WO2020225854A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2020225854A1
WO2020225854A1 PCT/JP2019/018278 JP2019018278W WO2020225854A1 WO 2020225854 A1 WO2020225854 A1 WO 2020225854A1 JP 2019018278 W JP2019018278 W JP 2019018278W WO 2020225854 A1 WO2020225854 A1 WO 2020225854A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
phase difference
terminal
bridge circuit
Prior art date
Application number
PCT/JP2019/018278
Other languages
English (en)
French (fr)
Inventor
卓治 石橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/018278 priority Critical patent/WO2020225854A1/ja
Priority to EP19927701.3A priority patent/EP3968507A4/en
Priority to US17/438,936 priority patent/US11881785B2/en
Priority to JP2021518234A priority patent/JP7199520B2/ja
Publication of WO2020225854A1 publication Critical patent/WO2020225854A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device.
  • a power conversion device provided with a bridge circuit using a semiconductor switching element is known.
  • the bridge circuit converts DC power into AC power or AC power into DC power by controlling the on / off of the semiconductor switching element.
  • FIG. 2 of JP-A-2015-12750 Patent Document 1
  • power conversion for performing power transmission between DC voltage sources is performed by connecting a bridge circuit to each of the primary side and the secondary side of the transformer. The device is described.
  • the operating region in which soft switching is possible is expanded by providing a zero voltage period for the AC voltage input to the transformer.
  • the soft switchable region is expanded by controlling two variables, a control angle for power control and a phase period for controlling a zero voltage period.
  • the transmitted power becomes a two-variable function of the control angle and the phase period, and the phase period becomes a function of the control angle.
  • the control angle and the phase period which are control variables, interfere with each other, it becomes difficult to uniquely determine both, and there is a concern that the control becomes complicated.
  • the present invention has been made to solve such a problem, and an object of the present invention is high-efficiency electric power capable of power conversion in an expanded soft switching region without complicating control. It is to provide a conversion device.
  • the power conversion device includes a first DC terminal, a second DC terminal, a transformer, a first bridge circuit, a second bridge circuit, and a control circuit.
  • the transformer has a magnetically coupled first and second winding.
  • the first bridge circuit is connected between the first DC terminal and the first AC terminal connected to the first winding, and is connected to the first DC voltage of the first DC terminal and the first AC of the first AC terminal. Performs power conversion between voltages.
  • the second bridge circuit is connected between the second DC terminal and the second AC terminal connected to the second winding, and is connected to the second DC voltage of the second DC terminal and the second AC of the second AC terminal. Performs power conversion between voltages.
  • Each of the first and second bridge circuits includes a plurality of switching legs connected in parallel.
  • Each of the plurality of switching legs has a positive electrode side switching element and a negative electrode side switching element connected in series, and a snubber capacitor.
  • the snubber capacitor is connected in parallel to each of the positive electrode side switching element and the negative electrode side switching element.
  • the control circuit controls the on / off of each positive electrode side switching element and each negative electrode side switching element in the first and second bridge circuits.
  • the control circuit alternately turns on and off the positive electrode side switching element and the negative electrode side switching element after setting a dead time of a predetermined length in each switching leg.
  • the power converter has a first mode of operation for power transmission between the first DC terminal and the second DC terminal.
  • the control circuit provides a first phase difference for controlling transmitted power between the switching phases of the first bridge circuit and the second bridge circuit, and also provides a first AC voltage and a second AC voltage.
  • the first and second bridges are provided so that one of the AC voltages has a zero voltage period while the other AC voltage of the first and second AC voltages does not have a zero voltage period. It controls the on / off of each positive side switching element and each negative side switching element of the circuit.
  • the length of the zero voltage period is the charge of the snubber capacitor during the dead time in each switching leg of the bridge circuit that outputs the AC voltage of the other of the first bridge circuit and the second bridge circuit. It is determined that the discharge is completed.
  • a zero voltage period is provided only for one of the first AC voltage and the second AC voltage from the first bridge circuit and the second bridge circuit, and the length of the zero voltage period can be switched to zero volt. Since the setting is made according to the above conditions, the zero voltage period length and the first phase difference for power transmission control can be obtained individually. As a result, it is possible to provide a highly efficient power conversion device capable of power conversion in which the soft switching region is expanded without complicating control.
  • FIG. 5 is a first waveform diagram illustrating an example of on / off control of a switching element when a zero voltage period is provided on the first bridge circuit side (Embodiment 1).
  • FIG. 2 is a second waveform diagram illustrating an example of on / off control of a switching element when a zero voltage period is provided on the first bridge circuit side (Embodiment 1).
  • FIG. 5 is a first waveform diagram illustrating an example of on / off control of a switching element when a zero voltage period is provided on the second bridge circuit side (Embodiment 2).
  • FIG. 5 is a second waveform diagram illustrating an example of on / off control of a switching element when a zero voltage period is provided on the second bridge circuit side (Embodiment 2).
  • FIG. It is a block diagram explaining the structural example of the control circuit of the power conversion apparatus which concerns on Embodiment 3.
  • FIG. It is a flowchart explaining the control process by the phase difference calculation unit shown in FIG. It is the first graph which shows the simulation result of the power transmission efficiency with respect to the change of the transmission power in the power conversion apparatus which concerns on this embodiment.
  • FIG. 5 It is a block diagram explaining the 1st block diagram of the control circuit of the power conversion apparatus which concerns on Embodiment 6. It is a block diagram explaining the 2nd structural example of the control circuit of the power conversion apparatus which concerns on Embodiment 6.
  • FIG. 1 is a circuit diagram showing a configuration example of the power conversion device according to the first embodiment.
  • the configuration shown in FIG. 1 is merely an example, and the control according to the present embodiment described later can be applied to a power conversion device that performs DC / DC conversion using a plurality of bridge circuits and transformers. is there.
  • the power conversion device 100 includes a first DC terminal 11, a first bridge circuit 12, a first AC terminal 13, a second DC terminal 21, and a second bridge.
  • a circuit 22, a second AC terminal 23, and a transformer 40 are provided.
  • the first DC terminal 11 is connected to the DC power supply 10.
  • the positive electrode side terminal of the first DC terminal 11 is connected to the power line PL1 on the positive electrode side.
  • the negative electrode side terminal of the first DC terminal 11 is connected to the power line NL1 on the negative electrode side.
  • the DC voltage V1 between the positive electrode side terminal and the negative electrode terminal of the first DC terminal 11 is detected by a sensor (not shown).
  • the first bridge circuit 12 has a DC capacitor Cdc1 connected between the power lines PL1 and NL1 and semiconductor switching elements (hereinafter, also simply referred to as “switching elements”) Q11 to Q14.
  • switching elements semiconductor switching elements
  • the switching elements Q11 and Q12 are connected in series between the power lines PL1 and NL1 to form the first switching leg.
  • the switching elements Q13 and Q14 are connected in series between the power lines PL1 and NL1 to form a second switching leg.
  • the intermediate point between the first and second switching legs connected in parallel, that is, the connection node of the switching elements Q11 and Q12 and the connection node of the switching elements Q13 and Q14 are connected to the first AC terminal 13.
  • the first AC terminal 13 is connected to the primary winding 41 of the transformer 40.
  • the second DC terminal 21 is connected to the load 20.
  • the positive electrode side terminal of the second DC terminal 21 is connected to the power line PL2 on the positive electrode side.
  • the negative electrode side terminal of the second DC terminal 21 is connected to the power line NL2 on the negative electrode side.
  • the DC voltage V2 between the positive electrode side terminal and the negative electrode terminal of the second DC terminal 21 is detected by a sensor (not shown).
  • the second bridge circuit 22 has a DC capacitor Cdc2 connected between the power lines PL2 and NL2, and semiconductor switching elements (hereinafter, also simply referred to as “switching elements”) Q21 to Q24.
  • switching elements semiconductor switching elements
  • the DC capacitors Cdc1 and Cdc2 an electrolytic capacitor, a film capacitor, or the like can be used.
  • a high-frequency current flows through the DC capacitors Cdc1 and Cdc2, but when a film capacitor is used, it is possible to extend the life by suppressing deterioration due to the high-frequency current.
  • the switching elements Q21 and Q22 are connected in series between the power lines PL2 and NL2 to form a third switching leg.
  • the switching elements Q23 and Q24 are connected in series between the power lines PL1 and NL1 to form a fourth switching leg.
  • the intermediate point of the third and fourth switching legs connected in parallel, that is, the connection node of the switching elements Q21 and Q22 and the connection node of the switching elements Q23 and Q24 are connected to the second AC terminal 23.
  • the second AC terminal 23 is connected to the secondary winding 42 of the transformer 40.
  • the switching elements Q11 to Q14 and Q21 to Q24 have a self-dissipating function such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) in which diodes are connected in antiparallel. It is possible to apply a semiconductor switching element.
  • Each of the switching elements Q11 to Q14 and Q21 to Q24 may be used by combining a plurality of semiconductor switching elements in parallel according to the current capacity.
  • Snubber capacitors Cs are connected in parallel to each of the switching elements Q11 to Q14 and Q21 to Q24. In the following, the capacitance value of the snubber capacitor is also referred to as Cs.
  • the control circuit 50 includes gate signals SQ11 to SQ14 that control the on / off of the switching elements Q11 to Q14 of the first bridge circuit, and gate signals SQ21 to SQ24 that control the on / off of the switching elements Q21 to Q24 of the second bridge circuit. To generate.
  • the first bridge circuit 12 controls the on / off of the switching elements Q11 to Q14 according to the gate signals SQ11 to SQ14 to direct current between the DC voltage V1 of the first DC terminal 11 and the AC voltage VT1 of the first AC terminal 13. / Perform AC voltage conversion.
  • the second bridge circuit 22 controls the on / off of the switching elements Q21 to Q24 according to the gate signals SQ21 to SQ24 to direct current between the DC voltage V2 of the second DC terminal 21 and the AC voltage VT2 of the second AC terminal 23. / Perform AC voltage conversion.
  • the DC voltage V1 is provided between the first DC terminal 11 (DC power supply 10) and the second DC terminal 21 (load 20) by the first bridge circuit 12, the transformer 40, and the second bridge circuit 22. And power transmission by DC / DC conversion of V2 can be performed.
  • the control circuit 50 transmits power transmitted between the first DC terminal 11 (DC power supply 10) and the second DC terminal 21 (load 20) based on the transmission power command value Pref and the DC voltages V1 and V2. Gate signals SQ11 to SQ14 and SQ21 to SQ24 are generated so as to be controlled according to the command value Pref.
  • the control circuit 50 may be composed of a digital electronic circuit such as a calculation processing device and a storage device as long as it has a control calculation function and a gate signal generation function described later, and a comparator, an operational amplifier, and a difference. It may be composed of an analog electronic circuit such as a dynamic amplification circuit. Alternatively, the control circuit 50 may be composed of both a digital electronic circuit and an analog electronic circuit.
  • An inductance element Lt exists between the first bridge circuit 12 and the second bridge circuit 22 and the transformer 40.
  • the inductance element Lt can be configured by utilizing the leakage inductance of the transformer 40.
  • each semiconductor switching element Q11 to Q14 and Q21 to Q24 can perform zero voltage switching which is soft switching.
  • Soft switching is a technique for reducing the voltage or current applied to a switching element during a switching transient period to reduce switching loss and electromagnetic noise.
  • the transformer 40 can be miniaturized by increasing the operating frequency (switching frequency).
  • the material of the iron core constituting the transformer 40 is amorphous.
  • a (amorphous) material a silicon steel plate having a silicon content of 6.5%, or a silicon steel plate having a plate thickness of about 0.1 mm, an increase in loss due to high frequency can be suppressed.
  • control is performed by providing only one of the first bridge circuit 12 and the second bridge circuit 22 with a zero voltage period equivalent to that of Patent Document 1. It avoids complications and realizes high efficiency by reducing the power loss generated in the switching element.
  • power conversion for providing a zero voltage period in the first bridge circuit 12 will be described.
  • FIG. 2 is a waveform diagram illustrating an example of on / off control of switching elements Q11 to Q14 and Q21 to Q24 in the power conversion device according to the first embodiment.
  • the gate signals SQ11 to SQ14, SQ21 to SQ24 of the switching elements Q11 to Q14, Q21 to Q24, and the primary side and the second of the transformer 40 controlled by the gate signal are shown with the phase ⁇ [rad] as the horizontal axis.
  • the alternating current voltages VT1 and VT2 on the next side and the alternating current IL flowing through the first bridge circuit 12 and the second bridge circuit 22 flowing through the transformer 40 are shown.
  • the gate signals SQ11 to SQ14 and SQ21 to SQ24 are pulses that repeat a transition between a logic high level (hereinafter, also simply referred to as “H level”) and a logic low level (hereinafter, also simply referred to as “L level”). It is a signal.
  • H level logic high level
  • L level logic low level
  • each switching element is turned on during the H level period of the corresponding gate signal and turned off during the L level period.
  • the inverted signal of each gate signal is described by adding "/" at the beginning.
  • the gate signal / SQ12 means an inverted signal of the gate signal SQ12.
  • the switching elements on the positive electrode side (Q11, Q13, Q21, Q23) and the switching elements on the negative electrode side (Q12, Q14, Q22, Q24) are alternately turned on and off at equal intervals. Therefore, for example, the gate signal SQ11 and the gate signal / SQ12 are represented by the same signal, and the gate signal SQ14 and the gate signal / SQ13 are represented by the same signal.
  • TD dead time
  • both the gate signal of the switching element on the positive electrode side and the gate signal of the switching element on the negative electrode side are set to the L level, and both the switching on the positive electrode side and the switching on the negative electrode side are turned off.
  • soft switching is realized when the charging / discharging operation of the snubber capacitors Cs connected in parallel to the switching element is completed during this dead time TD.
  • the gate signals SQ11 (/ SQ12) of the switching elements Q11 and Q12 and the gate signals SQ14 (/ SQ13) of the switching elements Q13 and Q14 A phase difference ⁇ 1 is provided between them.
  • a phase difference ⁇ 1 is provided in the gate signal SQ14 of the switching element Q14 with reference to the gate signal SQ11 of the switching element Q11.
  • a phase difference ⁇ 1 is provided between the switching legs and between the phases in which the on / off is switched between the positive electrode side and the negative electrode side switching elements.
  • the phase difference ⁇ 1 corresponds to one embodiment of the “second phase difference”.
  • the AC voltage VT1 output by the first bridge circuit 12 to the first AC terminal 13 has an amplitude V1 and has a zero voltage period corresponding to the phase difference ⁇ 1.
  • the gate signal SQ21 (/ SQ22) of the switching elements Q21 and Q22 and the gate signal SQ24 (/ SQ23) of the switching elements Q23 and Q24 are located. No phase difference is provided. That is, in the second bridge circuit 22, the phases in which the positive electrode side and the negative electrode side switching elements are switched on and off are the same between the switching legs, and the switching elements Q21 and Q24 are switched on and off at the same timing, and the switching elements Q22 and Q23 is switched on / off at the same timing. Therefore, the AC voltage VT2 output by the second bridge circuit 22 to the second AC terminal 23 has an amplitude V2 and does not have a zero voltage period.
  • phase difference ⁇ for controlling power transmission is provided between the switching phase of the first bridge circuit 12 and the switching phase of the second bridge circuit 22.
  • the phase of the gate signal SQ11 of the switching element Q11 is defined as the "switching phase" of the first bridge circuit 12
  • the phase of the gate signal SQ21 of the switching element Q21 is the “switching phase” of the second bridge circuit 22. Is defined as.
  • a phase difference ⁇ 1 exists between the AC voltage VT1 and the AC voltage VT2.
  • the phase difference ⁇ 1 corresponds to one embodiment of the “first phase difference”. As shown in FIG. 2, by setting ⁇ 1 ⁇ 1, it is possible to secure a zero voltage period longer than the phase difference ⁇ for power transmission control.
  • IL (0) IL0
  • IL ( ⁇ 1) IL1
  • IL ( ⁇ 1) IL2
  • IL ( ⁇ ) IL3.
  • FIG. 2 shows the current waveform when V1> V2.
  • the transmitted power P from the first bridge circuit 12 to the second bridge circuit 22 is obtained by integrating the DC voltage V1 from the DC power supply 10 and the AC current IL as a function of the phase ⁇ for one cycle in the phase ⁇ . Therefore, using the above equations (1) to (5), the transmitted power P from the first bridge circuit 12 to the second bridge circuit 22 is represented by the following equation (6).
  • the transmitted power P is a two-variable function of the phase difference ⁇ 1 and the phase difference ⁇ 1.
  • the current IL1 does not depend on the phase difference ⁇ 1 but depends only on the phase difference ⁇ 1.
  • snubber capacitors Cs are connected in parallel to each of the switching elements Q11 to Q14 and Q21 to Q24. Therefore, during the dead time TD period after the turn-off of each switching element, soft switching is achieved when the snubber capacitors Cs are charged and discharged and the charge / discharge time of the snubber capacitors Cs is shorter than the dead time TD. It will be.
  • the current Izvs is stored in the magnetic energy stored in the inductance element Lt and in the snubber capacitor Cs. It can be obtained from the relationship with electrostatic energy. Specifically, whereas the magnetic energy stored in the inductance element Lt is (L ⁇ Izvs 2/2) , the electrostatic energy stored in the snubber capacitor Cs, a first bridge snubber capacitor Cs is charged with V1 a Cs ⁇ V1 2/2 in circuit 12, a second bridge circuit 22 at Cs ⁇ V2 2/2 snubber capacitor Cs is charged by V2.
  • the current Izvs can be obtained by the following equation (9).
  • the current Izvs that enables soft switching can be calculated from the circuit constants L and Cs and the DC voltages V1 and V2 (detected values).
  • the current Izvs indicates a "zero volt switching current value”.
  • the current Izvs is the current for charging the snubber capacitors Cs during the dead time TD, it can also be obtained by the following equation (10) using the same DC voltage Vx as in the equation (9). ..
  • the current Izvs can be calculated from the preset dead time TD, the circuit constant Cs, and the DC voltages V1 and V2 (detected values). Therefore, it is possible to determine the current Izvs that enables soft switching by using the equation (9) or the equation (10).
  • the phase difference ⁇ 1 for achieving soft switching can be obtained.
  • the phase difference ⁇ 1, that is, the equation (11) for obtaining the zero voltage period length in the first embodiment corresponds to one embodiment of the “first arithmetic expression”.
  • the phase difference ⁇ 1 is calculated as a value for achieving soft switching in the second bridge circuit 22 by using the detected values of the DC voltages V1 and V2 and the calculated values of the current Izvs. Can be done.
  • the phase difference ⁇ 1 is a constant calculated by the equation (11) in order to achieve soft switching, so that the transmitted power P is controlled with the phase difference ⁇ 1 as a variable. That is, the transmitted power P is obtained by substituting the phase difference ⁇ 1 and the DC voltages V1 and V2 obtained by the equation (11) into the following equation (12) obtained by solving the equation (6) for the phase angle ⁇ 1. It is possible to obtain the phase angle ⁇ 1 corresponding to.
  • the equation (12) for obtaining the phase difference ⁇ 1 corresponds to an embodiment of the “second arithmetic expression”.
  • the phase difference ⁇ 1 is provided between the switching legs only in the first bridge circuit 12, while the phase difference is provided between the switching legs in the second bridge circuit 22.
  • the power transmission is executed in such a manner that the zero voltage period is provided only in the AC voltage VT1 and the zero voltage period is not provided in the AC voltage VT2.
  • the phase difference ⁇ 1 that controls the zero voltage period is set to realize soft switching in the second bridge circuit 22, while the position between the first bridge circuit 12 and the second bridge circuit 22.
  • the phase difference ⁇ 1 can be set to control the transmitted power P under the phase difference ⁇ 1.
  • the phase difference ⁇ 1 and the phase difference ⁇ 1 can be set without interfering with each other, so that the transmitted power P can be easily controlled.
  • soft switching is realized in the second bridge circuit 22 by setting the phase angle ⁇ 1, it is possible to suppress the power loss generated in the switching elements Q21 to Q24 and improve the efficiency of the power conversion device 100. It is possible.
  • the operation of the power conversion device 100 in the "first operation mode" when the zero voltage period is provided on the first bridge circuit 12 side will be described.
  • Embodiment 2 In the first embodiment, the control in which the AC voltage VT1 output by the first bridge circuit 12 is provided with a zero voltage period by providing the phase difference ⁇ 1 between the switching legs in the first bridge circuit 12 has been described. In the second embodiment, contrary to the first embodiment, the control in which the second bridge circuit 22 provides the AC voltage VT2 with a zero voltage period will be described. Even in the second and subsequent embodiments, the circuit configuration of the power conversion device 100 is the same as that of the first embodiment (FIG. 1).
  • FIG. 3 is a waveform diagram illustrating an example of on / off control of switching elements Q11 to Q14 and Q21 to Q24 in the power conversion device according to the second embodiment.
