JP2018102054A - 非接触受電装置及び非接触電力伝送システム - Google Patents

非接触受電装置及び非接触電力伝送システム Download PDF

Info

Publication number
JP2018102054A
JP2018102054A JP2016246642A JP2016246642A JP2018102054A JP 2018102054 A JP2018102054 A JP 2018102054A JP 2016246642 A JP2016246642 A JP 2016246642A JP 2016246642 A JP2016246642 A JP 2016246642A JP 2018102054 A JP2018102054 A JP 2018102054A
Authority
JP
Japan
Prior art keywords
power
circuit
power receiving
adjustment circuit
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016246642A
Other languages
English (en)
Inventor
裕二 林
Yuji Hayashi
裕二 林
浩章 湯浅
Hiroaki Yuasa
浩章 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2016246642A priority Critical patent/JP2018102054A/ja
Publication of JP2018102054A publication Critical patent/JP2018102054A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】DCDCコンバータを用いることなく負荷インピーダンスを目標値に調整可能な非接触受電装置及び非接触電力伝送システムを提供する。
【解決手段】受電装置50において、受電ECU64は、負荷インピーダンスの実数部(負荷抵抗)が目標値となるように整流回路58のスイッチング回路Qc,Qdを制御するとともに、受電コイル52の受電電圧及び受電電流の位相差を抑制するように調整回路56を制御する。受電装置50によれば、DCDCコンバータを用いることなく負荷インピーダンスを目標値に調整することができ、さらに、非接触電力伝送における力率の低下を抑制することができる。
【選択図】図1

