WO2019167244A1 - 電力変換装置および電動機システム - Google Patents

電力変換装置および電動機システム Download PDF

Info

Publication number
WO2019167244A1
WO2019167244A1 PCT/JP2018/007964 JP2018007964W WO2019167244A1 WO 2019167244 A1 WO2019167244 A1 WO 2019167244A1 JP 2018007964 W JP2018007964 W JP 2018007964W WO 2019167244 A1 WO2019167244 A1 WO 2019167244A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
operation mode
conversion device
control unit
Prior art date
Application number
PCT/JP2018/007964
Other languages
English (en)
French (fr)
Inventor
航平 恩田
竹島 由浩
達也 北村
岩蕗 寛康
秀之 早乙女
貴哉 武藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/007964 priority Critical patent/WO2019167244A1/ja
Priority to JP2020503225A priority patent/JP6984727B2/ja
Publication of WO2019167244A1 publication Critical patent/WO2019167244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power converter that converts power from a DC power source into AC and supplies power to an electric motor such as a motor generator, and an electric motor system using the power converter.
  • an electric motor system that drives a motor generator used in a hybrid vehicle or the like includes a power conversion device that converts electric power from a DC power source into AC and supplies electric power to the electric motor.
  • a power conversion device that converts electric power from a DC power source into AC and supplies electric power to the electric motor.
  • the controllability of the motor is improved and the size of the device is reduced by switching a semiconductor switching element such as a MOSFET (metal oxide silicon field effect transistor) at a high frequency.
  • MOSFET metal oxide silicon field effect transistor
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a power conversion device and an electric motor system that realize a reduction in size and loss of a circuit to be added.
  • the power conversion device includes a power cutoff circuit that has one end connected to a DC power source and cuts off the input from the DC power source, and one end connected to the other end of the power cutoff circuit, and converts the power from the DC power source to AC power.
  • the inverter circuit is a plurality of legs in which an upper arm having a switching element and a lower arm having a switching element are connected in series.
  • the control unit includes a plurality of legs connected in parallel to each other, and the control unit switches the switching element of the lower arm of at least one leg among the plurality of legs in a period in which the power cut-off circuit cuts off the DC power supply and the inverter circuit. And a switching element of the upper arm and the lower arm of at least one leg of the plurality of legs. Controlling the inverter circuit and the power cut-off circuit using a second operation mode that is simultaneously turned on and a third operation mode in which a switching element of an upper arm of at least one of the plurality of legs is turned on.
  • an electric motor system includes the above power converter, a DC power source, and an electric motor connected to the power converter.
  • the power conversion device and the motor system according to the present invention it is possible to reduce the switching loss without using a resonance circuit.
  • FIG. 1 is a block diagram showing the overall configuration of the power conversion device and the motor system shown in the first embodiment.
  • FIG. 2 is an internal block diagram of a control unit included in the power conversion device.
  • 3 and 4 are time charts for explaining the operation of the power converter.
  • FIG. 5 is an explanatory diagram of the low-loss switching operation of the power conversion device.
  • FIG. 6 is a schematic diagram for explaining the low-loss switching operation of the power converter.
  • FIG. 7 is an operation explanatory diagram of the comparative example.
  • FIG. 8 is a time chart for explaining the low-loss switching operation for one phase of the inverter of the power converter.
  • the electric motor system shown in Embodiment 1 includes an electric motor driving device 1000 and an electric motor 130.
  • the electric motor drive device 1000 includes a power conversion device 100 and an electricity storage device 120 that is a DC power source.
  • the power conversion device 100 includes a power cutoff circuit 10, an inverter circuit 20, and a control unit 30.
  • the electric motor driving device 1000 controls the electric motor 130.
  • the motor 130 is a load to which AC power is input and output, and is, for example, a motor or a motor generator.
  • the electric motor driving device 1000 converts electric power supplied from the power storage device 120 such as a lithium ion battery, a nickel metal hydride battery, or a capacitor, which is a direct current power source, into alternating current by the power conversion device 100.
  • the electric motor 130 which is a motor is driven by the converted electric power.
  • the power conversion apparatus 100 has one end connected to the power storage device 120 and the other end connected to the inverter circuit 20, and a power cutoff circuit 10 that shuts off the input from the power storage device 120 to the inverter circuit 20, and one end a power cutoff circuit. 10, an inverter circuit 20 that converts input power from the power storage device 120 into AC power and supplies power to the motor 130, and a control unit 30 that controls the power shut-off circuit 10 and the inverter circuit 20. .
  • the positive bus 27 of the inverter circuit 20 is connected to the positive terminal of the power storage device 120 via the power cutoff circuit 10
  • the negative bus 28 is connected to the negative terminal of the power storage device 120 via the power cutoff circuit 10.
  • the power shutoff circuit 10 plays a role of shutting off the inverter circuit 20 and the power storage device 120, and in the present embodiment, a configuration in which the switching unit 11 is provided in the positive electrode bus 17 is shown.
  • the switching unit 11 includes a switching element 11a, and can shut off the power storage device 120 as the DC power source and the inverter circuit 20 when the switching element 11a is turned off.
  • the structure using a switching element was shown as the power cutoff circuit 10, it is not limited to this, and a relay element or the like provided for the purpose of protecting the inverter circuit 20 or the like at the time of abnormality may be used.
  • the drain terminal of the switching element 11a and the cathode terminal of the antiparallel diode 11b are connected to the electricity storage device 120.
  • the other end of the switching unit 11 (the source terminal of the switching element 11 a and the anode terminal of the antiparallel diode 11 b) is connected to the positive electrode bus 17.
  • the configuration in which the switching unit 11 is provided on the positive electrode bus 17 side has been described.
  • the configuration is not limited thereto, and the configuration in which the switching unit 11 is provided on the negative electrode bus 18 side, or the positive electrode bus 17 and It is good also as a structure provided in both the negative electrode buses 18.
  • the switching element is not limited to a silicon single element semiconductor, and a compound semiconductor to which silicon carbide, gallium nitride, or the like is applied can also be applied.
  • the inverter circuit 20 is a three-phase inverter to which PWM (Pulse Width Modulation) control is applied, in which two arms having switching elements are connected in series to form a leg, and the three legs are connected in parallel to each other.
  • PWM Pulse Width Modulation
  • the arm on the positive electrode bus 17 side is referred to as the upper arm
  • the arm on the negative electrode bus 18 side is referred to as the lower arm.
  • the inverter circuit 20 has first to third upper arms 21, 23, 25 and first to third lower arms 22, 24, 26.
  • the first upper arm 21 and the first lower arm 22 constitute a first leg
  • the second upper arm 23 and the second lower arm 24 constitute a second leg
  • the third upper arm 25 and the third lower arm 26 constitutes a third leg.
  • Each arm includes a switching element and an antiparallel diode.
  • the first upper arm 21 includes a switching element 21a and an antiparallel diode 21b.
  • the drain terminal of the switching element 21a is connected to the positive electrode bus line 17, and the source terminal of the switching element 21a is connected in series with the drain terminal of the switching element 22a. Further, the source terminal of the switching element 22 a is connected to the negative electrode bus 18. Similarly, the drain terminals of switching element 23a and switching element 25a are connected to positive electrode bus line 17, and the source terminals are connected in series with the drain terminals of switching element 24a and switching element 26a, respectively. The source terminals of the switching element 24 a and the switching element 26 a are connected to the negative electrode bus 18.
  • the first leg composed of the first upper arm 21 and the first lower arm 22 is the U phase
  • the second leg composed of the second upper arm 23 and the second lower arm 24 is the V phase
  • the third leg composed of the upper arm 25 and the third lower arm 26 corresponds to the W phase.
  • a connection point between the first upper arm 21 and the first lower arm 22 is connected to a U-phase terminal 130 a of the electric motor 130
  • a connection point between the second upper arm 23 and the second lower arm 24 is connected to the electric motor 130. It is connected to the V-phase terminal 130b.
  • the connection point between the third upper arm 25 and the third lower arm 26 is connected to the W-phase terminal 130 c of the electric motor 130.
  • the control unit 30 includes a reference signal generation circuit 40, a sawtooth carrier generation circuit 50, a control signal generation circuit 60, and a gate drive circuit unit 70.
  • the reference signal generation circuit 40 includes a sine wave signal generation source 41 and phase shifters 42a and 42b.
  • the control signal generation circuit 60 includes comparators 61a to 61e, inverting circuits 62a to 62c, fixed delay circuits 63a to 63c, and an adder circuit 64.
  • the gate drive circuit unit 70 includes gate drive circuits 70a to 70g.
  • phase shifters 42a and 42b Based on the reference signal, the phase shifters 42a and 42b generate signals with the + 2 / 3 ⁇ and + 4 / 3 ⁇ phases shifted.
  • sine wave reference signals 40a, 40b, and 40c are used when generating U-phase, V-phase, and W-phase gate control signals for electric motor 130, respectively.
  • the control unit 30 compares and determines the sawtooth carrier signal 50a and the sine wave reference signals 40a to 40c by the comparators 61a to 61c, and the control signals for the upper and lower arms of each phase are obtained. Generated. For example, the gate control signal 30b of the switching element 21a of the U-phase (first leg) first upper arm 21 is generated by amplifying the output of the comparator 61a by the gate drive circuit 70b. On the other hand, the gate control signal 30c of the switching element 22a of the first lower arm 22 of the U-phase (first leg) is logically inverted by the inverting circuit 62a, and this signal is output to the signal by the fixed delay circuit 63a for a predetermined time.
  • the gate drive circuit 70c And amplifying by the gate drive circuit 70c.
  • gate control signals 30b to 30g shown in FIG. 3 to be described later are generated.
  • the predetermined delay time delayed by the fixed delay circuits 63a to 63c is the charge of the parasitic input capacitance and output capacitance of the switching unit 11, the upper arms 21, 23, 25 of each phase and the lower arms 22, 24, 26 of each phase. Determined from the discharge time constant.
  • the output of the adder circuit 64 is in the H state before and after the point where the value of the sawtooth carrier signal 50a is reset (the point at which the differential value becomes discontinuous).
  • the gate control signal 30a is generated by amplifying the output of the adder circuit 64 by the gate drive circuit 70a.
  • FIG. 3 is a time chart for explaining the operation of the power cut-off circuit in the power conversion device shown in the present embodiment, and schematically shows signal waveforms.
  • sine wave reference signals 40a to 40c indicate sine wave reference signals corresponding to the U phase, the V phase, and the W phase.
  • the gate control signal 30a is a gate control signal for the switching element 11a.
  • Gate control signals 30b to 30g indicate gate control signals of the switching elements 21a to 26a of the upper arm and the lower arm of each leg.
  • Vbus is the voltage of the positive electrode bus 17.
  • R represents the reset of the sawtooth carrier signal 50a.
  • the switching element 11a of the power cut-off circuit 10 is kept on. Therefore, the power shutoff operation is not performed during this period.
  • the fixed delay circuits 63a to 63c cause a dead time (hereinafter referred to as a positive dead time) for a predetermined period. Is secured.
  • the circuit operation during the rising period of the sawtooth carrier signal 50a is the same as in the conventional general three-phase inverter control.
  • the switching elements 21a to 26a perform the switching operation when the sawtooth is reset, but the period before and after that (the power cutoff period Pr in FIG. 3) is the power source.
  • the switching element 11a of the cutoff circuit 10 is set to the off period.
  • the power cut-off period Pr is generated by adding the period in which the sawtooth carrier signal 50a is larger than the positive reference signal Vref1 and the period smaller than the negative reference signal Vref2 by the adding circuit 64.
  • FIG. 4 is an enlarged view of the range A indicated by the one-dot oblique line with the power cutoff period Pr shown in FIG. 3 as the center.
  • 5A and 5B show current paths of the inverter circuit 20 before and after the power shut-off period Pr shown in FIG.
