WO2023095306A1 - 検出回路 - Google Patents

検出回路 Download PDF

Info

Publication number
WO2023095306A1
WO2023095306A1 PCT/JP2021/043468 JP2021043468W WO2023095306A1 WO 2023095306 A1 WO2023095306 A1 WO 2023095306A1 JP 2021043468 W JP2021043468 W JP 2021043468W WO 2023095306 A1 WO2023095306 A1 WO 2023095306A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
detection line
voltage
circuit
differential amplifier
Prior art date
Application number
PCT/JP2021/043468
Other languages
English (en)
French (fr)
Inventor
哲 村上
光 中川
雅登之 齋藤
崇志 長尾
俊樹 永禮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/043468 priority Critical patent/WO2023095306A1/ja
Priority to JP2023541247A priority patent/JP7366321B1/ja
Publication of WO2023095306A1 publication Critical patent/WO2023095306A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present disclosure relates to a detection circuit that detects current or voltage.
  • a method is used in which a resistor is inserted in the current path through which the main current flows due to circuit operation, and the current value is obtained based on the voltage generated across the resistor when the current flows through the resistor.
  • a resistance is also called a shunt resistance.
  • a current detection circuit using a shunt resistor has the advantage of being able to simplify the circuit configuration.
  • the voltage generated across the resistor is input to a differential amplifier and combined to reduce the interference voltage, which is the effect of electromagnetic noise that interferes in the same phase.
  • the present disclosure has been made to solve the above-described problems, and reduces the influence of interference from electromagnetic noise while reducing the addition of parts and circuits than in the past. It is an object of the present invention to obtain a detection circuit for detecting voltage.
  • the detection circuit includes a detector inserted in a current or voltage path of an electric circuit, a differential amplifier that outputs a voltage according to the current or voltage detected by the detector, and the detector as the path. a positive detection line connected between one of the connecting ends and the positive input terminal of the differential amplifier, and the other end of the two ends where the detector is connected to the path and the negative input terminal of the differential amplifier and one or more first sensing lines connected in parallel to at least a portion of the positive sensing line between one end of the detector and the positive input terminal of the differential amplifier.
  • the line and the second detection line are arranged in an electrical circuit so that an induced voltage caused by external electromagnetic noise cancels out an induced voltage caused by electromagnetic noise on the plus side detection line and the minus side detection line.
  • the detection circuit it is possible to obtain the effect of reducing the influence of interference from electromagnetic noise while adding fewer parts and circuits than in the past.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of a detection circuit according to a first embodiment of the present disclosure
  • FIG. FIG. 4 is a schematic diagram for schematically explaining the height of an induced voltage generated in a detection line due to interference of electromagnetic noise
  • FIG. 4 is a configuration diagram for explaining a configuration in which pairs of detection lines having different polarities of differential voltages are arranged using a multilayer substrate
  • FIG. 4 is a schematic diagram schematically showing a configuration example in which detection lines of a detection circuit are wired in a plurality of wiring layers of a multilayer substrate
  • FIG. 4 is a configuration diagram schematically showing a configuration example in which detection lines of a detection circuit are wired in the same layer of a substrate
  • FIG. 7 is a configuration diagram showing a configuration example in which a detection circuit is mounted on an inverter according to a second embodiment of the present disclosure
  • FIG. 11 is a configuration diagram showing a configuration example in which a detection circuit is mounted in a boost converter according to a third embodiment of the present disclosure
  • a detection circuit that is incorporated in an electric circuit and uses a resistor as a detector is called a current detection circuit
  • a detection circuit that uses a capacitor as a detector is called a voltage detection circuit.
  • the voltage detection circuit configured in this way detects the DC voltage stored in the capacitor, and can detect the voltage even when no current flows through the capacitor.
  • a current detection circuit using a resistor as a detector will be described as an example, but it may be applied to a voltage detection circuit using a capacitor as a detector, that is, a current detection circuit and a voltage detection circuit may be combined. shall be included in the scope of disclosure.
  • the current detection circuit and the voltage detection circuit are not distinguished from each other, they are referred to as a detection circuit.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of a detection circuit 1 according to a first embodiment of the present disclosure.
  • a current detection circuit will be described below as an example of the detection circuit 1 .
  • the detection circuit 1 includes a current path 2 of an electric circuit, a detector 3 inserted in the current path 2, a differential amplifier 4, and a positive input terminal 4a (+ input terminal) which is an input part of the differential amplifier 4.
  • a detection line 5a (positive side detection line) connecting one end 3a of the detector 3, a negative input terminal 4b (-input terminal) which is the input part of the differential amplifier 4, and the other end 3b of the detector 3 are connected. and a detection line connected in parallel to at least a part of the detection line 5a between the positive input terminal 4a (+ input terminal) of the differential amplifier 4 and one end 3a of the detector 3.
  • detection line 5c and a detection line 5d connected in parallel to at least part of the detection line 5b between the negative input terminal 4b (-input terminal) of the differential amplifier 4 and the other end 3b of the detector 3.
  • a plurality of detection lines (detection lines 5a to 5d in FIG. 1) will be collectively referred to as detection line 5 below.
  • the detection line 5 may include a circuit component for electrical connection.
  • the detection circuit 1 detects or measures the voltage generated across the detector 3 (that is, between one end 3a and the other end 3b of the detector 3) from the output of the differential amplifier 4, thereby In addition to detecting the current flowing through the sensor, it derives the current value and obtains various information such as changes in the current.
  • the detector 3 is a resistor for inputting the current in the current path 2 to be detected or measured as a voltage to the differential amplifier 4 .
  • the current path refers to the path through which the main current flows when the electric circuit operates.
  • a voltage path refers to a path through which a main current does not flow due to circuit operation, such as the voltage of a capacitor inserted between a power supply and GND (ground).
  • the current path 2 is used as an example of the configuration of the detection circuit 1, but both the current path and the voltage path are collectively referred to as the path 2 as well.
  • the detector 3 is a circuit component that generates a voltage corresponding to the physical quantity (that is, current or voltage) to be detected or measured on the path 2, and is composed of resistors, capacitors, etc., depending on the purpose of detection or measurement. be done.
  • the detection circuit 1 When the detection circuit 1 receives interference E from an external electromagnetic noise source, the same amount of induced voltage (interference voltage However, when the positional relationship between the noise source and the detection lines 5a to 5d is different, different induced voltages are generated in the detection lines 5a to 5d.
  • FIG. 2 is a schematic diagram for schematically explaining the height of the induced voltage generated in the detection lines 5a to 5d due to the interference of electromagnetic noise.
  • the detection line 5 between the detector 3 and the differential amplifier 4 is connected to one of the positive input terminal 4a (+ input terminal) and the negative input terminal 4b (- input terminal) of the differential amplifier 4. It is constituted by two detection lines 5a and 5b respectively connected in pairs.
  • the induced voltages generated in the detection lines 5a and 5b are assumed to be the induced voltage Va and the induced voltage Vb, respectively. It is assumed that there is a relationship of Vb.
  • a pair of detection lines 5a and 5b are provided between the positive input terminal 4a (+ input terminal) and the negative input terminal 4b (- input terminal) of the differential amplifier 4 and the detector 3.
  • a further pair of detection lines 5c and 5d are provided.
  • the detection line 5c is connected in parallel with the detection line 5a between the positive input terminal 4a (+ input terminal) of the differential amplifier 4 and one end 3a of the detector 3, and the detection line 5d is connected to the negative terminal of the differential amplifier 4.
  • the detection line 5b is connected in parallel.
  • the induced voltages generated in the detection lines 5c and 5d are induced voltage Vc and induced voltage Vd, respectively, the positional relationship between the noise source and the detection lines 5c and 5d results in a relationship of induced voltage Vd>induced voltage Vc. is wired to the electrical circuit at
  • the differential voltage between the induced voltage generated in the detection line 5 connected to the positive input terminal 4a of the differential amplifier 4 and the induced voltage generated in the detection line 5 connected to the negative input terminal 4b of the differential amplifier 4 is demand.
  • a plurality of pairs of each of the detection lines 5 connected to the positive input terminal 4a of the differential amplifier 4 and each of the detection lines 5 connected to the negative input terminal 4b of the differential amplifier 4 are specified.
  • the voltage obtained by subtracting the induced voltage generated in the detection line 5 connected to the negative input terminal 4b from the induced voltage generated in the detection line 5 connected to the positive input terminal 4a is obtained. .
  • the differential amplifier 4 The polarity of the voltage (that is, induced voltage Va - induced voltage Vb) that indicates the difference when the induced voltage Vb generated in the detection line 5 connected to the negative input terminal 4b of 4 is subtracted is induced voltage Va > induced voltage Vb. According to the relationship, it becomes positive polarity (+ polarity).
  • a voltage indicating the difference between the induced voltages Va and Vb is hereinafter referred to as a differential voltage VDab.