Description

本開示は、非接触受電装置及び非接触電力伝送システムに関し、特に、送電装置と受電装置との間において非接触で電力伝送を行なう技術に関する。
送電装置と受電装置との間において非接触で電力伝送を行なう技術が知られている(特許文献1〜6参照)。たとえば、特開2016−63726号公報(特許文献1)に開示されている受電装置は、送電装置から非接触で受電する。この受電装置は、DCDCコンバータを備える。この受電装置においては、DCDCコンバータに含まれるスイッチング素子のオンオフのタイミングを制御することによって、負荷インピーダンスの調整が行なわれる(特許文献1参照)。
特開2016−63726号公報 特開2013−154815号公報 特開2013−146154号公報 特開2013−146148号公報 特開2013−110822号公報 特開2013−126327号公報
DCDCコンバータを備えない受電装置に上記特許文献1に開示されている負荷インピーダンスの調整方法を適用しようとすると、受電装置にDCDCコンバータを新たに設けることが必要になってしまう。
本開示は、このような問題を解決するためになされたものであって、その目的は、DCDCコンバータを用いることなく負荷インピーダンスを目標値に調整可能な非接触受電装置及び非接触電力伝送システムを提供することである。
本開示の非接触受電装置は、送電装置から非接触で受電された電力を蓄電装置に出力するように構成されている。非接触受電装置は、受電コイルと、整流回路と、調整回路と、制御装置とを備える。受電コイルは、送電装置の送電コイルから非接触で受電するように構成されている。整流回路は、第1のスイッチング素子を含み、受電コイルによって受電された電力を整流するように構成されている。調整回路は、受電コイルと整流回路との間に接続されており、インダクタンスを調整可能である。制御装置は、整流回路及び調整回路を制御するように構成されている。制御装置は、調整回路の出力側から見て蓄電装置方向の負荷抵抗が目標値となるように第1のスイッチング素子を制御するとともに、受電コイルの受電電圧及び受電電流の位相差を抑制するように調整回路を制御する。
また、本開示の非接触電力伝送システムは、送電装置と受電装置とを備える。送電装置は、インバータと、送電コイルとを含む。インバータは、交流電力を生成するように構成されている。送電コイルは、インバータによって生成された交流電力を受電装置に非接触で送電するように構成されている。受電装置は、送電装置から非接触で受電された電力を蓄電装置に出力するように構成されている。受電装置は、受電コイルと、整流回路と、調整回路と、制御装置とを備える。受電コイルは、送電コイルから非接触で受電するように構成されている。整流回路は、第1のスイッチング素子を含み、受電コイルによって受電された電力を整流するように構成されている。調整回路は、受電コイルと整流回路との間に接続されており、インダクタンスを調整可能である。制御装置は、整流回路及び調整回路を制御するように構成されている。制御装置は、調整回路の出力側から見て蓄電装置方向の負荷抵抗が目標値となるように第1のスイッチング素子を制御するとともに、受電コイルの受電電圧及び受電電流の位相差を抑制するように調整回路を制御する。
この非接触受電装置及び非接触電力伝送システムにおいては、整流回路に含まれるスイッチング素子を制御することによって、負荷インピーダンスが目標値に制御される。さらに、調整回路を制御することによって、受電電圧及び受電電流の位相差が抑制される。したがって、この非接触受電装置及び非接触電力伝送システムによれば、DCDCコンバータを用いることなく負荷インピーダンスを目標値に調整することができ、さらに、非接触電力伝送における力率の低下を抑制することができる。
本開示によれば、DCDCコンバータを用いることなく負荷インピーダンスを目標値に調整可能な非接触受電装置及び非接触電力伝送システムを提供することができる。
実施の形態1に従う非接触電力伝送システムの構成を示す図である。 調整回路及び整流回路のより詳細な構成を示す図である。 整流回路に含まれる各スイッチング素子のオンオフのタイミングを説明するための図である。 整流回路に含まれる各スイッチング素子のオンオフの状態により、電流がどのような経路を流れるかを説明するための図である。 各スイッチング回路の制御によって調整回路において生じる電圧について説明するための図である。 各スイッチング回路の制御によるVccの変化を説明するための図である。 各スイッチング回路に含まれるスイッチング素子のオンオフの状態により、電流がどのような経路を流れるかを説明するための図である。 調整回路、整流回路、及び、蓄電装置を含む回路の等価回路を示す図である。 図8に示される等価回路におけるベクトル図である。 位相αを調整するための制御ブロック図である。 調整回路における位相δを調整するための制御ブロック図である。 実施の形態2に従う受電装置50Aの構成を示す図である。 調整回路における位相δを調整するための制御ブロック図である。 各インダクタのインダクタンス成分が設計値よりもそれぞれΔL1,ΔL2大きい場合の受電装置の部分的な構成を示す図である。 図14に示される例において調整回路の電圧Vcが0(ゼロ)の場合におけるベクトル図である。 図15に示される例において、調整回路56が電圧VcをIrecに対してπ/2遅れ方向に出力した場合におけるベクトル図である。
以下、実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
(非接触電力伝送システムの構成)
図1は、本実施の形態1に従う非接触電力伝送システムの構成を示す図である。図1を参照して、非接触電力伝送システム1は、送電装置10と、受電装置50とを備える。非接触電力伝送システム1においては、送電装置10から受電装置50に非接触で電力伝送が行なわれる。
送電装置10は、AC/DCコンバータ14と、インバータ16と、送電部21と、通信装置22と、送電ECU(Electronic Control Unit)24とを含む。送電装置10は、系統電源12から供給される電力を受電装置50に非接触で送電する。
AC/DCコンバータ14は、系統電源12から供給される交流電力を直流電力に変換する。AC/DCコンバータ14により生成された直流電力は、インバータ16に出力される。
インバータ16は、AC/DCコンバータ14から入力される直流電力を、所定の送電周波数を有する送電電力(交流)に変換する。所定の送電周波数は、規格等によって定められる周波数であり、たとえば数十kHzである。インバータ16は、たとえば単相ブリッジ回路によって構成される。
送電部21は、送電コイル18と、キャパシタ20とを含む。送電コイル18及びキャパシタ20は、互いに直列接続されており共振回路を形成する。送電部21は、送電周波数を有する交流電力をインバータ16から受け、送電コイル18の周囲に生成される磁界を介して、受電装置50の受電部51(後述)へ非接触で送電する。なお、送電コイル18の巻き数は、Q値(たとえば、Q≧100)及び結合係数κが大きくなるように適宜設計される。
通信装置22は、受電装置50の通信装置63(後述)と無線通信するように構成されている。通信装置22は、受電装置50から送信される送電電力目標値(送電電力指令値)を受信する他、送電の開始/停止や受電装置50の受電状況等の情報を受電装置50とやり取りする。
