WO2014069148A1 - 非接触電力伝送装置および受電機器 - Google Patents
非接触電力伝送装置および受電機器 Download PDFInfo
- Publication number
- WO2014069148A1 WO2014069148A1 PCT/JP2013/076767 JP2013076767W WO2014069148A1 WO 2014069148 A1 WO2014069148 A1 WO 2014069148A1 JP 2013076767 W JP2013076767 W JP 2013076767W WO 2014069148 A1 WO2014069148 A1 WO 2014069148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- value
- storage unit
- input
- charging
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/122—Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/36—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/65—Monitoring or controlling charging stations involving identification of vehicles or their battery types
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- This disclosure relates to a non-contact power transmission device.
- a non-contact power transmission device that does not use a power cord or a power transmission cable
- a device using magnetic field resonance is known.
- a non-contact power transmission device disclosed in Japanese Patent Application Laid-Open No. 2009-106136 includes a power transmission device having an AC power source and a primary resonance coil to which AC power is input from the AC power source.
- the non-contact power transmission apparatus includes a power receiving device having a primary side resonance coil and a secondary side resonance coil capable of magnetic field resonance. Then, when the primary side resonance coil and the secondary side resonance coil perform magnetic field resonance, AC power is transmitted from the power transmission device to the power reception device, and the vehicle battery as a power storage unit provided in the power reception device is charged. Is done.
- the power value suitable for the charging may vary.
- a non-contact power transmission apparatus an AC power source that outputs AC power; a primary coil to which the AC power is input; and the contactless power transmission from the primary coil.
- a secondary coil capable of receiving AC power; a rectifier that rectifies AC power received by the secondary coil; a power storage unit that receives DC power rectified by the rectifier; and the rectifier
- a DC / DC converter having a switching element that is periodically switched, and a direct current input to the power storage unit by adjusting an on / off duty ratio of the switching element.
- a control unit that adjusts the power value of the power to be close to a power value suitable for charging the power storage unit.
- the impedance from the output terminal of the AC power supply to the power storage unit is adjusted, and the power value of the DC power input to the power storage unit is suitable for charging. Move closer to the power value. Thereby, the power storage unit can be charged appropriately.
- the power value of the DC power input to the power storage unit can be varied by combining with the on / off duty ratio of the switching element.
- the width can be increased.
- the power storage unit There may be a difference between the power value of the DC power input to the power and the power value suitable for charging the power storage unit.
- the power value of the DC power input to the power storage unit can be brought close to a power value suitable for charging the power storage unit.
- control unit performs the adjustment when a deviation occurs between the power value of the DC power input to the power storage unit and the power value suitable for charging the power storage unit.
- control unit performs the adjustment when a deviation occurs between the power value of the DC power input to the power storage unit and the power value suitable for charging the power storage unit.
- the power value that can be set by the AC power supply is one type.
- the AC power source includes a changing unit that changes a power value of AC power output from the AC power source by changing a voltage value or a current value in the AC power source.
- the power value of the DC power input to the power storage unit approaches a power value suitable for charging the power storage unit, and the impedance of the power storage unit varies according to the power value of the DC power input.
- the control unit adjusts the on / off duty ratio of the switching element in accordance with the fluctuation of the impedance of the power storage unit, so that the DC power input to the power storage unit Is made close to the power value suitable for charging the power storage unit.
- the DC power having a power value suitable for charging the power storage unit includes a first DC power and a second DC power having different power values
- the control unit includes The first DC power or the second DC power is selectively input to the power storage unit by adjusting an on / off duty ratio.
- the power receiving device is capable of receiving the AC power in a non-contact manner from a power transmission device having a primary side coil to which AC power is input, and is in a contactless manner from the primary side coil.
- a secondary coil that can receive the AC power; a rectifier that rectifies the AC power received by the secondary coil; a power storage that receives the DC power rectified by the rectifier; and the rectifier.
- a DC / DC converter having a switching element that is periodically switched, and is provided between the power storage unit and the power storage unit, the power value of DC power input to the power storage unit, and charging of the power storage unit
- the power value of the DC power input to the power storage unit is adjusted by adjusting the ON / OFF duty ratio of the switching element when a deviation from the power value suitable for the power storage unit occurs. It approaches the power value suitable for charging.
- power transmission equipment may be comprised so that AC power supply may be abbreviate
- FIG. 1 is a block diagram of a non-contact power transmission apparatus according to the first embodiment.
- FIG. 2 shows a block diagram of the non-contact power transmission apparatus of the second embodiment.
- the non-contact power transmission device (non-contact power transmission system) 10 includes a ground-side device 11 provided on the ground and a vehicle-side device 21 mounted on the vehicle.
- the ground side device 11 corresponds to a primary side device (power transmission device, power transmission device)
- the vehicle side device 21 corresponds to a secondary side device (power reception device, power reception device).
- the ground side device 11 includes a high frequency power source 12 (AC power source) capable of outputting high frequency power (AC power) having a predetermined frequency.
- the high frequency power source 12 is configured to output high frequency power using system power.
- the high frequency power supply 12 includes an AC / DC converter 12a that converts system power into DC power, and a DC / RF converter 12b that converts the DC power into high frequency power.
- Each of these converters 12a and 12b has a switching element, and operates by switching (ON / OFF) of the switching element. That is, the high frequency power supply 12 is a switching power supply that obtains high frequency power of the predetermined frequency by switching of the switching element.
- the high-frequency power output from the high-frequency power source 12 is transmitted to the vehicle-side device 21 in a non-contact manner, and used for charging the vehicle battery 22 (power storage unit) provided in the vehicle-side device 21.
- the non-contact power transmission device 10 includes a power transmitter 13 provided in the ground-side device 11 and a vehicle-side device 21 that perform power transmission between the ground-side device 11 and the vehicle-side device 21. And a power receiver 23 provided. High frequency power is input to the power transmitter 13.
- the power transmitter 13 and the power receiver 23 are configured to be capable of magnetic field resonance.
- the power transmitter 13 includes a resonance circuit including a primary coil 13a and a primary capacitor 13b connected in parallel.
- the power receiver 23 is composed of a resonance circuit including a secondary coil 23a and a secondary capacitor 23b connected in parallel.
- the resonance frequency of the power transmitter 13 and the power receiver 23 is the same.
- the power transmitter 13 when high frequency power is input from the high frequency power supply 12 to the power transmitter 13 (primary coil 13a), the power transmitter 13 and the power receiver 23 (secondary coil 23a) magnetically resonate. As a result, the power receiver 23 receives a part of the energy of the power transmitter 13. That is, the power receiver 23 receives high frequency power from the power transmitter 13.
- the vehicle-side device 21 converts the voltage value of the DC power rectified by the rectifier 24 as a rectifier 24 that rectifies the high-frequency power received by the power receiver 23 into DC power, and a different voltage value. And a DC / DC converter 25 for outputting to the battery 22.
- the DC / DC converter 25 includes a switching element 25a that periodically switches (turns on and off).
- the DC / DC converter 25 performs voltage value conversion according to the on / off duty ratio of the switching element 25a by switching of the switching element 25a.
- the vehicle battery 22 is composed of, for example, a plurality of battery cells connected in series, and is charged when DC power is input from the DC / DC converter 25.
- the charging mode of the vehicle battery 22 includes normal charging and push-in charging.
- Normal charging is a charging mode that is performed from the start of charging until the charging amount reaches a predetermined threshold amount.
- Push-in charging is a charging mode that is performed based on the amount of charge being equal to or greater than the threshold amount and that compensates (reduces) the capacity variation of each battery cell.
- a detection sensor 26 that detects the charge amount of the vehicle battery 22 is provided.
- the detection result of the detection sensor 26 is input to a vehicle-side controller 27 as a control unit provided in the vehicle-side device 21. Thereby, the vehicle-side controller 27 can grasp the charge amount of the vehicle battery 22.
- the ground side device 11 is provided with a power source side controller 14 capable of wireless communication with the vehicle side controller 27.
- the power supply side controller 14 determines whether to output high frequency power from the high frequency power supply 12 through exchanging information with the vehicle side controller 27.
- the power value of the DC power (high-frequency power output from the high-frequency power source 12) input to the vehicle battery 22 and the configuration for adjusting it will be described in detail.
- the relative position of the power transmitter 13 and the power receiver 23 is a predetermined reference position.
- the high frequency power supply 12 is a power supply that cannot change the voltage value and current value of the high frequency power output in the high frequency power supply 12. In other words, there is only one power value that can be set in the high-frequency power source 12.
- the reference value (initial value) of the impedance Zin of the load 30 is suitable for normal charging of the vehicle battery 22 from the high-frequency power source 12 under the condition that the ON / OFF duty ratio of the switching element 25a is a predetermined reference ratio.
- the power value is set so as to output high frequency power (hereinafter referred to as set value power).
- the set value power is high-frequency power having a power value necessary for inputting DC power having a power value suitable for normal charging (hereinafter referred to as normal charging power) to the vehicle battery 22.
- the power value of the high frequency power output from the high frequency power supply 12 varies according to the impedance Zin of the load 30. If the power value of the high-frequency power output from the high-frequency power source 12 varies, the power value of the DC power input to the vehicle battery 22 also varies. For example, when the impedance Zin of the load 30 is larger than the reference value, DC power having a power value smaller than the power value of the normal charging power is input to the vehicle battery 22. On the other hand, when the impedance Zin of the load 30 is smaller than the reference value, DC power having a power value larger than the power value of the normal charging power is input to the vehicle battery 22. That is, by changing the impedance Zin of the load 30, it is possible to input DC power having a desired power value to the vehicle battery 22.