  • the induced voltage Vc generated in the detection line 5 connected to the positive input terminal 4a of the differential amplifier 4 is applied to the negative input terminal 4b of the differential amplifier 4.
  • the polarity of the voltage that is, the induced voltage Vc-the induced voltage Vd
  • the voltage indicating the difference between the induced voltages Vc and Vd will be referred to as a differential voltage VDcd.
  • the arrangement of the detection lines 5c and 5d is calculated so that the difference voltage VDcd between the detection lines 5c and 5d has the same absolute value as the difference voltage VDab but has a different sign, and is wired to the electric circuit.
  • the difference voltages VDab and VDcd between the pair of detection lines 5a and 5b and the pair of detection lines 5c and 5d are made to have different polarities and equal absolute values, whereby the difference voltage VDab and VDcd are input to the differential amplifier 4, the induced voltages Va to Vd occurring in the detection lines 5a to 5d inside the differential amplifier 4 are cancelled.
  • a canceling action works between the induced voltages Va to Vd.
  • the differential voltage of the induced voltage contained in the output of the differential amplifier 4 in the conventional detection circuit 1 is reduced, and the detection circuit 1 can detect the current with high accuracy.
  • the induced voltage due to the interference of electromagnetic noise generated in the detection line 5 is an induced electromotive voltage, which is generated as a voltage mainly due to the change per unit time of the magnetic flux interlinking the detection line 5 from the noise source. . Therefore, it can be expressed regardless of current.
  • Equation 1 This is expressed in Equation 1. Considering Equation 1, it is desirable to arrange the sense lines 5a-5d so that the differential voltage contained in the output of the differential amplifier 4 approaches zero.
  • the detection lines 5c and 5d each include one or more detection lines, and each detection line included in the detection line 5c is configured to be paired with each detection line included in the detection line 5d. may At this time, the total number of detection lines 5a to 5d is a multiple of two.
  • each detection line 5 of the detection circuit 1 the induced voltage generated in each detection line 5 is biased due to the positional relationship of the external electromagnetic noise. Control tends to become unbalanced.
  • the induced voltage generated in each detection line 5 can be reduced by simply increasing the number of detection lines 5 of the detection circuit 1 without providing new electrical components, compared with the conventional structure, by adopting the above-described configuration. By canceling the bias, it is possible to reduce the decrease in detection accuracy.
  • the detection circuit 1 of the present disclosure includes a detector 3 inserted in a current or voltage path 2 of an electric circuit, and a differential amplifier 4 that outputs a voltage corresponding to the current or voltage detected by the detector 3. , a plus side detection line 5a connected between one end 3a of both ends where the detector 3 is connected to the current or voltage path 2 of the electric circuit and the plus input terminal 4a of the differential amplifier 4; Between the negative side detection line 5b connected between the other end 3b and the negative input terminal 4b of the differential amplifier 4, and between the one end 3a of the detector 3 and the positive input terminal 4a of the differential amplifier 4, the positive side Between one or more first detection lines 5c connected in parallel to at least part of the detection lines 5a and the other end of the detector 3 and the negative input terminal 4b of the differential amplifier 4, the negative side detection line 5b and one or more second detection lines 5d connected in parallel to at least a part thereof, and the first detection line 5c and the second detection line 5d are induced by an induced voltage caused by external electromagnetic noise.
  • each of the detection lines included in the first detection lines 5c is paired with each of the detection lines included in the second detection lines 5d. It can be said that the total number of the side detection lines 5b, the first detection lines 5c and the second detection lines 5d is a multiple of two.
  • the first detection line 5c and the second detection line 5d have a first differential voltage VDab that is the difference between the induced voltages of the plus side detection line 5a and the minus side detection line 5b. and the second differential voltage VDcd, which is the difference between the induced voltages of the first detection line and the second detection line, are combined by the differential amplifier 4 so that the output voltage is 0. I can express it.
  • the detection circuit 1 of the present disclosure when the detector 3 is a resistor, the main circuit to which the resistor is electrically connected is detected based on the voltage generated across the resistor when current flows through the resistor. It can be said that it operates as a current detection circuit that detects or measures the value of the flowing current or voltage.
  • This resistor is also called a shunt resistor.
  • the detector 3 when the detector 3 is a capacitor, the voltage for detecting or measuring the value of the current or voltage flowing in the main circuit to which the capacitor is electrically connected based on the stored voltage of the capacitor It can be said that it operates as a detection circuit.
  • FIG. 3 is a configuration diagram for explaining a configuration in which pairs of detection lines having different polarities of differential voltages are arranged using a multilayer substrate.
  • description will be made using a four-layer board B as an example of a multilayer board.
  • the first layer surface L1 of the four-layer substrate B is a 1/4 layer
  • the second layer surface L2 is a 2/4 layer
  • the third layer surface L3 is a 3/4 layer
  • the fourth layer surface is L4 is also described as a 4/4 layer.
  • the direction parallel to the surface of the substrate is the X-axis direction
  • the direction from left to right in the X-axis direction is the positive direction of the X-axis.
  • the direction perpendicular to the surface of the substrate is defined as the Y-axis direction
  • the direction from top to bottom in the Y-axis direction is defined as the positive direction of the Y-axis.
  • the detection lines 5a and 5b are provided on the 2/4 layer, and the detection lines 5c and 5d are provided on the 3/4 layer.
  • the wiring connected to the plus input terminal 4a (+ input terminal) of the differential amplifier 4 and the wiring connected to the minus input terminal 4b (- input terminal) are arranged adjacent to each other.
  • the wiring connected to the input terminal 4a (+ input terminal) of the differential amplifier 4 and the wiring connected to the negative input terminal 4b (- input terminal) are arranged to face each other.
  • detection lines 5a and 5b connected to input terminals 4a and 4b having different polarities of the differential amplifier 4 are arranged adjacent to each other, and in the 3/4 layer, the differential amplifier 4 Detecting lines 5c and 5d connected to input terminals 4a and 4b having different polarities are arranged adjacent to each other, and input terminals 4a and 4b having different polarities of the differential amplifier 4 are arranged in the 2/4 layer and the 3/4 layer. Detecting lines 5a and 5d connected to each of 4b, and detecting lines 5b and 5c are arranged facing each other.
  • the detection lines 5a to 5d wired to the 2/4 layers and 3/4 layers of the four-layer substrate B are respectively connected.
  • the cross-section of the array of is staggered.
  • the detection line 5 of the detection circuit 1 includes a pair of detection lines 5a and 5b for detecting or measuring the physical quantity of the detector 3, and a detection line 5c connected in parallel to each of the detection lines 5a and 5b. and 5d, the detection lines 5 of the detection circuit 1 are wired in multiples of two in pairs. Therefore, in the example of FIG. 3, 2n detection lines 5 including the detection lines 5a to 5d are wired in pairs on the 2/4 layer and the 3/4 layer of the four-layer substrate B, respectively.
  • n is a positive number.
  • electromagnetic noise interference reaches the detection lines 5a to 5d wired on the four-layer board B shown in FIG.
  • FIG. 3 as an example of electromagnetic noise interference, it is assumed that there is interference E1 in the positive direction of the X-axis from the electromagnetic noise source N1 and interference E2 in the positive direction of the Y-axis from the electromagnetic noise source N2.
  • the induced voltage generated in the detection line 5 is greater nearer to the noise source.
  • the polarity of the differential voltage VDab in the pair of detection lines 5a and 5b is positive (+polarity ), and the polarity of the differential voltage VDcd in the pair of detection lines 5c and 5d becomes negative ( ⁇ ).
  • the differential amplifier 4 is affected by electromagnetic noise to the detection lines 5a to 5d. It is possible to synthesize certain induced voltages Va to Vd and output a voltage that is canceled. In other words, by arranging the detection line 5 as shown in FIG. 3 in the X-axis direction, the induced voltages Va to Vd are canceled by synthesis in the differential amplifier 4, and the influence of the interference E1 on the output voltage is made zero. can be done.
  • Vo1 is the output voltage obtained by synthesizing the induced voltages Va to Vd generated in the detection lines 5a to 5d by the interference E1 in the X-axis direction by the differential amplifier 4, it is expressed by Equation 2 below.
  • the output voltage (Vo1) can also be expressed by Equation 3.
  • the polarity of the differential voltage VDad in the pair of detection lines 5a and 5d is positive (+polarity ), and the polarity of the differential voltage VDcb in the pair of detection lines 5b and 5c is negative ( ⁇ ).
  • the differential amplifier 4 is affected by electromagnetic noise to the detection lines 5a to 5d. It is possible to synthesize certain induced voltages Va to Vd and output a voltage that is canceled.
  • the detection line 5 as shown in FIG. 3 in the Y-axis direction, the induced voltages Va to Vd are canceled by synthesis in the differential amplifier 4, and the influence of the interference E2 on the output voltage is made zero. can be done.
  • the output voltage (Vo2) can also be expressed by Equation 5.