  • the horizontal axis of FIG. 3 is the same as that of FIG. 2, and in FIG. 3, the gate signals SQ11 to SQ14, SQ21 to SQ24, AC voltage VT1, VT2, and AC current IL are shown in FIG. Although the notation is omitted in FIG. 3, a dead time similar to that described in FIG. 2 is provided.
  • the gate signal SQ11 (/ SQ12) of the switching elements Q11 and Q12 and the gate signal SQ14 (/ SQ13) of the switching elements Q13 and Q14 No phase difference is provided between them. That is, between the switching legs, the phases in which the positive electrode side and the negative electrode side switching elements are switched on and off are the same, the switching elements Q11 and Q14 are switched on and off at the same timing, and the switching elements Q12 and Q13 are turned on / off at the same timing. It switches off. Therefore, the AC voltage VT1 output by the first bridge circuit 12 to the first AC terminal 13 has an amplitude V1 and does not have a zero voltage period.
  • a phase difference ⁇ for controlling power transmission is provided between the switching phase of the first bridge circuit 12 and the switching phase of the second bridge circuit 22.
  • a phase difference ⁇ 2 is generated between the AC voltage VT1 and the AC voltage VT2.
  • the phase difference ⁇ 2 corresponds to one embodiment of the “first phase difference”.
  • a phase difference is provided between the gate signal SQ21 (/ SQ22) of the switching elements Q21 and Q22 and the gate signal SQ24 (/ SQ23) of the switching elements Q23 and Q24. ..
  • the gate signal SQ24 (/ SQ23) of the switching element Q24 is provided with the phase difference ⁇ 2 based on the gate signal SQ11 of the switching element Q11, so that the switching legs can be separated from each other.
  • a phase difference ( ⁇ 2 + ⁇ 2) is provided between the gate signal SQ21 (/ SQ22) and the gate signal SQ24 (/ SQ23).
  • the phase difference ( ⁇ 2 + ⁇ 2) corresponds to one embodiment of the “second phase difference”.
  • the AC voltage VT2 output by the second bridge circuit 22 to the second AC terminal 23 has an amplitude V2 and has a zero voltage period corresponding to the phase difference ( ⁇ 2 + ⁇ 2).
  • the alternating current IL ( ⁇ ) in the phase ⁇ is obtained in each phase.
  • IL ( ⁇ 2) IL0a
  • IL (0) IL1a
  • IL ( ⁇ 2) IL2a
  • IL ( ⁇ - ⁇ 2) IL3a.
  • FIG. 3 shows the current waveform when V2> V1. It is assumed that V2> V1 in the transient state where the input / output voltage fluctuation occurs as described above, contrary to the first embodiment.
  • the transmitted power P is obtained by integrating the DC voltage V2 from the load 20 and the AC current IL as a function of the phase ⁇ for one cycle in the phase ⁇ . Therefore, using the above equations (13) to (17), the transmitted power P from the first bridge circuit 12 to the second bridge circuit 22 is represented by the following equation (18).
  • the transmitted power P is a two-variable function of the phase difference ⁇ 2 and the phase difference ⁇ 2.
  • this current IL1a as the current Izvs for realizing soft switching represented by the above equations (9) and (10)
  • the power loss generated in the switching elements Q11 to Q14 can be suppressed.
  • Equation (21a) corresponds to one embodiment of the “first arithmetic expression”.
  • the right side of the equation (21b) shows the DC voltages V1 and V2 (detected values) and the currents from the equations (9) and (10) as the zero voltage period length for achieving soft switching in the first bridge circuit 12. It can be calculated by substituting Izvs.
  • the switching frequency fsw, the inductance value L of the inductance element Lt, the current Izvs, and the DC voltages V1 and V2 are the same as those on the right side of the equation (11) for obtaining the phase angle ⁇ 1 in the first embodiment. Can be used to calculate the zero voltage period length.
  • equation (23) can be obtained by substituting the equation (21a) into the equation (22).
  • the phase difference ⁇ 2 for controlling the transmitted power P is obtained by the equation (23) by substituting the DC voltages V1 and V2 (detected values) and the current Izvs obtained from the equations (9) and (10). It becomes possible.
  • the equation (23) for obtaining the phase difference ⁇ 2 corresponds to an embodiment of the “third arithmetic expression”. Further, the phase difference ⁇ 2 can be obtained by subtracting the phase difference ⁇ 2 obtained by the equation (23) from the value (zero voltage period length) obtained on the right side of the equation (21b).
  • the phase difference ( ⁇ 2 + ⁇ 2) is provided between the switching legs only in the second bridge circuit 22, while the position is located between the switching legs in the first bridge circuit 12.
  • power transmission is executed in such a manner that the AC voltage VT2 is provided with a zero voltage period and the AC voltage VT1 is not provided with a zero voltage period.
  • phase difference ( ⁇ 2 + ⁇ 2) corresponding to the zero voltage period length is set in order to realize soft switching in the first bridge circuit 12, while in the first bridge circuit 12 and the second bridge circuit 22.
  • the phase difference ⁇ 2 between them can be set to control the transmitted power P under the zero voltage period.
  • Embodiment 3 In the first and second embodiments, the control in which the zero voltage period is provided only on one of the first bridge circuit 12 side and the second bridge circuit 22 side has been described. In the third embodiment, control for selecting which of the first bridge circuit 12 and the second bridge circuit 22 is provided with the zero voltage period will be described.
  • 4A and 4B are waveform diagrams for explaining on / off control of the switching element according to the first embodiment when a zero voltage period is provided on the first bridge circuit side (AC voltage VT1).
  • FIG. 4A shows a waveform diagram when V1> V2, and each waveform in FIG. 4A is the same as in FIG.
  • FIG. 4B contrary to FIG. 2, a waveform diagram when a zero voltage period is provided on the first bridge circuit side (AC voltage VT1) under V1 ⁇ V2 is shown in the same manner as in FIG. 4A. Indicated by.
  • the polarity of the current IL0 is opposite to that in FIG. 4A.
  • the switching elements Q11 and Q12 are turned off while a current is flowing through the antiparallel diode, so-called recovery loss occurs, and the snubber capacitors Cs cannot be charged and discharged. Therefore, the snubber capacitors Cs are stored. Energy is consumed by the switching element.
  • FIG. 4B there is a concern that the power loss due to the on / off of the switching element increases in both the first bridge circuit 12 and the second bridge circuit 22 as compared with FIG. 4A.
  • the AC voltage VT1 is provided with a phase difference between the switching legs in the first bridge circuit 12 as described in the first embodiment. It is preferable to provide a zero voltage period.
  • 5A and 5B are waveform diagrams for explaining on / off control of the switching element according to the second embodiment when a zero voltage period is provided on the second bridge circuit side (AC voltage VT2).
  • FIG. 5A shows a waveform diagram when V1> V2
  • FIG. 5B shows a waveform diagram when V2> V1.
  • Each waveform in FIG. 5B is the same as in FIG.
  • FIG. 5A shows a waveform diagram when a zero voltage period is provided on the second bridge circuit side (AC voltage VT2) under V1> V2, contrary to FIG. 3, in the same notation as in FIG. 5B. Shown.
  • FIG. 5A the increase / decrease in the alternating current IL is different from that in FIG. 5B (FIG. 3).
  • the AC voltage VT2 is provided with a phase difference between the switching legs in the second bridge circuit 22 as described in the second embodiment. It is preferable to provide a zero voltage period.
  • the power conversion device controls the first bridge circuit 12 and the second bridge circuit 22 based on the comparison of the DC voltages V1 and V2.
  • FIG. 6 is a block diagram illustrating a configuration example of a control circuit of the power conversion device according to the third embodiment.
  • the control circuit 50 includes a phase difference calculation unit 51 and a gate signal generation unit 52.
  • the transmission power command value Pref which is the target value of the transmission power P, and the detection values of the DC voltages V1 and V2 by a sensor (not shown) are input to the phase difference calculation unit 51.
  • the gate signal generation unit 52 includes a first bridge circuit signal generation unit 521 and a second bridge circuit signal generation unit 522.
  • the first bridge circuit signal generation unit 521 generates gate signals SQ11 to SQ14 to the first bridge circuit 12.
  • the second bridge circuit signal generation unit 522 generates gate signals SQ21 to SQ24 to the second bridge circuit 22.
  • FIG. 7 is a flowchart illustrating the control process by the phase difference calculation unit 51.
  • the control process shown in the flowchart of FIG. 7 can be executed by hardware and / or software by digital electronic circuits and / or analog electronic circuits constituting the control circuit 50.
  • the phase difference calculation unit 51 determines in step 110 (hereinafter, simply referred to as “S”) 110 whether or not the DC voltages V1 and V2 match by comparing the detected values of both. To do.
  • S110 determines whether the detected values of the DC voltages V1 and V2 are high or low.
  • the primary side conversion value of the detected value of the DC voltage V2 is used.
  • the phase difference calculation unit 51 calculates the phase differences ⁇ 1 and ⁇ 1 by S150.
  • the switching elements Q21 and Q24 are switched on / off at the same timing, and the switching elements Q22 and Q23 are switched on / off at the same timing, as in FIG. Therefore, the AC voltage VT2 has an amplitude V2 and does not have a zero voltage period, as in FIG. 2.
  • the phase difference ⁇ 0 corresponds to one embodiment of the “first phase difference”.
  • the transmitted power P in the normal operation is controlled by the following equation (24).
  • phase difference ⁇ 0 can be calculated.
  • the phase difference ⁇ 0 corresponds to the “first phase difference” in the normal operation (second operation mode).
  • the phase difference calculation unit 51 can calculate the phase difference ⁇ (phase difference ⁇ 0, ⁇ 1, or ⁇ 2) for transmission power control and the phase differences ⁇ 1 and ⁇ 2 by S150 to S170.
  • the phase difference calculation unit 51 sends the phase difference ⁇ 1 to the first bridge circuit signal generation unit 521, and the phase difference ⁇ ( ⁇ 0, ⁇ 1, or ⁇ 2) for power transmission control. Then, the phase difference ⁇ 2 is transmitted to the second bridge circuit signal generation unit 522.
  • the first bridge circuit signal generation unit 521 generates the gate signal SQ11 (/ SQ12) according to the reference phase, and generates the gate signal SQ14 (/ SQ13) so as to have a phase difference ⁇ 1 with respect to the gate signal SQ11 (/ SQ12). Generate.
  • the second bridge circuit signal generation unit 522 generates the gate signal SQ21 (/ SQ22) so as to have a phase difference ⁇ ( ⁇ 0, ⁇ 1, or ⁇ 2) with respect to the gate signal SQ11 (/ SQ12) of the reference phase. To do. Further, the second bridge circuit signal generation unit 522 generates the gate signal SQ24 (/ SQ23) so as to have a phase difference ⁇ 2 with respect to the gate signal SQ11 (/ SQ12) having the reference phase.
  • phase difference ⁇ ( ⁇ 0, ⁇ 1, or ⁇ 2) for power transmission control is provided between the AC voltages VT1 and VT2 and the phase difference ⁇ 1 ⁇ 0 or ⁇ 2 ⁇ ⁇ , it is zero.
  • the gate signals SQ11 to SQ14 and SQ21 to SQ24 can be generated so that the voltage period is provided on one of the AC voltages VT1 and VT2.
  • the switching element Q11 is appropriately switched by appropriately switching the setting of the zero voltage period to the AC voltages VT1 and VT2 according to the states of the DC voltages V1 and V2.
  • the switching element Q11 is appropriately switched by appropriately switching the setting of the zero voltage period to the AC voltages VT1 and VT2 according to the states of the DC voltages V1 and V2.
  • the power conversion device 100 is made highly efficient by reducing the power loss in the first bridge circuit 12 and the second bridge circuit 22 by providing the zero voltage period.
  • the zero voltage period is set longer than the phase differences ⁇ 1 and ⁇ 2 for power transmission control, there is a concern that the power factor during power transmission may decrease. Therefore, strictly speaking, it is necessary to consider the balance between the demerit of reducing the power factor and the merit of reducing the power loss in the first bridge circuit 12 and the second bridge circuit 22.
  • FIGS. 8 and 9 shows the transmitted power in units of pu, and the vertical axis shows the simulated value of the efficiency of power transmission. Efficiency is indicated by the ratio of the actual transmitted power to the input power from the DC power source 10 minus the power lost in the power converter 100.
  • FIG. 8 shows the simulation result when V1> V2
  • FIG. 9 shows the simulation result when V2> V1.
  • the solid line in the figure shows the AC voltage VT1 by using the phase difference ⁇ 1 calculated by the equations (11) and (12) according to the first embodiment when V1> V2.
  • the simulation results when the zero voltage period is provided are shown.
  • the dotted line in the figure shows the simulation result in the normal operation in which the zero voltage period is not provided for both the AC voltage VT1 and the VT2 when V1> V2.
  • the solid line in the figure shows the AC voltage VT2 using the phase difference ⁇ 2 calculated by the equations (21b) and (23) according to the second embodiment when V2> V1.
  • the simulation result when the zero voltage period ( ⁇ 2 + ⁇ 2) is provided is shown.
  • the dotted line in the figure shows the simulation result in the normal operation in which the zero voltage period is not provided for both the AC voltage VT1 and the VT2 when V2> V1.
  • the power conversion device 100 is higher when normal operation is applied. It can be operated efficiently.
  • the AC current IL does not increase so much even if the power factor decreases by providing the zero voltage period, so that it is zero. Due to the effect of reducing the switching loss by providing the voltage period, the power conversion device 100 can be operated with high efficiency.
  • control for selecting whether to provide a zero voltage period in the first bridge circuit 12 and the second bridge circuit 22 is executed according to the transmission power.
  • the boundary value of 0.7pu in FIGS. 8 and 9 is an example of the result of this simulation and changes depending on the circuit conditions and the like, but can be obtained in advance by the same simulation or an actual machine test. is there.
  • the configuration of the control circuit 50 can be the same as that of the third embodiment (FIG. 6).
  • the control process by the phase difference calculation unit 51 is different from that of the third embodiment (FIG. 7).
  • FIG. 10 is a flowchart illustrating a control process by the phase difference calculation unit in the control circuit of the power conversion device according to the fourth embodiment.
  • the control process shown in the flowchart of FIG. 10 can also be executed by hardware and / or software by digital electronic circuits and / or analog electronic circuits constituting the control circuit 50.
  • the phase difference calculation unit 51 compares the transmitted power with the predetermined boundary value Plim by S115. ..
  • the boundary value Plim corresponds to 0.7pu in FIGS. 8 and 9, and is set in advance according to a simulation or an actual machine test as described above. For example, in S115, the transmission power command value Pref and the boundary value Plim are compared.
  • phase difference calculation unit 51 (control circuit 50) is Pref ⁇ Plim (when YES is determined in S115)
  • the phase difference ⁇ 1 or ⁇ 2 and the phase difference ⁇ 1 are obtained by S120, S150, and S160 as in FIG. , ⁇ 2 is calculated.
  • it is controlled which of the AC voltages VT1 and VT2 is provided with the zero voltage period according to the height of the DC voltages V1 and V2.
  • the power conversion device 100 is operated by the normal operation in which the zero voltage period is not provided in both the AC voltages VT1 and VT2. be able to.
  • the power conversion device 100 is increased by appropriately switching whether or not the AC voltage VT1 and VT2 are provided with the zero voltage period according to the transmitted power. It is possible to improve efficiency.
  • Embodiment 5 the control for appropriately switching the setting of the zero voltage period to the AC voltages VT1 and VT2 according to the states of the DC voltages V1 and V2 has been described.
  • the voltage detection error for example, when it is determined from the detected value that V1> V2 while actually V1 ⁇ V2, and a zero voltage period is provided on the first bridge circuit 12 side (AC voltage VT1), As described with reference to FIG. 4B, there is a concern that the power loss in the switching elements Q11 to Q14 and Q21 to Q24 will increase. Therefore, in the fifth embodiment, the control for preventing malfunction due to the detection error of the DC voltages V1 and V2 will be described.
  • control circuit 50 can be the same as that of the third embodiment (FIG. 6).
  • control process by the phase difference calculation unit 51 is different from that of the third or fourth embodiment (FIG. 10).
  • FIG. 11 is a flowchart illustrating a control process by the phase difference calculation unit in the control circuit of the power conversion device according to the fifth embodiment.
  • the control process shown in the flowchart of FIG. 11 can also be executed by the hardware and / or software of the digital electronic circuit and / or the analog electronic circuit constituting the control circuit 50.
  • the phase difference calculation unit 51 compares the detected values of the DC voltages V1 and V2 by S105 instead of S110 in FIGS. 7 and 10.
  • ) of the voltage difference between the DC voltages V1 and V2 (detected value) is compared with the predetermined determination value ⁇ V.
  • the determination value ⁇ V can be set in advance by reflecting the test results and the like under the assumed operating conditions at the time of designing the power conversion device 100.
  • the phase difference calculation unit 51 uses S170 similar to that in FIGS. 7 and 10 to perform S110 in FIGS. 7 and 10.
  • the power conversion device 100 can be operated by the normal operation in which the zero voltage period is not provided for both the AC voltages VT1 and VT2.
  • phase difference calculation unit 51 control circuit 50
  • the phase difference ⁇ 1 or ⁇ 2 is determined by S115 to S160 similar to FIG. And the phase difference ⁇ 1 and ⁇ 2 are calculated. Similar to the third and fourth embodiments, it is controlled which of the AC voltages VT1 and VT2 is provided with the zero voltage period according to the height of the DC voltages V1 and V2.
  • the AC voltage VT1 and VT2 both have zero voltage.
  • the power conversion device 100 can be operated in a manner in which a period is not provided. As a result, it is possible to determine the height of the DC voltages V1 and V2 contrary to the actual ones due to the detection error, and prevent a malfunction in which the power loss increases as described with reference to FIGS. 4B and 5A. ..
  • the phase difference calculation unit 51 of the control circuit 50 calculates according to the equations (11) and (12) based on the detected DC voltages V1 and V2 and the transmission power command value Pref, and the equation (21b). ), The configuration for executing the calculation according to (23) or the calculation according to the equation (25) is illustrated.
  • a configuration example in which the reference table is used for at least a part of the processing for obtaining the phase differences ⁇ 0 to ⁇ 2 and the phase differences ⁇ 1 and ⁇ 2 will be described in order to reduce the calculation load in the phase difference calculation unit 51.
  • FIG. 12 is a block diagram illustrating a first configuration example of the control circuit of the power conversion device according to the sixth embodiment.
  • control circuit 50 includes a reference table 55 and a gate signal generation unit 52 similar to that of FIG.
  • the reference table 55 takes the detected DC voltages V1 and V2 and the transmitted power command value Pref as arguments, and similarly to the phase difference calculation unit 51 of FIG. 6, any one of the phase differences ⁇ 0 to ⁇ 2 and the phase difference. It is configured to output ⁇ 1 and ⁇ 2.
  • phase difference ⁇ any of ⁇ 0 to ⁇ 2
  • phase difference ⁇ 1 and ⁇ 2 can be obtained by using the detected DC voltages V1 and V2 and the transmitted power command value Pref.
  • the selection of S150 to S170 is also executed based on the DC voltage V1 or V2 or the DC voltage V1 or V2 and the transmission power command value Pre. Therefore, it is possible to distinguish which of S150, S160, and S170 is selected in the three-dimensional region by the combination of the DC voltage V1, the DC voltage V2, and the transmission power command value Pref.
  • the reference table 55 first bridges the phase difference ⁇ 1 with respect to the input of the detected DC voltages V1 and V2 and the transmission power command value Pref, similarly to the phase difference calculation unit 51 of FIG.
  • the phase difference ⁇ (phase difference ⁇ 0, ⁇ 1, or ⁇ 2) for power transmission control and the phase difference ⁇ 2 can be sent to the second bridge circuit signal generation unit 522. it can.
  • the gate signals SQ11 to SQ14, SQ21 to the switching elements Q11 to Q14 and Q21 to Q24 are subjected to the first bridge circuit signal generation unit 521 and the second bridge circuit signal generation unit 522, as described with reference to FIG. SQ24 can be generated.
  • FIG. 13 is a block diagram illustrating a first configuration example of the control circuit of the power conversion device according to the sixth embodiment.
  • the control circuit 50 includes a phase difference calculation unit 56, reference tables 58a and 58b, and a gate signal generation unit 52 similar to that in FIG. Including.
  • the phase difference calculation unit 51 (FIG. 6)
  • the second configuration example a part of the functions of the phase difference calculation unit 51 in FIG. 6 is tabulated.
  • the reference table 58a is such that when the first bridge circuit 12 is provided with a zero voltage period as part of the processing according to S150 of FIGS. 7, 10 and 11, that is, the zero voltage period length in the first embodiment is obtained. It is composed of. Specifically, the reference table 58a is configured to store in advance the value of the phase difference ⁇ 1 according to the equation (11) with the detected DC voltages V1 and V2 and the transmission power command value Pre as arguments.
  • the reference table 58b is such that when the second bridge circuit 22 is provided with a zero voltage period as part of the processing according to S160 of FIGS. 7, 10 and 11, that is, the zero voltage period length in the second embodiment is obtained. It is composed of. Specifically, the reference table 58b is configured to store in advance the value of the phase difference ( ⁇ 2 + ⁇ 2) according to the equation (21b) with the detected DC voltages V1 and V2 and the transmission power command value Pre as arguments. To.
  • the phase difference calculation unit 56 is configured to execute the process of selecting S150 to S170 in FIGS. 7, 10 and 11, the remaining process of S150, the remaining process of S160, and the process of S170. ..
  • phase difference calculation unit 56 by combining the phase difference calculation unit 56 and the reference tables 58a and 58b, the same function as that of the phase difference calculation unit 51 of FIG. 6 is realized, and the phase difference ⁇ ( ⁇ 0, ⁇ 1, or ⁇ 2) and The phase differences ⁇ 1 and ⁇ 2 can be calculated.
  • the gate signals SQ11 to SQ14 and SQ21 to SQ24 of the switching elements Q11 to Q14 and Q21 to Q24 are generated by the first bridge circuit signal generation unit 521 and the second bridge circuit signal generation unit 522. Can be done.
  • the power transmission from the DC power supply 10 to the load 20, that is, the power transmission from the first bridge circuit 12 to the second bridge circuit 22 has been described, but as is clear from the symmetry of the circuit.
  • the same control can be performed in the direction opposite to the above, that is, in the power transmission from the second bridge circuit 22 to the first bridge circuit 12.
  • power transmission in the opposite direction can be similarly performed. It becomes possible to control.
  • the control described in this embodiment is applied with the power transmitting side as the primary side and the power receiving side as the secondary side. By doing so, it is possible to support bidirectional power transmission.