- the impedance Zin of the load 30 depends on the impedance from the input end of the DC / DC converter 25 to the vehicle battery 22 (input impedance of the DC / DC converter 25).
- the input impedance of the DC / DC converter 25 depends on the on / off duty ratio of the switching element 25a.
- the voltage value on the output side of the DC / DC converter 25 is the battery voltage value of the vehicle battery 22, and the battery voltage value is uniquely determined by the specifications of the vehicle battery 22.
- both the voltage value and the current value of the DC power input to the DC / DC converter 25 fluctuate according to the duty ratio.
- the DC / DC converter 25 has a ratio of the voltage value to the current value. Input impedance fluctuates. Therefore, the duty ratio defines the input impedance of the DC / DC converter 25, and as a result, defines the impedance Zin of the load 30.
- the ground-side device 11 is provided with a measuring device 40, and the measuring device 40 is a measuring unit that measures the power value of the high-frequency power output from the high-frequency power source 12.
- the measuring device 40 is provided at the output terminal of the high frequency power source 12 (between the high frequency power source 12 and the power transmitter 13), measures the output voltage and output current of the high frequency power source 12, and transmits the measurement results to the power source controller 14. To do.
- the vehicle-side controller 27 adjusts (changes) the on / off duty ratio of the switching element 25 a based on the measurement result of the measuring instrument 40, in other words, the power value of the DC power input to the vehicle battery 22.
- the power value of the high frequency power output from the high frequency power supply 12 is adjusted.
- the vehicle-side controller 27 grasps the measurement result of the measuring instrument 40 by exchanging information with the power-side controller 14 when adjusting the on / off duty ratio of the switching element 25a. Then, the vehicle-side controller 27 turns on and off the switching element 25a based on the measurement result of the measuring instrument 40 so that the high-frequency power having a power value different from the set value power is output from the high-frequency power source 12, for example, the adjusted power. Adjust the duty ratio.
- the adjusted power is high-frequency power having a power value necessary for causing the vehicle battery 22 to input “push-in charging power” that is DC power having a power value suitable for in-press charging.
- each controller 14, 27 grasps the current charge amount of the vehicle battery 22 when the vehicle is arranged such that the relative position of the power transmitter 13 and the power receiver 23 is the reference position. Then, charge control according to the charge amount is performed.
- the vehicle-side controller 27 determines whether or not the current charge amount is larger than a predetermined threshold amount. When the current charge amount is smaller than the threshold amount, the vehicle-side controller 27 turns on / off the switching element 25a while referring to the measurement result of the measuring instrument 40 so that the set value power is output from the high-frequency power source 12. Adjust the duty ratio. On the other hand, the vehicle-side controller 27 turns on / off the switching element 25a while referring to the measurement result of the measuring instrument 40 so that the adjustment power is output from the high-frequency power source 12 when the current charge amount is equal to or greater than the threshold amount. Adjust the duty ratio.
- the vehicle-side controller 27 periodically grasps the charge amount of the vehicle battery 22 during charging.
- the vehicle-side controller 27 adjusts the on / off duty ratio of the switching element 25a.
- the high-frequency power output from the high-frequency power source 12 is switched from the set value power to the adjusted power.
- DC power (push-in charge power) corresponding to the adjusted power is input to the vehicle battery 22 (push-in charge).
- the vehicle-side controller 27 transmits a stop request signal to the power supply-side controller 14.
- the power supply side controller 14 controls the high frequency power supply 12 to stop the output of the high frequency power. Thereby, charging of the battery 22 for vehicles is complete
- the operation of this embodiment will be described.
- the impedance Zin of the load 30 is adjusted, and the power value of the DC power input to the vehicle battery 22 (output from the high frequency power source 12).
- the power value of the high frequency power is adjusted.
- the power value of the DC power input to the vehicle battery 22 can be adjusted without changing the voltage value or current value of the high-frequency power output from the high-frequency power source 12 in the high-frequency power source 12.
- the power value suitable for charging the vehicle battery 22 varies depending on the charging mode (normal charging, push-in charging).
- the vehicle-side controller 27 is input to the vehicle battery 22 by adjusting the on / off duty ratio of the switching element 25a. It can also be said that the power value of the DC power is made to follow the fluctuation of the power value suitable for charging the vehicle battery 22.
- the impedance Zin of the load 30 is adjusted by adjusting the ON / OFF duty ratio of the switching element 25a of the DC / DC converter 25, and the DC power having a power value suitable for charging the vehicle battery 22 through the adjustment.
- the vehicle-side device 21 is configured to input (normal charging power and push-in charging power). Thereby, even when the voltage value and current value of the high-frequency power output in the high-frequency power source 12 cannot be changed, the normal charging power and the push-in charging power can be input to the vehicle battery 22.
- the duty ratio of on / off of the switching element 25a was adopted as a means for adjusting the impedance Zin of the load 30.
- the power value of the DC power can be adjusted without providing a high voltage capacitor or inductor.
- the vehicle-side controller 27 adjusts the power value of the high-frequency power output from the high-frequency power supply 12 by adjusting the on / off duty ratio of the switching element 25a. I can say that.
- the power value of the high-frequency power received by the secondary coil 23a varies according to the on / off duty ratio of the switching element 25a. If it does so, it can be said that the vehicle side controller 27 adjusts the electric power value of the high frequency electric power received by the secondary side coil 23a by adjusting the duty ratio of ON / OFF of the switching element 25a.
- the high frequency power supply 52 of the present embodiment is configured to output a plurality of types of high frequency power having different power values by variably controlling (changing) the voltage value in the high frequency power supply 52. Yes.
- the high-frequency power source 52 includes an AC / DC converter 52a and a DC / RF converter 52b, and a DC / DC converter provided between the AC / DC converter 52a and the DC / RF converter 52b. 52c (change unit).
- the DC / DC converter 52c has a switching element 52cc, and based on switching (on / off) of the switching element 52cc, the voltage value of the DC power converted by the AC / DC converter 52a is changed to a different voltage value.
- the voltage is converted to a voltage value corresponding to the on / off duty ratio of the element 52cc and output to the DC / RF converter 52b.
- the high frequency power supply 52 outputs high frequency power having a power value corresponding to the voltage value of the direct current power output from the DC / DC converter 52c. Since the voltage value of the DC power output from the DC / DC converter 52c is defined by the duty ratio, the power value of the high frequency power output from the high frequency power supply 52 is defined by the duty ratio.
- the power supply side controller 14 changes the power value of the high frequency power output from the high frequency power supply 52 according to the situation. For example, the vehicle-side controller 27 transmits a first request signal to the power supply-side controller 14 when the current charge amount is smaller than the threshold amount in a state where charging is performed. On the other hand, when the current charge amount is equal to or greater than the threshold amount in the state where charging is performed, the vehicle-side controller 27 transmits a second request signal to the power supply-side controller 14.
- the power supply side controller 14 When receiving the first request signal, the power supply side controller 14 outputs the set value power similar to that of the first embodiment from the high frequency power supply 52 so that the DC / DC converter 52c (the switching element 52cc is turned on / off). (Duty ratio) is controlled. Thereby, normal charging can be performed.
- the power supply side controller 14 controls the DC / DC converter 52c so that the adjustment power similar to that of the first embodiment is output from the high frequency power supply 52. Thereby, it is possible to perform push-in charging. That is, the DC / DC converter 52c controls the voltage value in the high-frequency power source 52 so that the power value of the DC power input to the vehicle battery 22 becomes a power value suitable for charging the vehicle battery 22. To change the power value of the high-frequency power output from the high-frequency power source 52.
- the vehicle battery 22 is a fluctuating load whose impedance fluctuates in accordance with the input DC power value. For this reason, if the power value of the high-frequency power output from the high-frequency power source 52 is changed, and the power value of the DC power input to the vehicle battery 22 varies, the impedance of the vehicle battery 22 varies, and the high-frequency power varies. The impedance Zin of the load 30 from the output end of the power source 52 to the vehicle battery 22 varies. Then, although the high-frequency power source 52 is adjusted so that the adjusted power is output in the high-frequency power source 52, the power value of the DC power input to the vehicle battery 22 is calculated from the power value of the push-in charging power. The case where it shifts may occur.
- the on / off duty ratio of the switching element 25a is changed according to the fluctuation of the impedance Zin of the load 30 due to the fluctuation of the power value of the DC power input to the vehicle battery 22.
- the vehicle-side controller 27 acquires the measurement result of the measuring instrument 40 by exchanging information with the power-supply side controller 14, and based on the measurement result, the power value of the high-frequency power output from the high-frequency power source 52 To figure out.
- the vehicle-side controller 27 determines that the power value of the high frequency power output from the high frequency power supply 52 is the power of the adjustment power.
- the on / off duty ratio of the switching element 25a is adjusted so as to approach the value.
- the vehicle-side controller 27 adjusts the on / off duty ratio of the switching element 25a to thereby input the direct current input to the vehicle battery 22.
- the power value of the power is brought close to the power value suitable for charging the vehicle battery 22 (the power value of the push-in charging power).
- the high frequency power supply 52 can output a plurality of types of high frequency power having different power values by variably controlling the voltage value in the high frequency power supply 52.
- the duty ratio of on / off of the switching element 25a is changed according to the fluctuation of the impedance Zin of the load 30. Is adjusted. Specifically, the on / off duty ratio of the switching element 25a is adjusted such that the power value of the high frequency power input from the high frequency power supply 52 to the load 30 matches the power value of the adjusted power.