  • fixed delay circuits 63a to 63c provide a period (hereinafter referred to as a negative dead time) in which switching elements (for example, 21a and 22a) of the upper arm and the lower arm of inverter circuit 20 are simultaneously turned on in power supply cutoff period Pr.
  • a negative dead time the voltage Vbus of the positive bus 17 can be reduced to zero voltage, and a low-loss switching operation can be realized.
  • FIG. 6 is a schematic diagram for explaining the low-loss switching operation.
  • FIG. 6 is a schematic diagram for easy understanding of the low-loss switching operation, and the reference numerals are omitted.
  • 6 (a) to 6 (c) are diagrams showing a transition from FIG. 5 (a) to FIG. 5 (b), and FIG. 6 (d) corresponds to FIG. 5 (b).
  • FIG. 6A shows a state where the switching element 11a of the switching unit 11 is turned off from the state shown in FIG.
  • the first operation mode is a state before collective switching, and is the state of the lower arm reflux mode as in FIG. That is, the switching elements 22a, 24a, and 26a of the lower arm of each phase are in the on state (the switching elements 21a, 23a, and 25a of the upper arm of each phase are in the off state), as shown in FIG.
  • this is a reflux mode in which current is circulated between the lower arms 22, 24, 26 of each phase in which the inverter circuit 20 is in the ON state and the motor 130.
  • the switching element 11a is turned off, but the drain-source voltage does not increase, and thus the parasitic capacitance maintains the discharged state. That is, the switching element 11a is turned off with zero current.
  • FIG. 6B shows a state in which the switching elements 21a, 23a, and 25a of the upper arm of each phase are turned on from the state of FIG. 6A.
  • the state shown in FIG. 6B is referred to as a second operation mode.
  • the switching elements 21a to 26a of the upper and lower arms of all phases of the inverter circuit 20 are turned on simultaneously.
  • a current path for charging and discharging the parasitic capacitance of the switching unit indicated by a broken line in the drawing is indicated by a dotted line. That is, since the upper arms 21, 23, and 25 of each phase that were in the OFF state in the first operation mode are charged with parasitic capacitance, the charges of these parasitic capacitances are discharged by the ON operation.
  • FIG. 6C shows a state in which the lower arm switching elements 22a, 24a, and 26a are turned off from the state of FIG. 6B.
  • the state shown in FIG. 6C is referred to as a third operation mode.
  • the switching elements 21a, 23a, 25a of the upper arms of the respective phases of the inverter circuit 20 are simultaneously turned on, and the current flows back through the upper arms of the respective phases.
  • the voltage Vbus of the positive bus 17 is at zero voltage, and therefore the switching elements 22a, 24a, 26a of the lower arm of each phase are Switching at zero voltage.
  • the switching operation of each element shown in FIGS. 6A to 6D performs zero current or zero voltage switching, so that low-loss switching can be realized.
  • the voltage Vbus of the positive bus 17 is increased and decreased by the resonance principle.
  • the voltage Vbus of the positive bus 17 is lowered by the simultaneous on operation of the upper arm and the lower arm of the inverter circuit in the second operation mode, and the reconnection operation of the switching unit 11 (the on operation of the switching element 11a). The difference is that Vbus is raised. This eliminates the need for a resonant circuit and allows the circuit to be miniaturized.
  • the Vbus drop period has to be increased depending on the load power (for example, 10 ⁇ s), but in the present invention, it can be sufficiently reduced without depending on the resonance period (for example, 1 ⁇ s). Therefore, it is possible to suppress a decrease in the output performance of the motor due to a decrease in the effective output voltage of the inverter.
  • the switching elements 22a, 24a, and 26a of the lower arm of each phase are turned on in the 1st operation mode, it is not necessarily necessary to turn on all.
  • the switching element 24a even when the switching element 24a is turned off, it can be recirculated through the anti-parallel diode 24b connected in anti-parallel to the switching element 24a.
  • the second operation mode the switching elements 21a, 23a, 25a of the upper arms of each phase and the switching elements 22a, 24a, 26a of the lower arms of each phase are set. , You don't have to turn it all on.
  • the third operation mode it is not always necessary to turn on the switching elements 21a, 23a, 25a of the upper arms of the respective phases.
  • FIG. 7 shows an inverter in a state in which a general positive dead time period is provided at the time of transition from FIG. 5 (a) to FIG. 5 (b), that is, in a state where all of the switching elements 21a to 26a of the inverter circuit are turned off. It is a figure which shows the electric current path
  • the load current is regenerated to the power supply via the antiparallel diode 11b of the switching unit 11. That is, even if the switching element 11a is in the OFF state, the voltage Vbus of the positive bus 17 rises during the positive dead time period when transitioning from FIG. 5A to FIG. Therefore, when a general positive dead time period is provided, a large-scale resonance is generated in order to allow the load current during the positive dead time period to flow in the resonance circuit in order to realize a soft switching operation. It is necessary to add a circuit.
  • FIG. 8 is a diagram schematically showing a low-loss switching waveform in the power cutoff period Pr of FIG. 4 taking the U phase as an example.
  • gate control signals 30b and 30c are gate control signals for the switching elements 21a and 22a of the upper and lower arms of the U phase.
  • the gate control signal 30a is a gate control signal for the switching element 11a.
  • Vbus is the voltage of the positive electrode bus 17.
  • Ia (broken line) is a current flowing through the antiparallel diode 21b of the U-phase upper arm (first upper arm 21), and Vka (solid line) is a voltage across the terminals of the antiparallel diode 21b of the U-phase upper arm.
  • Id (broken line) is a current flowing through the switching element 22a of the U-phase lower arm (first lower arm 22), and Vds (solid line) is a voltage between the source and drain of the switching element 22a of the U-phase lower arm.
  • “HS” indicates normal switching
  • SS” indicates low-loss switching.
  • the switching element 22a of the U-phase lower arm transitions from on to off.
  • the antiparallel diode 21b of the U-phase upper arm transitions from OFF to ON, and all the current Ia flows to the antiparallel diode 21b.
  • the transition from ON to OFF of the switching element 22a of the U-phase lower arm corresponds to the change from ON to OFF of the gate control signal 30c (the gate control signal of the switching element 22a of the U-phase lower arm).
  • This low loss switching is a switching in which the voltage Vbus of the positive bus 17 is at a zero voltage as described above, so that zero voltage switching can be realized in which no switching loss occurs.
  • normal switching is switching when a general positive dead time period is provided, and specifically, switching from OFF to ON of the switching element 22a of the U-phase lower arm.
  • the change in the current (Ia) flowing through the anti-parallel diode 21b of the U-phase upper arm and the voltage (Vka) between the terminals of the anti-parallel diode 21b of the U-phase upper arm is that the switching element 22a of the U-phase lower arm is off It shows that the anti-parallel diode 21b of the U-phase upper arm transitions from on to off as it transitions to on.
  • the power conversion device and the electric motor system shown in the present embodiment can reduce the inverter operation at the time of resetting the sawtooth carrier signal, and can also suppress the switching loss generated in the power cut-off circuit 10.
  • Switching of the inverter that occurs when the sawtooth carrier signal is reset is 1 ⁇ 2 of the total number of times. Therefore, in the first embodiment, the switching loss of the inverter circuit 20 can be reduced to 1 ⁇ 2.
  • the loss generated in the power cutoff circuit 10 is mainly the conduction loss of the switching element 11a. This conduction loss can be further reduced by parallelizing the switching element 11a.
  • the inverter is changed from the lower arm return mode to the upper arm return mode by adopting the carrier signal having the reset shape such as the sawtooth carrier signal.
  • a transition operation mode is provided, and at this timing, the switching element 11a of the power shut-off circuit is turned off, and a negative dead time period is provided for the control of the upper and lower arms of the inverter, thereby preventing the regenerative operation for the power storage device 120 and This realizes low-loss switching without flowing.
  • the carrier signal applied in the first embodiment is not limited to the sawtooth shape, and can be applied to all carrier signals that provide an operation mode in which the lower arm return to the upper arm return.
  • a fixed dead time is given as a means for giving a positive dead time to switching during a period when the sawtooth carrier signal rises and for giving a negative dead time to switching at the time of resetting the sawtooth carrier signal.
  • the configuration using the delay circuits 63a to 63c is illustrated. However, it is not limited to this. Furthermore, in the first embodiment, the case where the transition from the lower arm reflux to the upper arm reflux is illustrated, but the transition is made from the upper arm reflux to the lower arm reflux by switching the + input and the ⁇ input of the comparators 61a to 61c. May be.
  • a DC power source obtained by converting AC power into DC by an inverter.
  • it may be a solar power generation device, a fuel cell, or a generator capable of direct current output.
  • the application of the low-loss switching (negative dead time) of the power conversion apparatus 100 has been described with an example of the direction in which current flows from the power storage device 120 to the motor 130.
  • the low-loss switching (negative dead time) of the power conversion apparatus 100 can be similarly applied even in the direction in which a current flows from the electric motor 130 serving as a generator to the power storage device 120. That is, regardless of the direction of the current flowing through the power conversion device 100, a power conversion device that realizes loss reduction without applying a resonance circuit by applying low loss switching (negative dead time) and the use thereof Can be configured.
  • the power conversion device and the electric motor system according to Embodiment 1 include the power cutoff unit connected between the DC power source and the inverter circuit, the inverter circuit, and the control unit that controls the power cutoff unit. And the control unit turns on the switching element of the lower arm of at least one leg among the plurality of legs in a period in which the power cutoff circuit shuts off the DC power source and the inverter circuit.
  • a first operation mode, a second operation mode in which at least one leg upper arm and lower arm switching elements of the plurality of legs are simultaneously turned on, and at least one leg upper arm switching element of the plurality of legs.
  • the circuit By controlling the inverter circuit and the power cut-off circuit using the third operation mode to be turned on, the circuit can be reduced in size and loss can be reduced. It can be realized. Further, it is possible to suppress a decrease in the effective output voltage due to an increase in the zero voltage period of the inverter output, and thus it is possible to suppress a decrease in the output characteristics of the motor.
  • Embodiment 2 Compared with the power conversion device and motor system of the first embodiment, the power conversion device and motor system of the second embodiment have a delay time of the gate control signals of the switching elements of the upper arm and the lower arm of the inverter circuit and a power cut-off circuit. In this configuration, the period during which the power storage device and the inverter circuit are cut off is reduced, and thus the zero voltage period of the inverter output is shortened.
  • the configurations of the power conversion device and the electric motor system according to Embodiment 2 are the same as those shown in FIG.
  • FIG. 9 is an internal block diagram of the control unit, focusing on differences from the first embodiment.
  • the same or corresponding parts as those in FIG. 2 of the first embodiment are denoted by the same reference numerals.
  • it is set as the power converter device 200, the control part 230, and the control signal generation circuit 260.
  • FIG. 9 is set as the power converter device 200, the control part 230, and the control signal generation circuit 260.
  • control signal generation circuit 260 the fixed delay circuits 63a to 63c of the control signal generation circuit 60 of the first embodiment are replaced with variable delay circuits 263a to 263c, and a power supply voltage detection circuit 51 and a cutoff period adjustment circuit are added.
  • variable delay circuits 263a to 263c detect the voltage detection value of the power storage device 120 detected by the power supply voltage detection circuit 51.
  • the delay time is varied according to 51a.
  • the cutoff period adjustment circuit 66 adjusts the reference voltages of the comparators 61d and 61e according to the voltage detection value 51a.
  • a predetermined delay time and a power-off period that are set in advance are given.
  • the delay time can be optimized according to the voltage value of the power storage device.