  • the direction in which electromagnetic noise interferes can be considered by decomposing it into the horizontal direction (X-axis direction) and the vertical direction (Y-axis direction) of the board surface of the multilayer board. Even if electromagnetic noise interference occurs from any direction, the influence of the induced voltage generated in the detection line 5 is canceled in the differential amplifier 4 and output as described above. From this, it can be said that the structure of the detection lines 5a to 5d wired on the multilayer substrate shown in FIG.
  • the effects of interference from a plurality of noise sources existing inside and outside the substrate of the electric circuit can be canceled out, thereby reducing the effects of the noise sources. is also possible.
  • the arrangement position of the detector 3 and the differential amplifier 4 of the detection circuit 1 mounted on the electric circuit, the specifications of the circuit board, and the design It is desirable to wire the detection lines 5 in the manner described above while taking into account the number of wiring lines or the wiring space allowed in .
  • the detection lines 5 have been described as an example. It suffices if the detection lines 5 can be arranged and wired so that the sum of the differential voltages of each pair is zero. number), the detection lines 5 can constitute n pairs.
  • the layers in which the detection lines 5 of the detection circuit 1 are wired are not limited to the example of the 2/4 layer and the 3/4 layer shown in FIG.
  • the wiring of the detection line 5 is not limited to continuous layers of the multilayer substrate, and may be wired across one or more layers. That is, in the example of FIG. 3, the detection lines 5 may be wired in the 2/4 layer and the 4/4 layer.
  • the number of layers of the multilayer substrate is arbitrary, and a 6-layer substrate, an 8-layer substrate, or the like may be used.
  • a multilayer board is intended to be one that allows wiring on a plurality of board surfaces, and includes a double-sided board. Assuming that the front and back of the double-sided board are two layers of 1/2 layer and 2/2 layer, when mounting the detection circuit 1 on the front and back of the double-sided board, the above configuration is applied to wire the detection line 5. do it.
  • each of the detection lines 5 included in the positive detection line 5a and the first detection line 5c corresponds to the negative detection line 5b and the second detection line. 5d, and in different layers of the multilayer substrate, each of the detection lines 5 included in the positive detection line 5a and the first detection line 5c is connected to the negative detection line. It can be said that it is wired facing any one of the detection lines 5 included in 5b and the second detection line 5d.
  • FIG. 4 is a schematic diagram schematically showing a configuration example in which the detection lines 5 of the detection circuit 1 are wired in a plurality of wiring layers of a multilayer substrate.
  • a four-layer board B will be described as an example of the multilayer board.
  • the detection circuit 1 provides lands L3a and L3b at one end 3a and the other end 3b of the detector 3, respectively, and a differential amplifier. 4 are provided with lands L4a and L4b, respectively.
  • the detection line 5a connects the land L3a on the detector 3 side and the land L4a on the differential amplifier 4 side without detouring the lands
  • the detection line 5b connects the land L3b on the detector 3 side and the land L4a on the differential amplifier 4 side.
  • the land L4b on the amplifier 4 side is connected without detouring the land.
  • lands L3c and L3d are provided at positions corresponding to the lands L3a and L3b on the detector 3 side, respectively.
  • Lands L4c and L4d are provided at positions corresponding to the lands L4a and L4b on the side.
  • the detection line 5c connects the lands L3c and L4c by bypassing the land L4d, and the detection line 5d connects the lands L3d and L4d by bypassing the land L3c.
  • the through hole H3a, the through hole H3b, the through hole H4a, and the through hole H4b are formed in the 2/4 layer and the 3/4 layer. Connect electrically.
  • the land L3a and the land L3c are connected via the through hole H3a
  • the land L3b and the land L3d are connected via the through hole H3b
  • the land L3b and the land L3d are connected via the through hole H4a.
  • Land L4a and land L4c are connected
  • land L4b and land L4d are connected via through hole H4b.
  • the land can also be regarded as part of the through hole.
  • the polarities of the detection lines 5 wired in different layers can be alternated.
  • the polarity of the detection line 5 refers to the polarity of the positive input terminal 4a and the negative input terminal 4b of the differential amplifier 4 to which the detection line 5 is connected.
  • the detection line 5c and the detection line 5d are at the intersection of the straight line connecting the land L3c and the land L4d and the straight line connecting the land L3d and the land L4c (that is, the land L3c, the land L3d, the land L4d and the land L4c).
  • Center of gravity of the noise source the detection is based on the interference from the noise source, such as by arranging and wiring so as to be point symmetrical, or by equalizing the length of the detection line 5c and the detection line 5d and the number of detours.
  • the detection lines 5 of the detection circuit 1 are wired to the 2/4 layer and the 3/4 layer of the four-layer board B, but the detection lines 5 may be wired to other layers without being limited to this example.
  • the detection lines 5 may be wired in three or more layers. That is, in the wiring layer of the multilayer substrate, the plurality of detection lines 5 are arranged between the detector 3 of the detection circuit 1 and the differential amplifier 4 so as to pass through a position that cancels out the effects of interference from one or more noise sources. Just wire a pair.
  • the influence of interference from electromagnetic noise is further reduced. It is possible to obtain a wiring structure that is highly effective in A via hole may be used instead of the through hole.
  • the detection circuit 1 of the present disclosure includes through holes provided at both ends of each of the plus side detection line 5a and the minus side detection line 5b wired in the first layer of the multilayer substrate, and the first A first detection line 5c and a second detection line 5d wired to the second layer of the multilayer substrate electrically connected to the layers, and both ends of the plus side detection line 5a are provided with through holes, respectively.
  • Both ends of the negative detection line 5b are connected to both ends of the second detection line 5d via through holes, respectively. are of equal length and arranged point-symmetrically with respect to the center of gravity of the connecting portion between the first detection line 5c and the second detection line 5d and the through hole. , can be expressed.
  • FIG. 5 is a configuration diagram schematically showing a configuration example in which the detection lines 5 of the detection circuit 1 are wired in the same layer of the substrate.
  • a plurality of pairs of detection lines 5 led from both ends (one end 3a and the other end 3b) of the detector 3 of the detection circuit 1 are arranged.
  • the two detection lines 5 included in adjacent pairs and wired adjacently are arranged so that the polarities of the input terminals of the connected differential amplifiers 4 are the same. That is, among the detection lines 5 included in adjacent pairs, the positive detection lines 5 connected to the positive input terminal 4a of the differential amplifier 4 are adjacent and connected to the negative input terminal 4b of the differential amplifier 4.
  • Negative polarity detection lines 5 are arranged adjacent to each other.
  • the detection lines 5a, 5b, 5c, 5d when the detection lines 5a, 5b, 5c, 5d, .
  • the pair p2 of lines 5c and 5d be adjacent. Since the detection lines 5b and 5d included in the pair p1 and the pair p2 are detection lines 5 of negative polarity (-polarity) connected to the negative input terminal 4b (-input terminal) of the differential amplifier 4, they are adjacent to each other. configured by placing it in In addition, the plus polarity (+ polarity) detection lines 5a and 5c connected to the plus input terminal 4a (+ input terminal) of the differential amplifier 4 are adjacent to a pair of detection lines 5 other than the pair p1 and the pair p2. If so, they are placed adjacent to the same positive polarity detection lines 5 included in the pair.
  • the direction parallel to the surface of the substrate is defined as the X-axis direction, and the case where electromagnetic noise interference extends in the positive direction of each of the X-axis and the Y-axis will be described. do.
  • electromagnetic noise interference it is assumed that there is interference E1 in the positive direction of the X-axis from the electromagnetic noise source N1 and interference E2 in the positive direction of the Y-axis from the electromagnetic noise source N2.
  • the detection lines 5a to 5d are arranged on the same plane, and the induced voltage due to the interference E2 is generated equally. Ideally canceled in the differential amplifier 4 .
  • the interference E1 in the X-axis direction which is the direction horizontal to the surface of the substrate
  • the direction of the interference E1 from the noise source N1 is the positive direction of the X-axis
  • the interference with each of the detection lines 5a to 5d is such that detection line 5a>detection line 5b>detection line 5d>detection line 5c in order of proximity to the noise source N1, and the strength of the induced voltage generated in the detection lines 5a to 5d is induced voltage Va>induced voltage Vb. >induced voltage Vd>induced voltage Vc.
  • the absolute value of each induced electromotive voltage V is abbreviated using ⁇ (delta) because it suffices to explain the difference between the induced voltages generated in the detection lines 5a to 5d.
  • the differential voltage VDab of the induced voltages generated in the pair of detection lines 5a and 5b has a positive polarity
  • the differential voltage VDcd of the induced voltages generated in the pair of detection lines 5c and 5d has a negative polarity. It has the same absolute value as the voltage VDcd, and can cancel out the induced voltages Va to Vd occurring in the detection lines 5a to 5d.
  • each of the detection lines 5 included in the plus side detection line 5a and the first detection line 5c, the minus side detection line 5b and the second detection line 5d are arranged on the same surface of the substrate. are wired in parallel, and two adjacent detection lines 5 included in two adjacent pairs of the plurality of pairs are connected to the differential amplifier 4 is connected to the positive input terminal 4a or the negative input terminal 4b.