送電ECU24は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサや機器からの信号を受けるとともに、送電装置10における各種機器の制御を行なう。一例として、送電ECU24は、所定の送電周波数を有する送電電力をインバータ16が生成するように、インバータ16のスイッチング制御を行なう。各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
受電装置50は、受電部51と、調整回路56と、整流回路58と、通信装置63と、受電ECU64とを含む。受電装置50は、送電装置10から非接触で受電された電力を蓄電装置60に出力するように構成されている。なお、蓄電装置60は、再充電可能な直流電源であり、たとえばリチウムイオン電池やニッケル水素電池などの二次電池によって構成される。
受電部51は、受電コイル52と、キャパシタ54とを含む。受電コイル52及びキャパシタ54は、互いに直列接続されており共振回路を形成する。受電部51は、送電部21から出力される交流電力を、磁界を介して非接触で受電する。受電コイル52の巻き数は、Q値(たとえば、Q≧100)及び結合係数κが大きくなるように適宜設計される。なお、非接触電力伝送システム1のように、送電部21及び受電部51の双方において、コイルとキャパシタとが直列接続されている回路構成は、SS方式(一次直列二次直列方式)とも称される。なお、図示しないが、送電部21及び受電部51の構成は、このようなSS方式に限定されない。送電部21及び受電部51の構成は、たとえば、受電部51において、受電コイル52にキャパシタ54が並列接続されるSP方式(一次直列二次並列方式)であってもよいし、送電部21及び受電部51の双方において、コイルにキャパシタが並列接続されるPP方式(一次並列二次並列方式)であってもよい。
調整回路56は、インダクタンスを調整可能に構成されている。調整回路56にはスイッチング素子が含まれており、スイッチング素子のオンオフのタイミングを制御することによってインダクタンスが調整される。調整回路56については後程詳しく説明する。
整流回路58は、受電部51によって受電された交流電力を直流電力に整流する。整流後の直流電力は、蓄電装置60に出力される。整流回路58についても後程詳しく説明する。
通信装置63は、送電装置10の通信装置22と無線通信するように構成されている。通信装置63は、受電ECU64において生成される送電電力目標値(送電電力指令値)を送電装置10へ送信する他、電力伝送の開始/停止に関する情報を送電装置10とやり取りしたり、受電装置50の受電状況(受電電圧や受電電流、受電電力等)を送電装置10へ送信したりする。
受電ECU64は、CPU、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサや機器からの信号を受けるとともに、受電装置50における各種機器の制御を行なう。各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
(調整回路及び整流回路の構成)
図2は、調整回路及び整流回路のより詳細な構成を示す図である。図2を参照して、調整回路56は、インダクタ66と、回路57とを含む。回路57は、インダクタ66に直列接続されている。回路57は、互いに逆直列接続されたスイッチング回路SW1,SW2と、スイッチング回路SW1,SW2に並列接続されたキャパシタ67とを含む。スイッチング回路SW1,SW2の各々は、スイッチング素子71と、スイッチング素子71に逆並列接続されたダイオード69とを含む。調整回路56の動作については後程詳しく説明する。
整流回路58は、互いに直列接続された第1及び第2のアームと、互いに直列接続された第3及び第4のアームと、キャパシタ62とを含む。第1及び第2のアームは、それぞれダイオードDa,Dbで構成されている。第3及び第4のアームは、第1及び第2のアームに並列接続されている。第3及び第4のアームは、それぞれスイッチング回路Qc,Qdで構成されている。スイッチング回路Qc,Qdの各々は、スイッチング素子81と、スイッチング素子81に逆並列接続されたダイオード79とを含む。キャパシタ62は、第1及び第2のアーム、並びに、第3及び第4のアームに並列接続されている。キャパシタ62は、平滑コンデンサとして機能する。
電圧センサ68は、受電コイル52(図1)における受電電圧を検知するように構成されている。電圧センサ68による検知結果は、受電ECU64に出力される。電流センサ65は、整流回路58の入力電流を検知するように構成されている。電流センサ65による検知結果は、受電ECU64に出力される。
(DCDCコンバータを用いない負荷インピーダンス調整)
非接触電力伝送システム1においては、調整回路56の出力側から見て蓄電装置60方向のインピーダンス(以下、「負荷インピーダンス」とも称する。)が目標値に調整される。たとえば、負荷インピーダンスの実数部(負荷抵抗)を調整することで、インバータ16から送電部21へ入力される電力(以下、「入力電力」とも称する。)を調整することができる。以下、まず負荷抵抗を調整することで入力電力を調整可能であることを数式を用いて説明し、その後、本実施の形態1における負荷インピーダンスの調整方法(負荷抵抗の調整方法を含む。)について説明する。
再び図1を参照して、上述の通り、非接触電力伝送システム1においてはSS方式が採用されているため、以下の式(1)に示す関係が成立する。なお、Vinはインバータ16の出力電圧の基本波成分を示し、Iinはインバータ16の出力電流の基本波成分を示す。また、Voutは受電コイル52の受電電圧の基本波成分を示し、Ioutは、受電コイル52の受電電流の基本波成分を示す。また、送電コイル18及び受電コイル52の巻き数比は1である。
Figure 2018102054
Xmは、以下の式(2)で表わされ、送電コイル18及び受電コイル52の相互インピーダンスを示す。なお、L1は送電コイル18の自己インダクタンスを示し、L2は受電コイル52の自己インダクタンスを示す。また、ωはインバータ16の駆動角周波数を示し、κは結合係数を示す。
Figure 2018102054
このとき、整流回路58及び蓄電装置60からなる負荷はRC直列負荷(負荷抵抗:Rl、容量性リアクタンス:Xc)として表わすことができるため、負荷インピーダンス(Zl)は、以下の式(3)で表わすことができる。
Figure 2018102054
そうすると、インバータ16の出力側から見て蓄電装置60方向のインピーダンス(以下、「入力インピーダンス」とも称する。)は、上記式(1)(3)から以下の式(4)のように導き出すことができる。なお、Zinは入力インピーダンスを示し、Zin=Vin/Iinの関係が成立する。また、Zl=Vout/Ioutの関係が成立する。
Figure 2018102054
このとき、入力電力(Pin)は、上記式(4)を用いることによって、以下の式(5)で表わすことができる。
Figure 2018102054