- the power value of the high-frequency power output from the high-frequency power source 52 is changed in response to the power value suitable for charging the vehicle battery 22 being changed from the normal charging power to the charging power.
- a deviation occurs between the power value of the DC power input to the vehicle battery 22 and the power value suitable for charging the vehicle battery 22.
- the duty ratio of ON / OFF of the switching element 25a is adjusted so that the shift
- the vehicle-side device 21 adjusts the on / off duty ratio of the switching element 25a according to the fluctuation of the impedance Zin of the load 30 accompanying the change from the set value power to the adjusted power by the DC / DC converter 52c. Configured. Specifically, the on / off duty ratio of the switching element 25a is adjusted such that the power value of the high-frequency power output from the high-frequency power supply 52 approaches the power value of the adjusted power. Thereby, even if the impedance Zin of the load 30 fluctuates, DC power (push-up charge power) having a power value suitable for push-in charging can be input to the vehicle battery 22.
- the vehicle-side controller 27 varies the power value of the input power of the vehicle battery 22 due to the variation of the impedance of the vehicle battery 22 due to the change from the set value power to the adjusted power by the DC / DC converter 52c. It can also be said that the ON / OFF duty ratio of the switching element 25a is adjusted so that is reduced.
- the variable range of the ON / OFF duty ratio of the switching element 25a required for inputting the inrush charging power can be narrowed.
- the impedance Zin of the load 30 can be adjusted by the duty ratio of the on / off of the switching element 25a, and as a result, the power value of the high-frequency power output from the high-frequency power source 52 can be adjusted. That is, as a parameter for changing the power value of the high-frequency power output from the high-frequency power source 52, both the voltage value in the high-frequency power source 52 (on / off duty ratio of the switching element 52cc) and the on / off duty ratio of the switching element 25a exist. To do.
- the present embodiment can cope with it appropriately.
- the relative position of the power transmitter 13 and the power receiver 23 is the reference position, but is not limited to this.
- the embodiment may be, for example, a case where the relative position between the two is shifted from the reference position.
- the ON / OFF duty ratio of the switching element 25a may be adjusted based on the measurement result of the measuring instrument 40 so that DC power having a power value suitable for charging is input to the vehicle battery 22.
- the high-frequency power sources 12 and 52 may be configured so that high-frequency power of another power value is output.
- the switching element 25a is turned on / off so that DC power having a power value larger than the normal charging power value is input to the vehicle battery 22.
- the duty ratio may be adjusted.
- the measuring device 40 is provided at the output end of the high-frequency power supplies 12 and 52, but is not limited thereto.
- the setting location of the high frequency power supplies 12 and 52 is arbitrary.
- the non-contact power transmission apparatus 10 may be configured so that the measuring device 40 is provided in the vehicle-side device 21 and the power value of the high-frequency power output from the high-frequency power sources 12 and 52 is estimated based on the measurement result.
- the vehicle-side device 21 may be provided with a measuring instrument that measures the power value of the DC power input to the vehicle battery 22 and outputs the measurement result to the vehicle-side controller 27. In this case, since it is not necessary for the power supply side controller 14 and the vehicle side controller 27 to exchange information relating to the measurement result, the processing can be simplified.
- the vehicle-side controller 27 is configured to adjust the on / off duty ratio of the switching element 25a, but is not limited thereto.
- the subject of control is arbitrary, and for example, a dedicated control circuit may be provided separately from the vehicle-side controller 27.
- the non-contact power transmission apparatus 10 is configured such that, for example, by providing a drive circuit (pulse signal output circuit) that varies the on / off duty ratio of the switching element 25a, the power supply side controller 14 controls the drive circuit. May be.
- the measuring device 40 is provided, but is not limited thereto.
- the measuring device 40 may be omitted.
- the power value of the DC power input to the vehicle battery 22 is a power value suitable for charging (for example, pushing in). It is possible to grasp (calculate) the duty ratio of the on / off of the switching element 25a, which is the power value of the charging power. Therefore, the power value suitable for charging the vehicle battery 22 and the on / off duty ratio of the switching element 25a for inputting the power value suitable for the charging to the vehicle battery 22 are set in association with each other.
- the map may be stored in memory.
- the vehicle-side controller 27 refers to the map to identify the on / off duty ratio of the switching element 25a, and adjusts the duty ratio based on the identification result.
- the voltage waveform of the high frequency power output from the high frequency power supplies 12 and 52 is arbitrary, such as a pulse waveform or a sine wave.
- condenser 13b, 23b was provided, it is not limited to this.
- Each capacitor 13b, 23b may be omitted.
- the power transmitter 13 and the power receiver 23 perform magnetic field resonance using the parasitic capacitances of the coils 13a and 23a.
- the resonance frequency of the power transmitter 13 and the resonance frequency of the power receiver 23 are set to be the same, but the present invention is not limited to this.
- the resonance frequency of the power transmitter 13 may be different from the resonance frequency of the power receiver 23 within a range in which power transmission is possible.
- magnetic field resonance is used to realize non-contact power transmission, but is not limited to this.
- Electromagnetic induction may be used.
- the power transmitter 13 may be configured to have a resonance circuit composed of a primary side coil 13a and a primary side capacitor 13b and a primary side coupling coil that is coupled to the resonance circuit by electromagnetic induction.
- the power receiver 23 may be configured to include a resonance circuit including a secondary coil 23a and a secondary capacitor 23b and a secondary coupling coil coupled to the resonance circuit by electromagnetic induction.
- the high frequency power supplies 12 and 52 may be voltage sources or current sources.
- the high-frequency power source 52 is configured to output a plurality of types of high-frequency powers having different power values by variably controlling the voltage value in the high-frequency power source 52, but is not limited thereto.
- the high frequency power supply 52 may be configured to output a plurality of types of high frequency power having different power values by variably controlling the current value in the high frequency power supply 52.
- “Variable control (change) of voltage value or current value in the high frequency power supply 52” can be said to variably control the voltage value or current value of the AC power (system power) input to the high frequency power supply 52. That is, it can be said that the high frequency power supply 52 is configured to output a plurality of types of high frequency power having different power values by variably controlling the voltage value or current value of the input AC power.
- the non-contact power transmission device 10 is applied to a vehicle, but is not limited thereto, and may be applied to other devices.
- the non-contact power transmission device 10 may be applied to charge a battery of a mobile phone.
- the vehicle-side device 21 is configured so that the duty ratio is adjusted when the power value suitable for charging fluctuates.
- the present invention is not limited to this.
- the power value suitable for charging is constant, the power value of DC power input to the vehicle battery 22 is measured periodically, and the deviation from the current power value suitable for charging is calculated from the measurement result.
- the vehicle-side device 21 may be configured to adjust the duty ratio when the amount of deviation exceeds a predetermined allowable value.
- the difference between the power value of the direct-current power input to the power storage unit and the power value suitable for charging the power storage unit means the fluctuation of the power value suitable for charging the power storage unit, and the This may occur based on at least one of fluctuations in the power value of the DC power input to the power storage unit.
- an allowance is provided for the amount of misalignment, and the duty ratio is adjusted when the amount of misalignment exceeds the permissible value, so as to exclude the minute misalignment that does not hinder power transmission.
- the side device 21 may be configured.
- the vehicle side apparatus 21 may be provided with a secondary side impedance converter that performs impedance conversion between the power receiver 23 and the rectifier 24 in detail.
- a specific resistance value that provides relatively high transmission efficiency compared to other resistance values.
- the real part of the impedance from the output terminal of the power receiver 23 to the vehicle battery 22 has a specific resistance value (second resistance value) at which transmission efficiency is higher than a predetermined resistance value (first resistance value).
- the resistance value of the virtual load is referred to as Ra1
- the resistance from the power receiver 23 specifically, the output end of the power receiver 23
- the specific resistance value is ⁇ (Ra1 ⁇ Rb1).
- the secondary impedance converter is connected from the input end of the rectifier 24 to the vehicle so that the impedance from the output end of the power receiver 23 to the vehicle battery 22 approaches (preferably matches) a specific resistance value.
- the impedance up to the battery 22 may be converted.
- the ground side apparatus 11 may be provided with the primary side impedance converter which performs impedance conversion between the high frequency power supplies 12 and 52 and the power transmission device 13 in detail.
- the primary-side impedance converter may convert the impedance from the input terminal of the power transmitter 13 to the vehicle battery 22 so that the power factor is improved, for example.