  • FIG. 6 is a configuration diagram showing a configuration example in which the detection circuit 1 is mounted on an inverter according to the second embodiment of the present disclosure.
  • a three-phase inverter 10 will be used as an example of the inverter.
  • the 3-phase inverter 10 is connected to a DC voltage source 20, which is the power supply for the circuit of the 3-phase inverter 10, and to a motor 40, which is the output destination of the circuit.
  • the control unit 50 provides a torque command signal CV and a speed command signal CT for the motor 40, and information on currents flowing through three detection circuits 1u, 1v and 1w connected in series to each phase of the three-phase inverter 10. Based on this, the gate drive circuit 60 is controlled to drive the gates of the switching elements 10a, 10b, 10c, 10d, 10e and 10f forming the three-phase inverter 10, thereby controlling the motor 40.
  • the three-phase inverter 10 comprises switching elements 10a and 10b in which diodes are connected in anti-parallel, and a detection circuit 1u, which are connected in series to form a U-phase. Such a configuration is also called a leg.
  • the U-phase leg is hereinafter referred to as leg U.
  • the switching elements 10c and 10d and the detection circuit 1v are connected in series to form a V phase (hereinafter, the leg of the V phase is referred to as a leg V)
  • the switching elements 10e and 10f, and the detection circuit 1w. are connected in series to constitute a W phase (hereinafter, a leg of the W phase is referred to as a leg W).
  • Legs U, V and W are then connected in parallel with DC voltage source 20 and smoothing capacitor 30, respectively.
  • the midpoint of the switching elements 10a and 10b connected in series with the leg U is connected to the U terminal of the motor 40
  • the midpoint of the switching elements 10c and 10d connected in series with the leg V is connected to the V terminal of the motor 40
  • the midpoint of the switching elements 10e and 10f connected in series with the leg W is connected to the W terminal of the motor 40.
  • FIG. The outputs of the detection circuits 1u, 1v and 1W are input to the control section 50, respectively. Note that the detection circuits 1u, 1v and 1w have the same circuit configuration as the detector 3 using resistors as described in FIG. 1, so description thereof will be omitted.
  • each wire constituting the current paths has an inductance component of the current path with time A counter-electromotive force multiplied by the change in current is generated.
  • the back electromotive force is expressed by Ldi/dt where L is the inductance component and di/dt is the current change per time. This back electromotive force becomes a noise source accompanied by electromagnetic noise, and causes interference with the detection circuit 1 in the form of an induced voltage.
  • the three-phase inverter 10 has a plurality of wirings as current paths that connect components forming a circuit, and the inductance component L of each wiring serving as a current path has various values. Therefore, the noise level (that is, back electromotive force (Ldi/dt)) caused by each noise source is also various, and the positional relationship with the detection circuit 1 is not uniform, and the noise level varies variously. There must be a source.
  • the switching elements 10a and 10b do not change while the detection circuit 1u is detecting the current flowing in the U phase, and therefore the current in the U phase does not change, the V phase and the W phase are detected.
  • the switching state of any one of the constituent switching elements 10c to 10f changes, the current changes in the inductance component of at least one of the wirings forming the three-phase inverter 10.
  • FIG. The back electromotive force generated in the wiring due to this change in current becomes a noise source, and as a result, the U-phase detection circuit 1u is affected by electromagnetic noise interference.
  • the upper arm side and the lower arm side of the three-phase inverter 10 perform switching operations alternately.
  • the time during which 10e is turned on (that is, the current flows) becomes longer, and the time that the switching elements 10b, 10d, and 10f on the lower arm side are turned on (that is, the current flows) becomes shorter.
  • the detection circuits 1u, 1v, and 1w provided on the lower arm side take a short time to detect the current, the current must be detected before the influence of the interference from the electromagnetic noise subsides. Otherwise, the accuracy of detecting the current will be degraded.
  • the detection circuits 1u, 1v, and 1w are affected by interference from electromagnetic noise, if the motor 40 is controlled using the information on the current flowing through the detection lines 5 of these circuits, vibration and malfunction may occur. causes the occurrence of
  • the detection circuits 1u, 1v, and 1w according to the present disclosure, it is possible to reduce the influence of interference from electromagnetic noise, and as a result, suppress deterioration in accuracy when detecting current. effect to be obtained. This enables appropriate control of the motor 40 based on accurate current detection.
  • the inverter of the present disclosure includes a detection circuit 1 connected in series to each phase, an upper arm and a lower arm that perform switching operations alternately using the switching elements 10c to 10f, and the switching elements 10c to 10f that are turned on or off.
  • the detection circuit 1 is connected in series to the switching elements 10c to 10f in either the upper arm or the lower arm to detect the difference. It can be said that the output of the dynamic amplifier 4 is input to the control section 50 .
  • FIG. 7 is a configuration diagram showing a configuration example in which the detection circuit 1 is mounted in a boost converter according to the third embodiment of the present disclosure.
  • a two-phase boost converter 100 will be used as an example of the boost converter.
  • the two-phase boost converter 100 is composed of a DC voltage source 20, smoothing capacitors 30 and 90, a control section 50, a gate drive circuit 60, a reactor 70, and a switching circuit 80.
  • the switching circuit 80 includes an A-phase leg in which the switching elements 80a and 80b and the detection circuit 1A are connected in series, a B-phase leg in which the switching elements 80c and 80d and the detection circuit 1B are connected in series, and a smoothing capacitor 90. are connected in parallel.
  • a positive electrode 90a of the smoothing capacitor 90 is connected to the switching elements 80a and 80c, and a negative electrode 90b of the smoothing capacitor 90 is connected to the detection circuits 1A and 1B.
  • a connection point 80p1 of the switching elements 80a and 80b is connected to the other end 70Ab of the reactor 70A, and a connection point 80p2 of the switching elements 80c and 80d is connected to the other end 70Bb of the reactor 70B.
  • the negative electrode 90 b of the smoothing capacitor 90 is connected to the negative electrode 20 b of the DC voltage source 20 and the negative electrode 30 b of the smoothing capacitor 30 .
  • the control unit 50 receives information on the voltage Vin of the DC voltage source 20, information on the voltage of the smoothing capacitor 90, information on the A-phase leg current in the switching circuit 80 detected by the detection circuit 1A, and information on the current of the A-phase leg in the switching circuit 80 detected by the detection circuit 1B. Based on information about the current in the B-phase leg in the circuit 80, voltage control is performed to obtain a desired output voltage Vout in the smoothing capacitor 90, and current control is performed to equalize the currents flowing in the A-phase leg and the B-phase leg. conduct. The current control at this time is performed by the control unit 50 controlling the gate driving circuit 60, and the gate driving circuit 60 controlling and driving the gates of the switching elements 80a, 80b, 80c and 80d of the switching circuit 80. .
  • the switching elements 80a to 80d which are downsized for the purpose of downsizing the magnetic parts that make up a converter such as a converter, are driven at high speed, a current flows through the detection circuits 1A and 1B per switching. The time becomes shorter, which leads to a higher switching speed and a larger current change di/dt per time. As a result, the counter electromotive force due to the influence of interference from the noise source is strongly received, and the problem arises that the current flowing through each phase cannot be detected with high accuracy.
  • the inductance component of the wiring that constitutes the switching circuit 80 is reduced per time.
  • a back electromotive force multiplied by the current change is generated and becomes a noise source accompanied by electromagnetic noise, affecting the detection circuits 1A and 1B.
  • the detection circuit 1 shown in the present disclosure when the converter is driven at high speed or the current balance is controlled under the interference from electromagnetic noise, the back electromotive force By canceling out the influence, the current or voltage can be detected with high accuracy.
  • FIG. 7 has been described using a two-phase boost converter as an example, the number of phases of the boost converter is not limited to two. Further, the configuration of the converter is not limited to the boost converter, and similar effects can be obtained as long as a shunt resistor is inserted in the current path.
  • the converter of the present disclosure includes a detection circuit 1 connected in series to each phase, a gate drive circuit 60 that turns ON or OFF the current flowing through the reactor 70 and the capacitor 30 using the switching elements 80a to 80d, and a gate , and the detection circuit 1 is connected in series to the switching elements 80 a to 80 d to input the output of the differential amplifier 4 to the control unit 50 .
  • the detector 3 of the detection circuit 1 an example of a current detection circuit using a resistor in the current path has been described. It is possible to obtain the effect of reducing the influence of interference from electromagnetic noise in the detection circuit.
  • 1, 1u, 1v, 1w, 1A, 1B detection circuit 2 path (current path or voltage path), 3 detector, 4 differential amplifier, 5 detector, 5a-5c detection line, 10 inverter, 10a-10f, 80a-80d Switching element, 20 DC voltage source, 30, 90 smoothing capacitor, 40 motor, 50 control unit, 60 gate drive circuit, 70, 70a, 70b reactor, 80 switching circuit, 100 converter.