有効電力は、上記式(5)の実数部である。このように、有効電力のパラメータにはRlが含まれている。したがって、非接触電力伝送システム1においては、負荷インピーダンス(実数部は負荷抵抗(Rl))を調整することによって、入力電力を調整することができる。
負荷インピーダンスを調整する方法として、たとえば、受電装置50において、整流回路58と蓄電装置60との間にDCDCコンバータを設け、DCDCコンバータのスイッチングタイミングを制御する方法が知られている。しかしながら、この方法を用いるためには、新たにDCDCコンバータを設ける必要が生じてしまう。
本実施の形態1に従う受電装置50においては、DCDCコンバータを用いることなく、負荷インピーダンスが調整される。具体的には、受電ECU64は、負荷インピーダンスの実数部(負荷抵抗)が目標値となるように整流回路58のスイッチング回路Qc,Qdを制御する。詳細については後述するが、スイッチング回路Qc,Qdの制御により負荷インピーダンスの実数部が調整されると、受電コイル52における受電電圧及び受電電流に位相差(負荷インピーダンスの虚数部)が生じる。受電電圧及び受電電流に位相差が生じると、非接触電力伝送における力率が悪化してしまう。そこで、受電ECU64は、受電コイル52の受電電圧及び受電電流の位相差を抑制する(たとえば、打ち消す)ように調整回路56を制御する。以下、まず整流回路58の具体的な制御方法について説明し、その後、調整回路56の具体的な制御方法について説明する。
図3は、スイッチング回路Qc,Qdの各々に含まれるスイッチング素子81のオンオフのタイミングを説明するための図である。図4は、スイッチング回路Qc,Qdの各々に含まれるスイッチング素子81のオンオフの状態により、電流がどのような経路を流れるかを説明するための図である。なお、以下では「スイッチング回路Qc,Qdのオンオフ」という場合には、スイッチング回路Qc,Qdの各々に含まれるスイッチング素子81のオンオフを意味するものとする。
図3及び図4を参照して、図3の横軸は時間を示し、縦軸の上方から、整流回路58の入力電流、ダイオードDa,Dbを流れる電流、スイッチング回路Qc,Qdのオンオフ、及び、整流回路58の入力電圧を示す。
受電ECU64は、スイッチング回路Qc,Qdを50%のデューティ比で相補動作させるように構成されている。受電ECU64は、整流回路58の入力電流のゼロクロスのタイミングから位相α遅れたタイミングでオンオフが切り替わるようにスイッチング回路Qc,Qdを制御する。
この例では、時刻t0において、整流回路58の入力電流がゼロクロスとなっている。時刻t0〜t1においては、整流回路58の入力電流が正の値を示し、かつ、スイッチング回路Qc,Qdがそれぞれオン/オフ状態であるため、電流は図4(a)に示される経路EP1を流れる。この場合にはキャパシタ62に電圧が印加されないため、整流回路58の入力電圧は0(ゼロ)となる。
入力電流のゼロクロスから位相α遅れた時刻t1において、スイッチング回路Qc,Qdがそれぞれオフ/オン状態となると、電流は図4(b)に示される経路EP2を流れる。この場合にはキャパシタ62に電圧が印加されるため、整流回路58の入力電圧は蓄電装置60の電圧(Vb)となる。入力電流のゼロクロスから位相α遅れたタイミングにおけるスイッチング回路Qc,Qdのオンオフの切り替えを継続すると、整流回路58の入力電圧は、矩形波80のようになる。矩形波80からは、基本波成分82を抽出することができる。たとえば、受電ECU64は、ローパスフィルタを含み、矩形波80から基本波成分82を抽出するように構成されている。基本波成分82は、整流回路58の入力電流に対して位相がα/2遅れる。これは、整流回路58の入力電流がRC直列回路を流れた場合と等価の動作である。
受電装置50においては、上記の位相αを調整することによって、負荷インピーダンスの実数部(負荷抵抗)が調整される。次に、位相αを制御することによって、負荷インピーダンスの実数部が調整可能であることについて数式を用いて説明する。
整流回路58の入力電流のゼロクロスから位相α遅らせてスイッチング回路Qc,Qdのオンオフを切り替える場合、整流回路58の入力電圧の基本波成分の実効値(Vrec)は以下の式(6)で表わされる。
Figure 2018102054
整流回路58の入力電流の実効値をIrecとすると、負荷インピーダンス(Zl)は以下の式(7)で表わされる。
Figure 2018102054
入力電流及び入力電圧の位相差がα/2であるため、負荷インピーダンスの実数部(Rl)及び虚数部(Xc)は、それぞれ以下の式(8)(9)で表わされる。
Figure 2018102054
Figure 2018102054
上記の式(1)より、以下の式(10)が導出される。なお、IrecとIoutは、同一の電流であるとする。
Figure 2018102054
上記式(8)に、式(6)(10)を代入すると、以下の式(11)が導出される。
Figure 2018102054
このように、負荷抵抗Rlの変数には位相αが含まれるため、負荷インピーダンスの実数部は位相αを調整することによって調整可能である。
なお、図3においては、スイッチング回路Qc,Qdのオンオフの切り替えは同時に行なわれるとして説明したが、たとえば、スイッチング回路Qcのオフを最初に行なった後に、スイッチング回路Qdのオンを行なうことで、ソフトスイッチングを実現することができる。
たとえば、図4(a)に示されるように、入力電流のゼロクロスから位相αの期間は、スイッチング回路Qc,Qdがそれぞれオン/オフであるため、電流は経路EP1を流れる。その後、スイッチング回路Qcがオフ状態に切り替わると(スイッチング回路Qdはオフ状態に維持する。)、図4(b)に示されるように、電流は、経路EP2を流れ、特に、スイッチング回路Qdにおいてはダイオード79を流れる。その後、スイッチング回路Qdにおいてスイッチング素子81に電流が流れていない状態で、スイッチング素子81をオン状態に切り替えることによって、ソフトスイッチングを実現することができる。ソフトスイッチングにより、スイッチング損失の低減や、リカバリサージの低減等の効果が得られる。
上述のように、位相αを調整することによって、負荷インピーダンスの実数部(負荷抵抗)を目標値に調整することができる。しかしながら、位相αを調整すると、上記の式(9)で示される負荷インピーダンスの虚数部(容量成分)が現れてしまう。負荷インピーダンスの虚数部の出現は、すなわち、受電コイル52の受電電圧及び受電電流の位相にずれが生じていることを意味し、非接触電力伝送における力率の悪化を意味する。
受電装置50においては、上述のように、調整回路56を制御することによって、受電電圧と受電電流の位相のずれが抑制(補償)される。整流回路58において入力電流の位相が入力電圧の位相に対して進むため、受電ECU64は、入力電流の位相が入力電圧の位相に対して遅れるように調整回路56を制御する。すなわち、受電ECU64は、調整回路56に可変インダクタンスと同様の働きをさせる。以下、調整回路56の具体的な制御方法について説明する。
図5は、スイッチング回路SW1,SW2の制御によって調整回路56の各回路において生じる電圧について説明するための図である。図5を参照して、キャパシタ67に印加される電圧の実効値をVccとし、インダクタ66及びキャパシタ67に印加される電圧の実効値をVcとする。