Abstract

第1ブリッジ回路(12)は、第1直流電圧(V1)と、変圧器(40)の1次側巻線(41)の第1交流電圧(VT1)との間の電力変換を実行する。第2ブリッジ回路(22)は、第2直流電圧(V2)と、変圧器(40)の2次側巻線(42)の第2交流電圧(VT2)との間の電力変換を実行する。制御回路(50)は、第1交流電圧(VT1)及び第2の交流電圧(VT2)の一方のみにゼロ電圧期間が設けられるように、スイッチング素子(Q11~Q14,Q21~Q24)のオンオフを制御する。ゼロ電圧期間の長さは、ゼロ電圧期間が設けられない交流電圧を出力する側のブリッジ回路において、各スイッチングアームの正極側スイッチング素子及び負極側スイッチング素子のオンオフが入れ替わるデッドタイム中にスナバキャパシタ(Cs)の充放電が完了するように定められる。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 半導体スイッチング素子を用いたブリッジ回路を備えた電力変換装置が公知である。ブリッジ回路は、半導体スイッチング素子のオンオフ制御によって、直流電力を交流電力に、或いは、交流電力を直流電力に変換する。特開2015-12750号公報(特許文献1)の図2には、トランスの一次側及び二次側の各々にブリッジ回路を接続することによって、直流電圧源間で電力伝送を行うための電力変換装置が記載されている。
 特許文献1の上記電力変換装置では、トランスに入力する交流電圧にゼロ電圧期間を設けることにより、ソフトスイッチング可能な動作領域が拡大される。
特開2015-12750号公報
 しかしながら、特許文献1の電力変換装置では、電力制御するための制御角と、ゼロ電圧期間を制御するための位相期間との2つの変数を制御することで、ソフトスイッチング可能領域が拡大される。この結果、送電電力は制御角と位相期間の2変数関数となるととともに、位相期間は制御角の関数となる。この結果、制御変数となる制御角及び位相期間が相互に干渉するため、両者を一意に決定することが困難となることから、制御の複雑化が懸念される。
 本発明はこのような問題点を解決するためになされたものであって、本発明の目的は、制御を複雑化させることなく、ソフトスイッチング領域を拡大した電力変換が可能となる高効率な電力変換装置を提供することである。
 本発明のある局面では、電力変換装置は、第1の直流端子と、第2の直流端子と、変圧器と、第1ブリッジ回路と、第2ブリッジ回路と、制御回路とを備える。変圧器は、磁気結合された第1巻線及び第2巻線を有する。第1ブリッジ回路は、第1直流端子と、第1巻線と接続された第1交流端子との間に接続されて、第1直流端子の第1直流電圧及び第1交流端子の第1交流電圧の間での電力変換を実行する。第2ブリッジ回路は、第2直流端子と、第2巻線と接続された第2交流端子との間に接続されて、第2直流端子の第2直流電圧及び第2交流端子の第2交流電圧の間での電力変換を実行する。第1及び第2ブリッジ回路の各々は、並列接続された複数のスイッチングレグを含む。複数のスイッチングレグの各々は、直列接続された正極側スイッチング素子及び負極側スイッチング素子と、スナバキャパシタとを有する。スナバキャパシタは、正極側スイッチング素子及び負極側スイッチング素子の各々に対して並列接続される。制御回路は、第1及び第2ブリッジ回路内の各正極側スイッチング素子及び各負極側スイッチング素子のオンオフを制御する。制御回路は、各スイッチングレグにおいて、予め定められた長さのデッドタイムを設けた上で正極側スイッチング素子及び負極側スイッチング素子を交互にオンオフする。電力変換装置は、第1直流端子及び第2直流端子の間での電力伝送のための第1の動作モードを有する。制御回路は、第1の動作モードにおいて、第1ブリッジ回路及び第2ブリッジ回路のスイッチング位相間に送電電力を制御するための第1の位相差を設けるとともに、第1交流電圧及び第2交流電圧のうちの一方の交流電圧にゼロ電圧期間を設ける一方で、第1交流電圧及び第2交流電圧のうちの他方の交流電圧にはゼロ電圧期間が設けられないように、第1及び第2ブリッジ回路の各正極側スイッチング素子及び各負極側スイッチング素子のオンオフを制御する。第1の動作モードにおいて、ゼロ電圧期間の長さは、第1ブリッジ回路及び第2ブリッジ回路のうちの他方の交流電圧を出力するブリッジ回路の各スイッチングレグにおいて、デッドタイム中にスナバキャパシタの充放電が完了するように定められる。
 本発明によれば、第1ブリッジ回路及び第2ブリッジ回路からの第1交流電圧及び第2交流電圧の一方のみにゼロ電圧期間を設けるとともに、当該ゼロ電圧期間の長さをゼロボルトスイッチングが可能となる条件に合わせて設定するので、ゼロ電圧期間長と電力伝送制御のための第1の位相差とを個別に求めることができる。この結果、制御を複雑化させることなく、ソフトスイッチング領域を拡大した電力変換が可能となる高効率な電力変換装置を提供することである。
本実施の形態1に係る電力変換装置の構成例を示す回路図である。 実施の形態1に係る電力変換装置におけるスイッチング素子のオンオフ制御の一例を説明する波形図である。 実施の形態2に係る電力変換装置におけるスイッチング素子のオンオフ制御の一例を説明する波形図である。 第1ブリッジ回路側にゼロ電圧期間を設けた際(実施の形態1)のスイッチング素子のオンオフ制御の一例を説明する第1の波形図である。 第1ブリッジ回路側にゼロ電圧期間を設けた際(実施の形態1)のスイッチング素子のオンオフ制御の一例を説明する第2の波形図である。 第2ブリッジ回路側にゼロ電圧期間を設けた際(実施の形態2)のスイッチング素子のオンオフ制御の一例を説明する第1の波形図である。 第2ブリッジ回路側にゼロ電圧期間を設けた際(実施の形態2)のスイッチング素子のオンオフ制御の一例を説明する第2の波形図である。 実施の形態3に係る電力変換装置の制御回路の構成例を説明するブロック図である。 図6に示された位相差演算部による制御処理を説明するフローチャートである。 本実施の形態に係る電力変換装置における送電電力の変化に対する電力伝送効率のシミュレーション結果を示す第1のグラフである。 本実施の形態に係る電力変換装置における送電電力の変化に対する電力伝送効率のシミュレーション結果を示す第2のグラフである。 実施の形態4に係る電力変換装置の制御回路における位相差演算部による制御処理を説明するフローチャートである。 実施の形態5に係る電力変換装置の制御回路における位相差演算部による制御処理を説明するフローチャートである。 実施の形態6に係る電力変換装置の制御回路の第1の構成例を説明するブロック図である。 実施の形態6に係る電力変換装置の制御回路の第2の構成例を説明するブロック図である。
 以下に、本発明の実施の形態について、図面を参照して詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は原則的に繰返さない。
 実施の形態1.
 図1は、本実施の形態1に係る電力変換装置の構成例を示す回路図である。尚、図1に示す構成はあくまでも一例であって、複数のブリッジ回路及び変圧器を用いてDC/DC変換を行う電力変換装置であれば、後述する本実施の形態に係る制御が適用可能である。
 図1を参照して、実施の形態1に係る電力変換装置100は、第1直流端子11と、第1ブリッジ回路12と、第1交流端子13と、第2直流端子21と、第2ブリッジ回路22と、第2交流端子23と、変圧器40とを備える。
 第1直流端子11は、直流電源10と接続される。第1直流端子11の正極側端子は、正極側の電力線PL1と接続される。第1直流端子11の負極側端子は、負極側の電力線NL1と接続される。第1直流端子11の正極側端子及び負極端子の間の直流電圧V1は、図示しないセンサによって検出される。
 第1ブリッジ回路12は、電力線PL1及びNL1の間に接続された直流コンデンサCdc1と、半導体スイッチング素子(以下、単に「スイッチング素子」とも称する)Q11~Q14とを有する。
 スイッチング素子Q11及びQ12は、電力線PL1及びNL1の間に直列接続されて、第1のスイッチングレグを構成する。スイッチング素子Q13及びQ14は、電力線PL1及びNL1の間に直列接続されて、第2のスイッチングレグを構成する。並列接続された第1及び第2のスイッチングレグの中間点、即ち、スイッチング素子Q11及びQ12の接続ノードと、スイッチング素子Q13及びQ14の接続ノードとは、第1交流端子13と接続される。第1交流端子13は、変圧器40の1次側巻線41と接続される。
 第2直流端子21は、負荷20と接続される。第2直流端子21の正極側端子は、正極側の電力線PL2と接続される。第2直流端子21の負極側端子は、負極側の電力線NL2と接続される。第2直流端子21の正極側端子及び負極端子の間の直流電圧V2は、図示しないセンサによって検出される。
 第2ブリッジ回路22は、電力線PL2及びNL2の間に接続された直流コンデンサCdc2と、半導体スイッチング素子(以下、単に「スイッチング素子」とも称する)Q21~Q24とを有する。
 直流コンデンサCdc1,Cdc2には、電解コンデンサ、又は、フィルムコンデンサ等を用いることが可能である。直流コンデンサCdc1,Cdc2には高周波の電流が流れるが、フィルムコンデンサを用いる場合には、高周波の電流による劣化を抑制することによる長寿命化を図ることができる。
 スイッチング素子Q21及びQ22は、電力線PL2及びNL2の間に直列接続されて、第3のスイッチングレグを構成する。スイッチング素子Q23及びQ24は、電力線PL1及びNL1の間に直列接続されて、第4のスイッチングレグを構成する。並列接続された第3及び第4のスイッチングレグの中間点、即ち、スイッチング素子Q21及びQ22の接続ノードと、スイッチング素子Q23及びQ24の接続ノードとは、第2交流端子23と接続される。第2交流端子23は、変圧器40の2次側巻線42と接続される。
 スイッチング素子Q11~Q14,Q21~Q24には、例えば、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)、又は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の自己消孤機能を有した半導体スイッチング素子を適用することが可能である。各スイッチング素子Q11~Q14,Q21~Q24は、電流容量に応じて複数の半導体スイッチング素子を並列に組み合わせて使用してもよい。スイッチング素子Q11~Q14,Q21~Q24の各々には、スナバキャパシタCsが並列接続される。以下では、当該スナバキャパシタの容量値についてもCsと表記する。
 制御回路50は、第1ブリッジ回路の各スイッチング素子Q11~Q14のオンオフを制御するゲート信号SQ11~SQ14と、第2ブリッジ回路の各スイッチング素子Q21~Q24のオンオフを制御するゲート信号SQ21~SQ24とを生成する。
 第1ブリッジ回路12は、ゲート信号SQ11~SQ14に従ったスイッチング素子Q11~Q14のオンオフ制御により、第1直流端子11の直流電圧V1と、第1交流端子13の交流電圧VT1との間の直流/交流電圧変換を実行する。
 第2ブリッジ回路22は、ゲート信号SQ21~SQ24に従ったスイッチング素子Q21~Q24のオンオフ制御により、第2直流端子21の直流電圧V2と、第2交流端子23の交流電圧VT2との間の直流/交流電圧変換を実行する。
 変圧器40は、磁気結合された1次側巻線41及び2次側巻線42を有しており、1次側巻線41及び2次側巻線42の間は電気的に絶縁される。1次側巻線41(巻数N1)及び2次側巻線42(巻数N2)の巻数比をN(N=N2/N1)とすると、交流電圧VT1及びVT2の間には、VT2=VT1×Nの関係が成立する。変圧器40の巻数比Nと、直流電圧V1及びV2の比率が等しい場合に最も効率が良くなるため、巻数比Nは、直流電源10及び負荷20の定格電圧の比と対応させて決めることが好ましい。尚、以下の説明では、二次側の直流電圧V2は、変圧器40の巻数比Nを用いた一次側換算値(V2/N)を意味するものとする。
 このように、第1ブリッジ回路12、変圧器40、及び、第2ブリッジ回路22により、第1直流端子11(直流電源10)及び第2直流端子21(負荷20)の間で、直流電圧V1及びV2のDC/DC変換による電力伝送を実行することができる。
 制御回路50は、送電電力指令値Prefと、直流電圧V1及びV2とに基づき、第1直流端子11(直流電源10)及び第2直流端子21(負荷20)の間の電力伝送量を送電電力指令値Prefに従って制御するように、ゲート信号SQ11~SQ14,SQ21~SQ24を生成する。
 尚、制御回路50は、後述する制御演算機能及びゲート信号の生成機能を有する限り、演算処理装置、及び、記憶装置等のデジタル電子回路により構成されてもよいし、コンパレータ、オペアンプ、及び、差動増幅回路等のアナログ電子回路から構成されてもよい。或いは、制御回路50は、デジタル電子回路及びアナログ電子回路の双方により構成されてもよい。
 第1ブリッジ回路12及び第2ブリッジ回路22と変圧器40との間には、インダクタンス要素Ltが存在する。例えば、インダクタンス要素Ltは、変圧器40の漏れインダクタンスを利用して構成することが可能である。或いは、インダクタンス値を調整するために、リアクトル等の誘導素子の接続を伴ってインダクタンス要素Ltを構成することも可能である。
 インダクタンス要素Ltの作用により、第1ブリッジ回路12及び第2ブリッジ回路22での電力変換において、各半導体スイッチング素子Q11~Q14,Q21~Q24は、ソフトスイッチングであるゼロ電圧スイッチングが可能となる。ソフトスイッチングとは、スイッチング過渡期間にスイッチング素子に加わる電圧または電流を軽減し、スイッチング損失や電磁ノイズの低減を行う技術である。
 各スイッチング素子Q11~Q24をソフトスイッチングによりオンオフすることで、スイッチング損失が低減可能となり、その結果、動作周波数(スイッチング周波数)を高めることによって変圧器40の小型化が可能となる。
 尚、変圧器40を小型化するために各スイッチング素子Q11~Q14,Q21~Q24の動作周波数を高周波化(例えば、61Hz以上)した場合には、変圧器40を構成する鉄心の材料を、アモルファス(非晶質)材、珪素の含有量が6.5%の珪素鋼板、又は、板厚が0.1mm程度の珪素鋼板とすることで、高周波化による損失増加を抑制することができる。
 次に、実施の形態1に係る電力変換装置100における半導体スイッチング素子Q11~Q14,Q21~Q24のオンオフ制御について説明する。以下に説明するように、本実施の形態に係る電力変換装置100では、第1ブリッジ回路12及び第2ブリッジ回路22の一方のみに特許文献1と同等のゼロ電圧期間を設けることで、制御の複雑化を回避するとともに、スイッチング素子で発生する電力損失の低減による高効率化を実現するものである。実施の形態1では、第1ブリッジ回路12にゼロ電圧期間を設ける電力変換について説明する。
 図2は、実施の形態1に係る電力変換装置におけるスイッチング素子Q11~Q14,Q21~Q24のオンオフ制御の一例を説明する波形図である。
 図2には、位相θ[rad]を横軸として、スイッチング素子Q11~Q14,Q21~Q24のゲート信号SQ11~SQ14,SQ21~SQ24と、ゲート信号によって制御される変圧器40の一次側及び二次側の交流電圧VT1及びVT2と、変圧器40を介して流れる第1ブリッジ回路12及び第2ブリッジ回路22を流れる交流電流ILとが示される。θ=0からθ=2πまでの期間長が、各スイッチング素子Q11~Q14,Q21~Q24のスイッチング周期Tsw(スイッチング周波数の逆数)に相当する。
 各ゲート信号SQ11~SQ14,SQ21~SQ24は、論理ハイレベル(以下、単に「Hレベル」とも称する)と、論理ローレベル(以下、単に「Lレベル」とも称する)との間の遷移を繰り返すパルス信号である。以下では、各スイッチング素子は、対応するゲート信号のHレベル期間においてオンする一方で、Lレベル期間でオフするものとする。又、以下では、各ゲート信号の反転信号については、冒頭に“/”を付して表記する。例えば、ゲート信号/SQ12は、ゲート信号SQ12の反転信号を意味する。
 各スイッチングレグにおいて、正極側のスイッチング素子(Q11,Q13,Q21,Q23)及び負極側のスイッチング素子(Q12,Q14,Q22,Q24)は、等間隔で交互にオンオフする。このため、例えば、ゲート信号SQ11と、ゲート信号/SQ12とは同一の信号で表記され、ゲート信号SQ14と、ゲート信号/SQ13とは同一の信号で表記される。
