線T1のリーケージインダクタンスを大きくし、第1インダクタL1の代わりとして機能させることができる。一方、DABコンバータ1では、DABコンバータ1が第1インダクタL1を備える場合、1次側の巻線T1として巻回される導体の巻き始めと巻き終わりにおいて導体同士の間隔が密になるように巻回することが望ましい。
第1インダクタL1は、例えば、チョークコイルである。なお、第1インダクタL1は、チョークコイルと同様の役割を行う回路素子、部材等であれば、他の回路素子、他の部材であってもよい。
DABコンバータ1の2次側の回路が有するインダクタンスは、例えば、DABコンバータ1の2次側の回路が有する部分のうち、中点P21と中点P22との間に接続される部分のインダクタンスによって表される。以下では、説明の便宜上、当該部分を、第2部分PT2と称して説明する。なお、DABコンバータ1の2次側の回路が有するインダクタンスには、第2部分PT2のインダクタンスとともに、DABコンバータ1の2次側の回路が有する部分のうち第2部分PT2以外の部分のインダクタンスによって表される構成であってもよい。
図1に示した例では、中点P21と中点P22との間には、第2インダクタL2と2次側の巻線T2とが直列に接続されている。すなわち、当該例では、第2部分PT2には、第2インダクタL2と、第2インダクタL2と直列に接続された2次側の巻線T2とが含まれている。このため、当該例では、第2部分PT2のインダクタンスは、第2インダクタL2のインダクタンスと、2次側の巻線T2のリーケージインダクタンスとの合成インダクタンスである。なお、中点P21と中点P22との間には、第2インダクタL2及び2次側の巻線T2とともに、コンデンサ等の他の回路素子が直列又は並列に接続される構成であってもよい。また、DABコンバータ1が第2インダクタL2を備えない場合、第2部分PT2には、第2インダクタL2は含まれず、2次側の巻線T2が含まれる。この場合、第2部分PT2のインダクタンスは、2次側の巻線T2のリーケージインダクタンスである。
なお、DABコンバータ1では、2次側の巻線T2として巻回される導体の巻き始めと巻き終わりにおいて導体同士の間隔が密にならないように巻回することにより、2次側の巻線T2のリーケージインダクタンスを大きくし、第2インダクタL2の代わりとして機能させることができる。一方、DABコンバータ1では、DABコンバータ1が第2インダクタL2を備える場合、2次側の巻線T2として巻回される導体の巻き始めと巻き終わりにおいて導体同士の間隔が密になるように巻回することが望ましい。
第2インダクタL2は、例えば、チョークコイルである。なお、第2インダクタL2は、チョークコイルと同様の役割を行う回路素子、部材等であれば、他の回路素子、他の部材であってもよい。
ここで、図1に示した例では、DABコンバータ1の入出力端子TI1及び入出力端子TI2には、図示しない直流電源が接続されている。また、DABコンバータ1の入出力端子TO1及び入出力端子TO2には、負荷が接続される。図1に示した例では、DABコンバータ1には、このような負荷の一例として、負荷LDが接続されている。負荷LDは、DABコンバータ1に接続可能な負荷であれば、如何なる負荷であってもよい。例えば、負荷LDは、蓄電池である。すなわち、図1に示した例では、DABコンバータ1は、DABコンバータ1に接続された直流電源から供給される電力を、負荷LDへと供給する。
しかしながら、DABコンバータ1のインダクタンスは、個体差が大きいため、ばらついていることが少なくない。このため、DABコンバータ1による電力の伝送効率は、何らかの調整が行われなければ、DABコンバータ1のインダクタンスが設計値からずれるほど、低くなってしまうことがある。
そこで、制御部11は、DABコンバータ1のインダクタンスの推定値に基づいて、第1フルブリッジ回路B1のスイッチングと、第2フルブリッジ回路B2のスイッチングとの位相差を調整する。これにより、DABコンバータ1は、インダクタンスの個体差によって電力の伝送効率が低下してしまうことを抑制することができる。
本実施形態において、第1フルブリッジ回路B1のスイッチングは、第1フルブリッジ回路B1が備える4つのスイッチング素子S1それぞれのスイッチングのことである。また、本実施形態において、第2フルブリッジ回路B2のスイッチングは、第2フルブリッジ回路B2が備える4つのスイッチング素子S2それぞれのスイッチングのことである。そして、本実施形態において、第1フルブリッジ回路B1のスイッチングと、第2フルブリッジ回路B2のスイッチングとの位相差は、以下において説明する第1位相差〜第4位相差の4つの位相差のことを示す。
第1位相差は、スイッチング素子S11のスイッチングと、スイッチング素子S21のスイッチングの位相差のことである。より具体的には、第1位相差は、スイッチング素子S11のゲート端子に入力する方形波と、スイッチング素子S21のゲート端子に入力する方形波との位相のずれのことである。DABコンバータ1の通常使用時において、スイッチング素子S11のゲート端子には、制御部11から方形波が入力される。換言すると、制御部11は、DABコンバータ1の通常使用時において、スイッチング素子S11のゲート端子に方形波に入力することにより、スイッチング素子S11の状態を、時間の経過とともにオン状態とオフ状態との間で周期的に変化させる。また、制御部11は、DABコンバータ1の通常使用時において、スイッチング素子S21のゲート端子に方形波に入力することにより、スイッチング素子S21の状態を、時間の経過とともにオン状態とオフ状態との間で周期的に変化させる。すなわち、これら2つの方形波の位相差は、スイッチング素子S11のスイッチングと、スイッチング素子S21のスイッチングとの位相差を表している。
第2位相差は、スイッチング素子S12のスイッチングと、スイッチング素子S22のスイッチングの位相差のことである。より具体的には、第2位相差は、スイッチング素子S12のゲート端子に入力する方形波と、スイッチング素子S22のゲート端子に入力する方形波との位相のずれのことである。DABコンバータ1の通常使用時において、スイッチング素子S12のゲート端子には、制御部11から方形波が入力される。換言すると、制御部11は、DABコンバータ1の通常使用時において、スイッチング素子S12のゲート端子に方形波に入力することにより、スイッチング素子S12の状態を、時間の経過とともにオン状態とオフ状態との間で周期的に変化させる。また、制御部11は、DABコンバータ1の通常使用時において、スイッチング素子S22のゲート端子に方形波に入力することにより、スイッチング素子S22の状態を、時間の経過とともにオン状態とオフ状態との間で周期的に変化させる。すなわち、これら2つの方形波の位相差は、スイッチング素子S12のスイッチングと、スイッチング素子S22のスイッチングとの位相差を表している。
第3位相差は、スイッチング素子S13のスイッチングと、スイッチング素子S23のスイッチングの位相差のことである。より具体的には、第3位相差は、スイッチング素子S13のゲート端子に入力する方形波と、スイッチング素子S23のゲート端子に入力する方形波との位相のずれのことである。DABコンバータ1の通常使用時において、スイッチング素子S13のゲート端子には、制御部11から方形波が入力される。換言すると、制御部11は、DABコンバータ1の通常使用時において、スイッチング素子S13のゲート端子に方形波に入力することにより、スイッチング素子S13の状態を、時間の経過とともにオン状態とオフ状態との間で周期的に変化させる。また、制御部11は、DABコンバータ1の通常使用時において、スイッチング素子S23のゲート端子に方形波に入力することにより、スイッチング素子S23の状態を、時間の経過とともにオン状態とオフ状態との間で周期的に変化させる。すなわち、これら2つの方形波の位相差は、スイッチング素子S13のスイッチングと、スイッチング素子S23のスイッチングとの位相差を表している。
第4位相差は、スイッチング素子S14のスイッチングと、スイッチング素子S24のスイッチングの位相差のことである。より具体的には、第4位相差は、スイッチング素子S14のゲート端子に入力する方形波と、スイッチング素子S24のゲート端子に入力する方形波との位相のずれのことである。DABコンバータ1の通常使用時において、スイッチング素子S14のゲート端子には、制御部11から方形波が入力される。換言すると、制御部11は、DABコンバータ1の通常使用時において、スイッチング素子S14のゲート端子に方形波に入力することにより、スイッチング素子S14の状態を、時間の経過とともにオン状態とオフ状態との間で周期的に変化させる。また、制御部11は、DABコンバータ1の通常使用時において、スイッチング素子S24のゲート端子に方形波に入力することにより、スイッチング素子S24の状態を、時間の経過とともにオン状態とオフ状態との間で周期的に変化させる。すなわち、これら2つの方形波の位相差は、スイッチング素子S14のスイッチングと、スイッチング素子S24のスイッチングとの位相差を表している。
本実施形態において、第1フルブリッジ回路B1のスイッチングと、第2フルブリッジ回路B2のスイッチングとの位相差を調整することは、第1位相差〜第4位相差の4つの位相差のうちの少なくとも1つを変化させることを意味する。