Abstract

検出回路(1)は、電気回路の経路に挿入される検出器(3)で検出される電流又は電圧に応じた電圧を出力する差動増幅器(4)と、検出器の両端のうちの一端と差動増幅器(4)のプラス入力端子との間に接続されるプラス側検出線(5a)と、両端のうちの他端と差動増幅器のマイナス入力端子との間に接続されるマイナス側検出線(5b)と、検出器の一端及び差動増幅器のプラス入力端子の間において、プラス側検出線の少なくとも一部に並列に接続される1以上の第1の検出線(5c)と、検出器の他端及び差動増幅器のマイナス入力端子の間において、マイナス側検出線の少なくとも一部に並列に接続される1以上の第2の検出線(5d)とを備え、第1の検出線及び第2の検出線は、電磁ノイズに起因して生じる誘導電圧によって、プラス側検出線及びマイナス側検出線に生じる電磁ノイズに起因した誘導電圧を相殺するように電気回路に配置される。

Description

検出回路
 本開示は、電流又は電圧を検出する検出回路に関するものである。
 従来の電流検出回路では、回路動作により主電流が流れる電流経路に抵抗を挿入し、電流が抵抗に流れる際に抵抗の両端に生じる電圧に基づき電流値を得る方式が用いられている。このような抵抗をシャント抵抗ともいう。シャント抵抗を用いた電流検出回路は回路構成を簡素にできる利点がある。このシャント抵抗を用いた電流検出回路では、抵抗の両端に生じる電圧を差動増幅器に入力して合成することにより、同相で干渉する電磁ノイズの影響である干渉電圧を低減していた。しかしながら、この抵抗の両端に生じる電圧を差動増幅器に入力するときに併せて入力される干渉電圧は実際のところ同量ではなく、差動増幅器からの出力には干渉電圧の差が検出されてしまい、電流を高精度に検出する際に妨げとなる。この問題に対し、電磁ノイズからの干渉の影響を受けずに高精度に電流を検出するため、シャント抵抗、電流検出線及び差動増幅器で構成される電流検出回路を2つ用いて、これら2つの回路に同量の干渉電圧を生じさせ、これら2つの回路からの出力を別の差動増幅器に入力して演算することで電磁ノイズの影響を相殺する技術が開示されている(例えば、特許文献1)。
特許6254977号公報
 上述した電流検出回路では、シャント抵抗、電流検出線及び差動増幅器で構成された電流検出回路を2つ設けるとともに、これら2つの回路からの電流検出の出力を処理するための別の差動増幅器を設ける必要があり、これにより、部品及び回路の追加による製造コストの増加や、部品を実装する回路面積の増大などに繋がる課題があった。
 本開示は、上記のような問題を解決するためになされたものであり、部品及び回路の追加を従来よりも少なくしつつ、電磁ノイズからの干渉の影響を低減して、高精度に電流又は電圧を検出する検出回路を得ることを目的とする。
 本開示にかかる検出回路は、電気回路の電流又は電圧の経路に挿入される検出器と、検出器で検出される電流又は電圧に応じた電圧を出力する差動増幅器と、検出器が経路と接続する両端のうちの一端と差動増幅器のプラス入力端子との間に接続されるプラス側検出線と、検出器が経路と接続する両端のうちの他端と差動増幅器のマイナス入力端子との間に接続されるマイナス側検出線と、検出器の一端及び差動増幅器のプラス入力端子の間において、プラス側検出線の少なくとも一部に並列に接続される1以上の第1の検出線と、検出器の他端及び差動増幅器のマイナス入力端子の間において、マイナス側検出線の少なくとも一部に並列に接続される1以上の第2の検出線と、を備え、第1の検出線及び第2の検出線は、外来の電磁ノイズに起因して生じる誘導電圧によって、プラス側検出線及びマイナス側検出線に生じる電磁ノイズに起因した誘導電圧を相殺するように電気回路に配置される。
 本開示によれば、検出回路において、従来よりも部品及び回路の追加を少なくしつつ、電磁ノイズからの干渉による影響を低減する効果が得られる。
本開示の実施の形態1にかかる、検出回路の構成例を模式的に示す模式図である。 電磁ノイズの干渉により検出線に生じる誘導電圧の高さを模式的に説明するための模式図である。 多層基板を用いて差電圧の極性が異なる検出線の対を配置した構成を説明するための構成図である。 多層基板の複数の配線層に検出回路の検出線を配線する構成例を模式的に示す模式図である。 基板の同一層に検出回路の検出線を配線する構成例を模式的に示す構成図である。 本開示の実施の形態2にかかる、検出回路をインバータに実装した構成例を示す構成図である。 本開示の実施の形態3にかかる、検出回路を昇圧コンバータに実装した構成例を示す構成図である。
 本開示の構成として、電気回路に組み込まれ、検出器に抵抗を用いた検出回路を電流検出回路とし、検出器にコンデンサを用いた検出回路を電圧検出回路とする。このように構成された電圧検出回路は、コンデンサに蓄電されている直流電圧を検出するものであり、コンデンサに電流が流れない状態においても電圧を検出することができる。
 以下、本開示では検出器に抵抗を用いた電流検出回路を例に説明をするが、検出器にコンデンサを用いた電圧検出回路に適用してもよく、つまり、電流検出回路と電圧検出回路を開示範囲に含むものとする。また、電流検出回路と電圧検出回路を区別しない場合、検出回路と記載する。
実施の形態1.
 図1は、本開示の実施の形態1にかかる、検出回路1の構成例を模式的に示す模式図である。以下、検出回路1の例として電流検出回路を用いて説明する。
 検出回路1は、電気回路の電流経路2と、電流経路2に挿入された検出器3と、差動増幅器4と、差動増幅器4の入力部であるプラス入力端子4a(+入力端子)と検出器3の一端3aとを接続する検出線5a(プラス側検出線)と、差動増幅器4の入力部であるマイナス入力端子4b(-入力端子)と検出器3の他端3bとを接続する検出線5b(マイナス側検出線)と、差動増幅器4のプラス入力端子4a(+入力端子)と検出器3の一端3aとの間において検出線5aの少なくとも一部に並列接続する検出線5cと、差動増幅器4のマイナス入力端子4b(-入力端子)と検出器3の他端3bとの間において検出線5bの少なくとも一部に並列接続する検出線5dと、を含んで構成される。以下、複数の検出線(図1では検出線5a~5d)をまとめて検出線5とも表記する。
 また、検出線5は、電気的に接続するための回路部品を含んでいてもよい。
 検出回路1は、差動増幅器4の出力により、検出器3の両端(つまり、検出器3の一端3aと他端3bとの間)に生じた電圧を検出又は測定することにより、検出器3に流れる電流を検出するとともに、その電流値を導出したり電流の変化などの種々の情報を得たりする。
 検出器3は、検出又は測定の対象である電流経路2の電流を電圧として差動増幅器4に入力するための抵抗器である。
 なお、本開示では、電流経路とは、電気回路が動作するときに主電流が流れる経路のことをいう。また、電圧経路とは、例えば、電源とGND(グランド)との間に挿入されたコンデンサの電圧のように、回路の動作によって主電流が流れない経路のことをいう。
 また、本開示では、検出回路1の構成例として電流経路2を用いて説明を行うが、電流経路と電圧経路の双方を合わせて経路2とも表記する。
 検出器3は、経路2における検出又は測定の対象となる物理量(つまり、電流又は電圧)に応じた電圧を生成する回路部品であり、検出又は測定の用途に応じて抵抗器やコンデンサ等で構成される。
 検出回路1が外部の電磁ノイズ源からの干渉Eを受けると、ノイズ源と各検出線5a~5dの位置関係がそれぞれ等しい場合は各検出線5a~5dには同量の誘導電圧(干渉電圧と同じ。以下、同様とする)が生じるが、ノイズ源と各検出線5a~5dの位置関係がそれぞれ異なる場合は各検出線5a~5dには異なる誘導電圧が生じる。
 図2は、電磁ノイズの干渉により検出線5a~5dに生じる誘導電圧の高さを模式的に説明するための模式図である。従来の検出回路1では、検出器3と差動増幅器4との間の検出線5は、差動増幅器4のプラス入力端子4a(+入力端子)及びマイナス入力端子4b(-入力端子)の1対にそれぞれ接続する2本の検出線5a及び5bによって構成される。
 ところで、ノイズ源と検出線5a及び5bの位置関係がそれぞれ異なると、検出線5a及び5bには異なる誘導電圧が生じてしまい、差動増幅器4から検出線5a及び5bに生じた誘導電圧の差に応じた電圧が出力されることとなり、その結果、検出回路1が電流を検出するときの精度に影響を与えてしまう。
 以下、検出線5a及び5bに生じる誘導電圧の差を低減する方法について説明する。