 但し、図2では図示を省略しているが、実際には、各スイッチングレグで正極側及び負極側のスイッチング素子のオンオフを入れ替える際には、直流コンデンサCdc1,Cdc2の端子間短絡を防止するために、予め定められた長さのデッドタイムTDが設けられる。以下では、デッドタイムの期間長についてもTDと表記する。当該デッドタイム中には、正極側のスイッチング素子のゲート信号、及び、負極側のスイッチング素子のゲート信号の両方がLレベルに設定されて、正極側及び負極側のスイッチングの両方がオフ状態とされる。各スイッチングレグにおいて、このデッドタイムTD中に、スイッチング素子に並列に接続されるスナバキャパシタCsの充放電動作が完了すると、ソフトスイッチングが実現されることになる。
 図2に示されるように、実施の形態1では、第1ブリッジ回路12において、スイッチング素子Q11,Q12のゲート信号SQ11(/SQ12)と、スイッチング素子Q13,Q14のゲート信号SQ14(/SQ13)との間には、位相差δ1が設けられる。具体的には、スイッチング素子Q11のゲート信号SQ11を基準として、スイッチング素子Q14のゲート信号SQ14に位相差δ1が設けられる。即ち、第1ブリッジ回路12では、スイッチングレグ間で、正極側及び負極側スイッチング素子の間でオンオフが入れ替わる位相の間には、位相差δ1が設けられる。即ち、実施の形態1において、位相差δ1は「第2の位相差」の一実施例に相当する。この結果、第1ブリッジ回路12が第1交流端子13に出力する交流電圧VT1は、振幅V1であり、かつ、位相差δ1に対応するゼロ電圧期間を有するものとなる。
 一方で、実施の形態1では、第2ブリッジ回路22において、スイッチング素子Q21,Q22のゲート信号SQ21(/SQ22)と、スイッチング素子Q23,Q24のゲート信号SQ24(/SQ23)との間には位相差は設けられない。即ち、第2ブリッジ回路22では、スイッチングレグ間で、正極側及び負極側スイッチング素子の間でオンオフが入れ替わる位相は同じであり、スイッチング素子Q21及びQ24は同じタイミングでオンオフが切り替わり、スイッチング素子Q22及びQ23は同じタイミングでオン/オフが切り替わる。このため、第2ブリッジ回路22が第2交流端子23に出力する交流電圧VT2は、振幅V2であり、かつ、ゼロ電圧期間を有していない。
 第1ブリッジ回路12のスイッチング位相と、第2ブリッジ回路22のスイッチング位相との間には、電力伝送を制御するための位相差φが設けられる。本実施の形態では、スイッチング素子Q11のゲート信号SQ11の位相を第1ブリッジ回路12の「スイッチング位相」と定義し、スイッチング素子Q21のゲート信号SQ21の位相を第2ブリッジ回路22の「スイッチング位相」と定義する。
 実施の形態1では、スイッチング素子Q11のゲート信号SQ11に対して、スイッチング素子Q21のゲート信号SQ21との間に位相差φ1が設けられる(φ=φ1)。この結果、交流電圧VT1及び交流電圧VT2の間に、位相差φ1が存在することになる。実施の形態1では、位相差φ1は「第1の位相差」の一実施例に対応する。図2に示すように、φ1<δ1とすることで、電力伝送制御のための位相差φよりも長いゼロ電圧期間を確保することができる。
 ここで、位相θにおける交流電流IL(θ)を各位相で求める。図2中にあるように、IL(0)=IL0、IL(φ1)=IL1、IL(δ1)=IL2、かつ、IL(π)=IL3とする。
 まず、0<θ<φ1の位相期間では、VT1=0,VT2=-V2であるため、交流電流IL(θ)は、各スイッチング素子Q11~Q14,Q21~Q24のスイッチング周波数fsw、及び、インダクタンス要素Ltのインダクタンス値Lを用いて、下記の式(1)により示される。
Figure JPOXMLDOC01-appb-M000001
 次に、φ1<θ<δ1の位相期間では、VT1=0,VT2=V2であるため、交流電流IL(θ)は、下記の式(2)により示される。
Figure JPOXMLDOC01-appb-M000002
 同様に、δ1<θ<πの位相期間では、VT1=V1,VT2=V2であるため、交流電流IL(θ)は、下記の式(3)により示される。
Figure JPOXMLDOC01-appb-M000003
 尚、図2では、V1>V2としたときの電流波形が示されている。本実施の形態では、直流電圧V1及び直流電圧V2(一次側換算)は、定常状態ではV1=V2となることを想定しているが、図2では、制御誤差、外乱、負荷変動、又は、電源側の電力変動等によって入出力の電圧変動が発生して、過渡的にV1>V2となったケースを想定するものである。
 π<θ<2πの位相期間では、上記式(1)~(3)と極性が反転された式に従って交流電流IL(θ)は変化する。式(3)より、θ=πのときの電流IL3について、下記の式(4)が成立する。
Figure JPOXMLDOC01-appb-M000004
 又、交流電流ILは、周期的に変化するため、電流IL0(θ=0)と、電流IL3(θ=π)との間には、IL3=-IL0の関係が成立する。このため、電流IL0について、下記の式(5)が成立する。
Figure JPOXMLDOC01-appb-M000005
 第1ブリッジ回路12から第2ブリッジ回路22への送電電力Pは、直流電源10からの直流電圧V1及び交流電流ILを位相θの関数として、位相θで1周期積分することによって得られる。従って、上記式(1)~(5)式を用いて、第1ブリッジ回路12から第2ブリッジ回路22への送電電力Pは、下記の式(6)によって示される。
Figure JPOXMLDOC01-appb-M000006
 式(6)から理解されるように、送電電力Pは、位相差φ1及び位相差δ1の2変数関数となっている。ここで、式(1)及び式(5)式から、θ=φ1のときの電流IL1は、式(7)によって示される。
Figure JPOXMLDOC01-appb-M000007
 更に、式(2)及び式(5)から、θ=δ1のときの電流IL2は、下記の式(8)によって示される。
Figure JPOXMLDOC01-appb-M000008
 式(7)から理解されるように、電流IL1は、位相差φ1には依存せず、位相差δ1のみに依存する。
 ここで、スイッチングレグ間に位相差が設けられない第2ブリッジ回路22では、θ=φ1において、スイッチング素子Q22,Q23がターンオフ(スイッチング素子Q21,Q24がターンオン)する一方で、θ=(π+φ1)において、スイッチング素子Q21,Q24がターンオフ(スイッチング素子Q22,Q23がターンオン)する。従って、スイッチング損失に影響する、スイッチング素子Q21~Q24のターンオフ電流は、θ=φ1又はθ=π+φ1のときの交流電流IL、即ち、電流IL1又は-IL1となるため、位相差φ1に依存しないことが理解される。
 一方で、各スイッチング素子Q11~Q14,Q21~Q24にはスナバキャパシタCsが並列に接続されている。従って、各スイッチング素子のターンオフ後のデッドタイムTD期間中において、スナバキャパシタCsが充放電されて、デッドタイムTDよりもスナバキャパシタCsの充放電時間が短くなった場合に、ソフトスイッチングが達成されることになる。
 ここで、スナバキャパシタCsの充放電をデッドタイムTDよりも短くするために必要な電流の限界値をIzvsとすると、電流Izvsは、インダクタンス要素Ltに蓄えられる磁気エネルギーと、スナバキャパシタCsに蓄えられる静電エネルギーとの関係から求めることができる。具体的には、インダクタンス要素Ltに蓄えられる磁気エネルギーが(L・Izvs2/2)である一方で、スナバキャパシタCsに蓄えられる静電エネルギーは、スナバキャパシタCsがV1で充電される第1ブリッジ回路12ではCs・V12/2であり、スナバキャパシタCsがV2で充電される第2ブリッジ回路22ではCs・V22/2である。
 従って、直流電圧Vx(第1ブリッジ回路12ではVx=V1、第2ブリッジ回路22ではVx=V2)を用いると、下記の式(9)により、電流Izvsを求めることが可能である。式(9)において、ソフトスイッチングが可能になる電流Izvsは、回路定数L,Cs及び直流電圧V1,V2(検出値)から算出することが可能である。電流Izvsは「ゼロボルトスイッチング電流値」を示すものである。
Figure JPOXMLDOC01-appb-M000009
 或いは、上記電流Izvsは、デッドタイムTDの間にスナバキャパシタCsを充電する電流であるので、式(9)と同様の直流電圧Vxを用いて、下記の式(10)によっても求めることができる。
Figure JPOXMLDOC01-appb-M000010
 式(10)においても、電流Izvsは、予め設定されたデッドタイムTD、回路定数Cs及び直流電圧V1,V2(検出値)から算出することが可能である。従って、式(9)又は式(10)を用いて、ソフトスイッチングが可能になる電流Izvsを定めることが可能である。
 或いは、式(9)及び式(10)による算出値のうちの最大値を用いて、電流Izvsを設定することも可能である。このようにすると、より確実にゼロ電圧スイッチングを適用することが可能となる。
 ここで、上述のように、スイッチングレグ間に位相差が設けられない第2ブリッジ回路22におけるターンオフ電流は、式(7)で示されるIL1、又は、-IL1である。従って、実施の形態1では、式(9),(10)において、Vx=V2として得られた電流Izvsを、式(7)においてIL1に代入する(IL1=Izvs)ことにより、第2ブリッジ回路22においてソフトスイッチングが達成されるための位相差δ1を求めることができる。具体的には、LL1=Izvsを代入した式(7)を位相差δ1について解くことにより、下記の式(11)を得ることができる。位相差δ1、即ち、実施の形態1でのゼロ電圧期間長を求める式(11)は、「第1の演算式」の一実施例に相当する。
Figure JPOXMLDOC01-appb-M000011
 式(11)により、位相差δ1については、直流電圧V1,V2の検出値、及び、電流Izvsの算出値を用いて、第2ブリッジ回路22においてソフトスイッチングを達成するための値として算出することができる。
 この結果、式(6)において、位相差δ1は、ソフトスイッチングを達成するために式(11)で算出された定数とされるので、送電電力Pは、位相差φ1を変数として制御される。即ち、式(6)を位相角φ1について解いた、下記の式(12)に対して、式(11)により求められた位相差δ1及び直流電圧V1,V2を代入することで、送電電力Pに対応する位相角φ1を求めることが可能となる。位相差φ1を求める式(12)は、「第2の演算式」の一実施例に相当する。
Figure JPOXMLDOC01-appb-M000012
 このように、実施の形態1に係る電力変換装置によれば、第1ブリッジ回路12のみでスイッチングレグ間に位相差δ1が設けられる一方で、第2ブリッジ回路22ではスイッチングレグ間に位相差を設けない制御とすることで、交流電圧VT1のみにゼロ電圧期間が設けられ、交流電圧VT2にはゼロ電圧期間が設けられない態様で、電力伝送が実行される。
 上述したように、ゼロ電圧期間を制御する位相差δ1は第2ブリッジ回路22でソフトスイッチングが実現されるために設定される一方で、第1ブリッジ回路12及び第2ブリッジ回路22の間の位相差φ1については、上記位相差δ1の下での送電電力Pを制御するように設定することができる。
 この結果、特許文献1とは異なり、位相差δ1及び位相差φ1を相互に干渉させることなく設定することが可能となるため、送電電力Pの制御を簡単に行うことが可能となる。この際に、位相角δ1の設定により第2ブリッジ回路22ではソフトスイッチングが実現されるため、スイッチング素子Q21~Q24で発生する電力損失を抑制して、電力変換装置100を高効率化することが可能である。実施の形態1では、「第1の動作モード」のうちの、第1ブリッジ回路12側にゼロ電圧期間を設けた場合の電力変換装置100の動作を説明したことになる。
 実施の形態2.
 実施の形態1では、第1ブリッジ回路12にスイッチングレグ間での位相差δ1が設けることで、第1ブリッジ回路12が出力する交流電圧VT1にゼロ電圧期間が設けられる制御について説明した。実施の形態2では、実施の形態1とは反対に、第2ブリッジ回路22が交流電圧VT2にゼロ電圧期間が設けられる制御について説明する。尚、実施の形態2以降においても、電力変換装置100の回路構成は、実施の形態1(図1)と共通である。
 図3は、実施の形態2に係る電力変換装置におけるスイッチング素子Q11~Q14,Q21~Q24のオンオフ制御の一例を説明する波形図である。図3の横軸は、図2と同様であり、図3においても、図2と同様に、ゲート信号SQ11~SQ14,SQ21~SQ24、交流電圧VT1,VT2、及び、交流電流ILが示される。図3においても、表記は省略されているが、図2で説明したのと同様のデッドタイムが設けられている。
 図3を参照して、実施の形態2では、第1ブリッジ回路12において、スイッチング素子Q11,Q12のゲート信号SQ11(/SQ12)と、スイッチング素子Q13,Q14のゲート信号SQ14(/SQ13)との間には位相差は設けられない。即ち、スイッチングレグ間で、正極側及び負極側スイッチング素子の間でオンオフが入れ替わる位相は同じであり、スイッチング素子Q11及びQ14は同じタイミングでオンオフが切り替わり、スイッチング素子Q12及びQ13は同じタイミングでオン/オフが切り替わる。このため、第1ブリッジ回路12が第1交流端子13に出力する交流電圧VT1は、振幅V1であり、かつ、ゼロ電圧期間を有していない。
 実施の形態2においても、第1ブリッジ回路12のスイッチング位相と、第2ブリッジ回路22のスイッチング位相との間には、電力伝送を制御するための位相差φが設けられる。実施の形態1では、スイッチング素子Q11のゲート信号SQ11に対して、スイッチング素子Q21のゲート信号SQ21に位相差φ2が設けられる(φ=φ2)。この結果、交流電圧VT1及び交流電圧VT2の間には、位相差φ2が生じる。実施の形態2では、位相差φ2が「第1の位相差」の一実施例に対応する。
 実施の形態2では、第2ブリッジ回路22において、スイッチング素子Q21,Q22のゲート信号SQ21(/SQ22)と、スイッチング素子Q23,Q24のゲート信号SQ24(/SQ23)との間に位相差が設けられる。具体的には、実施の形態1と同様にスイッチング素子Q11のゲート信号SQ11を基準として、スイッチング素子Q24のゲート信号SQ24(/SQ23)に位相差-δ2が設けられることにより、スイッチングレグ間では、ゲート信号SQ21(/SQ22)及びゲート信号SQ24(/SQ23)の間には、位相差(φ2+δ2)が設けられる。即ち、実施の形態2では、位相差(φ2+δ2)が「第2の位相差」の一実施例に対応する。これにより、第2ブリッジ回路22が第2交流端子23に出力する交流電圧VT2は、振幅V2であり、かつ、位相差(φ2+δ2)に対応するゼロ電圧期間を有するものとなる。
 実施の形態2においても、位相θにおける交流電流IL(θ)を各位相で求める。図3中にあるように、IL(-δ2)=IL0a、IL(0)=IL1a、IL(φ2)=IL2a、IL(π-δ2)=IL3aとする。
 まず、-δ2<θ<0の位相期間では、VT1=-V1,VT2=0であるため、交流電流IL(θ)は、下記の式(13)により示される。
Figure JPOXMLDOC01-appb-M000013
 次に、0<θ<φ2の位相期間では、VT1=V1,VT2=0であるため、交流電流IL(θ)は、下記の式(14)により示される。
Figure JPOXMLDOC01-appb-M000014
 同様に、φ2<θ<π-δ2の位相期間では、VT1=V1,VT2=V2であるため、交流電流IL(θ)は、下記の式(15)により示される。尚、図3では、V2>V1としたときの電流波形が示されている。上述のような入出力の電圧変動が発生した過渡状態において、実施の形態1とは逆にV2>V1となったケースを想定するものである。
Figure JPOXMLDOC01-appb-M000015
 式(15)より、θ=π-δ2のときの電流IL3aについて、下記の式(16)が成立する。
Figure JPOXMLDOC01-appb-M000016
 又、交流電流ILは、周期的に変化するため、電流IL0a(θ=-δ2)と、電流IL3a(θ=π-δ2)との間には、IL3a=-IL0aの関係が成立する。このため、電流IL0aについて、下記の式(17)が成立する。
Figure JPOXMLDOC01-appb-M000017
 実施の形態2において、送電電力Pは、負荷20からの直流電圧V2及び交流電流ILを位相θの関数として、位相θで1周期積分することによって得られる。従って、上記式(13)~(17)式を用いて、第1ブリッジ回路12から第2ブリッジ回路22への送電電力Pは、下記の式(18)によって示される。
Figure JPOXMLDOC01-appb-M000018