なお、以下では、説明の便宜上、DABコンバータ1のインダクタンスの推定値を、単に推定値と称して説明する。また、以下では、説明の便宜上、第1フルブリッジ回路B1のスイッチングと、第2フルブリッジ回路B2のスイッチングとの位相差を、単に位相差と称して説明する。
制御部11は、後述する情報処理装置2により推定された推定値に基づいて、位相差を調整する。なお、制御部11は、推定値を推定し、推定した推定値に基づいて、位相差を調整する構成であってもよい。
情報処理装置2は、例えば、ノートPC(Personal Computer)、タブレットPC、デスクトップPC、ワークステーション、多機能携帯電話端末(スマートフォン)、携帯電話端末、PDA(Personal Digital Assistant)等であるが、これらに限られるわけではない。
情報処理装置2は、前述した通り、推定値を推定する。より具体的には、情報処理装置2は、例えば、DABコンバータ1への入力電圧と、DABコンバータ1への入力電流と、DABコンバータ1からの出力電圧とに基づいて、推定値を推定する。このため、DABコンバータ1には、DABコンバータ1への入力電圧を検出する電圧検出部と、DABコンバータ1への入力電流を検出する電流検出部と、DABコンバータ1からの出力電圧を検出する電圧検出部が取り付けられる。図1に示した例では、DABコンバータ1には、第1電圧検出部DV1と、第1電流検出部DC1と、第2電圧検出部DV2が取り付けられている。
第1電圧検出部DV1は、電圧計である。第1電圧検出部DV1は、DABコンバータ1が有する2つの入出力端子TI間に印加された電圧を検出可能なように、DABコンバータ1に取り付けられる。より具体的には、第1電圧検出部DV1は、第1フルブリッジ回路B1が有する2つの入出力端子(すなわち、入出力端子P13と入出力端子P14)間に印加された電圧を検出可能なように、DABコンバータ1に取り付けられる。また、第1電圧検出部DV1は、情報処理装置2と通信可能なように、DABコンバータ1に取り付けられる。図1に示した例では、第1電圧検出部DV1は、図示しない直流電源の電源端子と、DABコンバータ1が有する2つの入出力端子(すなわち、入出力端子TI1と入出力端子TI2)との間を接続する2つの伝送路間に接続されている。これにより、第1電圧検出部DV1は、第1フルブリッジ回路B1が有する2つの入出力端子間に印加された電圧を検出することができる。なお、以下では、説明の便宜上、第1電圧検出部DV1により検出される当該電圧を、第1電圧と称して説明する。第1電圧検出部DV1は、検出した第1電圧を示す第1電圧情報を情報処理装置2に出力する。
第1電流検出部DC1は、電流計である。第1電流検出部DC1は、DABコンバータ1が有する2つの入出力端子TIのうち、直流電源の正極側の電源端子と接続される入出力端子TI1に流れる電流を検出可能なように、DABコンバータ1に取り付けられる。より具体的には、第1電流検出部DC1は、第1フルブリッジ回路B1が有する2つの入出力端子(すなわち、入出力端子P13と入出力端子P14)のうち、入出力端子TI1と接続される入出力端子P13に流れた電流を検出可能なように、DABコンバータ1に取り付けられる。また、第1電流検出部DC1は、情報処理装置2と通信可能なように、DABコンバータ1に取り付けられる。図1に示した例では、第1電流検出部DC1は、図示しない直流電源の電源端子と入出力端子TI1とを接続する伝送路に接続されている。これにより、第1電流検出部DC1は、第1フルブリッジ回路B1が有する2つの入出力端子間のうち、直流電源から電流が供給される方の入出力端子に流れた電流を検出することができる。なお、以下では、説明の便宜上、第1電流検出部DC1により検出される当該電流を、第1電流と称して説明する。第1電流検出部DC1は、検出した第1電流を示す第1電流情報を情報処理装置2に出力する。
第2電圧検出部DV2は、電圧計である。第2電圧検出部DV2は、DABコンバータ1が有する2つの入出力端子TO間に印加された電圧を検出可能なように、DABコンバータ1に取り付けられる。より具体的には、第2電圧検出部DV2は、第2フルブリッジ回路B2が有する2つの入出力端子(すなわち、入出力端子P23と入出力端子P24)間に印加された電圧を検出可能なように、DABコンバータ1に取り付けられる。また、第2電圧検出部DV2は、情報処理装置2と通信可能なように、DABコンバータ1に取り付けられる。図1に示した例では、第2電圧検出部DV2は、負荷LDと、DABコンバータ1が有する2つの入出力端子(すなわち、入出力端子TO1と入出力端子TO2)との間を接続する2つの伝送路間に接続されている。これにより、第2電圧検出部DV2は、第2フルブリッジ回路B2が有する2つの入出力端子間に印加された電圧を検出することができる。なお、以下では、説明の便宜上、第2電圧検出部DV2により検出される当該電圧を、第2電圧と称して説明する。第2電圧検出部DV2は、検出した第2電圧を示す第2電圧情報を情報処理装置2に出力する。
情報処理装置2は、第1電圧検出部DV1により検出された第1電圧と、第1電流検出部DC1により検出された第1電流と、第2電圧検出部DV2により検出された第2電圧とに基づいて、推定値を推定する。より具体的には、情報処理装置2は、当該第1電圧と、当該第1電流と、当該第2電圧と、以下に示す式(1)とを用いて、推定値を算出する。
Figure 2021185729
ここで、上記の式(1)に示したPは、直流電源からDABコンバータ1へ供給される電力を示す。上記の式(1)に示したV1は、第1電圧を示す。上記の式(1)に示したV2は、第2電圧を示す。上記の式(1)に示したN1は、1次側の巻線T1の巻数を示す。上記の式(1)に示したN2は、2次側の巻線T2の巻数を示す。上記の式(1)に示したωは、第1フルブリッジ回路B1のスイッチング、及び第2フルブリッジ回路B2のスイッチングの角周波数を示す。上記の式(1)に示したδは、位相差を示す。そして、上記の式(1)に示したLは、DABコンバータ1のインダクタンスを示す。なお、これらのパラメータのうち、情報処理装置2にとって既知のパラメータは、1次側の巻線T1と、2次側の巻線T2と、角周波数ωと、位相差δである。
例えば、情報処理装置2は、第1電圧V1と第1電流とに基づいて、電力Pを算出する。情報処理装置2は、算出した電力Pと、第1電圧V1と、第2電圧V2と、1次側の巻線T1と、2次側の巻線T2と、角周波数ωと、位相差δとに基づいて、合成インダクタンスLの値を前述の推定値として推定(算出)する。
推定値を推定した後、情報処理装置2は、推定した推定値を示す推定値情報を、DABコンバータ1の制御部11に出力する。そして、制御部11は、取得した推定値情報が示す推定値に基づいて、位相差を調整する。例えば、制御部11は、推定した推定値が設計値(すなわち、予め決められたインダクタンス)よりも大きい場合、例えば、位相差を、図2に示したような位相差に調整する。図2は、推定値が設計値よりも大きい場合において制御部11により調整された後の位相差の一例を示す図である。
図2に示したグラフTL11は、スイッチング素子S11の状態の時間的な変化の一例を示す図である。グラフTL11において、スイッチング素子S11の状態がオン状態である期間は、グラフTL11に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL11において、スイッチング素子S11の状態がオフ状態である期間は、グラフTL11に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S12の状態の時間的な変化を示す方形波は、スイッチング素子S11の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
また、図2に示したグラフTL13は、スイッチング素子S13の状態の時間的な変化の一例を示す図である。グラフTL13において、スイッチング素子S13の状態がオン状態である期間は、グラフTL13に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL13において、スイッチング素子S13の状態がオフ状態である期間は、グラフTL13に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S14の状態の時間的な変化を示す方形波は、スイッチング素子S13の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
図2に示したグラフTL21は、スイッチング素子S21の状態の時間的な変化の一例を示す図である。グラフTL21において、スイッチング素子S21の状態がオン状態である期間は、グラフTL21に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL21において、スイッチング素子S21の状態がオフ状態である期間は、グラフTL21に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S22の状態の時間的な変化を示す方形波は、スイッチング素子S21の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