 ここでは説明を簡潔にするために、検出線5a及び5bに生じる誘導電圧をそれぞれ誘導電圧Va及び誘導電圧Vbとして、ノイズ源と検出線5a及び5bとの位置関係により、誘導電圧Va>誘導電圧Vbの関係にあるものとする。
 そして、図1に示すように、差動増幅器4のプラス入力端子4a(+入力端子)及びマイナス入力端子4b(-入力端子)と検出器3との間に、検出線5a及び5bの1対とは別に、さらに1対の検出線5c及び5dを設ける。検出線5cは、差動増幅器4のプラス入力端子4a(+入力端子)と検出器3の一端3aとの間に検出線5aと並列に接続され、検出線5dは、差動増幅器4のマイナス入力端子4b(-入力端子)と検出器3の他端3bとの間に検出線5bと並列に接続される。
 ここで、検出線5c及び5dに生じる誘導電圧をそれぞれ誘導電圧Vc及び誘導電圧Vdとすると、ノイズ源と検出線5c及び5dとの位置関係により、誘導電圧Vd>誘導電圧Vcの関係となる配置で電気回路に配線される。
 さらに、差動増幅器4のプラス入力端子4aに接続される検出線5に生じる誘導電圧と、差動増幅器4のマイナス入力端子4bに接続される検出線5に生じる誘導電圧との差分の電圧を求める。
 このとき、差動増幅器4のプラス入力端子4aに接続される検出線5の各々と、差動増幅器4のマイナス入力端子4bに接続される検出線5の各々とからなる複数の対を特定する。そして、特定した各対の検出線5において、プラス入力端子4aに接続される検出線5に生じる誘導電圧から、マイナス入力端子4bに接続される検出線5に生じる誘導電圧を差し引いた電圧を求める。
 具体的には、図1及び2において、検出線5a及び5bを1対としたときの、差動増幅器4のプラス入力端子4aに接続される検出線5に生じる誘導電圧Vaから、差動増幅器4のマイナス入力端子4bに接続される検出線5に生じる誘導電圧Vbを差し引いたときの差を示す電圧(つまり、誘導電圧Va-誘導電圧Vb)の極性は、誘導電圧Va>誘導電圧Vbの関係により、プラス極性(+極性)となる。以下、誘導電圧Va及びVbの差を示す電圧を差電圧VDabと表す。
 同様にして、検出線5c及び5dを1対としたときの、差動増幅器4のプラス入力端子4aに接続される検出線5に生じる誘導電圧Vcから、差動増幅器4のマイナス入力端子4bに接続される検出線5に生じる誘導電圧Vdを差し引いたときの差を示す電圧(つまり、誘導電圧Vc-誘導電圧Vd)の極性は、誘導電圧Vd>誘導電圧Vcの関係により、マイナス極性(-極性)となる。以下、誘導電圧Vc及びVdの差を示す電圧を差電圧VDcdと表す。
 ここで、検出線5c及び5dの差電圧VDcdは、差電圧VDabと絶対値が等しく符号が異なるように、検出線5c及び5dの配置を計算し、電気回路に配線する。
 このように、検出線5a及び5bの対と、検出線5c及び5dの対との各々の差電圧VDab及びVDcdにおいて、極性が異なり、かつ絶対値が等しくなるようにすることで、差電圧VDab及びVDcdを差動増幅器4に入力したときに、差動増幅器4の内部では検出線5a~5dに生じている誘導電圧Va~Vdが相殺されるようになる。又は、誘導電圧Va~Vdの間でキャンセル作用が働くともいう。その結果、従来の検出回路1における差動増幅器4の出力に含まれていた誘導電圧の差電圧が低減されて、検出回路1において精度よく電流を検出することが可能となる。
 なお、検出線5に生じる電磁ノイズの干渉による誘導電圧とは誘導起電圧であって、ノイズ源から検出線5に鎖交する磁束の単位時間あたりの変化が主原因となり電圧として生じるものである。そのため、電流に関係なく表現することができる。
 このことを式1に表す。式1を考慮して、差動増幅器4の出力に含まれる差電圧をゼロに近づけるように検出線5a~5dを配置することが望ましい。
Figure JPOXMLDOC01-appb-M000001
 さらに、検出線5c及び5dは、それぞれ1以上の検出線を含んでおり、検出線5cに含まれる検出線の各々は、検出線5dに含まれる検出線の各々と対をなすように構成されてもよい。このとき、検出線5a~5dの総数は2の倍数となる。
 検出回路1の各検出線5には、外来電磁ノイズの位置関係により、各検出線5に生じる誘導電圧に偏りが発生してしまい、これにより電流又は電圧の検出精度が低下し、電気回路の制御がアンバランスとなりやすい。このような問題に対して、上述した構成とすることにより、従来に比べて、新たに電気部品を設けることなく検出回路1の検出線5を増やすだけで、各検出線5に生じる誘導電圧の偏りをキャンセルして、検出精度の低下を低減することができる。
 つまり、本開示の検出回路1は、電気回路の電流又は電圧の経路2に挿入される検出器3と、検出器3で検出される電流又は電圧に応じた電圧を出力する差動増幅器4と、検出器3が電気回路の電流又は電圧の経路2と接続する両端のうちの一端3aと差動増幅器4のプラス入力端子4aとの間に接続されるプラス側検出線5aと、両端のうちの他端3bと差動増幅器4のマイナス入力端子4bとの間に接続されるマイナス側検出線5bと、検出器3の一端3a及び差動増幅器4のプラス入力端子4aの間において、プラス側検出線5aの少なくとも一部に並列に接続される1以上の第1の検出線5cと、検出器3の他端及び差動増幅器4のマイナス入力端子4bの間において、マイナス側検出線5bの少なくとも一部に並列に接続される1以上の第2の検出線5dと、を備え、第1の検出線5c及び第2の検出線5dは、外来の電磁ノイズに起因して生じる誘導電圧によって、プラス側検出線5a及びマイナス側検出線5bに生じる電磁ノイズに起因した誘導電圧を相殺するように電気回路に配置される、と言い表せる。
 また、本開示の検出回路1は、第1の検出線5cに含まれる検出線の各々は、第2の検出線5dに含まれる検出線の各々と対をなし、プラス側検出線5a、マイナス側検出線5b、第1の検出線5c及び第2の検出線5dの総数は2の倍数となる、と言い表せる。
 また、本開示の検出回路1では、第1の検出線5c及び第2の検出線5dは、プラス側検出線5aとマイナス側検出線5bとの誘導電圧の差である第1の差電圧VDabと、第1の検出線と第2の検出線との誘導電圧の差である第2の差電圧VDcdと、を差動増幅器4で合成した出力電圧が0となるように配置される、と言い表せる。
 また、本開示の検出回路1によれば、検出器3を抵抗器とした場合、抵抗器に電流が流れる際に両端に生じる電圧に基づいて、抵抗器が電気的に接続された主回路に流れる電流又は電圧の値を検出又は測定する電流検出回路として動作する、と言い表せる。このときの抵抗器をシャント抵抗ともいう。
 また、本開示の検出回路1では、検出器3をコンデンサとした場合、コンデンサの蓄電電圧に基づいて、コンデンサが電気的に接続された主回路に流れる電流又は電圧の値を検出又は測定する電圧検出回路として動作する、と言い表せる。
 図3は、多層基板を用いて差電圧の極性が異なる検出線の対を配置した構成を説明するための構成図である。
 図3では、多層基板の例として、4層基板Bを用いて説明する。また、説明を容易にするために、4層基板Bの第1層面L1を1/4層、第2層面L2を2/4層、第3層面L3を3/4層、そして、第4層面L4を4/4層とも記載する。
 また、図3に示すように、基板の面に平行な方向をX軸方向とし、X軸方向の左から右への向きをX軸の正の向きとする。そして、基板の面に垂直な方向をY軸方向とし、Y軸方向の上から下への向きをY軸の正の向きとする。
 図3に示すように、検出線5a及び5bを2/4層に設け、検出線5c及び5dを3/4層に設ける。このとき、同一層において、差動増幅器4のプラス入力端子4a(+入力端子)に接続される配線と、マイナス入力端子4b(-入力端子)に接続される配線とが隣接して配置するように配線され、そして、異なる層において、差動増幅器4の入力端子4a(+入力端子)に接続される配線と、マイナス入力端子4b(-入力端子)に接続される配線とが対向して配置するように配線される。ここでは、2/4層において、差動増幅器4の極性が異なる入力端子4a及び4bの各々に接続される検出線5a及び5bが隣り合って配置され、3/4層において、差動増幅器4の極性が異なる入力端子4a及び4bの各々に接続される検出線5c及び5dが隣り合って配置され、2/4層及び3/4層において、差動増幅器4の極性が異なる入力端子4a及び4bの各々に接続される検出線5a及び5d、並びに、検出線5b及び5cがそれぞれ対向して配置される。つまり、差動増幅器4のプラス入力端子4aとマイナス入力端子4bとの2つの極性で区別すると、4層基板Bの2/4層及び3/4層のそれぞれに配線された検出線5a~5dの並びの断面が千鳥状となる。