図6は、スイッチング回路SW1,SW2の制御によるVccの変化を説明するための図である。図7は、スイッチング回路SW1,SW2の各々に含まれるスイッチング素子71のオンオフの状態により、電流がどのような経路を流れるかを説明するための図である。図6及び図7を参照して、図6の横軸は時間を示し、縦軸の上方から調整回路56の入力電流の基本波成分Irec、スイッチング回路SW1のゲート信号のオンオフ、スイッチング回路SW2のゲート信号のオンオフ、及び、キャパシタ67に印加される電圧の実効値Vccを示す。
受電ECU64は、スイッチング回路SW1,SW2を50%のデューティ比で相補動作させるように構成されている。受電ECU64は、Irecのゼロクロスのタイミングから位相δ遅れたタイミングでオンオフが切り替わるようにスイッチング回路SW1,SW2を制御する。
時刻t00〜t10において、Irecは負の値を示し、かつ、スイッチング回路SW1,SW2はそれぞれオフ/オン状態であるため、電流は図7(b)に示される経路EP4を流れる。この場合にはキャパシタ67に電圧が印加されないため、Vccは0(ゼロ)となる。
時刻t10においてスイッチング回路SW1,SW2がそれぞれオン/オフに切り替わると、Irecが負の値であるため、キャパシタ67に負の電圧が印加され、キャパシタ67の放電が生じる。その結果、Vccが負の値となる。時刻t20においてIrecがゼロクロスを通過し正の値となると、Vccが0(ゼロ)に戻るまでキャパシタ67が充電される。その後、時刻t30においてVccが0(ゼロ)に戻ると、電流は図7(a)に示される経路EP3を流れる。
時刻t40(時刻t20から位相δ遅れ)において、スイッチング回路SW1,SW2がそれぞれオフ/オンに切り替わると、Irecが正の値であるため、キャパシタ67には正の電圧が印加され、キャパシタ67が充電される。その結果、Vccが正の値となる。このように、Irecのゼロクロスから位相δ遅れたタイミングにおけるスイッチング回路SW1,SW2のオンオフの切り替えが継続されると、位相δの大きさに応じてキャパシタ67に電圧Vccが発生する。
位相δがπのときにキャパシタ67に印加される電圧Vccは0(ゼロ)となり、位相δがπ/2のときにキャパシタ67に印加される電圧Vccは最大となる。受電ECU64は、位相δをπ/2〜πの間で制御するように構成されている。
次に、位相δを調整することによって調整回路56を可変インダクタンスと等価に機能させることができることを数式を用いて説明する。
キャパシタ67のキャパシタンスをCvar、キャパシタ67に印加される電圧の実効値をVcc、整流回路58の入力電流の基本波成分の実効値をIrec、インバータ16の駆動角周波数をωとした場合、Vcc/Irec=1/(ω×Cvar)という関係が成立することから、キャパシタ67のキャパシタンスCvarは以下の式(12)で示される。
Figure 2018102054
調整回路56全体のインダクタンスをLtotalとすると、Ltotalに関して以下の式(13)が成立する。
Figure 2018102054
すなわち、以下の式(14)が成立する。
Figure 2018102054
上記式(14)には変数にCvarが含まれており、上記式(12)によればCvarはVccにより変動する。Vccは、上述のように位相δによって変動する。すなわち、調整回路56全体のインダクタンスLtotalは位相δによって変動し、調整回路56は可変インダクタンスとして機能する。
上述のように、整流回路58(スイッチング回路Qc,Qd)の制御によって受電電流に対して受電電圧の位相は遅れる。調整回路56(スイッチング回路SW1,SW2)の制御(可変インダクタンスの制御)によって受電電流に対する受電電圧の位相を進めることで、受電電圧と受電電流との位相差を抑制することができる。
なお、図6に示される例では、スイッチング回路SW1,SW2のオンオフの切り替えは、Vccが0(ゼロ)Vのタイミング(たとえば、時刻t10、t40、t70)で実行される。すなわち、この例においては、スイッチング回路SW1,SW2においてソフトスイッチング(ゼロ電圧スイッチング)が実現されている。また、キャパシタ67の充放電中にスイッチング回路SW1,SW2のオンオフが切り替えられることとなった場合にも、スイッチング回路SW1,SW2に電流が流れない状態でオンオフが切り替えられることとなるため、ソフトスイッチング(ゼロ電流スイッチング)が実現される。
図8は、調整回路56、整流回路58、及び、蓄電装置60を含む回路の等価回路を示す図である。図8を参照して、負荷90(整流回路58及び蓄電装置60)は、負荷抵抗91(抵抗値:Rl)とキャパシタ93(キャパシタンス:Cl)とを含む。負荷90には、調整回路56(インダクタンス:Lc)が直列接続されている。
図9は、図8に示される等価回路におけるベクトル図である。図9を参照して、整流回路58の入力電圧(Vrec)は、入力電流(Irec)に対して位相がα/2遅れる。この位相遅れは負荷90のキャパシタンスClによって生じるものであり、入力電圧(Vrec)のうち位相遅れ方向に寄与するベクトルの大きさは、Irec×1/(ω×Cl)と表わすことができる。したがって、調整回路56(可変インダクタンス)に生じる電圧Vcの大きさがIrec×1/(ω×Cl)となるようにスイッチング回路SW1,SW2を制御することによって、受電電流に対する受電電圧の位相が位相遅れ分進むため、受電電圧と受電電流との位相差を打ち消すことができる。その結果、非接触電力伝送システム1における力率は1となる。
図10は、上記位相α(図3)を調整するための制御ブロック図である。図10を参照して、受電ECU64は、演算部92と制御部94とを含む。演算部92には、負荷抵抗の目標値Rl1と、負荷抵抗の測定値Rl2とが入力される。負荷抵抗の目標値Rl1は、たとえば、入力電力の目標値と上記式(5)とに基づいて受電ECU64によって算出される。負荷抵抗の測定値Rl2は、整流回路58の入力電圧の基本波成分(Vrec)と、整流回路58の入力電流の基本波成分(Irec)と、位相αとに基づいて受電ECU64によって算出される((Vrec×cosα)/Irec)。たとえば、整流回路58の入力電圧及び入力電流は、それぞれ電圧センサ68,電流センサ65によって検知される。
演算部92においては、負荷抵抗の測定値Rl2と目標値Rl1との偏差が算出され、算出された偏差が制御部94に出力される。制御部94は、負荷抵抗の測定値Rl2と目標値Rl1との偏差を入力とするPI制御(比例積分制御)を実行することによって操作量を算出し、算出された操作量を位相αとする。これにより、負荷抵抗の測定値Rl2が目標値Rl1に近付くように位相αが調整される。
図11は、調整回路56における位相δを調整するための制御ブロック図である。図11を参照して、受電ECU64は、さらに、演算部96と制御部98とを含む。演算部96には、受電電圧(Vout)の基本波成分と整流回路58の入力電流(Irec)の基本波成分との位相差と、位相差の目標値(0(ゼロ))とが入力される。VoutとIrecとの位相差は、たとえば、電圧センサ68及び電流センサ65の検知結果のゼロクロスのタイミングの差分に基づいて受電ECU64によって算出される。