また、図2に示したグラフTL23は、スイッチング素子S23の状態の時間的な変化の一例を示す図である。グラフTL23において、スイッチング素子S23の状態がオン状態である期間は、グラフTL23に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL23において、スイッチング素子S23の状態がオフ状態である期間は、グラフTL23に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S24の状態の時間的な変化を示す方形波は、スイッチング素子S23の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
図2に示したように、制御部11は、推定値が設計値よりも大きい場合、第1位相差及び第2位相差をゼロにする。また、制御部11は、推定値が設計値よりも大きい場合、第3位相差及び第4位相差をノンゼロの値に変化させる。当該値の大きさは、DABコンバータ1の回路構成に依存する。このため、本実施形態では、当該値として特定の値を例示することを省略する。
ここで、グラフDL1は、図2に示したように第3位相差及び第4位相差をノンゼロの値に変化させた場合において、第1部分PT1の両端に印加される電圧の時間的な変化の一例を示す。換言すると、グラフDL1は、入出力端子P13と入出力端子P14との間に印加される電圧の時間的な変化の一例を示す。また、グラフDL2は、当該場合において、第2部分PT2の両端に印加される電圧の時間的な変化の一例を示す。換言すると、グラフDL2は、入出力端子P23と入出力端子P24との間に印加される電圧の時間的な変化の一例を示す。
すなわち、制御部11は、推定値が設計値よりも大きい場合、例えば、グラフDL1及びグラフDL2に示したように、第1部分PT1の両端に電圧が印加される時間幅を、第2部分PT2の両端に電圧が印加される時間幅よりも短くする。換言すると、制御部11は、当該場合、第1位相差及び第2位相差を調整することによって、第1部分PT1の両端に印加される電圧の時間的な変化を示す方形波の位相と、第2部分PT2の両端に印加される電圧の時間的な変化を示す方形波の位相との位相差を調整する。これにより、制御部11は、図1に示したDABコンバータ1の回路構成において、電力の伝送効率が低下してしまうことを抑制することができる。
また、例えば、制御部11は、推定した推定値が設計値(すなわち、予め決められたインダクタンス)よりも小さい場合、例えば、位相差を、図3に示したような位相差に調整する。図3は、推定値が設計値よりも小さい場合において制御部11により調整された後の位相差の一例を示す図である。
図3に示したグラフTL31は、スイッチング素子S11の状態の時間的な変化の他の例を示す図である。グラフTL31において、スイッチング素子S11の状態がオン状態である期間は、グラフTL31に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL31において、スイッチング素子S11の状態がオフ状態である期間は、グラフTL31に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S12の状態の時間的な変化を示す方形波は、スイッチング素子S11の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
また、図3に示したグラフTL33は、スイッチング素子S13の状態の時間的な変化の他の例を示す図である。グラフTL33において、スイッチング素子S13の状態がオン状態である期間は、グラフTL33に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL33において、スイッチング素子S13の状態がオフ状態である期間は、グラフTL33に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S14の状態の時間的な変化を示す方形波は、スイッチング素子S13の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
図3に示したグラフTL41は、スイッチング素子S21の状態の時間的な変化の他の例を示す図である。グラフTL41において、スイッチング素子S21の状態がオン状態である期間は、グラフTL41に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL41において、スイッチング素子S21の状態がオフ状態である期間は、グラフTL41に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S22の状態の時間的な変化を示す方形波は、スイッチング素子S21の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
また、図3に示したグラフTL43は、スイッチング素子S23の状態の時間的な変化の他の例を示す図である。グラフTL43において、スイッチング素子S23の状態がオン状態である期間は、グラフTL43に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL43において、スイッチング素子S23の状態がオフ状態である期間は、グラフTL43に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S24の状態の時間的な変化を示す方形波は、スイッチング素子S23の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
図3に示した例では、制御部11は、推定値が設計値よりも小さい場合、第1位相差及び第2位相差をノンゼロの値に変化させる。また、当該例では、制御部11は、当該場合、第3位相差及び第4位相差をノンゼロの値に変化させる。すなわち、当該例では、当該場合、制御部11は、第1位相差〜第4位相差のそれぞれをノンゼロの値に変化させる。これら4つのノンゼロの値の大きさは、DABコンバータ1の回路構成に依存する。このため、本実施形態では、これら4つのノンゼロの値として特定の値を例示することを省略する。
ここで、グラフDL3は、図3に示したように第1位相差〜第4位相差のそれぞれをノンゼロの値似変化させた場合において、第1部分PT1の両端に印加される電圧の時間的な変化の一例を示す。換言すると、グラフDL3は、入出力端子P13と入出力端子P14との間に印加される電圧の時間的な変化の一例を示す。また、グラフDL4は、当該場合において、第2部分PT2の両端に印加される電圧の時間的な変化の一例を示す。換言すると、グラフDL4は、入出力端子P23と入出力端子P24との間に印加される電圧の時間的な変化の一例を示す。
すなわち、制御部11は、推定値が設計値よりも小さい場合、例えば、グラフDL3及びグラフDL4に示したように、第1部分PT1の両端に電圧が印加される時間幅を、第2部分PT2の両端に電圧が印加される時間幅よりも短くする。換言すると、制御部11は、当該場合、第1位相差及び第2位相差を調整することによって、第1部分PT1の両端に印加される電圧の時間的な変化を示す方形波の位相と、第2部分PT2の両端に印加される電圧の時間的な変化を示す方形波の位相との位相差を調整する。これにより、制御部11は、図1に示したDABコンバータ1の回路構成において、電力の伝送効率が低下してしまうことを抑制することができる。
なお、図2及び図3における制御部11により位相差を調整する方法は、上記において説明した方法に代えて、他の既知の方法であってもよく、これから開発される方法であってもよい。このため、本実施形態において、制御部11により位相差を調整する方法については、これ以上の詳細な説明を省略する。
また、情報処理装置2は、第1電圧と第1電流と第2電圧とに基づいて推定値を推定する構成に代えて、又は、第1電圧と第1電流と第2電圧とに基づいて推定値を推定する構成に加えて、第1電圧と、第2電圧と、第2電流とに基づいて推定値を推定する構成であってもよい。第2電流は、図4に示した第2電流検出部DC2により検出された電流のことである。
図4は、第1電流検出部DC1に代えて第2電流検出部DC2が取り付けられたDABコンバータ1の構成の一例を示す図である。
図4に示した例では、DABコンバータ1が有する2つの入出力端子TIには、負荷LDが接続されている。また、当該例では、DABコンバータ1が有する2つの入出力端子TOには、図示しない直流電源が接続されている。すなわち、図4に示したDABコンバータ1では、DABコンバータ1の入出力の関係が、図1に示したDABコンバータ1と入れ替わっている。
第2電流検出部DC2は、電流計である。第2電流検出部DC2は、DABコンバータ1が有する2つの入出力端子TOのうち、直流電源の正極側の電源端子と接続される入出力端子TO1に流れる電流を検出可能なように、DABコンバータ1に取り付けられる。より具体的には、第2電流検出部DC2は、第2フルブリッジ回路B2が有する2つの入出力端子(すなわち、入出力端子P23と入出力端子P24)のうち、入出力端子TO1と接続される入出力端子P23から負荷LDに流れた電流を検出可能なように、DABコンバータ1に取り付けられる。また、第2電流検出部DC2は、情報処理装置2と通信可能なように、DABコンバータ1に取り付けられる。図1に示した例では、第2電流検出部DC2は、負荷LDの正極側の電源端子と入出力端子TO1とを接続する伝送路に接続されている。これにより、第2電流検出部DC2は、第2フルブリッジ回路B2が有する2つの入出力端子のうち正極側の入出力端子から負荷LDに流れた電流を検出することができる。第2電流検出部DC2は、検出した第2電流を示す第2電流情報を情報処理装置2に出力する。