 さらに、検出回路1の検出線5は、検出器3の物理量を検出又は測定するための検出線5a及び5bの対と、検出線5a及び5bの各々に追加して並列接続される検出線5c及び5dの対のように、検出回路1の検出線5は対をなす2の倍数の本数で配線される。したがって、図3の例では、4層基板Bの2/4層と3/4層には、検出線5a~5dを含めて2n本の検出線5がそれぞれ対をなして配線される。ここで、nは正数とする。
 次に、図3に示す4層基板Bに配線された検出線5a~5dに対して、X軸とY軸の各々の正の向きに電磁ノイズの干渉が及ぶ場合について説明する。図3では、電磁ノイズの干渉の例として、電磁ノイズ源N1からのX軸の正の向きの干渉E1と、電磁ノイズ源N2からのY軸の正の向きの干渉E2があるものとする。
 一般に、検出線5に生じる誘導電圧はノイズ源に近い方が大きいため、X軸方向については、「検出線5aの誘導電圧Va>検出線5bの誘導電圧Vb」かつ「検出線5dの誘導電圧Vd>検出線5cの誘導電圧Vc」の関係となる。
 そして、図2において説明した、対をなす検出線5の各々に生じる誘導電圧の差電圧を求める方法と同様にして、検出線5a及び5bの対における差電圧VDabの極性はプラス極性(+極性)となり、検出線5c及び5dの対における差電圧VDcdの極性はマイナス極性(-極性)となる。
 このように、X軸方向に配置された検出線5a~5dの誘導電圧Va~Vdを差動増幅器4に入力することにより、差動増幅器4は検出線5a~5dへの電磁ノイズの影響である誘導電圧Va~Vdを合成して相殺された電圧を出力することが可能となる。つまり、X軸方向について、検出線5を図3のように配置することにより、差動増幅器4での合成によって誘導電圧Va~Vdが相殺され、出力電圧における干渉E1の影響をゼロとすることができる。
 上述したX軸方向の干渉E1によって検出線5a~5dに生じる誘導電圧Va~Vdを差動増幅器4で合成した出力電圧をVo1とすると、以下の式2で表される。
Figure JPOXMLDOC01-appb-M000002
 また、出力電圧(Vo1)は式3とも表せる。
Figure JPOXMLDOC01-appb-M000003
 Y軸方向についても同様に、「検出線5aの誘導電圧Va>検出線5dの誘導電圧Vd」かつ「検出線5bの誘導電圧Vb>検出線5cの誘導電圧Vc」の関係となる。
 そして、図2において説明した、対をなす検出線5の各々に生じる誘導電圧の差電圧を求める方法と同様にして、検出線5a及び5dの対における差電圧VDadの極性はプラス極性(+極性)となり、検出線5b及び5cの対における差電圧VDcbの極性はマイナス極性(-極性)となる。
 このように、Y軸方向に配置された検出線5a~5dの誘導電圧Va~Vdを差動増幅器4に入力することにより、差動増幅器4は検出線5a~5dへの電磁ノイズの影響である誘導電圧Va~Vdを合成して相殺された電圧を出力することが可能となる。つまり、Y軸方向について、検出線5を図3のように配置することにより、差動増幅器4での合成によって誘導電圧Va~Vdが相殺され、出力電圧における干渉E2の影響をゼロとすることができる。
 上述したY軸方向の干渉E2によって検出線5a~5dに生じる誘導電圧Va~Vdを差動増幅器4で合成した出力電圧をVo2とすると、以下の式4で表される。
Figure JPOXMLDOC01-appb-M000004
 また、出力電圧(Vo2)は式5とも表せる。
Figure JPOXMLDOC01-appb-M000005
 式2と式4によれば、図2のように構成することにより、X軸方向の干渉E1に対しても、Y軸方向の干渉E2に対しても、検出線5a~5dに生じた誘導電圧の各々の成分は差動増幅器4に入力されるとともに相殺されてゼロとなる。
 また、式3と式5によれば、出力電圧Vo1及びVo2は検出線5a~5dを用いて同等の関係にあることが分かる。
 つまり、電磁ノイズが干渉を及ぼす方向は、多層基板の基板面の水平方向(X軸方向)及び基板面の垂直方向(Y軸方向)に分解して考えることができるので、多層基板に対していずれの方向から電磁ノイズの干渉があったとしても、上述のとおり、検出線5に生じた誘導電圧の影響は差動増幅器4のなかで相殺されて出力される。
 このことから、図3に示す、多層基板に配線された検出線5a~5dの構造は、電磁ノイズの干渉による影響を相殺(キャンセル)する作用を有するといえる。
 さらに、検出回路1の各検出線5の配線の仕方によって、電気回路の基板の内外に存在する複数のノイズ源からの干渉の影響に対して相殺作用をもたらし、ノイズ源の影響を低減させることも可能となる。
 検出回路1への電磁ノイズからの干渉の影響を低減させるために、電気回路に実装される検出回路1の検出器3及び差動増幅器4の配置位置、回路基板の仕様、並びに、設計のうえで許容される配線数又は配線スペース等を考慮しつつ、上述した要領で検出線5を配線することが望ましい。
 なお、図1~図3では4線の検出線5を例に説明をしたが、検出回路1を電気回路に実装するにあたり、検出器3と差動増幅器4との間に複数の対をなす検出線5を、各対の差電圧の合計がゼロとなるように配置して配線できればよく、そのために電気回路に配線する検出線5の数を2の倍数(つまり2n、ここでnは正数)とすることで、検出線5はn個の対を構成することができる。
 また、検出回路1の検出線5を配線する層は、図3に示す2/4層と3/4層の例に限られない。また、検出線5の配線は、多層基板の連続した層に限られず、1つ以上の層を跨いで配線してもよい。つまり、図3の例では2/4層と4/4層に検出線5を配線してもよい。
 また、多層基板の層数は任意であって、6層基板や8層基板などであってもよい。多層基板は、複数の基板面に配線可能なものを対象としており、両面基板も含まれるものとする。両面基板の表裏を1/2層と2/2層の2層と見做して、その両面基板の表裏に検出回路1を実装する際に、上述の構成を適用して検出線5を配線すればよい。
 つまり、本開示の検出回路1は、多層基板の同一層において、プラス側検出線5a及び第1の検出線5cに含まれる検出線5の各々は、マイナス側検出線5b及び第2の検出線5dに含まれるいずれかの検出線5と隣り合って配線され、多層基板の異なる層において、プラス側検出線5a及び第1の検出線5cに含まれる検出線5の各々は、マイナス側検出線5b及び第2の検出線5dに含まれる検出線5のいずれかと対向して配線される、と言い表せる。
 図4は、多層基板の複数の配線層に検出回路1の検出線5を配線する構成例を模式的に示す模式図である。なお、多層基板の例として4層基板Bを用いて説明する。
 4層基板Bの配線層のうち2/4層(第2層面L2)では、検出回路1は、検出器3の一端3a及び他端3bのそれぞれに、ランドL3a及びL3bを設け、差動増幅器4のプラス入力端子(+入力端子)及びマイナス入力端子(-入力端子)のそれぞれに、ランドL4a及びL4bを設ける。そして、検出線5aは、検出器3側のランドL3aと差動増幅器4側のランドL4aとを、ランドを迂回せずに接続し、検出線5bは、検出器3側のランドL3bと差動増幅器4側のランドL4bとを、ランドを迂回せずに接続する。
 また、4層基板Bの配線層のうち3/4層(第3層面L3)では、検出器3側のランドL3a及びL3bのそれぞれと対応する位置にランドL3c及びL3dを設け、差動増幅器4側のランドL4a及びL4bのそれぞれと対応する位置にランドL4c及びL4dを設ける。そして、検出線5cは、ランドL3cとランドL4cとを、ランドL4dを迂回して接続し、検出線5dは、ランドL3dとランドL4dとを、ランドL3cを迂回して接続する。
 さらに、4層基板Bの配線層の2/4層と3/4層において、スルーホールH3a、スルーホールH3b、スルーホールH4a、及び、スルーホールH4bは、2/4層及び3/4層を電気的に接続する。2/4層と3/4層とは、スルーホールH3aを介してランドL3aとランドL3cとが接続し、スルーホールH3bを介してランドL3bとランドL3dとが接続し、スルーホールH4aを介してランドL4aとランドL4cとが接続し、スルーホールH4bを介してランドL4bとランドL4dとが接続する。なお、ランドはスルーホールの一部と見做すこともできる。
 このような構成によれば、異なる層(例えば、2/4層と3/4層)に配線される検出線5の極性を互い違いにすることができる。検出線5の極性とは、検出線5が接続される差動増幅器4のプラス入力端子4aとマイナス入力端子4bとの極性を指す。