演算部96においては、受電電圧(Vout)の基本波成分と整流回路58の入力電流の基本波成分(Irec)との位相差と、目標値(0(ゼロ))との偏差が算出され、算出された偏差が制御部98に出力される。制御部98は、演算部96によって算出された偏差を入力とするPI制御を実行することによって操作量を算出し、算出された操作量を位相δとする。これにより、受電電圧(Vout)の基本波成分と整流回路58の入力電流(Irec)の基本波成分との位相差が0(ゼロ)に近付くように位相δが調整される。
以上のように、本実施の形態1に従う受電装置50において、受電ECU64は、負荷インピーダンスの実数部(負荷抵抗)が目標値となるように整流回路58のスイッチング回路Qc,Qdを制御するとともに、受電コイル52の受電電圧及び受電電流の位相差を抑制するように調整回路56を制御する。受電装置50によれば、DCDCコンバータを用いることなく負荷インピーダンスを目標値に調整することができ、さらに、非接触電力伝送における力率の低下を抑制することができる。
[実施の形態2]
上記実施の形態1においては受電コイル52と調整回路56との間に特に何も接続されなかったが、本実施の形態2においては受電コイル52と調整回路56との間にフィルタ回路が接続される。以下、上記実施の形態1と異なる点を中心に説明する。
図12は、本実施の形態2に従う受電装置50Aの構成を示す図である。図12を参照して、受電装置50Aにおいては、受電部51と調整回路56との間にフィルタ回路100が接続されている。フィルタ回路100は、インダクタ104,106とキャパシタ108とを含む三次のフィルタ回路である。インダクタ104,106とキャパシタ108とが、送電装置10(図1)の送電角周波数で共振するように設定されるため、フィルタ回路100はイミタンス特性を示す。
フィルタ回路100がイミタンス特性を示すため、受電コイル52の受電電圧Voutは、整流回路58の入力電流Irecに比例する。すなわち、Irecの位相を検知できれば、Voutの位相を直接検知しなくても、Voutの位相を導くことができる。本実施の形態2に従う受電装置50Aにおいては、受電コイル52の受電電圧Voutを直接検知するための電圧センサが設けられておらず、代わりに、フィルタ回路100の入力電流を検知する電流センサ102と整流回路58の入力電流を検知する電流センサ65が設けられている。
図13は、本実施の形態2における、調整回路56の位相δを調整するための制御ブロック図である。図13を参照して、受電ECU64Aは、演算部95と制御部97とを含む。演算部95には、整流回路58の入力電流Irec(基本波成分)と受電電流Iout(基本波成分)との位相差と、位相差の目標値(0(ゼロ))とが入力される。IrecとIoutとの位相差は、たとえば、電流センサ102,65の検知結果のゼロクロスのタイミングの差分に基づいて受電ECU64Aによって算出される。
演算部95においては、整流回路58の入力電流Irecと受電電流Ioutとの位相差と、位相差の目標値(0(ゼロ))との偏差が算出され、算出された偏差が制御部97に出力される。制御部97は、演算部95によって算出された偏差を入力とするPI制御を実行することによって操作量を算出し、算出された操作量を位相δとする。これにより、結果的に、受電電圧Voutの基本波成分と整流回路58の入力電流Irecの基本波成分との位相差が0(ゼロ)に近付くように位相δが調整される。
また、本実施の形態2に従う受電装置50Aにおいては、インダクタ104,106の製造ばらつき等に起因するフィルタ回路100の定数ばらつきが生じたとしても、位相δを調整することによって、非接触電力伝送における力率が1に調整される。
図14は、インダクタ104のインダクタンス成分が設計値よりもΔL1大きく(ΔL1のインダクタンス成分をインダクタ110として表現する。)、インダクタ106のインダクタンス成分が設計値よりもΔL2大きい(ΔL2のインダクタンス成分をインダクタ112として表現する。)場合の受電装置50Aの部分的な構成を示す図である。
図14を参照して、インダクタ110の入力側の電圧をV1outとし、インダクタ110の出力側の電圧をV2outとする。そして、インダクタ112の出力側の電圧をV2とする。この例においては、整流回路58(図12)は簡単化のため、位相αを0(ゼロ)として、等価負荷抵抗Rlのみの状態とする。
図15は、図14に示される例において調整回路56の電圧Vcが0(ゼロ)の場合におけるベクトル図である。図15を参照して、この例においては、整流回路58の入力電圧及び入力電流の位相差は0(ゼロ)である。この状況において、フィルタ回路100がイミタンス特性を有するため、受電コイル52の受電電流Ioutは、インダクタ112における電圧降下(ΔL2)の影響を受ける。一方、受電コイル52の受電電圧V1outは、インダクタ110における電圧降下(ΔL1)の影響を受ける。したがって、ΔL1,ΔL2の大きさによっては、受電電流Iout及び受電電圧V1outの位相は、ずれてしまう。
本実施の形態2においては、調整回路56の電圧VcをIrecに対してπ/2遅れ方向に出力することによって、受電電流Iout及び受電電圧V1outの位相差は0(ゼロ)に調整される。
図16は、図15に示される例において、調整回路56が電圧VcをIrecに対してπ/2遅れ方向に出力した場合におけるベクトル図である。図16を参照して、調整回路56の電圧VcがIrecに対してπ/2遅れ方向に出力されることによって、受電電流Iout及び受電電圧V1outの位相差は0(ゼロ)となっている。このように、本実施の形態2においては、フィルタ回路100の各インダクタの製造ばらつき等が、調整回路56における位相δの調整によって吸収される。したがって、本実施の形態2に従う受電装置50Aを含む非接触電力伝送システムは、ロバスト性の高いシステムであるといえる。
以上のように、本実施の形態2に従う受電装置50Aはイミタンス特性を有するフィルタ回路100を含み、受電ECU64Aは、電流センサ102,65の検知結果の位相差に従って調整回路56(スイッチング回路SW1,SW2)を調整するように構成されている。この受電装置50Aによれば、受電コイル52の受電電圧を検知する電圧センサを設けることなく、調整回路56を適切に制御することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 非接触電力伝送システム、10 送電装置、12 系統電源、14 AC/DCコンバータ、16 インバータ、18 送電コイル、20,54,62,67,108 キャパシタ、21 送電部、22,63 通信装置、24 送電ECU、50 受電装置、51 受電部、52 受電コイル、56 調整回路、57 回路、58 整流回路、60 蓄電装置、64 受電ECU、65,102 電流センサ、66,104,106,110,112 インダクタ、68 電圧センサ、69,79,Da,Db ダイオード、71,81 スイッチング素子、90 負荷、92,95,96 演算部、94,97,98 制御部、100 フィルタ回路、Qc,Qd,SW1,SW2 スイッチング回路。