DABコンバータ1に第2電流検出部DC2が取り付けられている場合、情報処理装置2は、例えば、以下の式(2)に基づいて推定値を推定する。
Figure 2021185729
この場合であっても、情報処理装置2は、推定値を推定することができる。そして、制御部11は、情報処理装置2から取得した推定値情報が示す推定値に基づいて位相差を調整することができる。その結果、制御部11は、図4に示したDABコンバータ1の回路構成において、電力の伝送効率が低下してしまうことを抑制することができる。
なお、前述した通り、制御部11は、情報処理装置2に代えて、推定値を推定する構成であってもよい。この場合、情報処理装置2が有する機能のうち、上記において説明した機能の少なくとも一部は、制御部11に備えられる。このため、当該場合、DABコンバータ1には、情報処理装置2が接続されない構成であってもよい。また、当該場合、第1電圧検出部DV1は、制御部11と通信可能なように、DABコンバータ1に取り付けられる。また、当該場合、第1電流検出部DC1は、制御部11と通信可能なように、DABコンバータ1に取り付けられる。また、当該場合、第2電圧検出部DV2は、制御部11と通信可能なように、DABコンバータ1に取り付けられる。
また、第1電圧検出部DV1は、DABコンバータ1に外付けされる構成に代えて、DABコンバータ1に内蔵される構成であってもよい。また、第1電流検出部DC1は、DABコンバータ1に外付けされる構成に代えて、DABコンバータ1に内蔵される構成であってもよい。また、第2電圧検出部DV2は、DABコンバータ1に外付けされる構成に代えて、DABコンバータ1に内蔵される構成であってもよい。
<情報処理装置が推定値を推定する処理と、制御部が位相差を調整する処理>
以下、図5を参照し、情報処理装置2が推定値を推定する処理と、制御部11が位相差を調整する処理について説明する。図5は、情報処理装置2が推定値を推定する処理と、制御部11が位相差を調整する処理の流れの一例を示すシーケンス図である。なお、以下では、一例として、図5に示したステップS210の処理が行われるよりも前のタイミングにおいて、DABコンバータ1の動作モードを調整モードに変化させる操作をDABコンバータ1が受け付けている場合について説明する。ここで、DABコンバータ1の動作モードのうちの調整モードは、情報処理装置2から推定値情報を取得した場合において、取得した推定値情報に基づいて位相差を調整するモードのことである。なお、DABコンバータ1は、当該操作を、DABコンバータ1が有するハードウェアキーを介して行われてもよく、DABコンバータ1に接続された情報処理装置2等を介して行われてもよい。また、以下では、一例として、当該タイミングにおいて、情報処理装置2の動作モードを調整モードに変化させる操作を情報処理装置2が受け付けている場合について説明する。ここで、情報処理装置2の動作モードのうちの調整モードは、情報処理装置2が推定値を推定し、推定した推定値を示す推定値情報をDABコンバータ1に出力して、DABコンバータ1に位相差の調整を行わせるモードのことである。なお、情報処理装置2は、当該操作を、情報処理装置2が有するハードウェアキーを介して行われてもよく、情報処理装置2の表示部(例えば、ディスプレイ)に表示されたソフトウェアキーを介して行われてもよい。
情報処理装置2は、電圧及び電流の検出を行う(ステップS210)。具体的には、例えば、情報処理装置2は、ステップS210において、第1電圧検出部DV1から第1電圧情報を取得することにより、取得した第1電圧情報が示す第1電圧を検出する。また、例えば、情報処理装置2は、ステップS210において、第1電流検出部DC1から第1電流情報を取得することにより、取得した第1電流情報が示す第1電流を検出する。また、例えば、情報処理装置2は、ステップS210において、第2電圧検出部DV2から第2電圧情報を取得することにより、取得した第2電圧情報が示す第2電圧を検出する。
次に、情報処理装置2は、ステップS210において検出した第1電圧、第1電流、第2電圧に基づいて、推定値を推定する(ステップS220)。ステップS220における推定値の推定方法については、一例を既に説明済みであるため、説明を省略する。
次に、情報処理装置2は、ステップS220において推定した推定値を示す推定値情報を生成し、生成した推定値情報を、DABコンバータ1に出力する(ステップS230)。
次に、制御部11は、情報処理装置2から出力された推定値情報を、情報処理装置2から取得する(ステップS110)。
次に、制御部11は、ステップS110において取得した推定値情報が示す推定値に基づいて、位相差を調整する(ステップS120)。例えば、DABコンバータ1には、複数の位相差情報が予め記憶されている。ここで、位相差情報は、第1フルブリッジ回路B1のスイッチングと、第2フルブリッジ回路B2のスイッチングとのいずれか一方又は両方を調整する情報が含まれた情報のことである。そして、複数の位相差情報のそれぞれには、推定値についての互いに重複しない範囲が対応付けられている。ここで、例えば、ステップS110において取得した推定値情報が示す推定値が、DABコンバータ1に予め記憶された複数の位相差情報のうちのある位相差情報X1に対応付けられた範囲X2に含まれる場合、制御部11は、当該推定値に応じた位相差情報として、位相差情報X1を特定する。制御部11は、特定した位相差情報X1に基づいて、位相差を調整する。より具体的には、制御部11は、現在の位相差を、特定した位相差情報X1が示す位相差へ変化させる。これにより、制御部11は、位相差を調整する。なお、制御部11が位相差を調整する方法は、前述した通り、これに代えて、他の既知の方法であってもよく、これから開発される方法であってもよい。また、制御部11は、ステップS120において推定された推定値に基づいて、当該推定値に応じた位相差情報を算出又は生成する構成であってもよい。
ステップS120の処理が行われた後、制御部11は、DABコンバータ1の動作モードを調整モードから通常動作モードへと変化させ、処理を終了する。
このように、DABコンバータ1は、情報処理装置2により推定された推定値に基づいて、位相差を調整する。これにより、DABコンバータ1は、インダクタンスの個体差によって電力の伝送効率が低下してしまうことを抑制することができる。
<実施形態の変形例>
以下、実施形態の変形例について説明する。なお、実施形態の変形例では、実施形態と同様な構成部に対して同じ符号を付して説明を省略する。実施形態の変形例では、制御部11は、情報処理装置2から推定値情報を取得する構成に代えて、推定値を推定する。更に、制御部11は、実施形態と異なる方法により、推定値の推定を行う。また、実施形態の変形例では、DABコンバータ1は、図6に示すように、第1電圧検出部DV1に代えて、第3電圧検出部DV3を備える。また、実施形態の変形例では、DABコンバータ1は、図6に示すように、第1電流検出部DC1に代えて、第3電流検出部DC3を備える。また、実施形態の変形例では、DABコンバータ1は、図6に示すように、第2電圧検出部DV2に代えて、第4電圧検出部DV4を備える。なお、DABコンバータ1は、第3電圧検出部DV3、第3電流検出部DC3、第4電圧検出部DV4のそれぞれを備えない構成であってもよい。この場合、DABコンバータ1には、第3電圧検出部DV3、第3電流検出部DC3、第4電圧検出部DV4のそれぞれが外部から接続される。また、DABコンバータ1は、第3電圧検出部DV3、第3電流検出部DC3、第4電圧検出部DV4のそれぞれを備えるとともに、第1電圧検出部DV1、第1電流検出部DC1、第2電圧検出部DV2、第2電流検出部DC2のそれぞれが取り付けられる構成であってもよい。この場合、制御部11は、実施形態の変形例において説明する方法による推定値の推定に加えて、実施形態において説明した方法による推定値の推定を行ってもよい。また、実施形態の変形例に係るDABコンバータ1では、実施形態に係るDABコンバータ1と同様に、情報処理装置2が接続され、実施形態の変形例において説明される推定方法によって情報処理装置2が推定値を推定する構成であってもよい。この場合、情報処理装置2は、実施形態と同様に、推定した推定値を示す推定値情報を制御部11に出力する。
図6は、実施形態の変形例に係るDABコンバータ1の構成の一例を示す図である。DABコンバータ1は、トランスTと、第1フルブリッジ回路B1と、第1インダクタL1と、第1コンデンサC1と、第2フルブリッジ回路B2と、第2インダクタL2と、第2コンデンサC2と、2つの入出力端子TIと、2つの入出力端子TOと、制御部11と、第3電圧検出部DV3と、第3電流検出部DC3と、第4電圧検出部DV4を備える。なお、図6では、図が煩雑になるのを防ぐため、DABコンバータ1において制御部11と他の回路とを接続する伝送路が描かれていない。