- the power transmitter 13 may be configured such that the high-frequency power sources 12 and 52 are omitted and the system power of the system power source is input to the power transmitter 13.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Secondary Cells (AREA)
Abstract
非接触電力伝送装置(10)は、交流電力を出力する交流電源(12,52)と;交流電力が入力される1次側コイル(13a)と;1次側コイル(13a)から非接触で交流電力を受電可能な2次側コイル(23a)と;2次側コイル(23a)によって受電された交流電力を整流する整流部(24)と;整流部(24)によって整流された直流電力が入力される蓄電部(22)と;整流部(24)と蓄電部(22)との間に設けられ、周期的にスイッチングするスイッチング素子(25a)を有するDC/DCコンバータ(25)と;スイッチング素子(25a)のオンオフのデューティ比を調整することによって、蓄電部(22)に対して入力される直流電力の電力値を、蓄電部(22)の充電に適した電力値に近づける調整を行う制御部(27)とを備える。
Description
本開示は、非接触電力伝送装置に関する。
従来から、電源コードや送電ケーブルを用いない非接触電力伝送装置として、例えば磁場共鳴を用いたものが知られている。例えば特開2009-106136号公報の非接触電力伝送装置は、交流電源と、交流電源から交流電力が入力される1次側の共振コイルとを有する送電機器を備えている。非接触電力伝送装置は、1次側の共振コイルと磁場共鳴可能な2次側の共振コイルを有する受電機器を備えている。そして、1次側の共振コイルと2次側の共振コイルとが磁場共鳴することによって、送電機器から受電機器に交流電力が伝送され、受電機器に設けられた蓄電部としての車両用バッテリが充電される。
ここで、例えば車両用バッテリの充電を好適に行うために、車両用バッテリに対して充電に適した電力値の直流電力を供給する必要がある。また、状況によっては、上記充電に適した電力値が変動する場合が生じ得る。
なお、上述した事情は、磁場共鳴によって非接触の電力伝送を行うものに限られず、電磁誘導によって非接触の電力伝送を行うものについても同様である。
本開示は、蓄電部の充電を好適に行うことが可能な非接触電力伝送装置を提供することを目的とする。
本開示の一側面によれば、非接触電力伝送装置であって、交流電力を出力する交流電源と;前記交流電力が入力される1次側コイルと;前記1次側コイルから非接触で前記交流電力を受電可能な2次側コイルと;前記2次側コイルによって受電された交流電力を整流する整流部と;前記整流部によって整流された直流電力が入力される蓄電部と;前記整流部と前記蓄電部との間に設けられ、周期的にスイッチングするスイッチング素子を有するDC/DCコンバータと;前記スイッチング素子のオンオフのデューティ比を調整することによって、前記蓄電部に対して入力される直流電力の電力値を、前記蓄電部の充電に適した電力値に近づける調整を行う制御部とを備える。
本開示の一側面によれば、非接触電力伝送装置であって、交流電力を出力する交流電源と;前記交流電力が入力される1次側コイルと;前記1次側コイルから非接触で前記交流電力を受電可能な2次側コイルと;前記2次側コイルによって受電された交流電力を整流する整流部と;前記整流部によって整流された直流電力が入力される蓄電部と;前記整流部と前記蓄電部との間に設けられ、周期的にスイッチングするスイッチング素子を有するDC/DCコンバータと;前記スイッチング素子のオンオフのデューティ比を調整することによって、前記蓄電部に対して入力される直流電力の電力値を、前記蓄電部の充電に適した電力値に近づける調整を行う制御部とを備える。
この態様によれば、スイッチング素子のオンオフのデューティ比を調整することで、交流電源の出力端から蓄電部までのインピーダンスを調整し、蓄電部に入力される直流電力の電力値を充電に適した電力値に近づける。これにより、蓄電部の充電を好適に行うことができる。
特に、本開示を適用することにより、内部で出力される交流電力の電力値を変更することができない交流電源を用いつつ、蓄電部に入力される直流電力の電力値の調整を実現することができる。このような交流電源は、交流電源内において出力される交流電力の電力値を変更することができる交流電源と比較して、簡素な構成となり易い。よって、蓄電部に対して入力される直流電力の電力値を蓄電部の充電に適した電力値に近づけつつ、交流電源の構成の簡素化を図ることができる。
仮に内部で出力される交流電力の電力値を変更することができる交流電源を用いる場合においては、スイッチング素子のオンオフのデューティ比と組み合わせることにより、蓄電部に入力される直流電力の電力値の可変幅を広げることができる。さらに、仮に蓄電部のインピーダンスが、交流電源から出力される交流電力の電力値が変更されることに起因して変動する構成にあっては、蓄電部のインピーダンスの変動に起因して、蓄電部に対して入力される直流電力の電力値と、蓄電部の充電に適した電力値とのズレが生じる場合がある。これに対して、この態様によれば、スイッチング素子のオンオフのデューティ比を調整することにより、蓄電部のインピーダンスが変動した場合であっても、蓄電部に対して入力される直流電力の電力値を、蓄電部の充電に適した電力値に近づけることができる。
一態様としては、前記制御部は、前記蓄電部に入力される直流電力の電力値と、前記蓄電部の充電に適した電力値とのズレが生じる場合に、前記調整を行う。この態様によれば、蓄電部に対して入力される直流電力の電力値と、蓄電部の充電に適した電力値とのズレが生じる場合にスイッチング素子のオンオフのデューティ比を調整することにより、そのズレが小さくすることができる。これにより、蓄電部の充電を好適に行うことができる。
一態様としては、前記交流電源によって設定可能な電力値は、1種類である。
一態様としては、前記交流電源は、前記交流電源内において電圧値又は電流値を変更することによって、前記交流電源から出力される交流電力の電力値を変更する変更部を備え、前記変更部によって、前記蓄電部に入力される直流電力の電力値が、前記蓄電部の充電に適した電力値に近づくようにし、前記蓄電部のインピーダンスは、入力される直流電力の電力値に応じて変動し、前記制御部は、前記変更部による変更が行われた場合、前記蓄電部のインピーダンスの変動に応じて前記スイッチング素子のオンオフのデューティ比を調整することによって、前記蓄電部に入力される直流電力の電力値を前記蓄電部の充電に適した電力値に近づける。
一態様としては、前記交流電源は、前記交流電源内において電圧値又は電流値を変更することによって、前記交流電源から出力される交流電力の電力値を変更する変更部を備え、前記変更部によって、前記蓄電部に入力される直流電力の電力値が、前記蓄電部の充電に適した電力値に近づくようにし、前記蓄電部のインピーダンスは、入力される直流電力の電力値に応じて変動し、前記制御部は、前記変更部による変更が行われた場合、前記蓄電部のインピーダンスの変動に応じて前記スイッチング素子のオンオフのデューティ比を調整することによって、前記蓄電部に入力される直流電力の電力値を前記蓄電部の充電に適した電力値に近づける。
一態様としては、前記蓄電部の充電に適した電力値の直流電力には、電力値が互いに相違する第1直流電力と第2直流電力とが存在し、前記制御部は、前記スイッチング素子のオンオフのデューティ比を調整することによって、前記第1直流電力又は前記第2直流電力を選択的に前記蓄電部に対して入力させる。
本開示の他の側面によれば、交流電力が入力される1次側コイルを有する送電機器から非接触で前記交流電力を受電可能な受電機器であって、前記1次側コイルから非接触で前記交流電力を受電可能な2次側コイルと;前記2次側コイルによって受電された交流電力を整流する整流部と;前記整流部によって整流された直流電力が入力される蓄電部と;前記整流部と前記蓄電部との間に設けられ、周期的にスイッチングするスイッチング素子を有するDC/DCコンバータとを備え、前記蓄電部に対して入力される直流電力の電力値と、前記蓄電部の充電に適した電力値とのズレが生じる場合に、前記スイッチング素子のオンオフのデューティ比が調整されることによって、前記蓄電部に対して入力される直流電力の電力値が、前記蓄電部の充電に適した電力値に近づく。
上記態様との関係においては、交流電源を省略して、系統電源の系統電力が送電機器に入力されるように、送電機器が構成されてもよい。
本開示の他の特徴と利点は、以下の詳細な説明と、本開示の特徴を説明するために付随する図面とによって明らかであろう。
本開示の他の特徴と利点は、以下の詳細な説明と、本開示の特徴を説明するために付随する図面とによって明らかであろう。
本開示の新規であると思われる特徴は、特に、添付した請求の範囲において明らかである。目的と利益を伴う本開示は、以下に示す現時点における好ましい実施形態の説明を添付した図面とともに参照することで、理解されるであろう。
図1は、第1実施形態の非接触電力伝送装置のブロック図を示す。
図2は、第2実施形態の非接触電力伝送装置のブロック図を示す。
(第1実施形態)
図1に示すように、非接触電力伝送装置(非接触電力伝送システム)10は、地上に設けられた地上側機器11と、車両に搭載された車両側機器21とを備える。地上側機器11が1次側機器(送電機器、送電装置)に対応し、車両側機器21が2次側機器(受電機器、受電装置)に対応する。
図1に示すように、非接触電力伝送装置(非接触電力伝送システム)10は、地上に設けられた地上側機器11と、車両に搭載された車両側機器21とを備える。地上側機器11が1次側機器(送電機器、送電装置)に対応し、車両側機器21が2次側機器(受電機器、受電装置)に対応する。
地上側機器11は、所定の周波数の高周波電力(交流電力)を出力可能な高周波電源12(交流電源)を備える。高周波電源12は、系統電力を用いて高周波電力を出力できるように構成されている。具体的には、高周波電源12は、系統電力を直流電力に変換するAC/DC変換器12aと、その直流電力を高周波電力に変換するDC/RF変換器12bとを備える。これら各変換器12a,12bは、スイッチング素子を有し、スイッチング素子のスイッチング(オンオフ)によって動作する。つまり、高周波電源12は、スイッチング素子のスイッチングによって上記所定の周波数の高周波電力を得るスイッチング電源である。