Claims (6)

  1. 送電装置から非接触で受電された電力を蓄電装置に出力するように構成された非接触受電装置であって、
    前記送電装置の送電コイルから非接触で受電するように構成された受電コイルと、
    第1のスイッチング素子を含み、前記受電コイルによって受電された電力を整流するように構成された整流回路と、
    前記受電コイルと前記整流回路との間に接続されており、インダクタンスを調整可能な調整回路と、
    前記整流回路及び前記調整回路を制御するように構成された制御装置とを備え、
    前記制御装置は、前記調整回路の出力側から見て前記蓄電装置方向の負荷抵抗が目標値となるように前記第1のスイッチング素子を制御するとともに、前記受電コイルの受電電圧及び受電電流の位相差を抑制するように前記調整回路を制御する、非接触受電装置。
  2. 前記調整回路は、
    第1のインダクタと、
    前記第1のインダクタに直列接続された回路とを含み、
    前記回路は、
    互いに逆直列接続された第2及び第3のスイッチング素子と、
    前記第2及び第3のスイッチング素子に並列接続されたキャパシタとを含む、請求項1に記載の非接触受電装置。
  3. 前記制御装置は、前記整流回路の入力電流のゼロクロスのタイミングを検知するように構成されており、
    前記制御装置は、さらに、前記第2及び第3のスイッチング素子を50%のデューティで相補動作させるように構成されるとともに、前記ゼロクロスのタイミングから一定時間後に前記第2及び第3のスイッチング素子のオンオフを切り替えるように構成されている、請求項2に記載の非接触受電装置。
  4. 前記受電コイルと前記調整回路との間に接続されたフィルタ回路をさらに備える、請求項2又は3に記載の非接触受電装置。
  5. 前記フィルタ回路は、イミタンスフィルタ回路であり、
    前記非接触受電装置は、
    前記受電コイルの受電電流を検知する第1の電流センサと、
    前記整流回路の入力電流を検知する第2の電流センサとをさらに備え、
    前記制御装置は、前記第1及び第2の電流センサの出力の位相差に従って前記第2及び第3のスイッチング素子を制御するように構成されている、請求項4に記載の非接触受電装置。
  6. 送電装置と受電装置とを備える非接触電力伝送システムであって、
    前記送電装置は、
    交流電力を生成するように構成されたインバータと、
    前記インバータによって生成された交流電力を前記受電装置に非接触で送電するように構成された送電コイルとを含み、
    前記受電装置は、前記送電装置から非接触で受電された電力を蓄電装置に出力するように構成されており、
    前記送電コイルから非接触で受電するように構成された受電コイルと、
    第1のスイッチング素子を含み、前記受電コイルによって受電された電力を整流するように構成された整流回路と、
    前記受電コイルと前記整流回路との間に接続されており、インダクタンスを調整可能な調整回路と、
    前記整流回路及び前記調整回路を制御するように構成された制御装置とを含み、
    前記制御装置は、前記調整回路の出力側から見て前記蓄電装置方向の負荷抵抗が目標値となるように前記第1のスイッチング素子を制御するとともに、前記受電コイルの受電電圧及び受電電流の位相差を抑制するように前記調整回路を制御する、非接触電力伝送システム。
JP2016246642A 2016-12-20 2016-12-20 非接触受電装置及び非接触電力伝送システム Pending JP2018102054A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016246642A JP2018102054A (ja) 2016-12-20 2016-12-20 非接触受電装置及び非接触電力伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246642A JP2018102054A (ja) 2016-12-20 2016-12-20 非接触受電装置及び非接触電力伝送システム