また、図6に示した例では、DABコンバータ1には、負荷LDが接続されていない。そして、当該例では、DABコンバータ1には、図示しない2つの直流電源が接続されている。より具体的には、当該例では、DABコンバータ1の入出力端子TI1及び入出力端子TI2には、図示しない第1直流電源が接続されている。また、当該例では、DABコンバータ1の入出力端子TO1及び入出力端子TO2には、図示しない第2直流電源が接続されている。
第3電圧検出部DV3は、電圧検出回路である。第3電圧検出部DV3は、中点P11と中点P12との間に接続される。これにより、第3電圧検出部DV3は、第1部分PT1の両端に印加された電圧を、第3電圧として検出することができる。また、第3電圧検出部DV3は、図示しない伝送路を介して制御部11と接続される。すなわち、制御部11は、第3電圧検出部DV3を介して、第3電圧を検出する。なお、第3電圧検出部DV3は、入出力端子P13と入出力端子P14との間に接続され、入出力端子P13と入出力端子P14との間に印加された電圧を、第3電圧として検出する構成であってもよい。また、この場合、第3電圧検出部DV3は、第1電圧検出部DV1と同様に、DABコンバータ1に外部から取り付けられる構成であってもよい。
第3電流検出部DC3は、電流検出回路である。第3電流検出部DC3は、中点P11と第1部分PT1との間に接続される。これにより、第3電流検出部DC3は、第1部分PT1に流れた電流を、第3電流として検出することができる。また、第3電流検出部DC3は、図示しない伝送路を介して制御部11と接続される。すなわち、制御部11は、第3電流検出部DC3を介して、第3電流を検出する。
第4電圧検出部DV4は、電圧検出回路である。第4電圧検出部DV4は、中点P21と中点P22との間に接続される。これにより、第4電圧検出部DV4は、第2部分PT2の両端に印加された電圧を、第4電圧として検出することができる。また、第4電圧検出部DV4は、図示しない伝送路を介して制御部11と接続される。すなわち、制御部11は、第4電圧検出部DV4を介して、第4電圧を検出する。なお、第4電圧検出部DV4は、入出力端子P23と入出力端子P24との間に接続され、入出力端子P23と入出力端子P24との間に印加された電圧を、第4電圧として検出する構成であってもよい。また、この場合、第4電圧検出部DV4は、第2電圧検出部DV2と同様に、DABコンバータ1に外部から取り付けられる構成であってもよい。
ここで、図7は、図6に示したDABコンバータ1が有する部分のうち第1部分PT1と第2部分PT2とを含む部分の等価回路である。図7に示したインダクタンスSL1は、図7に示した等価回路における第1部分PT1のインダクタンスの一例を示す。また、図7に示したインダクタンスSL2は、図7に示した等価回路における第2部分PT2のインダクタンスの一例を示す。また、図7に示したインダクタンスLmは、図7に示した等価回路におけるトランスTの相互インダクタンスの一例を示す。また、図7に示した電圧VLは、図7に示した等価回路において中点P11と中点P21との間に印加される電圧の一例を示す。また、図7に示した電圧VI1は、図7に示した等価回路において中点P11と中点P12との間に印加される電圧の一例を示す。また、図7に示した電圧VI2は、図7に示した等価回路において中点P21と中点P22との間に印加される電圧の一例を示す。また、図7に示した電流It1は、図7に示した等価回路において中点P11から中点P21に向かって流れる電流の一例を示す。
ここで、DABコンバータ1が有する2つの入出力端子TI間に第1直流電源から印加される電圧の大きさをv1によって示し、DABコンバータ1が有する2つの入出力端子TI間に第1直流電源から印加される電圧の大きさをv2によって示し、第1インダクタL1のインダクタンスと1次側の巻線T1のリーケージインダクタンスとの合成インダクタンスをl1によって示し、第2インダクタL2のインダクタンスと2次側の巻線T2のリーケージインダクタンスとの合成インダクタンスをl2によって示した場合、インダクタンスSL1、インダクタンスSL2、電圧VI1、電圧VI2のそれぞれは、以下の式(3)〜式(6)のように表すことができる。
SL1=l1 ・・・(3)
SL2=l2×(N2/N1) ・・・(4)
VI1=v1 ・・・(5)
VI2=v2×(N2/N1) ・・・(6)
このような事情により、第1直流電源及び第2直流電源のそれぞれからDABコンバータ1に電圧を供給することにより、制御部11は、以下において説明する方法により、推定値を推定することができる。
ここで、図8は、実施形態の変形例において推定値を推定する場合に制御部11が行う処理を説明するための図である。
実施形態の変形例において推定値を推定する場合、制御部11は、スイッチング素子S11の状態を、図8に示したグラフTL51が示すようにオン状態とオフ状態との間で繰り返し変化させる。図8に示したグラフTL51は、当該場合におけるスイッチング素子S11の状態の時間的な変化の一例を示す図である。グラフTL51において、スイッチング素子S11の状態がオン状態である期間は、グラフTL51に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL51において、スイッチング素子S11の状態がオフ状態である期間は、グラフTL51に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S12の状態の時間的な変化を示す方形波は、スイッチング素子S11の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
また、実施形態の変形例において推定値を推定する場合、制御部11は、スイッチング素子S13の状態を、図8に示したグラフTL53が示すようにオン状態とオフ状態との間で繰り返し変化させる。図8に示したグラフTL53は、当該場合におけるスイッチング素子S13の状態の時間的な変化の一例を示す図である。グラフTL53において、スイッチング素子S13の状態がオン状態である期間は、グラフTL53に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL53において、スイッチング素子S13の状態がオフ状態である期間は、グラフTL53に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S14の状態の時間的な変化を示す方形波は、スイッチング素子S13の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
また、実施形態の変形例において推定値を推定する場合、制御部11は、スイッチング素子S21の状態を、図8に示したグラフTL61が示すようにオン状態とオフ状態との間で繰り返し変化させる。図8に示したグラフTL61は、当該場合におけるスイッチング素子S21の状態の時間的な変化の一例を示す図である。グラフTL61において、スイッチング素子S21の状態がオン状態である期間は、グラフTL61に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL61において、スイッチング素子S21の状態がオフ状態である期間は、グラフTL61に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S22の状態の時間的な変化を示す方形波は、スイッチング素子S21の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
また、実施形態の変形例において推定値を推定する場合、制御部11は、スイッチング素子S23の状態を、図8に示したグラフTL63が示すようにオン状態とオフ状態との間で繰り返し変化させる。図8に示したグラフTL63は、当該場合におけるスイッチング素子S23の状態の時間的な変化の一例を示す図である。グラフTL63において、スイッチング素子S23の状態がオン状態である期間は、グラフTL63に示した方形波の変位が「ON」と一致している期間によって示されている。また、グラフTL63において、スイッチング素子S23の状態がオフ状態である期間は、グラフTL63に示した方形波の変位が「OFF」と一致している期間によって示されている。なお、スイッチング素子S24の状態の時間的な変化を示す方形波は、スイッチング素子S23の状態の時間的な変化を示す方形波と位相が2πずれている方形波であるため、図示が省略されている。
スイッチング素子S11〜スイッチング素子S14のそれぞれと、スイッチング素子S21〜スイッチング素子S24のそれぞれとを図8に示したようにスイッチングした場合、前述の電圧VI1は、図8に示したグラフDL5のように時間的に変化する。
また、スイッチング素子S11〜スイッチング素子S14のそれぞれと、スイッチング素子S21〜スイッチング素子S24のそれぞれとを図8に示したようにスイッチングした場合、前述の電圧VI2は、図8に示したグラフDL6のように時間的に変化する。
これらにより、スイッチング素子S11〜スイッチング素子S14のそれぞれと、スイッチング素子S21〜スイッチング素子S24のそれぞれとを図8に示したようにスイッチングした場合、電圧VLは、図8に示したグラフDL7のように時間的に変化する。図8に示したように、VLは、VI1とVI2との差、すなわち、第3電圧と第4電圧との差によって決まる。