高周波電源12から出力された高周波電力は、非接触で車両側機器21に伝送され、車両側機器21に設けられた車両用バッテリ22(蓄電部)の充電に用いられる。具体的には、非接触電力伝送装置10は、地上側機器11と車両側機器21との間の電力伝送を行うものとして地上側機器11に設けられた送電器13と、車両側機器21に設けられた受電器23とを備える。送電器13には高周波電力が入力される。
送電器13及び受電器23は、磁場共鳴可能に構成されている。具体的には、送電器13は、並列に接続された1次側コイル13a及び1次側コンデンサ13bからなる共振回路で構成されている。受電器23は、並列に接続された2次側コイル23a及び2次側コンデンサ23bからなる共振回路で構成されている。送電器13及び受電器23の共振周波数は、同一である。
かかる構成によれば、高周波電源12から高周波電力が送電器13(1次側コイル13a)に入力された場合、送電器13と受電器23(2次側コイル23a)とが磁場共鳴する。これにより、受電器23は送電器13のエネルギの一部を受け取る。すなわち、受電器23は、送電器13から高周波電力を受電する。
車両側機器21は、受電器23によって受電された高周波電力を直流電力に整流する整流部としての整流器24と、整流器24によって整流された直流電力の電圧値を異なる電圧値に変換して車両用バッテリ22に出力するDC/DCコンバータ25とを備える。DC/DCコンバータ25は、周期的にスイッチング(オンオフ)するスイッチング素子25aを備える。DC/DCコンバータ25は、スイッチング素子25aのスイッチングによって、そのスイッチング素子25aのオンオフのデューティ比に応じた電圧値変換を行う。
車両用バッテリ22は、例えば直列に接続された複数の電池セルから構成され、DC/DCコンバータ25から直流電力が入力されることで充電される。
ここで、車両用バッテリ22の充電態様には、通常充電と押し込み充電とがある。通常充電は、充電の開始時から充電量が予め定められた閾値量となるまで行われる充電態様である。押し込み充電は、充電量が上記閾値量以上となることに基づき行われ、各電池セルの容量ばらつきを補償(低減)させる充電態様である。
ここで、車両用バッテリ22の充電態様には、通常充電と押し込み充電とがある。通常充電は、充電の開始時から充電量が予め定められた閾値量となるまで行われる充電態様である。押し込み充電は、充電量が上記閾値量以上となることに基づき行われ、各電池セルの容量ばらつきを補償(低減)させる充電態様である。
整流器24と車両用バッテリ22との間には、車両用バッテリ22の充電量を検知する検知センサ26が設けられている。検知センサ26の検知結果は、車両側機器21に設けられた制御部としての車両側コントローラ27に入力される。これにより、車両側コントローラ27は、車両用バッテリ22の充電量を把握することができる。
地上側機器11には、車両側コントローラ27と無線通信可能な電源側コントローラ14が設けられている。電源側コントローラ14は、車両側コントローラ27と情報のやり取りを行うことを通じて、高周波電源12から高周波電力を出力するかどうか判断する。
次に、車両用バッテリ22に入力される直流電力(高周波電源12から出力される高周波電力)の電力値、及びそれを調整する構成が詳細に説明される。説明の便宜上、以降の説明においては、送電器13及び受電器23の相対位置は、予め定められた基準位置であるとする。
高周波電源12は、高周波電源12内で、出力される高周波電力の電圧値及び電流値を変更することができない電源である。換言すれば、高周波電源12内において設定可能な電力値は、1種類のみとなっている。
高周波電源12の出力端から車両用バッテリ22までを1つの負荷30とすると、高周波電源12から出力される高周波電力は、負荷30に入力される。負荷30のインピーダンスZinの基準値(初期値)は、スイッチング素子25aのオンオフのデューティ比が予め定められた基準比である条件下において、高周波電源12から、車両用バッテリ22の通常充電に適した電力値の高周波電力(以下、設定値電力という)が出力されるように、設定されている。設定値電力は、通常充電に適した電力値の直流電力(以下、通常充電電力)を車両用バッテリ22に入力するために必要な電力値を有する高周波電力である。
高周波電源12から出力される高周波電力の電力値は、負荷30のインピーダンスZinに応じて変動する。高周波電源12から出力される高周波電力の電力値が変動すれば、車両用バッテリ22に入力される直流電力の電力値も変動する。例えば負荷30のインピーダンスZinが基準値よりも大きい場合には、通常充電電力の電力値よりも小さい電力値の直流電力が、車両用バッテリ22に入力される。一方、負荷30のインピーダンスZinが基準値よりも小さい場合には、通常充電電力の電力値よりも大きい電力値の直流電力が、車両用バッテリ22に入力される。つまり、負荷30のインピーダンスZinを変えることで、車両用バッテリ22に所望の電力値の直流電力を入力させることが可能となる。
ここで、負荷30のインピーダンスZinは、DC/DCコンバータ25の入力端から車両用バッテリ22までのインピーダンス(DC/DCコンバータ25の入力インピーダンス)に依存する。DC/DCコンバータ25の入力インピーダンスは、スイッチング素子25aのオンオフのデューティ比に依存している。詳細には、DC/DCコンバータ25の出力側の電圧値は、車両用バッテリ22のバッテリ電圧値であり、バッテリ電圧値は、車両用バッテリ22の仕様によって一義的に決まっている。一方、デューティ比に応じて、DC/DCコンバータ25に入力される直流電力の電圧値及び電流値の双方が変動し、その結果、上記電圧値の電流値に対する比率であるDC/DCコンバータ25の入力インピーダンスが変動する。よって、上記デューティ比は、DC/DCコンバータ25の入力インピーダンスを規定し、その結果、負荷30のインピーダンスZinを規定することとなる。
かかる構成において、地上側機器11には、測定器40が設けられ、測定器40は、高周波電源12から出力されている高周波電力の電力値を測定する測定部である。測定器40は、高周波電源12の出力端(高周波電源12と送電器13との間)に設けられ、高周波電源12の出力電圧及び出力電流を測定し、その測定結果を電源側コントローラ14に送信する。
車両側コントローラ27は、測定器40の測定結果に基づき、スイッチング素子25aのオンオフのデューティ比を調整(変更)することによって、車両用バッテリ22に入力される直流電力の電力値を、換言すれば高周波電源12から出力される高周波電力の電力値を調整する。詳細には、車両側コントローラ27は、スイッチング素子25aのオンオフのデューティ比を調整する場合、電源側コントローラ14と情報をやり取りすることによって、測定器40の測定結果を把握する。そして、車両側コントローラ27は、測定器40の測定結果に基づき、高周波電源12から、設定値電力とは異なる電力値の高周波電力が、例えば調整電力が出力されるように、スイッチング素子25aのオンオフのデューティ比を調整する。調整電力とは、押し込み充電するのに適した電力値の直流電力である「押し込み充電電力」を車両用バッテリ22に入力させるために必要な電力値を有する高周波電力である。
次に、各コントローラ14,27の制御に係る構成について説明する。
図1に示すように、各コントローラ14,27は、送電器13及び受電器23の相対位置が基準位置となるように車両が配置された場合、車両用バッテリ22の現状の充電量を把握し、充電量に応じた充電制御を行う。
図1に示すように、各コントローラ14,27は、送電器13及び受電器23の相対位置が基準位置となるように車両が配置された場合、車両用バッテリ22の現状の充電量を把握し、充電量に応じた充電制御を行う。
具体的には、車両側コントローラ27は、現状の充電量が予め定められた閾値量よりも大きいか否か判定する。車両側コントローラ27は、現状の充電量が閾値量よりも小さい場合には、高周波電源12から設定値電力が出力されるように、測定器40の測定結果を参照しながらスイッチング素子25aのオンオフのデューティ比を調整する。一方、車両側コントローラ27は、現状の充電量が閾値量以上である場合には、高周波電源12から調整電力が出力されるように、測定器40の測定結果を参照しながらスイッチング素子25aのオンオフのデューティ比を調整する。
車両側コントローラ27は、充電中、定期的に車両用バッテリ22の充電量を把握する。高周波電源12から設定値電力が出力されている状況において車両用バッテリ22の充電量が閾値量以上となった場合には、車両側コントローラ27は、スイッチング素子25aのオンオフのデューティ比を調整することによって、高周波電源12から出力される高周波電力を、設定値電力から調整電力に切り換える。これにより、車両用バッテリ22には、調整電力に対応した直流電力(押し込み充電電力)が入力される(押し込み充電)。
そして、車両用バッテリ22の充電が完了(終了)した場合には、車両側コントローラ27は、停止要求信号を電源側コントローラ14に送信する。電源側コントローラ14は、停止要求信号を受信した場合に高周波電源12を制御して、高周波電力の出力を停止させる。これにより、車両用バッテリ22の充電が終了する。
次に、本実施形態の作用が説明される。
既に説明したとおり、スイッチング素子25aのオンオフのデューティ比が調整されることにより、負荷30のインピーダンスZinが調整され、車両用バッテリ22に入力される直流電力の電力値(高周波電源12から出力される高周波電力の電力値)が調整される。これにより、高周波電源12内で、高周波電源12から出力される高周波電力の電圧値又は電流値を変更することなく、車両用バッテリ22に入力される直流電力の電力値を調整することができる。
既に説明したとおり、スイッチング素子25aのオンオフのデューティ比が調整されることにより、負荷30のインピーダンスZinが調整され、車両用バッテリ22に入力される直流電力の電力値(高周波電源12から出力される高周波電力の電力値)が調整される。これにより、高周波電源12内で、高周波電源12から出力される高周波電力の電圧値又は電流値を変更することなく、車両用バッテリ22に入力される直流電力の電力値を調整することができる。
車両用バッテリ22の充電に適した電力値に着目すれば、車両用バッテリ22の充電に適した電力値は、充電態様(通常充電、押し込み充電)に応じて変動する。これに対して、車両側コントローラ27は、車両用バッテリ22の充電に適した電力値が変動する場合に、スイッチング素子25aのオンオフのデューティ比を調整することによって、車両用バッテリ22に入力される直流電力の電力値を、上記車両用バッテリ22の充電に適した電力値の変動に追従させているとも言える。