  • the parasitic capacitances of the switching unit 11, the first to third upper arms 21, 23, 25, and the first to third lower arms 22, 24, 26 change according to the voltage value of the power storage device. Considering that the rise and fall times of the voltage Vbus of the positive bus 17 change, a delay time is given. As a result, since the dead time can be minimized, there is an effect that a decrease in power conversion efficiency due to the addition of the dead time can be suppressed.
  • the power conversion device and the electric motor system according to the second embodiment have the delay time and power-off period of the gate control signals of the switching elements of the upper arm and the lower arm of the power conversion device shown in the first embodiment. Is changed according to the state of the electricity storage device. Therefore, the power conversion apparatus according to the second embodiment and the electric motor system using the same can achieve loss reduction as in the first embodiment and without using a resonance circuit. Furthermore, there is an effect that it is possible to suppress a decrease in power conversion efficiency due to the addition of dead time, and further a decrease in effective output voltage of the inverter.
  • Embodiment 3 FIG.
  • the power conversion device and the motor system according to the third embodiment are similar to the power conversion device and the motor system described in the second embodiment, and the delay time of the gate control signals of the switching elements of the upper arm and the lower arm of the inverter circuit and
  • the power cut-off circuit is configured to reduce the period during which the power storage device and the inverter circuit are cut off, thereby shortening the zero voltage period of the inverter output.
  • the configuration of the power conversion device and the electric motor system according to Embodiment 3 is the same as that shown in FIG.
  • FIG. 10 is an internal block diagram of the control unit. 10, the same or corresponding parts as those in FIG. 9 of the second embodiment are denoted by the same reference numerals.
  • it is set as the power converter device 300, the control part 330, and the control signal generation circuit 360.
  • FIG. 10 is an internal block diagram of the control unit. 10, the same or corresponding parts as those in FIG. 9 of the second embodiment are denoted by the same reference numerals.
  • it is set as the power converter device 300, the control part 330, and the control signal generation circuit 360.
  • control unit 330 of the power conversion apparatus 300 will be described with reference to FIG.
  • the difference in configuration between the control unit 330 according to the third embodiment and the control unit 230 according to the second embodiment is that the power supply voltage detection circuit 51 is deleted and the configuration of the control signal generation circuit 360.
  • variable delay circuits 263a to 263c determine the output voltage of the gate drive circuit 70a that drives the switching element 11a.
  • the delay time is varied according to the output voltage.
  • the cutoff period adjusting circuit 66 adjusts the reference voltages of the comparators 61d and 61e in accordance with the output voltage of the gate determination circuit 267b that determines the output voltage of the gate drive circuit 70g that drives the switching element 26a.
  • the delay time is optimized according to the voltage value of the power storage device, whereas in the third embodiment, the timing at which the gates of the switching elements 11a and 26a are completely turned off is detected. Time can be optimized.
  • the power storage device 120 and the inverter circuit 20 are cut off, the upper arms 21, 23, 25 and the lower arms 22, 24, 26 of the inverter circuit 20 are immediately turned on and the inverter circuit 20 When the simultaneous ON state of the arms 21, 23, 25 and the lower arms 22, 24, 26 is released, the power storage device 120 and the inverter circuit 20 are adjusted to be reconnected immediately. As a result, since the dead time can be minimized, there is an effect that a decrease in power conversion efficiency due to the addition of the dead time can be suppressed.
  • the gate voltage of the switching element 26a is determined as a method of detecting the timing at which the upper arms 21, 23, 25 and the lower arms 22, 24, 26 of the inverter circuit are released simultaneously.
  • a method of determining the gate voltage of the switching element of the other lower arm or a method of determining the gate voltage of all the switching elements of the lower arm may be used.
  • the power conversion device has the delay time of the gate control signal and the power-off period of the switching elements of the upper arm and the lower arm of the power conversion device according to the first embodiment.
  • the configuration is optimized according to the discharge time. Therefore, the power conversion apparatus according to the third embodiment and the electric motor system using the same can achieve loss reduction as in the first embodiment and without using a resonance circuit. Furthermore, there is an effect that it is possible to suppress a decrease in power conversion efficiency due to the addition of dead time, and further a decrease in effective output voltage of the inverter.
  • Embodiment 4 FIG.
  • the power conversion device and electric motor system of the fourth embodiment have a two-group configuration of an X group and a Y group of the inverter circuit and the electric motor of the power conversion device and electric motor system of the first embodiment.
  • FIG. 11 is a block diagram showing the configuration of the power conversion device and the motor system
  • FIG. 12 which is an internal block diagram of a control unit of the power conversion device, for the power conversion device and the motor system of the fourth embodiment.
  • 11 and 12 the same or equivalent parts as those in FIGS. 1 and 2 of the first embodiment are denoted by the same reference numerals.
  • it is set as the electric motor system 4000, the power converter device 400, inverter circuit 420X, 420Y, the control part 430, the reference signal generation circuit 440, and the control signal generation circuit 460.
  • the gate drive circuit portion is omitted for the sake of simplicity.
  • the electric motor system 4000 converts electric power supplied from the power storage device 120 into alternating current by the power conversion device 400, and drives the two electric motors 130X and 130Y that are motors with the converted electric power.
  • the power conversion device 400 includes inverter circuits 420X and 420Y that supply power to two electric motors 130X and 130Y that are loads, respectively, and a power shut-off circuit 10 that is connected between the inverter circuits 420X and 420Y and the power storage device 120.
  • a control unit 430 for controlling the power shut-off circuit 10 and the inverter circuits 420X and 420Y is provided.
  • the motor 130X and the inverter circuit 420X, and the motor 130Y and the inverter circuit 420Y will be referred to as an X group and a Y group, respectively, as appropriate.
  • the control unit 430 includes a reference signal generation circuit 440, a sawtooth carrier generation circuit 50, a control signal generation circuit 460, and a gate drive circuit unit (not shown).
  • phase shifters 443a to 443c for the inverter circuit 420Y are added to the reference signal generation circuit 40 of the first embodiment.
  • the sine wave reference signals 40aY, 40bY, and 40cY for the inverter circuit 420Y correspond to the U phase, the V phase, and the W phase of the inverter circuit 420Y (that is, the electric motor 130Y), respectively.
  • the phase is shifted by ⁇ by the phase shifter 443a.
  • the phases of the sine wave reference signals 40aY, 40bY, and 40cY are shifted by ⁇ with respect to the sine wave reference signals 40aX, 40bX, and 40cX for the inverter circuit 420X (that is, the electric motor 130X).
  • the control signal generation circuit 460 has a configuration corresponding to the two inverter circuits 420X and 420Y with respect to the control signal generation circuit 60 of the first embodiment. Each configuration and operation is the same as in the first embodiment. That is, the control signal generation circuit 460 includes comparators 61aX to 61cX, inverting circuits 62aX to 62cX, and fixed delay circuits 63aX to 63cX corresponding to the inverter circuit 420X.
  • the control signal generation circuit 460 includes comparators 61aY to 61cY, inverting circuits 62aY to 62cY, and fixed delay circuits 63aY to 63cY corresponding to the inverter circuit 420Y.
  • the sine wave reference signals of the phases of the two groups of inverter circuits are given in different phases, so that the storage device 120 Generally, the generated ripple current is dispersed.
  • the phase difference is ⁇ .
  • the sawtooth carrier signal 50a uses the same signal in the X group and the Y group. By using the same carrier signal, the X group and the Y group are switched at the same time when the sawtooth carrier signal is reset. Therefore, the gate control signal of the power cutoff circuit can be generated in the same manner as in FIG. That is, it is possible to suppress an increase in the operating frequency of the power cutoff circuit and suppress an increase in control load.
  • the present invention can be similarly applied to a three-group configuration or a multi-group configuration having more than that.
  • the power conversion device and the motor system of the fourth embodiment have the two-group configuration of the X group and the Y group of the inverter circuit and the motor of the power conversion device and the motor system of the first embodiment. . Therefore, the power conversion device of the fourth embodiment and the electric motor system using the same can realize the size reduction and loss reduction of the added circuit as in the first embodiment. Furthermore, it is possible to improve the total output torque of the electric motor and optimize both the driving and power generation functions.
  • Embodiment 5 FIG.
  • the power conversion device and motor system of the fifth embodiment are configured such that the phase difference ⁇ is provided in the sawtooth carrier signals of the two groups of inverter circuits with respect to the power conversion device and motor system of the fourth embodiment. .
  • FIG. 13 is an internal block diagram of the power conversion device, focusing on differences from the fourth embodiment.
  • the same or corresponding parts as those in FIG. 12 of the fourth embodiment are denoted by the same reference numerals.
  • it is set as the power converter device 500, the control part 530, and the control signal generation circuit 560.
  • the gate drive circuit portion is omitted for the sake of simplicity.
  • the overall configuration of the electric motor system and power conversion device 500 of the fifth embodiment is the same as that of the electric motor system 4000 and power conversion device 400 of the fourth embodiment. That is, the electric motor system converts electric power supplied from the power storage device 120 into alternating current by the power conversion device 500, and drives the two electric motors that are motors with the converted electric power.
  • a difference from the control unit 430 in the fourth embodiment is a control signal generation circuit 560.
  • a phase shifter 565 and an addition circuit 566 are added to the control signal generation circuit 460 of the fourth embodiment.
  • the phase shifter 565 shifts the sawtooth carrier signal 50a generated by the sawtooth carrier generating circuit 50 by the phase difference ⁇ and uses it as a sawtooth carrier signal (50aX) for the X group.
  • the adder circuit 566 adds the sawtooth carrier signal 50a (50aY) and the sawtooth carrier signal (50aX) for the X group shifted by the phase difference ⁇ , and inputs the output to the comparators 61d and 61e. ing.
  • the signal is the same as the sawtooth carrier signal 50a, but in order to clarify the correspondence with the sawtooth carrier signal 50aX, the sawtooth carrier signal 50aY is described.
  • the phase difference ⁇ is given for the purpose of distributing ripple current and noise generated in the electricity storage device 120.
  • the sawtooth carrier signal 50aX and the sawtooth carrier signal 50aY of the X group and Y group of the inverter circuit are shifted, it is necessary to operate the power cutoff circuit at both reset timings. Therefore, in the fifth embodiment, the sawtooth carrier signal 50aX and the sawtooth carrier signal 50aY are added by the adder circuit 566 and input to the comparators 61d and 61e. For this reason, the operating frequency of the power cutoff circuit 10 is twice that of the power converter shown in the fourth embodiment, and the loss of the power cutoff circuit 10 is also doubled.
  • the loss of the resonance circuit becomes a problem, and it is considered necessary to take measures such as providing a resonance circuit for each of the inverter circuits X and Y.
  • the same power cut-off circuit can be applied to the inverter circuits X group and Y group that switch at different timings.
  • the power conversion device and the motor system of the fifth embodiment provide the phase difference ⁇ to the sawtooth carrier signals of the two groups of inverter circuits with respect to the power conversion device and the motor system of the fourth embodiment. It is a configuration. Therefore, the power conversion device according to the fifth embodiment and the electric motor system using the same can achieve a reduction in the size and loss of the LC resonance circuit added in the same manner as in the first embodiment. Furthermore, it is possible to improve the total output torque of the electric motor and to optimize both the drive and power generation functions, and to distribute the ripple current and noise generated in the power storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本発明に係る電力変換装置および電動機システムは、直流電源からの入力を遮断する電源遮断回路と、直流電源からの電力を交流電力に変換するインバータ回路と、インバータ回路および電源遮断回路を制御する制御部と、を備え、制御部は、電源遮断回路が直流電源とインバータ回路とを遮断する期間において、インバータ回路の下アームのスイッチング素子をオンとする第1動作モードと、上アームおよび下アームのスイッチング素子を同時にオンとする第2動作モードと、上アームのスイッチング素子をオンとする第3動作モードと、を用いてインバータ回路および電源遮断回路を制御することにより、共振回路を追加することなくスイッチング損失の低減を実現することができる。