Publications (1)

Publication Number Publication Date
JP2018102054A true JP2018102054A (ja) 2018-06-28

Family

ID=62715689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246642A Pending JP2018102054A (ja) 2016-12-20 2016-12-20 非接触受電装置及び非接触電力伝送システム

Country Status (1)

Country Link
JP (1) JP2018102054A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711235A (zh) * 2020-06-01 2020-09-25 Oppo广东移动通信有限公司 充电方法及装置、终端、存储介质
JP2022536210A (ja) * 2019-08-26 2022-08-12 ワイトリシティ コーポレーション 無線電力システムのアクティブ整流の制御
US11631999B2 (en) 2020-03-06 2023-04-18 Witricity Corporation Active rectification in wireless power systems
US11695300B2 (en) 2018-11-30 2023-07-04 Witricity Corporation Systems and methods for low power excitation in high power wireless power systems
US11695270B2 (en) 2020-01-29 2023-07-04 Witricity Corporation Systems and methods for auxiliary power dropout protection
US11695271B2 (en) 2019-05-24 2023-07-04 Witricity Corporation Protection circuits for wireless power receivers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11695300B2 (en) 2018-11-30 2023-07-04 Witricity Corporation Systems and methods for low power excitation in high power wireless power systems
US11710985B2 (en) 2018-11-30 2023-07-25 Witricity Corporation Systems and methods for low power excitation in high power wireless power systems
US11695271B2 (en) 2019-05-24 2023-07-04 Witricity Corporation Protection circuits for wireless power receivers
JP2022536210A (ja) * 2019-08-26 2022-08-12 ワイトリシティ コーポレーション 無線電力システムのアクティブ整流の制御
JP7383131B2 (ja) 2019-08-26 2023-11-17 ワイトリシティ コーポレーション 無線電力システムのアクティブ整流の制御
US11843258B2 (en) 2019-08-26 2023-12-12 Witricity Corporation Bidirectional operation of wireless power systems
US11695270B2 (en) 2020-01-29 2023-07-04 Witricity Corporation Systems and methods for auxiliary power dropout protection
US11909198B2 (en) 2020-01-29 2024-02-20 Witricity Corporation Gate driver implementations for safe wireless power system operation
US11631999B2 (en) 2020-03-06 2023-04-18 Witricity Corporation Active rectification in wireless power systems
US11888328B2 (en) 2020-03-06 2024-01-30 Witricity Corporation Active rectification in wireless power systems
CN111711235A (zh) * 2020-06-01 2020-09-25 Oppo广东移动通信有限公司 充电方法及装置、终端、存储介质

Similar Documents

Publication Publication Date Title
JP2018102054A (ja) 非接触受電装置及び非接触電力伝送システム
JP6024129B2 (ja) 非接触給電装置
US9466987B2 (en) Power transmission device and wireless power transmission system using the power transmission device
JP6817221B2 (ja) Dc電圧源間のワイヤレス電力伝送のための装置および方法
JP5662954B2 (ja) 制御装置および無線電力伝送装置
WO2016172916A1 (en) Transmitter-side control of wireless power transfer systems without using mutual coupling information or wireless feedback
JP2017524327A (ja) 共振周波数補償
JP5862844B2 (ja) ワイヤレス電力伝送システム
WO2019230052A1 (ja) 非接触給電装置
JP2014143776A (ja) ワイヤレス受電装置、ワイヤレス送電装置、およびワイヤレス給電装置
JP5602069B2 (ja) 受電装置および非接触型電力伝送装置
JP2019022265A (ja) 非接触電力伝送システム
JP2017060328A (ja) 非接触受電装置及び電力伝送システム
KR102155896B1 (ko) 배터리 충전 장치 및 그 제어 방법
JP6675109B2 (ja) 無線電力伝送システム
US10787080B2 (en) Method of and control system for operating a circuit arrangement of a vehicle
JP6565809B2 (ja) 送電装置及び電力伝送システム
JP6269570B2 (ja) 非接触送電装置
JP2015080296A (ja) 受電機器及び非接触電力伝送装置
WO2014069148A1 (ja) 非接触電力伝送装置および受電機器
Tiwari et al. Misalignment tolerant primary controller for series-series compensated static wireless charging of battery
WO2015083578A1 (ja) 非接触電力伝送装置及び受電機器
Chow et al. Online regulation of receiver-side power and estimation of mutual inductance in wireless inductive link based on transmitter-side electrical information
US11159052B2 (en) System and method for inductive energy transmission
JP6741144B2 (ja) ワイヤレス受電装置及びワイヤレス電力伝送システム