以上詳述した本実施形態によれば以下の優れた効果を奏する。
(1)DC/DCコンバータ25のスイッチング素子25aのオンオフのデューティ比を調整することによって、負荷30のインピーダンスZinを調整し、それを通じて車両用バッテリ22に対して充電に適した電力値の直流電力(通常充電電力及び押し込み充電電力)を入力させるように、車両側機器21は構成された。これにより、高周波電源12内で出力される高周波電力の電圧値、電流値を変更できない場合であっても、車両用バッテリ22に通常充電電力及び押し込み充電電力を入力することができる。よって、高周波電源12から出力される高周波電力の電力値を可変させる部品(例えば高周波電源12内のDC/DCコンバータ等)を省略することができる。したがって、充電に適した電力値の直流電力を車両用バッテリ22に入力させつつ、高周波電源12の構成の簡素化を図ることができる。
(1)DC/DCコンバータ25のスイッチング素子25aのオンオフのデューティ比を調整することによって、負荷30のインピーダンスZinを調整し、それを通じて車両用バッテリ22に対して充電に適した電力値の直流電力(通常充電電力及び押し込み充電電力)を入力させるように、車両側機器21は構成された。これにより、高周波電源12内で出力される高周波電力の電圧値、電流値を変更できない場合であっても、車両用バッテリ22に通常充電電力及び押し込み充電電力を入力することができる。よって、高周波電源12から出力される高周波電力の電力値を可変させる部品(例えば高周波電源12内のDC/DCコンバータ等)を省略することができる。したがって、充電に適した電力値の直流電力を車両用バッテリ22に入力させつつ、高周波電源12の構成の簡素化を図ることができる。
ここで、車両用バッテリ22に対して入力される直流電力の電力値と、車両用バッテリ22の充電に適した電力値との関係に着目すれば、車両用バッテリ22の充電に適した電力値が通常充電電力から押し込み充電電力になることによって、両者にズレが生じると言える。そして、デューティ比による調整は、上記ズレが生じる場合に、当該ズレが小さくなるように行われると言える。
(2)特に、負荷30のインピーダンスZinを調整するものとして、スイッチング素子25aのオンオフのデューティ比が採用された。これにより、高耐圧のキャパシタやインダクタ等を設けることなく、直流電力の電力値の調整を行うことができる。
設定値電力及び調整電力に着目すれば、車両側コントローラ27は、スイッチング素子25aのオンオフのデューティ比を調整することによって、高周波電源12から出力される高周波電力の電力値を調整するものであるとも言える。
また、スイッチング素子25aのオンオフのデューティ比に応じて、2次側コイル23aによって受電される高周波電力の電力値が変動することに着目する。そうすれば、車両側コントローラ27は、スイッチング素子25aのオンオフのデューティ比を調整することによって、2次側コイル23aによって受電される高周波電力の電力値を調整するものであるとも言える。
(第2実施形態)
本実施形態では、高周波電源の構成が第1実施形態とは異なっている。その異なる点が、図2を用いて説明される。同一の構成については同一の符号を付すとともに、その説明は省略される。
本実施形態では、高周波電源の構成が第1実施形態とは異なっている。その異なる点が、図2を用いて説明される。同一の構成については同一の符号を付すとともに、その説明は省略される。
図2に示すように、本実施形態の高周波電源52は、高周波電源52内において電圧値を可変制御(変更)することで電力値が互いに異なる複数種類の高周波電力を出力できるように構成されている。換言すれば、高周波電源52内において設定可能な複数種類の電力値が、存在する。詳細には、高周波電源52は、AC/DC変換器52a及びDC/RF変換器52bを備えるとともに、AC/DC変換器52aとDC/RF変換器52bとの間に設けられたDC/DCコンバータ52c(変更部)を備える。
DC/DCコンバータ52cは、スイッチング素子52ccを有し、スイッチング素子52ccのスイッチング(オンオフ)に基づき、AC/DC変換器52aによって変換された直流電力の電圧値を異なる電圧値に、詳細にはスイッチング素子52ccのオンオフのデューティ比に対応した電圧値に変換し、DC/RF変換器52bに出力する。そして、高周波電源52は、そのDC/DCコンバータ52cから出力される直流電力の電圧値に対応した電力値の高周波電力を出力する。DC/DCコンバータ52cから出力される直流電力の電圧値は、上記デューティ比によって規定されるため、高周波電源52から出力される高周波電力の電力値は、上記デューティ比によって規定される。
かかる構成において、電源側コントローラ14は、状況に応じて、高周波電源52から出力される高周波電力の電力値を変更する。例えば、車両側コントローラ27は、充電を行う状況において現状の充電量が閾値量よりも小さい場合には、第1要求信号を電源側コントローラ14に送信する。一方、充電を行う状況において現状の充電量が閾値量以上である場合には、車両側コントローラ27は、第2要求信号を電源側コントローラ14に送信する。
電源側コントローラ14は、第1要求信号を受信した場合には、高周波電源52から第1実施形態と同様の設定値電力が出力されるように、DC/DCコンバータ52c(スイッチング素子52ccのオンオフのデューティ比)を制御する。これにより、通常充電を行うことが可能となっている。
電源側コントローラ14は、第2要求信号を受信した場合には、高周波電源52から第1実施形態と同様の調整電力が出力されるように、DC/DCコンバータ52cを制御する。これにより、押し込み充電を行うことが可能となっている。つまり、DC/DCコンバータ52cは、車両用バッテリ22に入力される直流電力の電力値が車両用バッテリ22の充電に適した電力値になるように、高周波電源52内の電圧値を制御することによって高周波電源52から出力される高周波電力の電力値を変更する。
ここで、車両用バッテリ22は、入力される直流電力の電力値に応じてインピーダンスが変動する変動負荷である。このため、高周波電源52から出力される高周波電力の電力値が変更されることによって、車両用バッテリ22に入力される直流電力の電力値が変動すると、車両用バッテリ22のインピーダンスが変動し、高周波電源52の出力端から車両用バッテリ22までの負荷30のインピーダンスZinが変動する。すると、高周波電源52内において調整電力が出力されるように高周波電源52が調整されているにも関わらず、車両用バッテリ22に入力される直流電力の電力値が、押し込み充電電力の電力値からズレてしまう場合が生じ得る。
これに対して、本実施形態においては、車両用バッテリ22に入力される直流電力の電力値の変動に起因する負荷30のインピーダンスZinの変動に応じて、スイッチング素子25aのオンオフのデューティ比が、調整される。詳細には、車両側コントローラ27は、電源側コントローラ14と情報をやり取りすることを通じて、測定器40の測定結果を取得し、その測定結果に基づき、高周波電源52から出力される高周波電力の電力値を把握する。そして、車両側コントローラ27は、高周波電源52から出力される高周波電力の電力値が調整電力の電力値とは異なる場合には、高周波電源52から出力される高周波電力の電力値が調整電力の電力値に近づくように、スイッチング素子25aのオンオフのデューティ比を調整する。換言すれば、車両側コントローラ27は、車両用バッテリ22の充電に適した電力値が変動する場合に、スイッチング素子25aのオンオフのデューティ比を調整することによって、車両用バッテリ22に入力される直流電力の電力値を、車両用バッテリ22の充電に適した電力値(押し込み充電電力の電力値)に近づけている。
次に、本実施形態の作用が説明される。
高周波電源52は、高周波電源52内において電圧値を可変制御することで、電力値が異なる複数種類の高周波電力を出力できる。かかる構成において、高周波電源52内において高周波電源52から出力される高周波電力が設定値電力から調整電力に変更された場合、負荷30のインピーダンスZinの変動に応じて、スイッチング素子25aのオンオフのデューティ比が調整される。詳細には、スイッチング素子25aのオンオフのデューティ比は、高周波電源52から負荷30に入力される高周波電力の電力値が調整電力の電力値と一致するように、調整される。これにより、車両用バッテリ22のインピーダンスが変動する場合であっても、各充電態様に適した電力値の直流電力を車両用バッテリ22に入力させることができる。
高周波電源52は、高周波電源52内において電圧値を可変制御することで、電力値が異なる複数種類の高周波電力を出力できる。かかる構成において、高周波電源52内において高周波電源52から出力される高周波電力が設定値電力から調整電力に変更された場合、負荷30のインピーダンスZinの変動に応じて、スイッチング素子25aのオンオフのデューティ比が調整される。詳細には、スイッチング素子25aのオンオフのデューティ比は、高周波電源52から負荷30に入力される高周波電力の電力値が調整電力の電力値と一致するように、調整される。これにより、車両用バッテリ22のインピーダンスが変動する場合であっても、各充電態様に適した電力値の直流電力を車両用バッテリ22に入力させることができる。
すなわち、車両用バッテリ22の充電に適した電力値が通常充電電力から押し込み充電電力になることに応じて、高周波電源52から出力される高周波電力の電力値が変更される。この場合、負荷30のインピーダンスZinの変動に起因して、車両用バッテリ22に入力される直流電力の電力値と、車両用バッテリ22の充電に適した電力値とのズレが生じる。そして、そのズレが小さくなるように、スイッチング素子25aのオンオフのデューティ比は、調整される。
以上詳述した本実施形態は、以下の優れた効果を奏する。