ここで、グラフDL5〜グラフDL7に示したように、電圧VI1、電圧VI2、電圧VLのそれぞれの時間的な変化は、スイッチング素子S11〜スイッチング素子S14のそれぞれと、スイッチング素子S21〜スイッチング素子S24のそれぞれとのスイッチングに同期した方形波になっている。
一方、スイッチング素子S11〜スイッチング素子S14のそれぞれと、スイッチング素子S21〜スイッチング素子S24のそれぞれとを図8に示したようにスイッチングした場合、電流It1は、図8に示したグラフIL1のように時間的に変化する。グラフIL1に示したように、電流It1の時間的な変化は、当該場合、一定の傾きでの増大と、一定の傾きでの減少とを順に周期的に繰り返す。ここで、時刻t1、時刻t2は、一定の傾きで電流It1が増大している複数の期間のうちのある1つの期間内における2つの異なる時刻である。そして、時刻t2は、時刻t1よりも後の時刻である。以下では、説明の便宜上、時刻t1における電流It1の電流値をi1によって示し、時刻t2における電流It1の電流値をi2によって示して説明する。
ここで、制御部11は、電圧VL、電流値i1、電流値i2、時刻t1、時刻t2のそれぞれとともに、以下の式(7)に基づいて、推定値を推定することができる。
Lp=VL(t2−t1)/(i2−i1) ・・・(7)
なお、上記の式(7)に示したLpは、第1フルブリッジ回路B1から見た推定値を示す。上記の式(7)の導出は、電磁気学に基づいてすぐに算出可能である。このため、式(7)の導出方法については、説明を省略する。
すなわち、制御部11は、第1フルブリッジ回路B1から見た推定値を、第3電圧と第4電圧との差分と、第3電流と、上記の式(7)とに基づいて推定することができる。
ここで、制御部11は、DABコンバータ1の2次側の回路を短絡させても、すなわち、第2フルブリッジ回路B2を短絡させても、第1フルブリッジ回路B1から見た推定値を、第3電圧と第4電圧との差分と、第3電流と、上記の式(7)とに基づいて推定することができる。例えば、制御部11は、スイッチング素子S21及びスイッチング素子S23の両方の状態をオン状態にすることにより、又は、スイッチング素子S22及びスイッチング素子S24の両方の状態をオン状態にすることにより、DABコンバータ1の2次側の回路を短絡させることができる。この場合、図7に示した等価回路は、図9に示した等価回路のように変化する。図9は、2次側の回路が短絡している場合における、DABコンバータ1が有する部分のうち第1部分PT1と第2部分PT2とを含む部分の等価回路である。この場合であっても、制御部11は、第1フルブリッジ回路B1から見た推定値を、第3電圧と第4電圧との差分と、第3電流と、上記の式(7)とに基づいて推定することができる。また、この場合、トランスTにおける励磁電流の発生を抑制することができるため、インダクタンス(すなわち、推定値)をより正確に推定することができる。その結果、DABコンバータ1は、インダクタンスの個体差によって電力の伝送効率が低下してしまうことを、より確実に抑制することができる。
なお、DABコンバータ1は、第3電流検出部DC3に代えて、又は、第3電流検出部DC3に加えて、第4電流検出部DC4を備える構成であってもよい。
第4電流検出部DC4は、電流検出回路である。第4電流検出部DC4は、中点P21と第2部分PT2との間に接続される。これにより、第4電流検出部DC4は、第2部分PT2に流れた電流を、第4電流として検出することができる。また、第4電流検出部DC4は、図示しない伝送路を介して制御部11と接続される。すなわち、制御部11は、第4電流検出部DC4を介して、第4電流を検出する。
DABコンバータ1が第4電流検出部DC4を備える場合は、制御部11は、第1フルブリッジ回路B1から見た推定値に代えて、第2フルブリッジ回路B2から見た推定値を推定することができる。この場合も、DABコンバータ1は、インダクタンスの個体差によって電力の伝送効率が低下してしまうことを抑制することができる。この場合において式(7)の代わりに制御部11が推定に用いる式の詳細については、電磁気学から容易に導出することが可能であるため、説明を省略する。
なお、上記において説明した推定値の推定方法と、推定された推定値に基づいて位相差を調整する方法とは、DABコンバータに代えて、他の電子機器に適用されてもよい。
以上のように、実施形態に係るDABコンバータ(上記において説明した例では、DABコンバータ1)は、1次側の巻線(上記において説明した例では、1次側の巻線T1)と2次側の巻線(上記において説明した例では、2次側の巻線T2)とを有するトランス(上記において説明した例では、トランスT)と、第1フルブリッジ回路(上記において説明した例では、第1フルブリッジ回路B1)と、第2フルブリッジ回路(上記において説明した例では、第2フルブリッジ回路B2)と、第1コンデンサ(上記において説明した例では、第1コンデンサC1)と、第2コンデンサ(上記において説明した例では、第2コンデンサC2)と、第1フルブリッジ回路のスイッチングと、第2フルブリッジ回路のスイッチングとを制御する制御部(上記において説明した例では、制御部11)と、を備えるDABコンバータであって、第1フルブリッジ回路が有する2つの中点のうちの第11中点(上記において説明した例では、中点P11)と、第1フルブリッジ回路が有する2つの中点のうちの第12中点(上記において説明した例では、中点P12)との間には、1次側の巻線が接続され、第2フルブリッジ回路が有する2つの中点のうちの第21中点(上記において説明した例では、中点P21)と、第2フルブリッジ回路が有する2つの中点のうちの第22中点(上記において説明した例では、中点P22)との間には、2次側の巻線が接続され、第1フルブリッジ回路が有する2つの入出力端子(上記において説明した例では、入出力端子P13及び入出力端子P14)間には、第1コンデンサが接続され、第2フルブリッジ回路が有する2つの入出力端子(上記において説明した例では、入出力端子P23及び入出力端子P24)間には、第2コンデンサが接続され、制御部は、DABコンバータのインダクタンスの推定値に基づいて、第1フルブリッジ回路のスイッチングと、第2フルブリッジ回路のスイッチングとの位相差を調整する。これにより、DABコンバータは、インダクタンスの個体差によって電力の伝送効率が低下してしまうことを抑制することができる。
また、DABコンバータでは、DABコンバータのインダクタンスは、1次側の巻線のリーケージインダクタンスと、2次側の巻線のリーケージインダクタンスとの合成インダクタンスである、構成が用いられてもよい。
また、DABコンバータは、第1インダクタ(上記において説明した例では、第1インダクタL1)を更に備え、第11中点と第12中点との間には、1次側の巻線と、第1インダクタとが直列に接続され、DABコンバータのインダクタンスは、1次側の巻線のリーケージインダクタンスと、2次側の巻線のリーケージインダクタンスと、第1インダクタのインダクタンスとの合成インダクタンスである、構成が用いられてもよい。
また、DABコンバータは、第2インダクタ(上記において説明した例では、第2インダクタL2)を更に備え、第21中点と前記第22中点との間には、2次側の巻線と、第2インダクタとが直列に接続され、DABコンバータのインダクタンスは、1次側の巻線のリーケージインダクタンスと、2次側の巻線のリーケージインダクタンスと、第2インダクタのインダクタンスとの合成インダクタンスである、構成が用いられてもよい。
また、DABコンバータは、第1インダクタと、第2インダクタと、を更に備え、第11中点と第12中点との間には、1次側の巻線と、第1インダクタとが直列に接続され、第21中点と第22中点との間には、2次側の巻線と、第2インダクタとが直列に接続され、DABコンバータのインダクタンスは、1次側の巻線のリーケージインダクタンスと、2次側の巻線のリーケージインダクタンスと、第1インダクタのインダクタンスと、第2インダクタのインダクタンスとの合成インダクタンスである、構成が用いられてもよい。
また、DABコンバータでは、推定値は、第1フルブリッジ回路が有する2つの入出力端子間に印加された第1電圧と、第1フルブリッジ回路が有する2つの入出力端子のうちの一方に流された第1電流と、第2フルブリッジ回路が有する2つの入出力端子間に印加された第2電圧とに基づいて推定された値である、構成が用いられてもよい。
また、DABコンバータでは、推定値は、第1フルブリッジ回路が有する2つの入出力端子間に印加された第1電圧と、第2フルブリッジ回路が有する2つの入出力端子間に印加された第2電圧と、第2フルブリッジ回路が有する2つの入出力端子のうちの一方に流された第2電流とに基づいて推定された値である、構成が用いられてもよい。
また、DABコンバータでは、推定値は、1次側の巻線を含む第1部分(上記において説明した例では、第1部分P1)の両端に印加された第3電圧と、第1部分に流れた第3電流と、2次側の巻線を含む第2部分(上記において説明した例では、第2部分PT2)の両端に印加された第4電圧とに基づいて推定された値である、構成が用いられてもよい。
また、DABコンバータでは、推定値は、1次側の巻線を含む第1部分の両端に印加された第3電圧と、2次側の巻線を含む第2部分の両端に印加された第4電圧と、第2部分に流れた第4電流とに基づいて推定された値である、構成が用いられてもよい。