 式(18)から理解されるように、送電電力Pは、位相差φ2及び位相差δ2の2変数関数となっている。ここで、式(13)及び式(17)式から、θ=0のときの電流IL1aは、式(19)によって示される。
Figure JPOXMLDOC01-appb-M000019
 更に、式(14)及び式(17)から、θ=φ2のときの電流IL2aは、下記の式(20)によって示される。
Figure JPOXMLDOC01-appb-M000020
 ここで、スイッチングレグ間に位相差が設けられない第1ブリッジ回路12では、θ=0において、スイッチング素子Q12,Q13がターンオフ(スイッチング素子Q11,Q14がターンオン)する一方で、θ=πにおいて、スイッチング素子Q11,Q14がターンオフ(スイッチング素子Q12,Q13がターンオン)する。従って、スイッチング損失に影響する、スイッチング素子Q11~Q14のターンオフ電流は、θ=0又はθ=πのときの交流電流IL、即ち、電流IL1a又は-IL1aとなる。
 この電流IL1aを、上述の式(9),(10)に示した、ソフトスイッチングを実現するための電流Izvsとすることで、スイッチング素子Q11~Q14で発生する電力損失を抑制することができる。実施の形態2では、式(9),(10)において、Vx=V1として、電流Izvsを求めることができる。
 更に、IL1a=Izvsを代入した式(19)をδ2について解くことで、下記の式(21a)が得られる。更に、式(21a)を変形すると、実施の形態2で必要なゼロ電圧期間(δ2+φ2)を示す式(21b)が得られる。式(21b)は、「第1の演算式」の一実施例に相当する。
Figure JPOXMLDOC01-appb-M000021
 式(21b)の右辺は、第1ブリッジ回路12においてソフトスイッチングを達成するためのゼロ電圧期間長として、直流電圧V1,V2(検出値)、及び、式(9),(10)からの電流Izvsを代入することにより算出することができる。尚、式(21b)では、実施の形態1で位相角δ1を求める式(11)の右辺と同様の、スイッチング周波数fsw、インダクタンス要素Ltのインダクタンス値L、電流Izvs、及び、直流電圧V1,V2を用いて、ゼロ電圧期間長を算出することができる。
 一方で、式(18)を、位相差φ2によって解くように変形することで、以下の式(22)が得られる。
Figure JPOXMLDOC01-appb-M000022
 ここで、式(22)に式(21a)を代入することにより、式(23)を得ることができる。
Figure JPOXMLDOC01-appb-M000023
 式(23)により、送電電力Pを制御するための位相差φ2について、直流電圧V1,V2(検出値)、及び、式(9),(10)から求められる電流Izvsを代入することで求めることが可能となる。位相差φ2を求める式(23)は、「第3の演算式」の一実施例に相当する。更に、式(23)で求められた位相差φ2を、式(21b)の右辺で求められた値(ゼロ電圧期間長)から減算することで、位相差δ2を求めることが可能である。
 このように、実施の形態2に係る電力変換装置によれば、第2ブリッジ回路22のみでスイッチングレグ間に位相差(φ2+δ2)が設けられる一方で、第1ブリッジ回路12ではスイッチングレグ間に位相差を設けない制御とすることで、交流電圧VT2のみにゼロ電圧期間が設けられ、交流電圧VT1にはゼロ電圧期間が設けられない態様で、電力伝送が実行される。
 上述したように、ゼロ電圧期間長に相当する位相差(φ2+δ2)は第1ブリッジ回路12でソフトスイッチングが実現されるために設定される一方で、第1ブリッジ回路12及び第2ブリッジ回路22の間の位相差φ2については、上記ゼロ電圧期間の下での送電電力Pを制御するために設定することができる。
 この結果、特許文献1とは異なり、位相差δ2及び位相差φ2を相互に干渉させることなく設定することが可能となるため、送電電力Pの制御を簡易に行うことが可能となる。この際に、位相角δ2の調整により第1ブリッジ回路12ではソフトスイッチングが実現されるため、スイッチング素子Q11~Q14で発生する電力損失を抑制して、電力変換装置100を高効率化することが可能である。実施の形態2では、「第1の動作モード」のうちの、第2ブリッジ回路22側にゼロ電圧期間を設けた場合の電力変換装置100の動作を説明したことになる。
 実施の形態3.
 実施の形態1及び2では、第1ブリッジ回路12側及び第2ブリッジ回路22側の一方のみにゼロ電圧期間を設ける制御について説明した。実施の形態3では、第1ブリッジ回路12及び第2ブリッジ回路22のいずれにゼロ電圧期間を設けるかを選択する制御を説明する。
 図4A及び図4Bは、第1ブリッジ回路側(交流電圧VT1)にゼロ電圧期間を設けた際、即ち、実施の形態1に係るスイッチング素子のオンオフ制御を説明するための波形図である。
 図4Aには、V1>V2のときの波形図が示されており、図4Aの各波形は図2と同じである。一方で、図4Bには、図2とは反対にV1<V2の下で、第1ブリッジ回路側(交流電圧VT1)にゼロ電圧期間を設けたときの波形図が、図4Aと同様の表記で示される。
 図4Aでは、図2と同様に、δ1<θ<πの位相区間において、(V1-V2)>0であることから交流電流ILが増加している。これに対して、図4Bの波形図では、δ1<θ<πの位相区間において、(V1-V2)<0であることから交流電流ILが減少する。
 図4Bでは、交流電流ILの増減が図4A(図2)とは異なる結果、電流IL0(θ=0)、電流IL1(θ=φ1)、電流IL2(θ=δ1)、及び、電流IL3(θ=π)が、実施の形態1で説明した図4Aでの値と異なる。
 特に、図4Bにおいて、スイッチングレグ間に位相差が設けられない第2ブリッジ回路22のスイッチング素子Q21~Q24のターンオフタイミング(θ=φ1,π+φ1)での電流IL1について、図4Aと比較して、極性は同じであるものの、絶対値が大きくなることが理解される。これにより、ターンオフ時の電力損失の増加が懸念される。
 又、図4Bでは、スイッチングレグ間に位相差が設けられる第1ブリッジ回路12において、スイッチング素子Q11のターンオフタイミング(θ=π)での電流IL3、及び、スイッチング素子Q12のターンオフタイミング(θ=0)での電流IL0の極性が、図4Aとは反対となる。この結果、スイッチング素子Q11,Q12は、逆並列ダイオードに電流が流れている状態でターンオフされることになり、いわゆるリカバリ損失が発生するとともに、スナバキャパシタCsを充放電できないため、スナバキャパシタCsの蓄電エネルギがスイッチング素子で消費される。これらにより、図4Bでは、図4Aと比較して、第1ブリッジ回路12及び第2ブリッジ回路22の双方で、スイッチング素子のオンオフに伴う電力損失の増加が懸念される。
 従って、直流電圧V1,V2の間に、V1>V2が成立する場合には、実施の形態1で説明したように、第1ブリッジ回路12にスイッチングレグ間に位相差を設けて、交流電圧VT1にゼロ電圧期間を設けることが好ましい。
 図5A及び図5Bは、第2ブリッジ回路側(交流電圧VT2)にゼロ電圧期間を設けた際、即ち、実施の形態2に係るスイッチング素子のオンオフ制御を説明するための波形図である。
 図5Aには、V1>V2のときの波形図が示されており、図5Bには、V2>V1のときの波形図が示される。図5Bの各波形は図3と同じである。一方で、図5Aには、図3とは反対にV1>V2の下で第2ブリッジ回路側(交流電圧VT2)にゼロ電圧期間を設けたときの波形図が、図5Bと同様の表記で示される。
 図5Bでは、図3と同様に、φ2<θ<π-δ2の位相区間において、(V1-V2)<0であることから交流電流ILが減少している。これに対して、図5Aの波形図では、φ2<θ<π-δ2の位相区間において、(V1-V2)>0であることから交流電流ILが増加する。
 この結果、図5Aでは、交流電流ILの増減は図5B(図3)とは異なる結果、電流IL0a(θ=-δ2)、電流IL1a(θ=0)、電流IL2a(θ=φ2)、及び、電流IL3a(θ=π-δ2)が、実施の形態2で説明した図5Bでの値と異なる。
 特に、図5Aにおいて、スイッチングレグ間に位相差が設けられない第1ブリッジ回路12のスイッチング素子Q11~Q14のターンオフタイミング(θ=0,π)での電流IL1aについて、図5Bと比較して、極性は同じであるものの、絶対値が大きくなることが理解される。これにより、ターンオフ時の電力損失の増加が懸念される。
 又、図5Aでは、スイッチングレグ間に位相差が設けられる第2ブリッジ回路22において、スイッチング素子Q21のターンオフタイミング(θ=φ2)での電流I2a、及び、スイッチング素子Q22のターンオフタイミング(θ=π+δ2)での電流-IL0aの極性が、図5Bとは反対となる。この結果、スイッチング素子Q21,Q22は、逆並列ダイオードに電流が流れている状態でターンオフされる。これにより、図4Bでのスイッチング素子Q11,Q12と同様に、スイッチング素子Q21,Q22での電力損失が増加する。これらにより、図5Aでは、図5Bと比較して、第1ブリッジ回路12及び第2ブリッジ回路22の双方で、スイッチング素子のオンオフに伴う電力損失の増加が懸念される。
 従って、直流電圧V1,V2の間に、V2>V1が成立する場合には、実施の形態2で説明したように、第2ブリッジ回路22にスイッチングレグ間に位相差を設けて、交流電圧VT2にゼロ電圧期間を設けることが好ましい。
 これらの知見から、実施の形態3に係る電力変換装置では、直流電圧V1及びV2の比較に基づいて、第1ブリッジ回路12及び第2ブリッジ回路22を制御する。
 図6は、実施の形態3に係る電力変換装置の制御回路の構成例を説明するブロック図である。
 図6を参照して、実施の形態3において、制御回路50は、位相差演算部51と、ゲート信号生成部52とを含む。位相差演算部51には、送電電力Pの目標値である送電電力指令値Prefと、図示しないセンサによる直流電圧V1及びV2の検出値が入力される。ゲート信号生成部52は、第1ブリッジ回路信号生成部521と、第2ブリッジ回路信号生成部522とを有する。第1ブリッジ回路信号生成部521は、第1ブリッジ回路12へのゲート信号SQ11~SQ14を生成する。第2ブリッジ回路信号生成部522は、第2ブリッジ回路22へのゲート信号SQ21~SQ24を生成する。
 図7は、位相差演算部51による制御処理を説明するフローチャートである。
 図7のフローチャートに示される制御処理は、制御回路50を構成するデジタル電子回路及び/又はアナログ電子回路によるハードウェア及び/又はソフトウェアによって実行することが可能である。
 図7を参照して、位相差演算部51は、ステップ(以下、単に「S」と表記する)110により、直流電圧V1及びV2が一致するか否かを、両者の検出値の比較により判定する。V1≠V2のとき(S110のYES判定時)には、更にS120により、直流電圧V1及びV2の検出値の高低が判定される。上述のように、各ステップの制御処理では、直流電圧V2の検出値の一次側換算値が用いられる。
 位相差演算部51は、V1>V2のとき(S120のYES判定時)には、S150により、位相差φ1及びδ1を算出する。一方で、第2ブリッジ回路22側ではゼロ電圧期間を設けないために、位相差δ2=φ2(ここでは、φ2=φ1により設定可能)に設定される。S150では、実施の形態1での式(11),(12)に、直流電圧V1,V2の検出値、電流Izvs(式(9),(10))、及び、P=Prefを代入することにより、位相差φ1及びδ1を算出することができる。
 これにより、V1>V2のときには、実施の形態1と同様に、第1ブリッジ回路12のスイッチングレグ間に位相差δ1が設けられて、交流電圧VT1にゼロ電圧期間(δ1)が設けられる。これにより、V1>V2のときには、図4Bの波形ではなく、図4Aの波形に従って電力変換装置100が動作するので、第1ブリッジ回路12及び第2ブリッジ回路22の双方で電力損失を抑制することができる。
 これに対して、位相差演算部51は、V2>V1のとき(S120のNO判定時)には、S160により、位相差φ2及びδ2を算出する一方で、位相差δ1=0に設定する。S160では、実施の形態2での式(21b),(23)に、直流電圧V1,V2の検出値、電流Izvs(式(9),(10))、及び、P=Prefを代入することにより、位相差φ2及びδ2を算出することができる。
 これにより、V2>V1のときには、実施の形態2と同様に、第2ブリッジ回路22のスイッチングレグ間に位相差(φ2+δ2)が設けられて、交流電圧VT2にゼロ電圧期間(φ2+δ2)が設けられる。これにより、V2>V1のときには、図5Aの波形ではなく、図5Bの波形に従って電力変換装置100が動作するので、第1ブリッジ回路12及び第2ブリッジ回路22の双方で電力損失を抑制することができる。
 一方で、位相差演算部51は、V1=V2のとき(S110のNO判定時)には、第1ブリッジ回路12及び第2ブリッジ回路22の両方にゼロ電圧期間を設けない通常動作を実行する。通常動作は「第2の動作モード]に対応する。
 通常動作では、第1ブリッジ回路12及び第2ブリッジ回路22において、位相差δ1=0,δ2=φ2とされる。従って、第1ブリッジ回路12では、図3と同様に、スイッチング素子Q11及びQ14は同じタイミングでオンオフが切り替わり、スイッチング素子Q12及びQ13は同じタイミングでオン/オフが切り替わる。このため、交流電圧VT1は、図3と同様に、振幅V1であり、かつ、ゼロ電圧期間を有していない波形となる。
 同様に、第2ブリッジ回路22では、図2と同様に、スイッチング素子Q21及びQ24は同じタイミングでオンオフが切り替わり、スイッチング素子Q22及びQ23は同じタイミングでオン/オフが切り替わる。このため、交流電圧VT2は、図2と同様に、振幅V2であり、かつ、ゼロ電圧期間を有していない波形となる。
 通常動作では、スイッチング素子Q11のゲート信号SQ11に対して、スイッチング素子Q21のゲート信号SQ21に位相差φ0が設けられる(φ=φ0)。この結果、交流電圧VT1及び交流電圧VT2の間には、位相差φ0が生じる。通常動作では、位相差φ0が「第1の位相差」の一実施例に対応する。通常動作における送電電力Pは、下記の式(24)によって制御される。
Figure JPOXMLDOC01-appb-M000024
 従って、S170では、式(24)を位相差φ0によって解いた下記の式(25)に、P=Pref、及び、直流電圧V1,V2の検出値を代入することによって、送電電力制御のための位相差φ0を算出することができる。位相差φ0は、通常動作(第2の動作モード)における「第1の位相差」に対応する。
Figure JPOXMLDOC01-appb-M000025
 この結果、位相差演算部51は、S150~S170により、伝送電力制御のための位相差φ(位相差φ0、φ1、又は、φ2)、及び、位相差δ1,δ2を算出することができる。
 再び図6を参照して、位相差演算部51は、位相差δ1を第1ブリッジ回路信号生成部521に送出するとともに、電力伝送制御のための位相差φ(φ0、φ1、又は、φ2)及び、位相差δ2を第2ブリッジ回路信号生成部522へ送出する。
 第1ブリッジ回路信号生成部521は、ゲート信号SQ11(/SQ12)を基準位相に従って生成するとともに、ゲート信号SQ11(/SQ12)に対して位相差δ1を有するようにゲート信号SQ14(/SQ13)を生成する。
 第2ブリッジ回路信号生成部522は、基準位相のゲート信号SQ11(/SQ12)に対して、位相差φ(φ0、φ1、又は、φ2)を有するように、ゲート信号SQ21(/SQ22)を生成する。更に、第2ブリッジ回路信号生成部522は、基準位相のゲート信号SQ11(/SQ12)に対して位相差δ2を有するように、ゲート信号SQ24(/SQ23)を生成する。
 この結果、送電電力制御のための位相差φ(φ0、φ1、又は、φ2)が交流電圧VT1及びVT2の間に設けられ、かつ、位相差δ1≠0、又は、δ2≠φのときには、ゼロ電圧期間が交流電圧VT1及びVT2の一方に設けられるように、ゲート信号SQ11~SQ14,SQ21~SQ24を生成することができる。
 このように、実施の形態3に係る電力変換装置によれば、直流電圧V1,V2の状態に応じて、交流電圧VT1,VT2へのゼロ電圧期間の設定を適切に切り替えることにより、スイッチング素子Q11~Q14,Q21~Q24での電力損失を低減することによって、電力変換装置100を高効率化することが可能となる。
 実施の形態4.
 実施の形態1~3では、ゼロ電圧期間を設けることによる第1ブリッジ回路12及び第2ブリッジ回路22での電力損失低減によって、電力変換装置100を高効率化した。一方で、ゼロ電圧期間は、電力伝送制御のための位相差φ1,φ2よりも長く設定されるため、電力伝送の際の力率が低下することが懸念される。従って、厳密には、力率低下によるデメリットと、第1ブリッジ回路12及び第2ブリッジ回路22での電力損失低減のメリットとのバランスを考慮する必要がある。