(3)DC/DCコンバータ52cによる設定値電力から調整電力への変更に伴う負荷30のインピーダンスZinの変動に応じて、スイッチング素子25aのオンオフのデューティ比を調整するように、車両側機器21は構成された。詳細には、高周波電源52から出力される高周波電力の電力値が調整電力の電力値に近づくように、スイッチング素子25aのオンオフのデューティ比が調整される。これにより、負荷30のインピーダンスZinが変動した場合であっても、押し込み充電に適した電力値の直流電力(押し込み充電電力)を車両用バッテリ22に入力することができる。よって、高周波電源52から出力される高周波電力の電力値を決定する際には、上記インピーダンスZinの変動を考慮する必要がなく、高周波電源52から出力される高周波電力の電力値は、単純に所望の電力値との関係で設定されればよい。これにより、高周波電源52の設定値の設計の容易化を図ることができる。換言すれば、車両側コントローラ27は、DC/DCコンバータ52cによる設定値電力から調整電力への変更に伴う車両用バッテリ22のインピーダンスの変動に起因する車両用バッテリ22の入力電力の電力値の変動が低減されるように、スイッチング素子25aのオンオフのデューティ比を調整するとも言える。
(3)DC/DCコンバータ52cによる設定値電力から調整電力への変更に伴う負荷30のインピーダンスZinの変動に応じて、スイッチング素子25aのオンオフのデューティ比を調整するように、車両側機器21は構成された。詳細には、高周波電源52から出力される高周波電力の電力値が調整電力の電力値に近づくように、スイッチング素子25aのオンオフのデューティ比が調整される。これにより、負荷30のインピーダンスZinが変動した場合であっても、押し込み充電に適した電力値の直流電力(押し込み充電電力)を車両用バッテリ22に入力することができる。よって、高周波電源52から出力される高周波電力の電力値を決定する際には、上記インピーダンスZinの変動を考慮する必要がなく、高周波電源52から出力される高周波電力の電力値は、単純に所望の電力値との関係で設定されればよい。これにより、高周波電源52の設定値の設計の容易化を図ることができる。換言すれば、車両側コントローラ27は、DC/DCコンバータ52cによる設定値電力から調整電力への変更に伴う車両用バッテリ22のインピーダンスの変動に起因する車両用バッテリ22の入力電力の電力値の変動が低減されるように、スイッチング素子25aのオンオフのデューティ比を調整するとも言える。
特に、高周波電源52から出力される高周波電力の電力値を変更することによって、車両用バッテリ22に入力される直流電力は、或る程度、押し込み充電電力に近づく。そのため、押し込み充電電力を入力させるのに要するスイッチング素子25aのオンオフのデューティ比の可変範囲を狭くすることができる。
(4)また、スイッチング素子25aのオンオフのデューティ比によって負荷30のインピーダンスZinを調整することができ、その結果、高周波電源52から出力される高周波電力の電力値を調整することができる。すなわち、高周波電源52から出力される高周波電力の電力値を可変させるパラメータとして、高周波電源52内の電圧値(スイッチング素子52ccのオンオフのデューティ比)及びスイッチング素子25aのオンオフのデューティ比の双方が存在する。これにより、スイッチング素子52ccのオンオフのデューティ比とスイッチング素子25aのオンオフのデューティ比とを組み合わせることによって、高周波電力の電力値の変動範囲(可変幅)を広くすることができる。よって、仮に仕様の変更等に起因して、電力伝送に用いられる電力値(の最大値)が変更される場合であっても、本実施形態は、好適に対応することができる。
上記各実施形態は、以下のように変更されてもよい。
○ 各実施形態では、送電器13及び受電器23の相対位置は基準位置であるとされたが、これに限定されない。実施形態は、例えば両者の相対位置が基準位置からズレている場合であってもよい。この場合、充電に適した電力値の直流電力が車両用バッテリ22に入力されるように、測定器40の測定結果に基づきスイッチング素子25aのオンオフのデューティ比が調整されるとよい。
○ 各実施形態では、送電器13及び受電器23の相対位置は基準位置であるとされたが、これに限定されない。実施形態は、例えば両者の相対位置が基準位置からズレている場合であってもよい。この場合、充電に適した電力値の直流電力が車両用バッテリ22に入力されるように、測定器40の測定結果に基づきスイッチング素子25aのオンオフのデューティ比が調整されるとよい。
○ 調整電力に加えて(又は代えて)、他の電力値の高周波電力が出力されるように、高周波電源12,52が構成されてもよい。例えば、通常充電よりも充電時間が短くなる急速充電を行う場合には、通常充電電力の電力値よりも大きな電力値の直流電力が車両用バッテリ22に入力されるように、スイッチング素子25aのオンオフのデューティ比が調整されてもよい。
○ 各実施形態では、高周波電源12,52の出力端に測定器40を設けたが、これに限定されない。高周波電源12,52の設定箇所は、任意である。例えば車両側機器21に測定器40を設け、その測定結果に基づき、高周波電源12,52から出力される高周波電力の電力値を推定するように、非接触電力伝送装置10は構成されてもよい。車両用バッテリ22に入力される直流電力の電力値を測定し、その測定結果を車両側コントローラ27に出力する測定器が、車両側機器21に設けられてもよい。この場合、電源側コントローラ14と車両側コントローラ27とは測定結果に係る情報をやり取りする必要がないため、処理の簡素化を図ることができる。
○ 各実施形態では、車両側コントローラ27がスイッチング素子25aのオンオフのデューティ比の調整を行う構成であったが、これに限定されない。制御の主体は、任意であり、例えば車両側コントローラ27とは別に専用の制御回路が設けられてもよい。また、例えばスイッチング素子25aのオンオフのデューティ比を可変させる駆動回路(パルス信号出力回路)を設けることで、電源側コントローラ14がその駆動回路の制御を行うように、非接触電力伝送装置10は構成されてもよい。
○ 各実施形態では、測定器40が設けられていたが、これに限定されない。測定器40は、省略されてもよい。この場合、例えば、送電器13及び受電器23の相対位置が基準位置となっている条件下においては、車両用バッテリ22に入力される直流電力の電力値が充電に適した電力値(例えば押し込み充電電力の電力値)となるスイッチング素子25aのオンオフのデューティ比を把握(算出)できる。このため、車両用バッテリ22の充電に適した電力値と、当該充電に適した電力値が車両用バッテリ22に入力されるためのスイッチング素子25aのオンオフのデューティ比とが対応付けられて設定されたマップが、メモリに記憶されるとよい。車両側コントローラ27は、マップを参照することで、スイッチング素子25aのオンオフのデューティ比を特定し、特定結果に基づき上記デューティ比の調整を行う。
○ 高周波電源12,52から出力される高周波電力の電圧波形は、パルス波形、正弦波等任意である。
○ 各実施形態では、各コンデンサ13b,23bが設けられたが、これに限定されない。各コンデンサ13b,23bは、省略されてもよい。この場合、各コイル13a,23aの寄生容量を用いて、送電器13と受電器23とは、磁場共鳴する。
○ 各実施形態では、各コンデンサ13b,23bが設けられたが、これに限定されない。各コンデンサ13b,23bは、省略されてもよい。この場合、各コイル13a,23aの寄生容量を用いて、送電器13と受電器23とは、磁場共鳴する。
○ 各実施形態では、送電器13の共振周波数と受電器23の共振周波数とは、同一に設定されていたが、これに限定されない。電力伝送が可能な範囲内で、送電器13の共振周波数と受電器23の共振周波数とを異ならせてもよい。
○ 各実施形態では、非接触の電力伝送を実現させるために磁場共鳴が用いられたが、これに限定されない。電磁誘導が用いられてもよい。
○ 送電器13は、1次側コイル13a及び1次側コンデンサ13bからなる共振回路と、その共振回路に電磁誘導で結合する1次側結合コイルとを有するように構成されてもよい。同様に、受電器23は、2次側コイル23a及び2次側コンデンサ23bからなる共振回路と、その共振回路に電磁誘導で結合する2次側結合コイルとを有するように構成されてもよい。
○ 送電器13は、1次側コイル13a及び1次側コンデンサ13bからなる共振回路と、その共振回路に電磁誘導で結合する1次側結合コイルとを有するように構成されてもよい。同様に、受電器23は、2次側コイル23a及び2次側コンデンサ23bからなる共振回路と、その共振回路に電磁誘導で結合する2次側結合コイルとを有するように構成されてもよい。
○ 高周波電源12,52は、電圧源でもあってもよいし、電流源であってもよい。高周波電源52は、高周波電源52内において電圧値を可変制御することで電力値が異なる複数種類の高周波電力を出力できるように構成されているが、これに限定されない。高周波電源52は、高周波電源52内において電流値を可変制御することで電力値が異なる複数種類の高周波電力を出力できるように、構成されていてもよい。「高周波電源52内において電圧値又は電流値を可変制御(変更)する」とは、高周波電源52に入力される交流電力(系統電力)の電圧値又は電流値を可変制御するとも言える。つまり、高周波電源52は、入力される交流電力の電圧値又は電流値を可変制御することで電力値が異なる複数種類の高周波電力を出力できるように、構成されているとも言える。
○ 各実施形態では、非接触電力伝送装置10は、車両に適用されていたが、これに限定されず、他の機器に適用されてもよい。例えば非接触電力伝送装置10は、携帯電話のバッテリを充電するのに適用されてもよい。
○ 各実施形態では、充電に適した電力値が変動する場合にデューティ比の調整が行われるように、車両側機器21は構成されたが、これに限定されない。例えば充電に適した電力値が一定である状況において定期的に車両用バッテリ22に入力される直流電力の電力値を測定し、その測定結果から現状の充電に適した電力値とのズレを算出し、そのズレ量が予め定められた許容値を超えている場合に、デューティ比の調整を行うように、車両側機器21は構成されてもよい。要は、「前記蓄電部に入力される直流電力の電力値と、前記蓄電部の充電に適した電力値とのズレ」とは、蓄電部の充電に適した電力値の変動、及び、前記蓄電部に対して入力される直流電力の電力値の変動の少なくとも一方に基づき生じ得る。電力伝送に支障が少ない微小なズレを対象外とするべく、上記のように、ズレ量に許容値を設け、ズレ量が許容値を超えた場合にデューティ比の調整が行われるように、車両側機器21は構成されてもよい。
○ 車両側機器21に、詳細には受電器23と整流器24との間に、インピーダンス変換を行う2次側インピーダンス変換器が、設けられてもよい。ここで、受電器23の出力端から車両用バッテリ22までのインピーダンスの実部には、他の抵抗値と比較して、相対的に高い伝送効率となる特定抵抗値が存在する。換言すれば、受電器23の出力端から車両用バッテリ22までのインピーダンスの実部には、所定の抵抗値(第1抵抗値)よりも伝送効率が高くなる特定抵抗値(第2抵抗値)が存在する。詳細には、仮に送電器13の入力端に仮想負荷を設けた場合において、仮想負荷の抵抗値をRa1と称し、受電器23(詳細には受電器23の出力端)から仮想負荷までの抵抗値をRb1と称すると、特定抵抗値は、√(Ra1×Rb1)である。