また、DABコンバータでは、推定値は、第1インダクタと1次側の巻線とを含む第1部分の両端に印加された第3電圧と、第1インダクタに流れた第3電流と、2次側の巻線を含む第2部分の両端に印加された第4電圧とに基づいて推定された値である、構成が用いられてもよい。
また、DABコンバータでは、推定値は、第1フルブリッジ回路から見た推定値であり、第3電圧と第4電圧との差分と、第3電流とに基づいて推定された値である、構成が用いられてもよい。
また、DABコンバータでは、推定値は、1次側の巻線を含む第1部分の両端に印加された第3電圧と、第2インダクタと前記2次側の巻線とを含む第2部分の両端に印加された第4電圧と、第2部分に流れた第4電流とに基づいて推定された値である、構成が用いられてもよい。
また、DABコンバータでは、推定値は、第2フルブリッジ回路から見た推定値であり、第3電圧と第4電圧との差分と、第4電流とに基づいて推定された値である、構成が用いられてもよい。
また、DABコンバータでは、制御部は、推定値を取得し、取得した推定値に基づいて、位相差を調整する、構成が用いられてもよい。
また、DABコンバータでは、制御部は、推定値を推定し、推定した推定値に基づいて、位相差を調整する、構成が用いられてもよい。
また、DABコンバータでは、制御部は、第1フルブリッジ回路のスイッチングと、第2フルブリッジ回路のスイッチングとのいずれか一方又は両方を調整することにより、位相差を調整する、構成が用いられてもよい。
また、DABコンバータでは、制御部は、推定値に応じた位相差を示す位相差情報を特定し、特定した位相差情報に基づいて位相差を調整し、位相差情報には、第1フルブリッジ回路のスイッチングと、第2フルブリッジ回路のスイッチングとのいずれか一方又は両方を調整する情報が含まれている、構成が用いられてもよい。
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない限り、変更、置換、削除等されてもよい。
1…DABコンバータ、11…制御部、A11、A21…上アーム、A12、A22…下アーム、B1…第1フルブリッジ回路、B2…第2フルブリッジ回路、C1…第1コンデンサ、C2…第2コンデンサ、DC1…第1電流検出部、DC2…第2電流検出部、DC3…第3電流検出部、DC4…第4電流検出部、DV1…第1電圧検出部、DV2…第2電圧検出部、DV3…第3電圧検出部、DV4…第4電圧検出部、L1…第1インダクタ
L2…第2インダクタ、LD…負荷、P1…第1部分、P11、P12、P21、P22…中点、P13、P14、P23、P24、TI、TI1、TI2、TO、TO1、TO2…入出力端子、PT1…第1部分、PT2…第2部分、S1、S2、S11、S12、S13、S14、S21、S22、S23、S24…スイッチング素子、T…トランス、T1…1次側の巻線、T2…2次側の巻線

Claims (17)

  1. 1次側の巻線と2次側の巻線とを有するトランスと、
    第1フルブリッジ回路と、
    第2フルブリッジ回路と、
    第1コンデンサと、
    第2コンデンサと、
    前記第1フルブリッジ回路のスイッチングと、前記第2フルブリッジ回路のスイッチングとを制御する制御部と、
    を備えるDAB(Dual Active Bridge)コンバータであって、
    前記第1フルブリッジ回路が有する2つの中点のうちの第11中点と、前記第1フルブリッジ回路が有する2つの中点のうちの第12中点との間には、前記1次側の巻線が接続され、
    前記第2フルブリッジ回路が有する2つの中点のうちの第21中点と、前記第2フルブリッジ回路が有する2つの中点のうちの第22中点との間には、前記2次側の巻線が接続され、
    前記第1フルブリッジ回路が有する2つの入出力端子間には、前記第1コンデンサが接続され、
    前記第2フルブリッジ回路が有する2つの入出力端子間には、前記第2コンデンサが接続され、
    前記制御部は、前記DABコンバータのインダクタンスの推定値に基づいて、前記第1フルブリッジ回路のスイッチングと、前記第2フルブリッジ回路のスイッチングとの位相差を調整する、
    DABコンバータ。
  2. 前記DABコンバータのインダクタンスは、前記1次側の巻線のリーケージインダクタンスと、前記2次側の巻線のリーケージインダクタンスとの合成インダクタンスである、
    請求項1に記載のDABコンバータ。
  3. 第1インダクタを更に備え、
    前記第11中点と前記第12中点との間には、前記1次側の巻線と、前記第1インダクタとが直列に接続され、
    前記DABコンバータのインダクタンスは、前記1次側の巻線のリーケージインダクタンスと、前記2次側の巻線のリーケージインダクタンスと、前記第1インダクタのインダクタンスとの合成インダクタンスである、
    請求項1に記載のDABコンバータ。
  4. 第2インダクタを更に備え、
    前記第21中点と前記第22中点との間には、前記2次側の巻線と、前記第2インダクタとが直列に接続され、
    前記DABコンバータのインダクタンスは、前記1次側の巻線のリーケージインダクタンスと、前記2次側の巻線のリーケージインダクタンスと、前記第2インダクタのインダクタンスとの合成インダクタンスである、
    請求項1に記載のDABコンバータ。
  5. 第1インダクタと、
    第2インダクタと、
    を更に備え、
    前記第11中点と前記第12中点との間には、前記1次側の巻線と、前記第1インダクタとが直列に接続され、
    前記第21中点と前記第22中点との間には、前記2次側の巻線と、前記第2インダクタとが直列に接続され、
    前記DABコンバータのインダクタンスは、前記1次側の巻線のリーケージインダクタンスと、前記2次側の巻線のリーケージインダクタンスと、前記第1インダクタのインダクタンスと、前記第2インダクタのインダクタンスとの合成インダクタンスである、
    請求項1に記載のDABコンバータ。
  6. 前記推定値は、前記第1フルブリッジ回路が有する2つの入出力端子間に印加された第1電圧と、前記第1フルブリッジ回路が有する2つの入出力端子のうちの一方に流された第1電流と、前記第2フルブリッジ回路が有する2つの入出力端子間に印加された第2電圧とに基づいて推定された値である、
    請求項1から5のうちいずれか一項に記載のDABコンバータ。
  7. 前記推定値は、前記第1フルブリッジ回路が有する2つの入出力端子間に印加された第1電圧と、前記第2フルブリッジ回路が有する2つの入出力端子間に印加された第2電圧と、前記第2フルブリッジ回路が有する2つの入出力端子のうちの一方に流された第2電流とに基づいて推定された値である、
    請求項1から6のうちいずれか一項に記載のDABコンバータ。
  8. 前記推定値は、前記1次側の巻線を含む第1部分の両端に印加された第3電圧と、前記第1部分に流れた第3電流と、前記2次側の巻線を含む第2部分の両端に印加された第4電圧とに基づいて推定された値である、
    請求項2に記載のDABコンバータ。
  9. 前記推定値は、前記1次側の巻線を含む第1部分の両端に印加された第3電圧と、前記2次側の巻線を含む第2部分の両端に印加された第4電圧と、前記第2部分に流れた第4電流とに基づいて推定された値である、
    請求項2又は8に記載のDABコンバータ。
  10. 前記推定値は、前記第1インダクタと前記1次側の巻線とを含む第1部分の両端に印加された第3電圧と、前記第1インダクタに流れた第3電流と、前記2次側の巻線を含む第2部分の両端に印加された第4電圧とに基づいて推定された値である、
    請求項3又は5に記載のDABコンバータ。
  11. 前記推定値は、前記第1フルブリッジ回路から見た前記推定値であり、前記第3電圧と前記第4電圧との差分と、前記第3電流とに基づいて推定された値である、
    請求項10に記載のDABコンバータ。
  12. 前記推定値は、前記1次側の巻線を含む第1部分の両端に印加された第3電圧と、前記第2インダクタと前記2次側の巻線とを含む第2部分の両端に印加された第4電圧と、前記第2部分に流れた第4電流とに基づいて推定された値である、
    請求項4又は5に記載のDABコンバータ。
  13. 前記推定値は、前記第2フルブリッジ回路から見た前記推定値であり、前記第3電圧と前記第4電圧との差分と、前記第4電流とに基づいて推定された値である、
    請求項12に記載のDABコンバータ。
  14. 前記制御部は、前記推定値を取得し、取得した前記推定値に基づいて、前記位相差を調整する、
    請求項1から13のうちいずれか一項に記載のDABコンバータ。
  15. 前記制御部は、前記推定値を推定し、推定した前記推定値に基づいて、前記位相差を調整する、
    請求項1から13のうちいずれか一項に記載のDABコンバータ。
  16. 前記制御部は、前記第1フルブリッジ回路のスイッチングと、前記第2フルブリッジ回路のスイッチングとのいずれか一方又は両方を調整することにより、前記位相差を調整する、
    請求項1から15のうちいずれか一項に記載のDABコンバータ。
  17. 前記制御部は、前記推定値に応じた前記位相差を示す位相差情報を特定し、特定した前記位相差情報に基づいて前記位相差を調整し、
    前記位相差情報には、前記第1フルブリッジ回路のスイッチングと、前記第2フルブリッジ回路のスイッチングとのいずれか一方又は両方を調整する情報が含まれている、