Description

電力変換装置および電動機システム
 この発明は、直流電源からの電力を交流に変換してモータジェネレータなどの電動機に電力供給を行う電力変換装置及びこの電力変換装置を用いた電動機システムに関するものである。
 例えば、ハイブリッド自動車などに用いられるモータジェネレータを駆動する電動機システムは、直流電源からの電力を交流に変換して電動機に電力供給を行う電力変換装置を備えている。この電力変換装置では、MOSFET(metal oxide silicon field effect transistor)などの半導体スイッチング素子を高周波でスイッチングすることで、電動機の制御性の向上や装置の小型化を実現している。一方、半導体スイッチング素子を高周波でスイッチングする場合、スイッチング損失の増加によって電力変換装置の効率を低下させてしまう問題がある。
 この問題を解決するため、直流電源とインバータ回路との間に追加回路を設け、インバータ主回路素子がターンオンする時のスイッチング損失を抑制するソフトスイッチング機能を有する電動機システムが提案されている(例えば、特許文献1)。さらに、この技術によれば、共振原理を利用することでスイッチング時の電圧変化率dV/dtが緩やかになり、従って発生するノイズを低減する効果も期待できる。
特開2000-262066号公報
 しかし、特許文献1に開示された発明では、ソフトスイッチング動作期間中はインバータ回路が直流電源から切断されるため、モータ電流相当の大電流をLC共振回路に流す必要があり、追加するLC共振回路の大型化や損失増加による電力変換装置の効率低下の問題がある。また、主回路電圧が零電圧になる期間は負荷電力に応じて大きくなるため、インバータが出力する実効的な電圧が低下し、従って電動機の出力性能が低下する問題もある。
 この発明は、上記の問題を解決するためになされたものであり、追加する回路の小型化および損失低減を実現した電力変換装置及び電動機システムを提供することを目的とする。
 この発明に係る電力変換装置は、一端が直流電源に接続され直流電源からの入力を遮断する電源遮断回路と、一端が電源遮断回路の他端に接続され、直流電源からの電力を交流電力に変換するインバータ回路と、インバータ回路および電源遮断回路を制御する制御部と、を備え、インバータ回路は、スイッチング素子を有する上アームおよびスイッチング素子を有する下アームが直列接続された複数のレグであって、互いに並列接続された複数のレグを有しており、制御部は、電源遮断回路が直流電源とインバータ回路とを遮断する期間において、複数のレグのうち少なくとも1つのレグの下アームのスイッチング素子をオンとする第1動作モードと、複数のレグのうち少なくとも1つのレグの上アームおよび下アームのスイッチング素子を同時にオンとする第2動作モードと、複数のレグのうち少なくとも1つのレグの上アームのスイッチング素子をオンとする第3動作モードと、を用いてインバータ回路および電源遮断回路を制御すること、を特徴とする。
 また、この発明に係る電動機システムは上記の電力変換装置と、直流電源と、電力変換装置に接続された電動機と、を備えることを特徴とする。
 この発明に係る電力変換装置および電動機システムによれば、共振回路を用いることなくスイッチング損失の低減を実現することができる。
この発明の実施の形態1の電力変換装置および電動機システムの構成図である。 この発明の実施の形態1の電力変換装置に係る制御部の内部ブロック図である。 この発明の実施の形態1の電力変換装置に係る動作説明用タイムチャートである。 この発明の実施の形態1の電力変換装置に係る動作説明用タイムチャートの一部拡大図である。 この発明の実施の形態1の電力変換装置に係る低損失スイッチング動作説明図である。 この発明の実施の形態1の電力変換装置に係る低損失スイッチング動作説明用模式図である。 この発明の実施の形態1の電力変換装置に係る比較例の動作説明図である。 この発明の実施の形態1の電力変換装置に係る低損失スイッチング動作説明用タイムチャートである。 この発明の実施の形態2の電力変換装置に係る制御部の内部ブロック図である。 この発明の実施の形態3の電力変換装置および電動機システムの構成図である。 この発明の実施の形態4の電力変換装置および電動機システムの構成を示すブロック図である。 この発明の実施の形態4の電力変換装置に係る制御部の内部ブロック図である。 この発明の実施の形態5の電力変換装置に係る制御部の内部ブロック図である。
実施の形態1.
 本発明の実施の形態1に係る電力変換装置および電動機システムについて図面を参照して説明する。図1は、実施の形態1に示す電力変換装置および電動機システムの全体構成を示すブロック図である。図2は、電力変換装置が有する制御部の内部ブロック図である。図3および図4は、電力変換装置の動作説明用タイムチャートである。図5は、電力変換装置の低損失スイッチング動作の説明図である。図6は、電力変換装置の低損失スイッチング動作の説明用模式図である。図7は、比較例の動作説明図である。図8は、電力変換装置のインバータ1相分の低損失スイッチング動作説明用タイムチャートである。
 まず、実施の形態1の電力変換装置および電動機システムの全体構成を図1に基づいて説明する。実施の形態1に示す電動機システムは、電動機駆動装置1000と電動機130を備えている。電動機駆動装置1000は、電力変換装置100と直流電源である蓄電デバイス120とを備えている。また、電力変換装置100は、電源遮断回路10と、インバータ回路20と、制御部30とを備えている。
 電動機駆動装置1000は、電動機130を制御するものである。ここで、電動機130は、交流電力が入出力される負荷であり、例えばモータやモータジェネレータである。電動機130がモータである場合には、電動機駆動装置1000は、直流電源であるリチウムイオンバッテリやニッケル水素バッテリあるいはコンデンサなどの蓄電デバイス120から供給される電力を、電力変換装置100で交流に変換し、変換された電力でモータである電動機130を駆動する。
 電力変換装置100は、一端が蓄電デバイス120に接続され、他端がインバータ回路20に接続されて、蓄電デバイス120からインバータ回路20への入力を遮断する電源遮断回路10と、一端が電源遮断回路10に接続されて、蓄電デバイス120からの入力電力を交流電力に変換して電動機130に電力を供給するインバータ回路20と、電源遮断回路10およびインバータ回路20を制御する制御部30を備えている。インバータ回路20の正極母線27は、電源遮断回路10を介して蓄電デバイス120のプラス端子に接続され、負極母線28は、電源遮断回路10を介して蓄電デバイス120のマイナス端子に接続されている。
 実施の形態1の電動機システムは、電動機130が発電機として動作する場合にも適用することができる。この場合は、発電機として動作する電動機130は動力を交流電力に変換し、電力変換装置100はこの交流電力を直流電力に変換して電源遮断回路10を介して蓄電デバイス120に電力を供給する。すなわち、実施の形態1の電動機システムは、電力変換装置100が伝送する電力の方向に関わらず、小型で低損失な電動機システムを実現することができる。
 次に、電力変換装置100の各部の回路構成について、図1、図2に基づいて説明する。まず、電源遮断回路10について説明する。
 電源遮断回路10は、インバータ回路20と蓄電デバイス120とを遮断する役割を果たし、本実施の形態では正極母線17にスイッチング部11を設ける構成を示している。スイッチング部11は、スイッチング素子11aを備えており、スイッチング素子11aがオフとなることにより直流電源としての蓄電デバイス120とインバータ回路20とを遮断することができる。なお、電源遮断回路10として、スイッチング素子を用いた構成について示したが、これに限ったものではなく、インバータ回路20等の異常時の保護を目的として備えたリレー素子などを用いても良い。
 本実施の形態では、スイッチング素子11aのドレイン端子および逆並列ダイオード11bのカソード端子が蓄電デバイス120と接続されている。また、スイッチング部11の他端(スイッチング素子11aのソース端子および逆並列ダイオード11bのアノード端子)は、正極母線17に接続されている。なお、本実施の形態に示す電力変換装置では、正極母線17側にスイッチング部11を設ける構成について示したが、これに限ったものではなく、負極母線18側に設ける構成、または正極母線17および負極母線18の両方に設ける構成としてもよい。
 なお、本実施の形態では、スイッチング素子として、MOSFETを使用することを想定している。また、本実施の形態1では、スイッチング部がスイッチング素子と逆並列ダイオードで構成される例を示したが、逆並列ダイオードはスイッチング素子の寄生ダイオードで代用することができる。また、MOSFETの代わりにIGBT(insulated gate bipolar transistor)やその他のスイッチング素子を適用してもよい。また、そのスイッチング素子は、シリコン単元素半導体に限られるものではなく、シリコンカーバイドや窒化ガリウム等を適用した化合物半導体も適用できる。
 次に、インバータ回路20について説明する。
 インバータ回路20は、PWM(Pulse Width Modulation)制御が適用された3相インバータであり、スイッチング素子を有する2つのアームを直列接続してレグを構成し、3つのレグを互いに並列接続したものである。ここでは、直列接続された2つのアームのうち、正極母線17側のアームを上アーム、負極母線18側のアームを下アームと称することとする。図1において、インバータ回路20は第1~第3上アーム21,23,25と第1~第3下アーム22,24,26とを有している。第1上アーム21と第1下アーム22とが第1レグを構成し、第2上アーム23と第2下アーム24とが第2レグを構成し、第3上アーム25と第3下アーム26とにより第3レグを構成している。また、各アームは、スイッチング素子と逆並列ダイオードとを備えている。例えば、第1上アーム21は、スイッチング素子21aと逆並列ダイオード21bとを備えている。
 スイッチング素子21aのドレイン端子は正極母線17に接続され、スイッチング素子21aのソース端子はスイッチング素子22aのドレイン端子と直列に接続されている。また、スイッチング素子22aのソース端子は負極母線18に接続されている。同様に、スイッチング素子23aおよびスイッチング素子25aのドレイン端子は、正極母線17に接続され、ソース端子はそれぞれスイッチング素子24aおよびスイッチング素子26aのドレイン端子と直列に接続されている。また、スイッチング素子24aおよびスイッチング素子26aのソース端子は負極母線18に接続されている。
 本実施の形態では、第1上アーム21と第1下アーム22とから成る第1レグはU相、第2上アーム23と第2下アーム24とから成る第2レグはV相、第3上アーム25と第3下アーム26とから成る第3レグはW相に対応する。第1上アーム21と第1下アーム22との接続点は、電動機130のU相端子130aに接続されており、第2上アーム23と第2下アーム24との接続点は、電動機130のV相端子130bに接続されている。また、第3上アーム25と第3下アーム26との接続点は、電動機130のW相端子130cに接続されている。
 本実施の形態では、インバータ回路20として3相インバータを用いた場合について説明するが、これに限られるものではなく、2相インバータや4相以上の多相インバータであってもよい。すなわち、インバータ回路を構成するレグの数が2以上の場合に本発明を適用することができる。
 次に、制御部30について説明する。
 制御部30は、基準信号生成回路40と、鋸波キャリア生成回路50と、制御信号生成回路60とゲート駆動回路部70とを備える。基準信号生成回路40は、正弦波信号発生源41と位相シフタ42a,42bとを備える。制御信号生成回路60は、比較器61a~61eと、反転回路62a~62cと、固定遅延回路63a~63cと、加算回路64とを備える。ゲート駆動回路部70は、ゲート駆動回路70a~70gを備える。