これに対応して、2次側インピーダンス変換器は、受電器23の出力端から車両用バッテリ22までのインピーダンスが特定抵抗値に近づく(好ましくは一致する)ように、整流器24の入力端から車両用バッテリ22までのインピーダンスをインピーダンス変換してもよい。
○ 地上側機器11に、詳細には高周波電源12,52と送電器13との間に、インピーダンス変換を行う1次側インピーダンス変換器が設けられてもよい。この場合、1次側インピーダンス変換器は、例えば力率が改善されるように、送電器13の入力端から車両用バッテリ22までのインピーダンスをインピーダンス変換するとよい。
上記実施形態においては、高周波電源12,52を省略して、系統電源の系統電力が送電器13に入力されるように、送電器13は構成されてもよい。
10…非接触電力伝送装置、11…地上側機器(送電機器)、12…高周波電源、13a…1次側コイル、21…車両側機器(受電機器)、22…車両用バッテリ(蓄電部)、23a…2次側コイル、25…DC/DCコンバータ、25a…DC/DCコンバータのスイッチング素子、30…負荷、40…測定器、52…第2実施形態の高周波電源、52c…DC/DCコンバータ。
Claims (6)
- 非接触電力伝送装置であって、
交流電力を出力する交流電源と;
前記交流電力が入力される1次側コイルと;
前記1次側コイルから非接触で前記交流電力を受電可能な2次側コイルと;
前記2次側コイルによって受電された交流電力を整流する整流部と;
前記整流部によって整流された直流電力が入力される蓄電部と;
前記整流部と前記蓄電部との間に設けられ、周期的にスイッチングするスイッチング素子を有するDC/DCコンバータと;
前記スイッチング素子のオンオフのデューティ比を調整することによって、前記蓄電部に対して入力される直流電力の電力値を、前記蓄電部の充電に適した電力値に近づける調整を行う制御部と
を備える、非接触電力伝送装置。 - 前記制御部は、前記蓄電部に入力される直流電力の電力値と、前記蓄電部の充電に適した電力値とのズレが生じる場合に、前記調整を行う、
請求項1に記載の非接触電力伝送装置。 - 前記交流電源によって設定可能な電力値は、1種類である、
請求項1又は請求項2に記載の非接触電力伝送装置。 - 前記交流電源は、前記交流電源内において電圧値又は電流値を変更することによって、前記交流電源から出力される交流電力の電力値を変更する変更部を備え、前記変更部によって、前記蓄電部に入力される直流電力の電力値が、前記蓄電部の充電に適した電力値に近づくようにし、
前記蓄電部のインピーダンスは、入力される直流電力の電力値に応じて変動し、
前記制御部は、前記変更部による変更が行われた場合、前記蓄電部のインピーダンスの変動に応じて前記スイッチング素子のオンオフのデューティ比を調整することによって、前記蓄電部に入力される直流電力の電力値を前記蓄電部の充電に適した電力値に近づける、
請求項2に記載の非接触電力伝送装置。 - 前記蓄電部の充電に適した電力値の直流電力には、電力値が互いに相違する第1直流電力と第2直流電力とが存在し、
前記制御部は、前記スイッチング素子のオンオフのデューティ比を調整することによって、前記第1直流電力又は前記第2直流電力を選択的に前記蓄電部に対して入力させる、
請求項2に記載の非接触電力伝送装置。 - 交流電力が入力される1次側コイルを有する送電機器から非接触で前記交流電力を受電可能な受電機器であって、
前記1次側コイルから非接触で前記交流電力を受電可能な2次側コイルと;
前記2次側コイルによって受電された交流電力を整流する整流部と;
前記整流部によって整流された直流電力が入力される蓄電部と;
前記整流部と前記蓄電部との間に設けられ、周期的にスイッチングするスイッチング素子を有するDC/DCコンバータと
を備え、
前記蓄電部に対して入力される直流電力の電力値と、前記蓄電部の充電に適した電力値とのズレが生じる場合に、前記スイッチング素子のオンオフのデューティ比が調整されることによって、前記蓄電部に対して入力される直流電力の電力値が、前記蓄電部の充電に適した電力値に近づく、受電機器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012240461A JP2014090633A (ja) | 2012-10-31 | 2012-10-31 | 非接触電力伝送装置 |
JP2012-240461 | 2012-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014069148A1 true WO2014069148A1 (ja) | 2014-05-08 |
Family
ID=50627064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/076767 WO2014069148A1 (ja) | 2012-10-31 | 2013-10-02 | 非接触電力伝送装置および受電機器 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014090633A (ja) |
WO (1) | WO2014069148A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6181614B2 (ja) * | 2014-08-04 | 2017-08-16 | 株式会社Soken | 非接触電力伝送システム |
JP7253223B2 (ja) * | 2018-10-17 | 2023-04-06 | 学校法人立命館 | 無線給電システム、送電装置、及びコントローラ |
JP7251253B2 (ja) * | 2019-03-27 | 2023-04-04 | Tdk株式会社 | ワイヤレス送電装置、及びワイヤレス電力伝送システム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010017018A (ja) * | 2008-07-04 | 2010-01-21 | Sanyo Electric Co Ltd | 電池内蔵機器と充電台 |
JP2011120443A (ja) * | 2009-11-09 | 2011-06-16 | Toyota Industries Corp | 共鳴型非接触電力伝送装置 |
-
2012
- 2012-10-31 JP JP2012240461A patent/JP2014090633A/ja active Pending
-
2013
- 2013-10-02 WO PCT/JP2013/076767 patent/WO2014069148A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010017018A (ja) * | 2008-07-04 | 2010-01-21 | Sanyo Electric Co Ltd | 電池内蔵機器と充電台 |
JP2011120443A (ja) * | 2009-11-09 | 2011-06-16 | Toyota Industries Corp | 共鳴型非接触電力伝送装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2014090633A (ja) | 2014-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014045874A1 (ja) | 受電機器及び非接触電力伝送装置 | |
US9634636B2 (en) | Non-contact power transmission device | |
JP5880122B2 (ja) | 非接触電力伝送装置 | |
JP6089687B2 (ja) | 受電機器及び非接触電力伝送装置 | |
US9773609B2 (en) | Power supply apparatus and power control method thereof | |
JP2016063726A (ja) | 受電機器及び非接触電力伝送装置 | |
WO2014054396A1 (ja) | 受電機器、送電機器及び非接触電力伝送装置 | |
WO2014007352A1 (ja) | 送電機器及び非接触電力伝送装置 | |
WO2014045873A1 (ja) | 受電機器及び非接触電力伝送装置 | |
WO2014069148A1 (ja) | 非接触電力伝送装置および受電機器 | |
JP2015080296A (ja) | 受電機器及び非接触電力伝送装置 | |
WO2015083578A1 (ja) | 非接触電力伝送装置及び受電機器 | |
JP5888201B2 (ja) | 受電機器、及び非接触電力伝送装置 | |
WO2014003026A1 (ja) | 非接触電力伝送装置及び受電機器 | |
WO2014054395A1 (ja) | 送電機器、受電機器及び非接触電力伝送装置 | |
JP2016092959A (ja) | 送電機器及び非接触電力伝送装置 | |
JP6015608B2 (ja) | 受電機器及び非接触電力伝送装置 | |
WO2014030689A1 (ja) | 非接触電力伝送装置および受電機器 | |
WO2015098747A1 (ja) | 送電機器及び非接触電力伝送装置 | |
WO2015064361A1 (ja) | 非接触電力伝送装置、送電機器及び受電機器 | |
WO2014069147A1 (ja) | 送電機器及び非接触電力伝送装置 | |
JP2014090634A (ja) | 非接触電力伝送装置 | |
JP2016208602A (ja) | 非接触電力伝送装置 | |
WO2013183701A1 (ja) | 受電機器、送電機器及び非接触電力伝送装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13850353 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13850353 Country of ref document: EP Kind code of ref document: A1 |