 図8及び図9には、電力変換装置100における送電電力を変化させた下での電力伝送のシミュレーション結果が示される。
 図8及び図9の横軸には、送電電力がpu単位で示され、縦軸には、電力伝送の効率のシミュレーション値が示される。効率は、直流電源10からの入力電力に対する、電力変換装置100での損失電力が減算された実際の送電電力の比によって示される。
 図8には、V1>V2のときのシミュレーション結果が示され、図9には、V2>V1のときのシミュレーション結果が示される。
 図8を参照して、図中の実線には、V1>V2のときに、実施の形態1に従って、式(11),(12)によって算出された位相差δ1を用いて、交流電圧VT1にゼロ電圧期間を設けた際のシミュレーション結果が示される。これに対して、図中の点線には、V1>V2のときに、交流電圧VT1及びVT2の両方にゼロ電圧期間を設けない通常動作でのシミュレーション結果が示される。
 図8のシミュレーションでは、P≦0.7puの領域では、ゼロ電圧期間を設けた方(実線)が、通常動作(点線)よりも効率が高くなる。一方で、P>0.7puの領域では、ゼロ電圧期間を設けた方(実線)が、通常動作(点線)よりも効率が低くなっている。
 図9を参照して、図中の実線には、V2>V1のときに、実施の形態2に従って、式(21b),(23)によって算出された位相差δ2を用いて、交流電圧VT2にゼロ電圧期間(φ2+δ2)を設けた際のシミュレーション結果が示される。これに対して、図中の点線には、V2>V1のときに、交流電圧VT1及びVT2の両方にゼロ電圧期間を設けない通常動作でのシミュレーション結果が示される。
 図9のシミュレーションでは、P≦0.7puの領域では、ゼロ電圧期間を設けた方(実線)が、通常動作(点線)よりも効率が高くなる。一方で、P>0.7puの領域では、ゼロ電圧期間を設けた方(実線)が、通常動作(点線)よりも効率が低くなっている。
 図8及び図9を通じて、送電電力が大きい領域(図8及び図9の例では、P>0.7pu)では、ゼロ電圧期間を設けることによって効率が却って低下している。これは、力率低下の影響により、同一の送電電力に対する交流電流ILの振幅が大きくなった結果、ターンオフ電流の絶対値が大きくなることで、第1ブリッジ回路12及び第2ブリッジ回路22のスイッチング素子Q11~Q14,Q21~Q24での電力損失が増加するためと考えられる。
 即ち、送電電力が大きい領域では、ゼロ電圧期間を設ける電力損失の低減よりも、力率低下による電力損失の増大の方が大きくなるため、通常動作を適用した方が、電力変換装置100を高効率で動作させることができる。
 一方で、送電電力が小さい領域(図8及び図9の例では、P≦0.7pu)では、ゼロ電圧期間を設けることで力率が低下しても交流電流ILがそれ程増加しないので、ゼロ電圧期間を設けることによるスイッチング損失の低減効果により、電力変換装置100を高効率で動作させることができる。
 従って、実施の形態4に係る電力変換装置では、伝送電力に応じて、第1ブリッジ回路12及び第2ブリッジ回路22にゼロ電圧期間を設けるかを選択する制御を実行する。尚、図8及び図9における境界値0.7puは、今回のシミュレーション結果での一例であり、回路条件等により変化するものであるが、同様のシミュレーション又は実機試験等によって予め求めることが可能である。
 実施の形態4においても、制御回路50の構成は、実施の形態3(図6)と同様とすることができる。実施の形態4では、位相差演算部51による制御処理が、実施の形態3(図7)とは異なる。
 図10は、実施の形態4に係る電力変換装置の制御回路における位相差演算部による制御処理を説明するフローチャートである。図10のフローチャートに示される制御処理についても、制御回路50を構成するデジタル電子回路及び/又はアナログ電子回路によるハードウェア及び/又はソフトウェアによって実行することが可能である。
 図10を参照して、位相差演算部51(制御回路50)は、V1≠V2のとき(S110のYES判定時)には、S115により、送電電力を予め定められた境界値Plimと比較する。境界値Plimは、図8及び図9における0.7puに相当し、上述のようにシミュレーション又は実機試験等に従って予め設定される。例えば、S115では、送電電力指令値Prefと境界値Plimとが比較される。
 位相差演算部51(制御回路50)は、Pref<Plimのとき(S115のYES判定時)には、図7と同様のS120,S150,S160により、位相差φ1又はφ2、及び、位相差δ1,δ2を算出する。これにより、実施の形態3と同様に、直流電圧V1及びV2の高低に応じて、交流電圧VT1及びVT2のいずれにゼロ電圧期間を設けるかが制御される。
 これに対して、位相差演算部51(制御回路50)は、Pref≧Plimのとき(S115のNO判定時)には、V1=V2のとき(S110のNO判定時)と同様に、図7と同様のS170により、位相差φ0を算出するとともに、位相差δ1=0,δ2=φ0に設定する。この結果、図8及び図9でのP>0.7puの送電電力Pが大きい領域では、交流電圧VT1及びVT2の両方にゼロ電圧期間が設けられない通常動作によって、電力変換装置100を動作させることができる。
 このように、実施の形態4に係る電力変換装置によれば、送電電力に応じて、交流電圧VT1,VT2にゼロ電圧期間を設けるか否かを適切に切り替えることにより、電力変換装置100を高効率化することが可能となる。
 実施の形態5.
 実施の形態3~4では、直流電圧V1,V2の状態に応じて、交流電圧VT1,VT2へのゼロ電圧期間の設定を適切に切り替える制御を説明した。しかしながら、電圧検出誤差によって、例えば、実際はV1<V2であるのに対して、検出値からV1>V2と判断して、第1ブリッジ回路12側(交流電圧VT1)にゼロ電圧期間を設けると、図4Bで説明したように、スイッチング素子Q11~Q14,Q21~Q24での電力損失が増大することが懸念される。従って、実施の形態5では、直流電圧V1及びV2の検出誤差による誤動作防止のための制御を説明する。
 実施の形態4においても、制御回路50の構成は、実施の形態3(図6)と同様とすることができる。実施の形態4では、位相差演算部51による制御処理が、実施の形態3又は4(図10)とは異なる。
 図11は、実施の形態5に係る電力変換装置の制御回路における位相差演算部による制御処理を説明するフローチャートである。図11のフローチャートに示される制御処理についても、制御回路50を構成するデジタル電子回路及び/又はアナログ電子回路によるハードウェア及び/又はソフトウェアによって実行することが可能である。
 図11を参照して、位相差演算部51(制御回路50)は、図7及び図10でのS110に代えて、S105により、直流電圧V1及びV2の検出値を比較する。S105では、直流電圧V1及びV2(検出値)の電圧差の絶対値(|V1-V2|)が、予め定められた判定値ΔVと比較される。判定値ΔVは、電力変換装置100の設計時点において、想定される動作条件下における試験結果等を反映して予め設定することができる。
 位相差演算部51(制御回路50)は、|V1-V2|≦ΔVのとき(S105のNO判定時)には、図7及び図10と同様のS170により、図7及び図10でのS110のNO判定時と同様に、通常動作のための位相差φ0を算出するとともに、位相差δ1=0,δ2=φ0に設定する。この結果、直流電圧V1及びV2の検出値の差が小さい場合には、交流電圧VT1及びVT2の両方にゼロ電圧期間が設けられない通常動作によって、電力変換装置100を動作させることができる。
 一方で、位相差演算部51(制御回路50)は、|V1-V2|>ΔVのとき(S105のYES判定時)には、図10と同様のS115~S160により、位相差φ1又はφ2,及び、位相差δ1,δ2を算出する。実施の形態3及び4と同様に、直流電圧V1及びV2の高低に応じて、交流電圧VT1及びVT2のいずれにゼロ電圧期間を設けるかが制御される。
 尚、図11では、図10(実施の形態4)の制御処理において、S110をS105に置換する制御処理を説明したが、実施の形態5では、実施の形態3に係る制御処理(図7の制御処理)のS110をS105に置換することも可能である。
 このように、実施の形態5に係る電力変換装置によれば、検出誤差の影響によって直流電圧V1及びV2の高低を誤判断する可能性がある状態では、交流電圧VT1及びVT2の両方にゼロ電圧期間が設けられない態様で、電力変換装置100を動作させることができる。この結果、検出誤差に起因して直流電圧V1及びV2の高低を実際とは逆に判断して、図4B及び図5Aで説明したような電力損失が増大する誤動作を防止することが可能である。
 実施の形態6.
 実施の形態1~5では、制御回路50の位相差演算部51により、検出した直流電圧V1,V2と送電電力指令値Prefとに基づき、式(11),(12)による演算、式(21b),(23)による演算、又は、式(25)による演算を実行する構成を例示した。実施の形態6では、位相差演算部51での演算負荷を軽減するために、位相差φ0~φ2及び位相差δ1,δ2を求める処理の少なくとも一部に参照テーブルを用いる構成例を説明する。
 図12は、実施の形態6に係る電力変換装置の制御回路の第1の構成例を説明するブロック図である。
 図12を参照して、実施の形態6に係る第1の例では、制御回路50は、参照テーブル55と、図6と同様のゲート信号生成部52とを含む。
 参照テーブル55は、検出した直流電圧V1,V2と、送電電力指令値Prefを引数として、図6の位相差演算部51と同様に、位相差φ0~φ2のうちのいずれか、及び、位相差δ1,δ2を出力するように構成される。
 上述したように、図7、図10及び図11の処理において、S150~S170の各々では、式(11),(12)、式(21b),(23)、又は、式(25)に従って、検出した直流電圧V1,V2、及び、送電電力指令値Prefを用いて、位相差φ(φ0~φ2のいずれか)、及び、位相差δ1,δ2が求められる。
 更に、図7、図10及び図11の処理において、S150~S170の選択についても、直流電圧V1,V2、又は、直流電圧V1,V2及び送電電力指令値Prefに基づいて実行されている。従って、直流電圧V1、直流電圧V2、及び、送電電力指令値Prefの組み合わせによる三次元の領域で、S150、S160、及び、S170のいずれが選択されるかを区別することが可能である。
 この結果、直流電圧V1、直流電圧V2、及び、送電電力指令値Prefを引数として、図7、図10及び図11の処理でのS150~S170の選択を伴って、位相差φ0~φ2のうちのいずれか、及び、位相差δ1,δ2を算出するように、参照テーブル55を構成することが可能である。例えば、S150が選択されるような、直流電圧V1、直流電圧V2、及び、送電電力指令値Prefの領域に対しては、式(11),(12)に従う位相角φ1,δ1及び位相差δ2(δ2=φ2)をテーブル値として予め格納することが可能である。同様に、S160が選択される領域に対して、式(21b),(23)に従う位相角φ2,δ2(δ1=0)をテーブル値として予め格納し、S170が選択される領域に対して、式(25)に従う位相角φ0、並びに、位相差δ1及びδ2(δ1=0,δ2=φ0)をテーブル値として予め格納することが可能である。
 このようにして、参照テーブル55は、検出した直流電圧V1,V2と、送電電力指令値Prefとの入力に対して、図6の位相差演算部51と同様に、位相差δ1を第1ブリッジ回路信号生成部521に送出するとともに、電力伝送制御のための位相差φ(位相差φ0、φ1、又は、φ2)、及び、位相差δ2を第2ブリッジ回路信号生成部522へ送出することができる。
 この結果、第1ブリッジ回路信号生成部521及び第2ブリッジ回路信号生成部522によって、図6で説明したのと同様に、スイッチング素子Q11~Q14,Q21~Q24のゲート信号SQ11~SQ14,SQ21~SQ24を生成することができる。
 このような構成とすることで、制御回路50における演算負荷を軽減することが可能となり、制御回路50の簡素化が可能となる。
 図13は、実施の形態6に係る電力変換装置の制御回路の第1の構成例を説明するブロック図である。
 図13を参照して、実施の形態6に係る第3の例では、制御回路50は、位相差演算部56と、参照テーブル58a,58bと、図6と同様のゲート信号生成部52とを含む。第1の構成例では、位相差演算部51(図6)の全機能をテーブル化したため、参照テーブル55の容量が大型化することが懸念される。従って、第2の構成例では、図6の位相差演算部51の機能の一部をテーブル化するものである。
 参照テーブル58aは、図7、図10及び図11のS150による処理の一部として、第1ブリッジ回路12にゼロ電圧期間を設けるとき、即ち、実施の形態1でのゼロ電圧期間長を求めるように構成される。具体的には、参照テーブル58aは、検出した直流電圧V1,V2と、送電電力指令値Prefを引数として、式(11)に従った位相差δ1の値を予め格納するように構成される。
 参照テーブル58bは、図7、図10及び図11のS160による処理の一部として、第2ブリッジ回路22にゼロ電圧期間を設けるとき、即ち、実施の形態2でのゼロ電圧期間長を求めるように構成される。具体的には、参照テーブル58bは、検出した直流電圧V1,V2と、送電電力指令値Prefを引数として、式(21b)に従った位相差(φ2+δ2)の値を予め格納するように構成される。
 位相差演算部56は、図7、図10及び図11でのS150~S170を選択する処理、S150の残りの処理、S160の残りの処理、並びに、S170の処理を実行するように構成される。
 S150が選択される状態では、位相差演算部56は、式(12)に従った演算によって位相差φ1を算出するとともに、位相差δ2=φ1に設定する。S170が選択される状態では、位相差演算部56は、式(25)に従った演算によって位相差φ0を算出するとともに、位相差δ1=0、かつ、位相差δ2=φ0に設定する。
 更に、位相差演算部56は、S160が選択される状態では、式(23)に従った演算によって位相差φ2を算出するとともに、位相差δ1=0に設定する。更に、参照テーブル58bからのゼロ電圧期間長(φ2+δ2)から、算出した位相差φ2を減算することによって、位相差δ2を算出することができる。
 この結果、位相差演算部56及び参照テーブル58a,58bの組み合わせによって、図6の位相差演算部51と同様の機能を実現して、位相差φ(φ0、φ1、又は、φ2)、及び、位相差δ1,δ2を算出することができる。
 従って、図6と同様に、第1ブリッジ回路信号生成部521及び第2ブリッジ回路信号生成部522によって、スイッチング素子Q11~Q14,Q21~Q24のゲート信号SQ11~SQ14,SQ21~SQ24を生成することができる。
 このような構成とすることで、演算負荷の軽減、及び、テーブル容量の増大抑制を均衡させて、制御回路50を簡素化することが可能である。
 尚、本実施の形態では、直流電源10から負荷20への電力伝送、即ち、第1ブリッジ回路12から第2ブリッジ回路22への電力伝送について説明したが、回路の対称性から明らかなように、上記と反対方向、即ち、第2ブリッジ回路22から第1ブリッジ回路12への電力伝送においても同様の制御が可能である。具体的には、第1ブリッジ回路12のスイッチング素子のゲート信号と、第2のスイッチング素子とのゲート信号との間の位相の遅れ及び進みを反転することで、反対方向の電力伝送を同様に制御することが可能となる。
 要は、変圧器40の一次側及び二次側の各々にブリッジ回路が接続される対称な構成において、送電側を一次側、受電側を二次側として本実施の形態で説明した制御を適用することにより、双方向の電力伝送に対応することが可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 10 直流電源、11 第1直流端子、12 第1ブリッジ回路、13 第1交流端子、20 負荷、21 第2直流端子、22 第2ブリッジ回路、23 第2交流端子、40 変圧器、41 1次側巻線(変圧器)、42 2次側巻線(変圧器)、50 制御回路、51,56 位相差演算部、52 ゲート信号生成部、55,58a,58b 参照テーブル、100 電力変換装置、521 第1ブリッジ回路信号生成部、522 第2ブリッジ回路信号生成部、Cdc1,Cdc2 直流コンデンサ、Cs スナバキャパシタ、IL 交流電流(変圧器)、Lt インダクタンス要素、NL1,NL2,PL1,PL2 電力線、Q11~Q14,Q21~Q24 半導体スイッチング素子、SQ11~SQ14,SQ21~SQ24 ゲート信号(半導体スイッチング素子)、V1 第1直流電圧、V2 第2直流電圧、VT1 第1交流電圧、VT2 第2交流電圧。