 ここで、制御部30と、電源遮断回路10、インバータ回路20、および電動機130との制御信号のインターフェイスを説明する。制御部30のゲート制御信号30aは、スイッチング素子11aのゲート端子に接続されている。また、ゲート制御信号30b~30gは、スイッチング素子21a~26aのそれぞれのゲート端子に接続されている。ここで、各スイッチング素子のゲート端子に与える制御信号は、各スイッチング素子のソース端子を基準として与えるものであり、実際には各ソース端子との接続配線が存在するが、簡略化のために図1では図示を省略している。
 次に、制御部30の制御および回路動作について説明する。図2は制御部30の内部ブロック図であり、スイッチング素子21a~26aのゲート制御信号30b~30gの生成方法を説明するものである。
 一般に、インバータのPWM制御は、キャリア信号と基準信号を用いて実現されることが知られている。本実施の形態に示す電力変換装置および電動機システムでは、キャリア信号として、鋸波キャリア生成回路50によって鋸波キャリア信号50aが生成される例を示す。また、基準信号として、基準信号生成回路40内の正弦波信号発生源41で正弦波が生成される例を示す。この基準信号に基づいて、位相シフタ42a,42bにより+2/3πおよび+4/3π位相をシフトした信号が生成される。本実施の形態では、正弦波基準信号40a,40b,40cは、それぞれ電動機130のU相、V相、W相のゲート制御信号を生成する場合に用いられる。
 図2に示すように、制御部30は、鋸波キャリア信号50aと正弦波基準信号40a~40cは、比較器61a~61cでそれぞれ比較判定し、各相の上アームおよび下アームの制御信号が生成される。例えば、U相(第1レグ)の第1上アーム21のスイッチング素子21aのゲート制御信号30bは、比較器61aの出力をゲート駆動回路70bで増幅して生成される。一方、U相(第1レグ)の第1下アーム22のスイッチング素子22aのゲート制御信号30cは、比較器61aの出力を反転回路62aにより論理反転され、この信号に固定遅延回路63aで所定時間の遅延を付加し、ゲート駆動回路70cで増幅して生成される。V相(第2レグ)およびW相(第3レグ)についても同様である。その結果、後で説明する図3のゲート制御信号30b~30gが生成される。なお、固定遅延回路63a~63cで遅延させる所定時間は、スイッチング部11、各相の上アーム21,23,25および各相の下アーム22,24,26の寄生の入力容量と出力容量の充放電の時定数から決定する。
 一方、電源遮断回路10のスイッチング素子11aのゲート制御信号30aは、比較器61d,61eによる基準信号Vref1およびVref2と鋸波キャリア信号50aとの比較判定結果に基づいて生成する。具体的には、比較器61dは、鋸波キャリア信号50aが正の基準信号Vref1より大きい状態を判定する。一方、比較器61eは鋸波キャリア信号50aが負の基準信号Vref2より小さい状態を判定する。比較器61dおよび比較器61eの出力は加算回路64で加算される。この結果、鋸波キャリア信号50aの値がリセットする点(微分値が不連続になる点)の前後の期間で加算回路64の出力はH状態になる。加算回路64の出力をゲート駆動回路70aで増幅してゲート制御信号30aが生成される。
 なお、ゲート駆動回路部70のゲート駆動回路70a~70gは、それぞれが駆動するスイッチング素子のソース電位が異なるため、絶縁インターフェイスおよび絶縁電源を備えている。
 次に、本実施の形態に示す電力変換装置100の電源遮断回路10の動作を図3に基づいて説明する。
 図3は、本実施の形態に示す電力変換装置における電源遮断回路の動作説明用のタイムチャートであり、信号波形を模式的に示している。なお、図3において、正弦波基準信号40a~40cはU相、V相、W相に対応する正弦波基準信号を示す。ゲート制御信号30aは、スイッチング素子11aのゲート制御信号である。ゲート制御信号30b~30gは、各レグの上アームおよび下アームのスイッチング素子21a~26aのゲート制御信号を示す。また、Vbusは正極母線17の電圧である。さらに、Rは鋸波キャリア信号50aのリセットを表す。
 図3に示す通り、鋸波キャリア信号50aの立ち上がり期間におけるスイッチング素子21a~26aのスイッチングに対しては、電源遮断回路10のスイッチング素子11aはオン状態を保持している。従って、この期間は電源遮断動作を行わない。また、直列接続された上アームのスイッチング素子と下アームのスイッチング素子(例えば21aと22a)の短絡を防止するために、固定遅延回路63a~63cにより所定期間のデッドタイム(以下、正デッドタイム)が確保される。この鋸波キャリア信号50aの立ち上がり期間の回路動作は、従来の一般的な3相インバータ制御と同様である。
 一方、鋸波キャリア信号50aを採用したことにより、鋸波のリセット時にスイッチング素子21a~26aの全てがスイッチング動作することとなるが、その前後の期間(図3中の電源遮断期間Pr)を電源遮断回路10のスイッチング素子11aをオフ期間とする。
 上述の通り、この電源遮断期間Prは、鋸波キャリア信号50aが正の基準信号Vref1より大きい期間と負の基準信号Vref2より小さい期間を加算回路64で加算することで生成している。この電源遮断期間Prに、インバータ回路20のスイッチング素子21a~26aをスイッチングすることで、3相一括の低損失スイッチングを実現できる。
 次に、本実施の形態の電源遮断回路10の特徴とその効果を図4~図8に基づいて説明する。
 図4は、図3に図示した電源遮断期間Prを中心に、一点斜線で示した範囲Aを分かり易く拡大したものである。また、図4に図示した電源遮断期間Prの前および後の期間におけるインバータ回路20の電流経路を図5(a)および図5(b)にそれぞれ示している。鋸波のようなリセット形状(信号の符号が即座に反転する形状)を有するキャリア信号を採用することにより、キャリア信号がリセットする際に下アーム還流モード(図5(a))から上アーム還流モード(図5(b))に遷移するように制御することができる。さらに、固定遅延回路63a~63cにより、電源遮断期間Prにおいてインバータ回路20の上アームおよび下アームのスイッチング素子(例えば21aと22a)が同時オンする期間(以下、負デッドタイム)を設ける。この負デッドタイムを設けることで、正極母線17の電圧Vbusを零電圧に低下させ、低損失スイッチング動作を実現できる。
 図5(a)から図5(b)への環流電流の遷移を、低損失スイッチング動作の説明用模式図である図6で説明する。図6は、低損失スイッチング動作を分かり易く説明する模式図であり、符番号は省略している。図6(a)~(c)は、図5(a)から図5(b)への遷移を示す図であり、図6(d)は、図5(b)に対応する。
 図6(a)は、図5(a)の状態からスイッチング部11のスイッチング素子11aがオフとなった状態である。ここでは、図6(a)に示す状態を第1動作モードと称することとする。第1動作モードは、一括スイッチング前の状態であり、図5(a)と同様に下アーム還流モードの状態である。すなわち、各相の下アームのスイッチング素子22a,24a,26aがオン状態(各相の上アームのスイッチング素子21a,23a,25aがオフ状態)となる状態であり、図6(a)に示すように、インバータ回路20のオン状態にある各相の下アーム22,24,26と電動機130との間で電流を還流させる還流モードである。ここで、図5(a)ではスイッチング素子11aがオフしているが、そのドレイン-ソース間電圧は増加せず、従って寄生容量は放電した状態を保持する。すなわち、スイッチング素子11aは零電流でターンオフすることとなる。
 図6(b)は、図6(a)の状態から、各相の上アームのスイッチング素子21a,23a,25aがオンとなった状態を示している。ここでは、図6(b)に示す状態を第2動作モードと称することとする。第2動作モードでは、インバータ回路20のすべての相の上アームおよび下アームのスイッチング素子21a~26aが同時にオンとする状態である。ここで、図中の破線で示したスイッチング部の寄生容量を充放電する電流の経路を点線で示している。すなわち、第1の動作モードでオフ状態にあった各相の上アーム21,23,25は、寄生容量に電荷が充電されているため、そのオン動作によってこれらの寄生容量の電荷は放電されることとなる。図6(b)で上下アームが同時オンする段階においては、スイッチング部11の寄生容量に図6(b)中の点線の充電経路が形成されるため、正極母線17の電圧Vbusは零電圧に低下する。このとき、各相の上アームのスイッチング素子21a,23a,25aは零電流でターンオンし、各相の上アームおよび下アームを電流が還流する状態になる。
 次に、図6(c)は、図6(b)の状態から、下アームのスイッチング素子22a、24a、26aがターンオフした状態を示している。ここでは、図6(c)に示す状態を第3動作モードと称することとする。第3動作モードでは、インバータ回路20の各相の上アームのスイッチング素子21a,23a,25aを同時にオンとした状態であり、各相の上アームを電流が還流することとなる。ここで、各相の下アームのスイッチング素子22a,24a,26aがオフした段階においては、正極母線17の電圧Vbusは零電圧にあり、従って各相の下アームのスイッチング素子22a,24a,26aは零電圧でスイッチングする。その後、スイッチング素子11aがオンすると(図6(d))、スイッチング部11の寄生容量は図中の点線の経路で放電され、一方で各相の下アーム22,24,26は図中の点線の経路で充電され、結果として正極母線17の電圧Vbusが上昇する。このタイミングでインバータ回路の還流電流は、下アームから上アームへ完全に移行する。このスイッチング素子11aのオン動作においても、スイッチング素子11aは零電流でターンオンする。
 以上のように、図6(a)~(d)の各素子のスイッチング動作は、零電流または零電圧のスイッチングをするため、低損失なスイッチングを実現することができる。ここで、従来のソフトスイッチング技術では、共振原理によって正極母線17の電圧Vbusを上昇および下降さていた。一方、本発明では、第2動作モードにおけるインバータ回路の上アームおよび下アームの同時オン動作で正極母線17の電圧Vbusを下降させ、スイッチング部11の再接続動作(スイッチング素子11aのオン動作)でVbusを上昇させる点が異なる。これにより、共振回路が不要となり、回路の小型化を実現できる。さらに、従来のソフトスイッチング技術ではVbusの降下期間が負荷電力に依存して大きくならざるを得なかったのに対し(たとえば10μs)、本発明では共振周期に寄らず十分に小さくできるため(たとえば1μs未満)、従ってインバータの実効的な出力電圧の低下による電動機の出力性能の低下を抑制できる。
 なお、上記では第1動作モードにおいて各相の下アームのスイッチング素子22a,24a,26aをすべてオンとする場合について示したが、必ずしもすべてをオンとする必要はない。例えば、図6(a)に示す例ではスイッチング素子24aはオフとした場合でも、スイッチング素子24aに逆並列に接続された逆並列ダイオード24bを介して還流することができる。第2動作モードおよび第3動作モードについても同様であり、第2動作モードにおいては、各相の上アームのスイッチング素子21a,23a,25aおよび各相の下アームのスイッチング素子22a,24a,26aを、必ずしもすべてオンとする必要はない。また、第3動作モードにおいても、各相の上アームのスイッチング素子21a,23a,25a必ずしもすべてオンとする必要はない。
 ここで、低損失スイッチング動作を実現するとき、各相の上アームおよび下アームをオンにする負デッドタイムを設けることが必要である理由を比較例である図7を用いて説明する。