    請求項1から16のうちいずれか一項に記載のDABコンバータ。
JP2020090354A 2020-05-25 2020-05-25 Dabコンバータ Active JP7306326B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020090354A JP7306326B2 (ja) 2020-05-25 2020-05-25 Dabコンバータ
US17/326,157 US11532988B2 (en) 2020-05-25 2021-05-20 DAB converter
CN202110557498.1A CN113726168A (zh) 2020-05-25 2021-05-21 Dab转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090354A JP7306326B2 (ja) 2020-05-25 2020-05-25 Dabコンバータ

Publications (2)

Publication Number Publication Date
JP2021185729A true JP2021185729A (ja) 2021-12-09
JP7306326B2 JP7306326B2 (ja) 2023-07-11

Family

ID=78608471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090354A Active JP7306326B2 (ja) 2020-05-25 2020-05-25 Dabコンバータ

Country Status (3)

Country Link
US (1) US11532988B2 (ja)
JP (1) JP7306326B2 (ja)
CN (1) CN113726168A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115776234A (zh) * 2021-09-08 2023-03-10 台达电子企业管理(上海)有限公司 谐振变换器及其操作方法
CN115776235A (zh) * 2021-09-08 2023-03-10 台达电子企业管理(上海)有限公司 谐振变换器及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085704A (ja) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 マルチポート電源回路の異常検知方法
JP2019118234A (ja) * 2017-12-27 2019-07-18 国立大学法人東京工業大学 絶縁型の双方向dc/dcコンバータおよびその制御方法
JP2020036396A (ja) * 2018-08-27 2020-03-05 ダイヤモンド電機株式会社 コンバータ
JP2021184655A (ja) * 2020-05-21 2021-12-02 株式会社明電舎 Dcdc変換器の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811039B2 (en) * 2010-07-16 2014-08-19 Virginia Tech Intellectual Properties, Inc. Pulse width modulated resonant power conversion
JP6019770B2 (ja) 2012-06-01 2016-11-02 株式会社明電舎 双方向絶縁型dc−dcコンバータの制御装置
JP6102897B2 (ja) * 2014-11-27 2017-03-29 トヨタ自動車株式会社 電力変換装置
JP6760051B2 (ja) * 2016-12-27 2020-09-23 Tdk株式会社 コンバータ装置
JP6902962B2 (ja) * 2017-08-22 2021-07-14 ダイヤモンド電機株式会社 コンバータ
JP6752335B2 (ja) * 2018-07-10 2020-09-09 シャープ株式会社 Dc/dcコンバータ
US11121634B2 (en) * 2018-12-07 2021-09-14 Sharp Kabushiki Kaisha Bidirectional DC-to-DC converter with inrush current suppression
WO2020225854A1 (ja) * 2019-05-07 2020-11-12 三菱電機株式会社 電力変換装置
JP6747569B1 (ja) * 2019-11-21 2020-08-26 富士電機株式会社 電力変換装置、制御方法、および制御プログラム
CN111030483A (zh) * 2019-12-30 2020-04-17 上海科梁信息工程股份有限公司 一种电力电子变压器及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085704A (ja) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 マルチポート電源回路の異常検知方法
JP2019118234A (ja) * 2017-12-27 2019-07-18 国立大学法人東京工業大学 絶縁型の双方向dc/dcコンバータおよびその制御方法
JP2020036396A (ja) * 2018-08-27 2020-03-05 ダイヤモンド電機株式会社 コンバータ
JP2021184655A (ja) * 2020-05-21 2021-12-02 株式会社明電舎 Dcdc変換器の制御装置

Also Published As

Publication number Publication date
US20210367521A1 (en) 2021-11-25
CN113726168A (zh) 2021-11-30
JP7306326B2 (ja) 2023-07-11
US11532988B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
US9356523B2 (en) DC-to-DC converter
US11128177B2 (en) Electronic unit and feed system
JP3337009B2 (ja) スイッチング電源装置
US20150249483A1 (en) Wireless power transmission system
US11018529B2 (en) Wireless charger for underwater vehicles fed from a constant current distribution cable
JP7306326B2 (ja) Dabコンバータ
JP2007259688A (ja) 三相交流−交流変換装置
WO2014188252A2 (en) Power conversion apparatus
US10938313B2 (en) Constant DC current input to constant DC voltage output power supply covering a wide programmable range
JP6037022B2 (ja) 送電装置、ワイヤレス電力伝送システム及び電力伝送判別方法
JP2018102054A (ja) 非接触受電装置及び非接触電力伝送システム
US9231470B2 (en) Control circuit, time calculating unit, and operating method for control circuit
JP4030550B2 (ja) 電源装置
US11152865B2 (en) Power converter
JP4102154B2 (ja) 電圧変動補償回路
JP2011130603A (ja) 船舶用陸上電源装置
JP6921631B2 (ja) 電源システム
JP6803744B2 (ja) スイッチング電源装置
JP2006238510A (ja) 電源装置
JP2019103200A (ja) 電力変換装置
CN112491273B (zh) 一种有源桥变换器及其直流分量抑制方法
JP7226219B2 (ja) 絶縁型dc/dc変換器
US11290017B2 (en) Phase-controlled power converter
Placzek et al. Communicationless Phase Cooperative Control of Inductive Power Transfer Using Asymmetrical Modulations
CN116526498A (zh) 变压器混合式调压系统、控制方法及存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230612

R150 Certificate of patent or registration of utility model

Ref document number: 7306326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150