Claims (13)

  1.  第1直流端子及び第2直流端子を有する電力変換装置であって、
     磁気結合された第1巻線及び第2巻線を有する変圧器と、
     前記第1直流端子と、前記第1巻線と接続された第1交流端子との間に接続されて、前記第1直流端子の第1直流電圧及び前記第1交流端子の第1交流電圧の間での電力変換を実行する第1ブリッジ回路と、
     前記第2直流端子と、前記第2巻線と接続された第2交流端子との間に接続されて、前記第2直流端子の第2直流電圧及び前記第2交流端子の第2交流電圧の間での電力変換を実行する第2ブリッジ回路とを備え、
     前記第1及び第2ブリッジ回路の各々は、
     並列接続された複数のスイッチングレグを含み、
     前記複数のスイッチングレグの各々は、
     直列接続された正極側スイッチング素子及び負極側スイッチング素子と、
     前記正極側スイッチング素子及び前記負極側スイッチング素子の各々に対して並列接続されたスナバキャパシタとを有し、
     前記第1及び第2ブリッジ回路内の各前記正極側スイッチング素子及び各前記負極側スイッチング素子のオンオフを制御する制御回路をさらに備え、
     前記制御回路は、各前記スイッチングレグにおいて、予め定められた長さのデッドタイムを設けた上で前記正極側スイッチング素子及び前記負極側スイッチング素子を交互にオンオフし、
     前記電力変換装置は、前記第1直流端子及び前記第2直流端子の間での電力伝送のための第1の動作モードを有し、
     前記制御回路は、前記第1の動作モードにおいて、前記第1ブリッジ回路及び前記第2ブリッジ回路のスイッチング位相間に送電電力を制御するための第1の位相差を設けるとともに、前記第1交流電圧及び前記第2交流電圧のうちの一方の交流電圧にゼロ電圧期間を設ける一方で、前記第1交流電圧及び前記第2交流電圧のうちの他方の交流電圧には前記ゼロ電圧期間が設けられないように、前記第1及び第2ブリッジ回路の各前記正極側スイッチング素子及び各前記負極側スイッチング素子のオンオフを制御し、
     前記第1の動作モードにおいて、前記ゼロ電圧期間の長さは、前記第1及び第2ブリッジ回路のうちの前記他方の交流電圧を出力するブリッジ回路の各前記スイッチングレグにおいて、前記デッドタイム中に前記スナバキャパシタの充放電が完了するように定められる、電力変換装置。
  2.  前記制御回路は、前記第1の動作モードにおいて、前記第1及び第2ブリッジ回路のうちの前記一方の交流電圧を出力する一方のブリッジ回路において、前記複数のスイッチングレグの間で、前記正極側スイッチング素子及び前記負極側スイッチング素子のオンオフが入れ替わるオンオフ位相に第2の位相差を設けるとともに、前記第1及び第2ブリッジ回路のうちの前記他方の交流電圧を出力する他方のブリッジ回路において、前記複数のスイッチングレグの間で前記オンオフ位相が同じとなるように、前記第1及び第2ブリッジ回路の各前記正極側スイッチング素子及び各前記負極側スイッチング素子のオンオフを制御し、
     前記第2の位相差は、前記ゼロ電圧期間の長さに従って設定される、請求項1記載の電力変換装置。
  3.  前記制御回路は、前記第1の動作モードにおいて、前記第1直流電圧の検出値が前記第2直流電圧の検出値の前記第1巻線側の換算値よりも高い場合には、前記第1交流電圧に前記ゼロ電圧期間を設ける一方で、前記第2交流電圧には前記ゼロ電圧期間を設けないように前記第1及び第2ブリッジ回路の各前記正極側スイッチング素子及び各前記負極側スイッチング素子のオンオフを制御する、請求項1又は2に記載の電力変換装置。
  4.  前記制御回路は、前記第1の動作モードにおいて、前記第1直流電圧の検出値が前記第2直流電圧の検出値の前記第1巻線側の換算値よりも低い場合には、前記第2交流電圧に前記ゼロ電圧期間を設ける一方で、前記第1交流電圧には前記ゼロ電圧期間を設けないように前記第1及び第2ブリッジ回路の各前記正極側スイッチング素子及び各前記負極側スイッチング素子のオンオフを制御する、請求項1又は2に記載の電力変換装置。
  5.  前記第1直流端子及び前記第2直流端子の間での電力伝送において第2の動作モードをさらに有し、
     前記制御回路は、前記第2の動作モードにおいて、前記第1直流端子及び前記第2直流端子の間での電力伝送において、前記第1交流電圧及び前記第2交流電圧の両方に前記ゼロ電圧期間を設けることなく、前記第1交流電圧及び前記第2交流電圧の間に前記第1の位相差を設けるように、前記第1及び第2ブリッジ回路の各前記正極側スイッチング素子及び各前記負極側スイッチング素子のオンオフを制御し、
     前記制御回路は、前記送電電力が予め定められた境界値より高い場合には前記第2の動作モードを適用する一方で、前記送電電力が前記境界値より低い場合には前記第1の動作モードを適用する、請求項1~4のいずれか1項に記載の電力変換装置。
  6.  前記電力変換装置は、前記第1直流端子及び前記第2直流端子の間での電力伝送において第2の動作モードをさらに有し、
     前記制御回路は、前記第2の動作モードにおいて、前記第1直流端子及び前記第2直流端子の間での電力伝送において、前記第1交流電圧及び前記第2交流電圧の両方に前記ゼロ電圧期間が設けることなく、前記第1交流電圧及び前記第2交流電圧の間に前記第1の位相差を設けるように、前記第1及び第2ブリッジ回路の各前記正極側スイッチング素子及び各前記負極側スイッチング素子のオンオフを制御し、
     前記制御回路は、前記第1直流電圧の検出値と、前記第2直流電圧の検出値の前記第1巻線側の換算値との差の絶対値が予め定められた判定値よりも小さい場合には、前記第2の動作モードを適用する一方で、前記絶対値が前記判定値よりも大きい場合には前記第1の動作モードを適用する、請求項1~4のいずれか1項に記載の電力変換装置。
  7.  前記制御回路は、前記送電電力が予め定められた境界値より高い場合には前記第2の動作モードを適用する一方で、前記送電電力が前記境界値より低い場合には優先的に前記第1の動作モードを適用する、請求項6記載の電力変換装置。
  8.  前記制御回路は、前記第1の動作モードにおいて、前記変圧器と前記第1ブリッジ回路又は前記第2ブリッジ回路間のインダクタンス要素のインダクタンス値と、前記スナバキャパシタの容量値と、前記第2直流電圧の前記第1巻線側の換算値又は前記第1直流電圧とを用いて、前記デッドタイム中に前記スナバキャパシタの充放電が完了するための第1の電流値をゼロボルトスイッチング電流値として求めるとともに、
     当該ゼロボルトスイッチング電流値、前記正極側スイッチング素子及び前記負極側スイッチング素子のスイッチング周波数、前記第1直流電圧、前記第2直流電圧の前記第1巻線側の換算値、並びに、前記インダクタンス値を含む、予め定められた第1の演算式に従って、前記ゼロ電圧期間の長さを設定する、請求項1~7のいずれか1項に記載の電力変換装置。
  9.  前記制御回路は、前記第1の動作モードにおいて、前記デッドタイムと、前記スナバキャパシタの容量値と、前記第2直流電圧の前記第1巻線側の換算値又は前記第1直流電圧とを用いて、前記デッドタイム中に前記スナバキャパシタの充放電が完了するための第2の電流値をゼロボルトスイッチング電流値として求めるとともに、
     当該ゼロボルトスイッチング電流値、前記正極側スイッチング素子及び前記負極側スイッチング素子のスイッチング周波数、前記第1直流電圧、前記第2直流電圧の前記第1巻線側の換算値、並びに、前記変圧器と前記第1ブリッジ回路又は前記第2ブリッジ回路間のインダクタンス要素のインダクタンス値を含む、予め定められた第1の演算式に従って、前記ゼロ電圧期間の長さを設定する、請求項1~7のいずれか1項に記載の電力変換装置。
  10.  前記制御回路は、前記第1の動作モードにおいて、前記デッドタイムと、前記スナバキャパシタの容量値と、前記第2直流電圧の前記第1巻線側の換算値又は前記第1直流電圧とを用いて、前記デッドタイム中に前記スナバキャパシタの充放電が完了するための第2の電流値を求めるとともに、
     前記第1の電流値及び前記第2の電流値のうちの電流最大値を前記ゼロボルトスイッチング電流値として前記第1の演算式に入力して、前記ゼロ電圧期間の長さを設定する、請求項8記載の電力変換装置。
  11.  前記制御回路は、前記第1の動作モードにおいて、前記第1交流電圧に前記ゼロ電圧期間を設ける場合には、前記スイッチング周波数、前記送電電力、前記第1直流電圧、前記第2直流電圧の前記第1巻線側の換算値、並びに、設定された前記ゼロ電圧期間の長さを用いた、予め定められた第2の演算式に従って、前記第1の位相差を算出する、請求項8~10のいずれか1項に記載の電力変換装置。
  12.  前記制御回路は、前記第1の動作モードにおいて、前記第2交流電圧に前記ゼロ電圧期間を設ける場合には、前記スイッチング周波数、前記送電電力、前記第1直流電圧、前記第2直流電圧の前記第1巻線側の換算値、前記インダクタンス値、並びに、前記ゼロボルトスイッチング電流値を用いた、予め定められた第3の演算式に従って、前記第1の位相差を算出する、請求項8~10のいずれか1項に記載の電力変換装置。
  13.  前記制御回路は、前記ゼロ電圧期間の長さ、及び、前記第1の位相差を求める処理の少なくとも一部を、前記第1直流電圧、前記第2直流電圧の前記第1巻線側の換算値、及び、前記送電電力の指令値を引数とする、予め作成されたテーブルの参照によって実行する、請求項8~12のいずれか1項に記載の電力変換装置。
PCT/JP2019/018278 2019-05-07 2019-05-07 電力変換装置 WO2020225854A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/018278 WO2020225854A1 (ja) 2019-05-07 2019-05-07 電力変換装置
EP19927701.3A EP3968507A4 (en) 2019-05-07 2019-05-07 CURRENT TRANSFORMING DEVICE
US17/438,936 US11881785B2 (en) 2019-05-07 2019-05-07 Power conversion device with expanded soft switching region and simplified control
JP2021518234A JP7199520B2 (ja) 2019-05-07 2019-05-07 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018278 WO2020225854A1 (ja) 2019-05-07 2019-05-07 電力変換装置