 図7は、図5(a)から図5(b)に遷移する際に、一般的な正デッドタイム期間を設けた状態、すなわちインバータ回路のスイッチング素子21a~26aの全てをオフした状態のインバータ回路の電流経路を示す図である。この場合は、負荷電流はインバータ回路20の逆並列ダイオードに流れることになる。その結果として、負荷電流はスイッチング部11の逆並列ダイオード11bを介して電源へ回生される。すなわち、スイッチング素子11aがオフ状態にあったとしても、図5(a)から図5(b)に遷移する際の正デッドタイム期間中に正極母線17の電圧Vbusが上昇し、従って零電圧スイッチング動作が実現できないこのため、一般的な正デッドタイム期間を設けた場合には、ソフトスイッチング動作を実現するために、正デッドタイム期間中の負荷電流を共振回路で流すために、大規模な共振回路を追加する必要がある。
 さらに、本実施の形態の電源遮断回路10の動作を図8に基づいて、図1も参照して説明する。図8はU相を例として、図4の電源遮断期間Prにおける低損失スイッチング波形を模式的に示した図である。
 図8において、ゲート制御信号30b,30cは、U相の上アームおよび下アームのスイッチング素子21a,22aのゲート制御信号である。ゲート制御信号30aは、スイッチング素子11aのゲート制御信号である。また、Vbusは正極母線17の電圧である。Ia(破線)は、U相上アーム(第1上アーム21)の逆並列ダイオード21bを流れる電流であり、Vka(実線)は、U相上アームの逆並列ダイオード21bの端子間電圧である。Id(破線)は、U相下アーム(第1下アーム22)のスイッチング素子22aを流れる電流であり、Vds(実線)は、U相下アームのスイッチング素子22aのソースードレイン間の電圧である。また、「HS」は通常スイッチングを示し、「SS」は低損失スイッチングを示す。
 この電源遮断期間Prにおいて、U相下アームのスイッチング素子22aはオンからオフに遷移する。これに伴い、U相上アームの逆並列ダイオード21bはオフからオンに遷移し、電流Iaはすべて逆並列ダイオード21bに流れるようになる。図8において、U相下アームのスイッチング素子22aのオン→オフの遷移は、ゲート制御信号30c(U相下アームのスイッチング素子22aのゲート制御信号)のオン→オフの変化に対応する。この低損失スイッチングは、上述のように正極母線17の電圧Vbusが零電圧の状態のスイッチングであるため、スイッチング損失が発生しない零電圧スイッチングを実現できる。
 なお、通常スイッチング(HS)は、一般的な正デッドタイム期間を設けた場合のスイッチングであり、具体的には、U相下アームのスイッチング素子22aのオフ→オンへのスイッチングである。ここで、U相上アームの逆並列ダイオード21bを流れる電流(Ia)およびU相上アームの逆並列ダイオード21bの端子間電圧(Vka)の変化は、U相下アームのスイッチング素子22aがオフからオンに遷移することに伴い、U相上アームの逆並列ダイオード21bがオンからオフに遷移することを表している。
 このように、本実施の形態に示す電力変換装置および電動機システムは、鋸波キャリア信号のリセット時のインバータ動作を低損失化し、電源遮断回路10で発生するスイッチング損失をも抑制することができる。鋸波キャリア信号のリセット時に発生するインバータのスイッチングは総回数の1/2である。従って、本実施の形態1ではインバータ回路20のスイッチング損失を1/2に低減できる。一方で、電源遮断回路10で発生する損失は主としてスイッチング素子11aの導通損失であるが、この導通損失はスイッチング素子11aを並列化することでさらに低減できる。
 以上のように、本実施の形態1に示す電力変換装置および電動機システムでは、鋸波キャリア信号のようなリセット形状を有するキャリア信号を採用することでインバータを下アーム還流モードから上アーム還流モードに遷移する動作モードを設け、このタイミングで電源遮断回路のスイッチング素子11aをオフかつインバータの上、下アームの制御に負デッドタイム期間を設けることで蓄電デバイス120へ回生動作を防止し、共振電流を流すことなく低損失スイッチングを実現するものである。
 従って、本実施の形態1で適用するキャリア信号は鋸波形状に限られるものではなく、下アーム還流から上アーム還流に遷移する動作モードを提供するキャリア信号全般に適用できる。
 また、本実施の形態1では、鋸波キャリア信号が立ち上がる期間中のスイッチングに対して正デッドタイムを与え、かつ鋸波キャリア信号のリセット時のスイッチングに対して負デッドタイムを与える手段として、固定遅延回路63a~63cを用いた構成を例示した。しかし、これに限られるものではない。さらに、本実施の形態1では、下アーム還流から上アーム還流に遷移する場合を例示したが、比較器61a~61cの+入力と-入力を入れ替えることで上アーム還流から下アーム還流に遷移させてもよい。
 なお、本実施の形態1では、直流電源として、蓄電デバイスを想定して説明した。しかし、交流電力をインバータで直流に変換した直流電源であってもよい。また、太陽光発電装置、燃料電池、直流出力可能な発電機であってもよい。
 また、本実施の形態1では、電力変換装置100の低損失スイッチング(負デッドタイム)の適用を、蓄電デバイス120から電動機130に電流が流れる方向の例で説明した。しかし、電力変換装置100の低損失スイッチング(負デッドタイム)は、発電機としての電動機130から蓄電デバイス120に電流が流れる方向の場合でも、同様に適用できる。すなわち、電力変換装置100を流れる電流の方向に関わらずに、低損失スイッチング(負デッドタイム)を適用することで、共振回路を追加することいなく損失低減を実現した電力変換装置及びこれを用いた電動機システムを構成できる。
 以上説明したように、実施の形態1に係る電力変換装置および電動機システムは、直流電源とインバータ回路との間に接続された電源遮断部と、インバータ回路と、電源遮断部とを制御する制御部とを備えており、制御部が、制御部は、電源遮断回路が直流電源とインバータ回路とを遮断する期間において、複数のレグのうち少なくとも1つのレグの下アームのスイッチング素子をオンとする第1動作モードと、複数のレグのうち少なくとも1つのレグの上アームおよび下アームのスイッチング素子を同時にオンとする第2動作モードと、複数のレグのうち少なくとも1つのレグの上アームのスイッチング素子をオンとする第3動作モードと、を用いてインバータ回路および電源遮断回路を制御することにより、回路の小型化および損失低減を実現できる。さらに、インバータ出力の零電圧期間の増加による実効的な出力電圧の低下を抑制し、従って電動機の出力特性の低下を抑制できる。
実施の形態2.
 実施の形態2の電力変換装置および電動機システムは、実施の形態1の電力変換装置および電動機システムと比べ、インバータ回路の上アームと下アームのスイッチング素子のゲート制御信号の遅延時間および電源遮断回路が蓄電デバイスとインバータ回路とを遮断する期間を削減し、従ってインバータ出力の零電圧期間を短縮する構成としたものである。実施の形態2に係る電力変換装置および電動機システムの構成は図1に示す場合と同様であり、説明を省略する。
 以下、実施の形態2の電力変換装置について、制御部の内部ブロック図である図9に基づいて、実施の形態1との差異を中心に説明する。図9において、実施の形態1の図2と同一あるいは相当部分は、同一の符号を付している。なお、実施の形態1と区別するため、電力変換装置200、制御部230、および制御信号生成回路260としている。
 まず、電力変換装置200の制御部230の構成を図9に基づいて説明する。
 実施の形態2の制御部230と実施の形態1の制御部30との構成の違いは、制御信号生成回路260である。制御信号生成回路260において、実施の形態1の制御信号生成回路60の固定遅延回路63a~63cを可変遅延回路263a~263cとし、さらに電源電圧検出回路51と遮断期間調整回路を追加している。
 図2に示した実施の形態1における制御信号の生成方法と比べて、図9に示す制御部230では可変遅延回路263a~263cが、電源電圧検出回路51が検出した蓄電デバイス120の電圧検出値51aに応じて遅延時間を可変させる。さらに、遮断期間調整回路66は、電圧検出値51aに応じて比較器61dおよび61eの基準電圧を調整する。これにより、実施の形態1では予め定めた所定の遅延時間および電源遮断期間を与えるに対して、本実施の形態2では蓄電デバイスの電圧値に応じて遅延時間を最適化することができる。すなわち、蓄電デバイスの電圧値に応じてスイッチング部11および第1~第3上アーム21,23,25および第1~第3下アーム22,24,26の寄生容量が変化することに起因して、正極母線17の電圧Vbusの立ち上がりおよび立ち下がり時間が変化すること考慮して遅延時間を与える。その結果、デッドタイムを最小化することができるため、デッドタイム追加による電力変換効率の低下を抑制できる効果がある。
 本実施の形態2では、蓄電デバイス120の状態を検出する方法として電源電圧検出回路51を用いる構成を例示したが、蓄電デバイス120から供給される電流値を検出する方法であってもよい。この場合、電源電圧検出回路の入力信号としては、カレントトランス等を用いて取得した正極母線17を流れる電流の測定値を用いることができる。
 本実施の形態2において、制御信号生成回路260以外の構成および動作は、実施の形態1と同様であるため、その説明は省略する。
 以上説明したように、実施の形態2に係る電力変換装置および電動機システムは、実施の形態1で示した電力変換装置の上アームと下アームのスイッチング素子のゲート制御信号の遅延時間および電源遮断期間を蓄電デバイスの状態に応じて変更する構成としたものである。したがって、実施の形態2の電力変換装置およびこれを用いた電動機システムは、実施の形態1と同様におよび共振回路を用いることなく損失低減を実現できる。さらに、デッドタイム追加による電力変換効率の低下、さらにはインバータ実効的な出力電圧の低下を抑制できる効果がある。
実施の形態3.
 実施の形態3に係る電力変換装置および電動機システムは、実施の形態2で示した電力変換装置および電動機システムと同様に、インバータ回路の上アームと下アームのスイッチング素子のゲート制御信号の遅延時間および電源遮断回路が蓄電デバイスとインバータ回路とを遮断する期間を削減し、インバータ出力の零電圧期間を短縮する構成としたものである。実施の形態3に係る電力変換装置および電動機システムの構成は図1に示す場合と同様であり、説明を省略する。
 以下、実施の形態3の電力変換装置について、制御部の内部ブロック図である図10に基づいて、実施の形態2との差異を中心に説明する。図10において、実施の形態2の図9と同一あるいは相当部分は、同一の符号を付している。なお、実施の形態2と区別するため、電力変換装置300、制御部330、および制御信号生成回路360としている。
 まず、電力変換装置300の制御部330の構成を図10に基づいて説明する。実施の形態3の制御部330と実施の形態2の制御部230との構成の違いは、電源電圧検出回路51を削除したこと、および制御信号生成回路360の構成である。
 図9に示した実施の形態2における制御信号の生成方法と比べて、図10では可変遅延回路263a~263cが、スイッチング素子11aを駆動するゲート駆動回路70aの出力電圧を判定するゲート判定回路267aの出力電圧に応じて遅延時間を可変させる。さらに、遮断期間調整回路66は、スイッチング素子26aを駆動するゲート駆動回路70gの出力電圧を判定するゲート判定回路267bの出力電圧に応じて比較器61dおよび61eの基準電圧を調整する。これにより、実施の形態2では蓄電デバイスの電圧値に応じて遅延時間を最適化したのに対し、本実施の形態3ではスイッチング素子11aおよび26aのゲートが完全にオフしたタイミングを検出して遅延時間を最適化することができる。具体的には、蓄電デバイス120とインバータ回路20が遮断されると即座にインバータ回路20の上アーム21,23,25および下アーム22,24,26を同時オン状態にし、かつインバータ回路20の上アーム21,23,25および下アーム22,24,26の同時オン状態が解除されると即座に蓄電デバイス120とインバータ回路20を再接続するように調整する。その結果、デッドタイムを最小化することができるため、デッドタイム追加による電力変換効率の低下を抑制できる効果がある。
 本実施の形態3では、インバータ回路の上アーム21,23,25および下アーム22,24,26の同時オン状態が解除されるタイミングを検出する方法として、スイッチング素子26aのゲート電圧を判定する例を示したが、他の下アームのスイッチング素子のゲート電圧を判定する方法、あるいは全ての下アームのスイッチング素子のゲート電圧を判定する方法であっても良い。
 本実施の形態3において、制御信号生成回路360以外の構成および動作は、実施の形態1と同様であるため、その説明は省略する。
 以上説明したように、実施の形態3の電力変換装置は、実施の形態1の電力変換装置の上アームと下アームのスイッチング素子のゲート制御信号の遅延時間および電源遮断期間をスイッチング素子のゲートの放電時間に応じて最適化する構成としたものである。したがって、実施の形態3の電力変換装置およびこれを用いた電動機システムは、実施の形態1と同様におよび共振回路を用いることなく損失低減を実現できる。さらに、デッドタイム追加による電力変換効率の低下、さらにはインバータ実効的な出力電圧の低下を抑制できる効果がある。
実施の形態4.
 実施の形態4の電力変換装置および電動機システムは、実施の形態1の電力変換装置および電動機システムのインバータ回路および電動機をX群とY群の2群構成としたものである。
 以下、実施の形態4の電力変換装置および電動機システムについて、電力変換装置および電動機システムの構成を示すブロック図である図11、および電力変換装置の制御部の内部ブロック図である図12に基づいて、実施の形態1との差異を中心に説明する。図11、12において、実施の形態1の図1、2と同一あるいは相当部分は、同一の符号を付している。なお、実施の形態1と区別するため、電動機システム4000、電力変換装置400、インバータ回路420X、420Y、制御部430、基準信号生成回路440、および制御信号生成回路460としている。また、図12において、図面を簡素化するため、ゲート駆動回路部を省略している。
 まず、実施の形態4の電動機システム4000および電力変換装置400の全体構成を図11に基づいて説明する。
 電動機システム4000は、蓄電デバイス120から供給される電力を、電力変換装置400で交流に変換し、変換された電力でモータである2台の電動機130X、130Yを駆動する。電力変換装置400は、負荷である2台の電動機130X、130Yにそれぞれ電力を供給するインバータ回路420X、420Yと、インバータ回路420X、420Yと蓄電デバイス120の間に接続された電源遮断回路10と、電源遮断回路10およびインバータ回路420X、420Yを制御する制御部430を備えている。以下、適宜、電動機130Xおよびインバータ回路420X、電動機130Yおよびインバータ回路420YをそれぞれX群、Y群と記載する。
 電源遮断回路10とインバータ回路420X、420Yそれぞれの構成および動作は、実施の形態1に示す電源遮断回路とインバータ回路20と同様であるため、説明は省略する。
 次に制御部430について説明する。
 制御部430は、基準信号生成回路440と、鋸波キャリア生成回路50と、制御信号生成回路460と図示しないゲート駆動回路部とを備える。基準信号生成回路440では、実施の形態1の基準信号生成回路40に対して、インバータ回路420Y用に位相シフタ443a~443cが追加されている。インバータ回路420Y用の正弦波基準信号40aY、40bY、40cYはそれぞれインバータ回路420Y(すなわち、電動機130Y)のU相、V相、W相に対応する。正弦波信号発生源41で生成する基準信号に対して、位相シフタ443aで位相をθ分だけシフトさせている。このため、この正弦波基準信号40aY、40bY、40cYは、インバータ回路420X(すなわち、電動機130X)用の正弦波基準信号40aX、40bX、40cXに対して、位相がθシフトしている。
 制御信号生成回路460では、実施の形態1の制御信号生成回路60に対して、2台のインバータ回路420X、420Yに対応する構成となっている。それぞれの構成、動作は、実施の形態1と同じである。すなわち、制御信号生成回路460では、インバータ回路420Xに対応する、比較器61aX~61cXと、反転回路62aX~62cXと、固定遅延回路63aX~63cXとを備える。また、制御信号生成回路460では、インバータ回路420Yに対応する、比較器61aY~61cYと、反転回路62aY~62cYと、固定遅延回路63aY~63cYとを備える。
 2群の電動機(130X、130Y)を2群のインバータ回路(420X、420Y)で駆動する場合、2群のインバータ回路の各相の正弦波基準信号を異なる位相で与えることで、蓄電デバイス120に発生するリップル電流を分散化することが一般的である。本実施の形態4では、その位相差をθとしている。一方で、鋸波キャリア信号50aは、X群とY群で同一の信号を用いている。同一のキャリア信号を用いることで、鋸波キャリア信号のリセット時にX群とY群が同時にスイッチングするため、電源遮断回路のゲート制御信号は図2と同様に生成することができる。すなわち、電源遮断回路の動作周波数の増加を抑制し、制御負荷の増加を抑制することができる。
 実施の形態4では、インバータ回路420X、420Yおよび電動機130X、130Yが、2群構成になっているため、電動機の総出力トルクを向上できる。また、一方の電動機は駆動を主体とし、他方の電動機は発電を主体とするように設計することで、駆動と発電の両機能をそれぞれ最適に実現することができる。
 本実施の形態4では、インバータ回路および電動機が2群構成の例を示したが、3群構成あるいはそれ以上の多群構成に対しても、同様に適用することができる。
 以上説明したように、実施の形態4の電力変換装置および電動機システムは、実施の形態1の電力変換装置および電動機システムのインバータ回路および電動機をX群とY群の2群構成としたものである。したがって、実施の形態4の電力変換装置およびこれを用いた電動機システムは、実施の形態1と同様に追加する回路の小型化および損失低減を実現できる。さらに、電動機の総出力トルクの向上、および駆動と発電の両機能の最適化を実現することができる。
実施の形態5.
 実施の形態5の電力変換装置および電動機システムは、実施の形態4の電力変換装置および電動機システムに対して、2群のインバータ回路の鋸波キャリア信号に位相差φを設ける構成としたものである。
 以下、実施の形態5の電力変換装置および電動機システムについて、電力変換装置の内部ブロック図である図13に基づいて、実施の形態4との差異を中心に説明する。図13において、実施の形態4の図12と同一あるいは相当部分は、同一の符号を付している。なお、実施の形態4と区別するため、電力変換装置500、制御部530、および制御信号生成回路560としている。なお、図13において、図面を簡素化するため、ゲート駆動回路部を省略している。
 まず、実施の形態5の電動機システムおよび電力変換装置500の全体構成は、実施の形態4の電動機システム4000および電力変換装置400と同様である。すなわち、電動機システムは、蓄電デバイス120から供給される電力を、電力変換装置500で交流に変換し、変換された電力でモータである2台の電動機を駆動する。
 次に制御部530について説明する。
 実施の形態4の制御部430との違いは、制御信号生成回路560である。まず、構成の違いを説明する。制御信号生成回路560では、実施の形態4の制御信号生成回路460に対して、位相シフタ565と加算回路566が追加されている。位相シフタ565によって、鋸波キャリア生成回路50が生成する鋸波キャリア信号50aに対して、位相差φ分だけシフトさせて、X群用の鋸波キャリア信号(50aX)として用いている。また、加算回路566では、鋸波キャリア信号50a(50aY)と位相差φ分だけシフトさせたX群用の鋸波キャリア信号(50aX)を加算し、その出力を比較器61d、61eに入力している。
 なお、図13では、鋸波キャリア信号50aと同じ信号であるが、鋸波キャリア信号50aXとの対応を明確にするため、鋸波キャリア信号50aYと記載している。
 次に、電力変換装置500の動作について、実施の形態4の電力変換装置400との差異を中心に説明する。
 位相差φは、蓄電デバイス120に発生するリップル電流、およびノイズを分散化する目的で与えられる。この場合、インバータ回路のX群とY群の鋸波キャリア信号50aXおよび鋸波キャリア信号50aYのリセットタイミングがずれるため、両方のリセットタイミングで電源遮断回路を動作させる必要がある。そこで、本実施の形態5では、鋸波キャリア信号50aXと鋸波キャリア信号50aYを加算回路566で加算し、比較器61d,61eに入力する構成としている。このため、電源遮断回路10の動作周波数は実施の形態4に示す電力変換装置の2倍となり、電源遮断回路10の損失も2倍になる。
 従来方式では、共振回路の損失が問題となり、例えばインバータ回路X群とY群でそれぞれ個別に共振回路を設けるなどの対策が必要と考えられる。
 一方、本実施の形態5の電動機システムでは、共振回路を削除したことにより、異なるタイミングでスイッチングするインバータ回路X群とY群に同一の電源遮断回路を適用することができる。
 本実施の形態5の制御部530の制御信号生成回路560以外の構成および動作は、実施の形態4と同様であるため、その説明は省略する。
 本実施の形態5では、インバータ回路および電動機が2群構成の例を示したが、3群構成あるいはそれ以上の多群構成に対しても、各群の正弦波基準信号および鋸波キャリア信号に位相差を与えることで、容易に適用することができる。
 以上説明したように、実施の形態5の電力変換装置および電動機システムは、実施の形態4の電力変換装置および電動機システムに対して、2群のインバータ回路の鋸波キャリア信号に位相差φを設ける構成としたものである。したがって、実施の形態5の電力変換装置およびこれを用いた電動機システムは、実施の形態1と同様に追加するLC共振回路の小型化および損失低減を実現できる。さらに、電動機の総出力トルクの向上、および駆動と発電の両機能の最適化を実現することができるとともに、蓄電デバイスに発生するリップル電流およびノイズを分散できる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、実施の形態を適宜、変形、省略したりすることが可能である。
 10 電源遮断回路、11 スイッチング部、11a スイッチング素子、11b 逆並列ダイオード、17 正極母線、18 負極母線、20 インバータ回路、21 第1上アーム、21a スイッチング素子、21b 逆並列ダイオード、22 第1下アーム、22a スイッチング素子、22b 逆並列ダイオード、23 第2上アーム、23a スイッチング素子、23b 逆並列ダイオード、24 第2下アーム、24a スイッチング素子、24b 逆並列ダイオード、25 第3上アーム、25a スイッチング素子、25b 逆並列ダイオード、26 第3下アーム、26a スイッチング素子、26b 逆並列ダイオード、27 正極母線、28 負極母線、30 制御部、30a~g ゲート制御信号、40 基準信号生成回路、40a~c 正弦波基準信号、40aX~cX 正弦波基準信号、40aY~cY 正弦波基準信号、41 正弦波信号発生源、42a 位相シフタ、42b 位相シフタ、50 鋸波キャリア生成回路、51 電源電圧検出回路、51a 電圧検出値、60 制御信号生成回路、61a~e 比較器、62a~c 反転回路、63a~c 固定遅延回路、64 加算回路、66 遮断期間調整回路、70a~gゲート駆動回路部、100 電力変換装置、120 蓄電デバイス、130 電動機、130a U相端子、130b V相端子、130c W相端子、200 電力変換装置、230 制御部、260 制御信号生成回路、263a~c 可変遅延回路、267a ゲート判定回路、267b ゲート判定回路、300 電力変換装置、330 制御部、360 制御信号生成回路、400 電力変換装置、420X インバータ回路、420Y インバータ回路、430 制御部、440 基準信号生成回路、443a~c 位相シフタ、460 制御信号生成回路、500 電力変換装置、530 制御部、560 制御信号生成回路、565 位相シフタ、566 加算回路、1000 電動機駆動装置、4000 電動機システム