Publications (1)

Publication Number Publication Date
WO2020225854A1 true WO2020225854A1 (ja) 2020-11-12

Family

ID=73051586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018278 WO2020225854A1 (ja) 2019-05-07 2019-05-07 電力変換装置

Country Status (4)

Country Link
US (1) US11881785B2 (ja)
EP (1) EP3968507A4 (ja)
JP (1) JP7199520B2 (ja)
WO (1) WO2020225854A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270377A1 (ja) * 2021-06-23 2022-12-29 株式会社アイケイエス 3端子静止形直流変圧器の制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177142B1 (ko) * 2020-01-09 2020-11-10 주식회사 효성 절연형 양방향 dc-dc 컨버터에서 센서리스 과전류 예측방법
JP7306326B2 (ja) * 2020-05-25 2023-07-11 Tdk株式会社 Dabコンバータ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251998A (ja) * 2012-06-01 2013-12-12 Meidensha Corp 双方向絶縁型dc−dcコンバータの制御装置
JP2015012750A (ja) 2013-07-01 2015-01-19 東洋電機製造株式会社 電力変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587975B2 (en) * 2010-04-01 2013-11-19 Arizona Board Of Regents For And On Behalf Of Arizona State University PWM control of dual active bridge converters
JP5963125B2 (ja) 2011-07-22 2016-08-03 株式会社Ihi 直流電力変換装置
DE112012005868T5 (de) * 2012-02-14 2014-11-13 Mitsubishi Electric Corporation DC-DC-Wandler
JP6343187B2 (ja) 2014-06-27 2018-06-13 新電元工業株式会社 Dc/dcコンバータの制御装置及びその制御方法
JP6203450B2 (ja) 2015-03-24 2017-09-27 三菱電機株式会社 電力変換装置
WO2018061286A1 (ja) * 2016-09-29 2018-04-05 三菱電機株式会社 電力変換装置
US10897210B2 (en) * 2017-05-25 2021-01-19 Sharp Kabushiki Kaisha DC/DC converter for reducing switching loss in a case where zero voltage switching is not achieved
JP6902963B2 (ja) * 2017-08-22 2021-07-14 ダイヤモンド電機株式会社 コンバータ
JP7036680B2 (ja) * 2018-06-25 2022-03-15 ダイヤゼブラ電機株式会社 Dc-dcコンバータ
JP7175137B2 (ja) * 2018-08-27 2022-11-18 ダイヤゼブラ電機株式会社 コンバータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251998A (ja) * 2012-06-01 2013-12-12 Meidensha Corp 双方向絶縁型dc−dcコンバータの制御装置
JP2015012750A (ja) 2013-07-01 2015-01-19 東洋電機製造株式会社 電力変換装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INOUE, SHIGENORI ET AL.: "Operating Voltage and Loss Analysis of a Bi-Directional Isolated DC/DC Converter", IEEJ TRANSACTIONS ON INDUSTRV APPLICATIONS, vol. 127, no. 2, 2007, pages 189 - 197, XP055759702 *
JAIN, A. K. ET AL.: "PWM Control of Dual Active Bridge: Comprehensive Analysis and Experimental Verification", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 26, no. 4, April 2011 (2011-04-01), pages 1215 - 1227, XP011355370, DOI: 10.1109/TPEL.2010.2070519 *
See also references of EP3968507A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270377A1 (ja) * 2021-06-23 2022-12-29 株式会社アイケイエス 3端子静止形直流変圧器の制御装置

Also Published As

Publication number Publication date
EP3968507A4 (en) 2022-05-04
US20220158563A1 (en) 2022-05-19
US11881785B2 (en) 2024-01-23
JPWO2020225854A1 (ja) 2020-11-12
JP7199520B2 (ja) 2023-01-05
EP3968507A1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP6289618B2 (ja) 電力変換装置
JP4958715B2 (ja) 電力変換装置
EP2897279A1 (en) Multilevel converter systems and methods with swithced capacitor voltage balancing
JP6206502B2 (ja) 電力変換装置及び電力変換方法
WO2020225854A1 (ja) 電力変換装置
JP5377636B2 (ja) 電気的な負荷をシミュレーションするための回路
JP5631499B2 (ja) 電力変換装置
WO2018061286A1 (ja) 電力変換装置
JP6343187B2 (ja) Dc/dcコンバータの制御装置及びその制御方法
US10432101B2 (en) Power conversion apparatus
US20150016167A1 (en) Multilevel Converter
JP6744496B1 (ja) 電力変換装置及び直流配電システム
JP2015012750A (ja) 電力変換装置
WO2019167244A1 (ja) 電力変換装置および電動機システム
JP2009095159A (ja) 電力変換装置
CN110546874A (zh) 电力转换系统
CN110366814B (zh) 电源控制装置、电力转换系统和电源控制方法
JP2016208744A (ja) マルチレベル電力変換器
JP2022042414A (ja) Dc-dcコンバータ
JP4468933B2 (ja) 電力変換装置
WO2023127464A1 (ja) 電力変換システム
US20230058644A1 (en) Power conversion device
JP6234651B1 (ja) 電力変換装置
Jha et al. Modulation of Self-Balancing Trinary Asymmetric Multilevel Converter For High Speed Drive
JP2020198717A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518234

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019927701

Country of ref document: EP

Effective date: 20211207