Claims (11)

  1.  一端が直流電源に接続され前記直流電源からの入力を遮断する電源遮断回路と、
     一端が前記電源遮断回路の他端に接続され、前記直流電源からの電力を交流電力に変換するインバータ回路と、
     前記インバータ回路および前記電源遮断回路を制御する制御部と、
     を備え、
     前記インバータ回路は、スイッチング素子を有する上アームおよびスイッチング素子を有する下アームが直列接続された複数のレグであって、互いに並列接続された複数のレグを有しており、
     前記制御部は、前記電源遮断回路が前記直流電源と前記インバータ回路とを遮断する期間において、
     前記複数のレグのうち少なくとも1つのレグの下アームのスイッチング素子をオンとする第1動作モードと、
     前記複数のレグのうち少なくとも1つのレグの上アームおよび下アームのスイッチング素子を同時にオンとする第2動作モードと、
     前記複数のレグのうち少なくとも1つのレグの上アームのスイッチング素子をオンとする第3動作モードと、を用いて前記インバータ回路および前記電源遮断回路を制御すること、
     を特徴とする電力変換装置。
  2.  前記制御部は、前記第1動作モードにおいて、前記下アームに電流を還流するよう前記下アームのスイッチング素子をオンとし、
     前記第3動作モードにおいて、前記上アームに電流を還流するよう前記上アームのスイッチング素子をオンとすること、
     を特徴とする請求項1記載の電力変換装置。
  3.  前記制御部は、前記第1動作モードにおいて、前記複数のレグのうちすべてのレグの下アームをオンとし、
     前記第2動作モードにおいて、前記複数のレグのうちすべてのレグの上アームおよび下アームのスイッチング素子を同時にオンとし、
     前記第3動作モードにおいて、前記前記複数のレグのうちすべてのレグの上アームをオンとすること、
     を特徴とする請求項1または2のいずれかに記載の電力変換装置。
  4.  前記制御部は、前記第1動作モードから前記第3動作モードへ、または、前記第3動作から前記第1動作モードへ遷移させる場合において、前記第1動作モードと前記第3動作モードとの間に前記第2動作モードを設けること、
     を特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
  5.  前記制御部は、鋸波キャリア信号および正弦波信号を用いたPWM制御によって、前記インバータ回路を制御し、
     前記制御部は、前記第2動作モードにおいて、前記鋸波キャリア信号および正弦波信号を比較判定することにより生成された信号に対し、予め定められた遅延を付加する固定遅延回路をさらに備えること、
     を特徴とする請求項1~4のいずれか1項に記載の電力変換装置。
  6.  前記制御部は、前記第2動作モードをあらかじめ決められた所定の時間になるように制御すること、
     を特徴とする請求項1~5のいずれか1項に記載の電力変換装置。
  7.  前記制御部は、前記電源遮断回路が前記直流電源と前記インバータ回路とを遮断する期間があらかじめ決められた所定の時間になるように制御すること、
     を特徴とする請求項1~6のいずれか1項に記載の電力変換装置。
  8.  前記制御部は、前記直流電源の電圧値に基づいて、前記電源遮断回路が前記直流電源と前記インバータ回路とを遮断する期間および前記上アームおよび前記下アームを同時にオンする期間を制御すること、
     を特徴とする請求項1~7のいずれか1項に記載の電力変換装置。
  9.  前記制御部は、前記電源遮断回路の制御信号に基づいて、前記上アームおよび前記下アームを同時オンするタイミングを調整すること、
     を特徴とする請求項1~8のいずれか1項に記載の電力変換装置。
  10.  前記制御部は、前記インバータ回路を制御する制御信号のうち少なくとも1つの制御信号に基づいて、前記電源遮断回路が前記直流電源と前記インバータ回路とを再接続するタイミングを制御すること、
     を特徴とする請求項1~9のいずれか1項に記載の電力変換装置。
  11.  請求項1~10のいずれか1項に記載の電力変換装置と、
     直流電源と、
     前記電力変換装置に接続された電動機と、
     を備えることを特徴とする電動機システム。
PCT/JP2018/007964 2018-03-02 2018-03-02 電力変換装置および電動機システム WO2019167244A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/007964 WO2019167244A1 (ja) 2018-03-02 2018-03-02 電力変換装置および電動機システム
JP2020503225A JP6984727B2 (ja) 2018-03-02 2018-03-02 電力変換装置および電動機システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007964 WO2019167244A1 (ja) 2018-03-02 2018-03-02 電力変換装置および電動機システム

Publications (1)

Publication Number Publication Date
WO2019167244A1 true WO2019167244A1 (ja) 2019-09-06

Family

ID=67806087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007964 WO2019167244A1 (ja) 2018-03-02 2018-03-02 電力変換装置および電動機システム

Country Status (2)

Country Link
JP (1) JP6984727B2 (ja)
WO (1) WO2019167244A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953257A (zh) * 2019-12-11 2021-06-11 株式会社日立制作所 电力转换装置以及x射线图像拍摄装置、电动机驱动装置
WO2023095306A1 (ja) * 2021-11-26 2023-06-01 三菱電機株式会社 検出回路
JP7309088B1 (ja) 2022-06-23 2023-07-14 新電元工業株式会社 電流検出装置、及び電流検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262066A (ja) * 1999-03-08 2000-09-22 Sanken Electric Co Ltd 電力変換装置
JP2007053872A (ja) * 2005-08-19 2007-03-01 Daihen Corp インバータ電源装置
JP2015046978A (ja) * 2013-08-27 2015-03-12 株式会社京三製作所 単相インバータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10507731B2 (en) * 2015-02-25 2019-12-17 Honda Motor Co., Ltd. Electric power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262066A (ja) * 1999-03-08 2000-09-22 Sanken Electric Co Ltd 電力変換装置
JP2007053872A (ja) * 2005-08-19 2007-03-01 Daihen Corp インバータ電源装置
JP2015046978A (ja) * 2013-08-27 2015-03-12 株式会社京三製作所 単相インバータ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953257A (zh) * 2019-12-11 2021-06-11 株式会社日立制作所 电力转换装置以及x射线图像拍摄装置、电动机驱动装置
WO2023095306A1 (ja) * 2021-11-26 2023-06-01 三菱電機株式会社 検出回路
JP7366321B1 (ja) 2021-11-26 2023-10-20 三菱電機株式会社 検出回路
JP7309088B1 (ja) 2022-06-23 2023-07-14 新電元工業株式会社 電流検出装置、及び電流検出方法
WO2023248430A1 (ja) * 2022-06-23 2023-12-28 新電元工業株式会社 電流検出装置、及び電流検出方法

Also Published As

Publication number Publication date
JPWO2019167244A1 (ja) 2020-06-18
JP6984727B2 (ja) 2021-12-22

Similar Documents

Publication Publication Date Title
CN102403914B (zh) 模块开关、电换流器和用于驱动电换流器的方法
Hota et al. An optimized three-phase multilevel inverter topology with separate level and phase sequence generation part
US10581342B2 (en) Three-level two-stage decoupled active NPC converter
WO2011033698A1 (ja) 電力変換装置
JP2007181253A (ja) 電力変換装置
JP2014533487A (ja) Hブリッジに基づく電力変換器
US8773870B2 (en) Power converter and method for controlling same
US11431184B2 (en) Power supply device
JP2015139341A (ja) 電力変換装置
JP5223610B2 (ja) 電力変換回路
RU2671947C1 (ru) Инвертор с возможностью заряда
WO2019167244A1 (ja) 電力変換装置および電動機システム
US8947897B2 (en) Current-source power converting apparatus
JP5362657B2 (ja) 電力変換装置
JP4873317B2 (ja) インバータ装置
JP6594566B2 (ja) 電力変換装置およびこれを用いた電動機駆動装置
WO2022138608A1 (ja) 三相3レベルインバータの駆動制御装置および駆動制御方法
JP2017228912A (ja) 半導体装置
JP3177085B2 (ja) 電力変換装置
JP2014054152A (ja) 電力変換装置及び電力制御装置
JP4448294B2 (ja) 電力変換装置
WO2023281668A1 (ja) 電力変換装置、航空機及び電力変換方法
WO2017034028A1 (ja) インバータの制御方法及び制御装置、並びにインバータ装置
JP2022113486A (ja) 電源装置
JP2022131596A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907739

Country of ref document: EP

Kind code of ref document: A1