 このとき、検出線5cと検出線5dとを、ランドL3c及びランドL4d間を結ぶ直線と、ランドL3d及びランドL4c間を結ぶ直線との交点(つまり、ランドL3c、ランドL3d、ランドL4d及びランドL4cの重心)を中心として、点対称になるように配置して配線したり、検出線5c及び検出線5dの長さや迂回する回数を均等としたりするなど、ノイズ源からの干渉をもとに検出回路1の検出線5a及び5bに追加する検出線(ここでは検出線5c及び5d)の配線構造を設計することで、検出回路1の検出線5における、ノイズ源からの干渉の影響を低減させる効果を高めることができる。
 図4では、4層基板Bのうち2/4層と3/4層に検出回路1の検出線5を配線したが、この例に限られず、その他の層に検出線5を配線してもよいし、3つ以上の層に検出線5を配線してもよい。つまり、多層基板の配線層において、検出回路1の検出器3と差動増幅器4との間に、1以上のノイズ源からの干渉の影響を相殺する位置を通るように複数の検出線5の対を配線すればよい。
 また、複数の対の検出線5の配線とともに、1以上のノイズ源からの干渉を考慮して各スルーホールを配置する位置及び長さを決めることで、さらに電磁ノイズからの干渉の影響を低減する効果が高い配線構造を得ることができる。なお、スルーホールの代わりにビアホールを用いてもよい。
 つまり、本開示の検出回路1は、多層基板の第1の層に配線されたプラス側検出線5a及びマイナス側検出線5bの各々の両端に設けられるスルーホールと、各スルーホールにより第1の層と電気的に接続される多層基板の第2の層に配線された第1の検出線5c及び第2の検出線5dと、を備え、プラス側検出線5aの両端は、それぞれスルーホールを介して第1の検出線5cの両端と接続され、マイナス側検出線5bの両端は、それぞれスルーホールを介して第2の検出線5dの両端と接続され、第1の検出線5c及び第2の検出線5dからなる対の配線は、互いに長さが等しく、かつ、第1の検出線5c及び第2の検出線5dとスルーホールとの接続部分の重心に対して点対称に配置される、と言い表せる。
 図5は、基板の同一層に検出回路1の検出線5を配線する構成例を模式的に示す構成図である。
 基板の同一層において、検出回路1の検出器3の両端(一端3a及び他端3b)から引き出された複数の検出線5の対を配置する。このとき、隣り合う対に含まれて、かつ、隣り合って配線される2本の検出線5は、接続される差動増幅器4の入力端子の極性が同じくなるように配置する。つまり、隣り合う対に含まれる検出線5のうち、差動増幅器4のプラス入力端子4aに接続されるプラス極性の検出線5が隣り合い、差動増幅器4のマイナス入力端子4bに接続されるマイナス極性の検出線5が隣り合うように配置される。
 図5の例では、検出線5a,5b,5c,5d,・・・,5(2n(nは正数))を基板の同一層に配置するとき、検出線5a及び5bの対p1と検出線5c及び5dの対p2が隣り合うものとする。そして、対p1及び対p2に含まれる検出線5b及び5dは差動増幅器4のマイナス入力端子4b(-入力端子)に接続されるマイナス極性(-極性)の検出線5であるため隣り合うように配置して構成される。また、差動増幅器4のプラス入力端子4a(+入力端子)に接続されるプラス極性(+極性)の検出線5a及び5cは、対p1及び対p2とは別の検出線5の対と隣り合う場合、その対に含まれる同じプラス極性の検出線5と隣り合うように配置される。
 図5に示す基板に配線された検出線5に対して、基板の面に平行な方向をX軸方向とし、X軸とY軸の各々の正の向きに電磁ノイズの干渉が及ぶ場合について説明する。図5では、電磁ノイズの干渉の例として、電磁ノイズ源N1からのX軸の正の向きの干渉E1と、電磁ノイズ源N2からのY軸の正の向きの干渉E2があるものとする。
 ここで、基板の面に対して垂直な方向であるY軸方向の干渉E2については、検出線5a~5dは同一面に配置されており、干渉E2による誘導電圧は等しく生じることとなるため、差動増幅器4において理想的に相殺される。
 一方、基板の面に対して水平な方向であるX軸方向の干渉E1については、ノイズ源N1からの干渉E1の向きがX軸の正の向きとすると、各検出線5a~5dへの干渉E1の影響は、ノイズ源N1に近い順に、検出線5a>検出線5b>検出線5d>検出線5cとなり、検出線5a~5dに生じる誘導電圧の強さは、誘導電圧Va>誘導電圧Vb>誘導電圧Vd>誘導電圧Vcとなる。図5では、各検出線5a~5dとノイズ源N1との距離Dに比例して、誘導起電圧Vが、Va=10+Δ、Vb=8+Δ、Vd=6+Δ、Vc=4+Δと減少し、したがって差電圧VDが、VDab=+2、VDcd=-2となり、逆極性の誘導電圧となるため、各検出線5a~5dに生じる誘導電圧は差動増幅器4で合成するとゼロとなる。ここでは、各検出線5a~5dに生じる誘導電圧の差分について説明すればよいため、各々の誘導起電圧Vの絶対値はΔ(デルタ)を用いて略記している。
 このように、基板の同一層では、複数の検出線5の対は、隣り合う対に含まれる同じ極性の検出線5が隣り合うように連続して配線されることで、ノイズ源からの干渉の影響を相殺することが可能となる。
 このような効果を得るために、差電圧VDab、VDbd及びVDdcの絶対値が等しくなるように配線する。そうすることで、検出線5a及び5bの対に生じる誘導電圧の差電圧VDabはプラス極性となり、検出線5c及び5dの対に生じる誘導電圧の差電圧VDcdはマイナス極性となり、差電圧VDabと差電圧VDcdとは絶対値が等しくなり、検出線5a~5dに生じる誘導電圧Va~Vdを相殺することができる。
 さらに、図5に示すように、検出回路1の各検出線5にノイズ源との距離Dに応じた誘導電圧が生じる環境において、複数の検出線5の対における差電圧の絶対値が等しく、隣り合う対の差電圧の極性が異なるように配線できる場合に、検出線5の本数を2の倍数とするだけでなく、検出線5の対の数を2の倍数とすることにより、各対の差電圧を全て合成した結果がゼロとなるため、回路設計のうえでより干渉に対する相殺作用を作りこみやすくすることが可能となる。
 なお、図5においても、検出回路1への電磁ノイズからの干渉の影響を低減させるために、電気回路に実装される検出回路1の検出器3及び差動増幅器4の配置位置、回路基板の仕様、並びに、設計のうえで許容される配線数又は配線スペース等を考慮しつつ、上述した要領で検出線5を配線することが望ましい。
 つまり、本開示の検出回路1は、基板の同一面において、プラス側検出線5a及び第1の検出線5cに含まれる検出線5の各々と、マイナス側検出線5b及び第2の検出線5dに含まれる検出線5の各々とからなる複数の対が並行して配線され、さらに、複数の対のうちの隣り合う2対に含まれ、互いに隣り合う2つの検出線5は、差動増幅器4のプラス入力端子4a又はマイナス入力端子4bに接続される、と言い表せる。
実施の形態2.
 図6は、本開示の実施の形態2にかかる、検出回路1をインバータに実装した構成例を示す構成図である。ここでは、インバータの例として3相インバータ10を用いて説明する。
 3相インバータ10は、3相インバータ10の回路の電源である直流電圧源20と、回路の出力先としてのモータ40に接続している。
 制御部50は、モータ40に対するトルク指令の信号CV、速度指令の信号CT、並びに、3相インバータ10の各相に直列に接続する3つの検出回路1u、1v及び1wに流れるそれぞれの電流の情報をもとに、ゲート駆動回路60を制御して、3相インバータ10を構成するスイッチング素子10a、10b、10c、10d、10e及び10fの各ゲートを駆動させ、これにより、モータ40を制御する。
 3相インバータ10は、ダイオードを逆並列に接続したスイッチング素子10a及び10b、並びに、検出回路1uを直列に接続してU相を構成する。このような構成をレグとも称する。以下、U相のレグをレグUとする。
 同様に、スイッチング素子10c及び10d、並びに、検出回路1vを直列に接続してV相を構成し(以下、V相のレグをレグVとする)、スイッチング素子10e及び10f、並びに、検出回路1wを直列に接続してW相を構成する(以下、W相のレグをレグWとする)。そして、レグU、V及びWは、それぞれ直流電圧源20及び平滑コンデンサ30と並列に接続される。
 レグUに直列に接続したスイッチング素子10a及び10bの中点はモータ40のU端子に接続され、レグVに直列に接続したスイッチング素子10c及び10dの中点はモータ40のV端子に接続され、レグWに直列に接続したスイッチング素子10e及び10fの中点はモータ40のW端子に接続される。そして、検出回路1u、1v及び1Wの出力はそれぞれ制御部50に入力される。
 なお、検出回路1u、1v及び1wは、図1で説明した、検出器3に抵抗を用いて構成される回路構成と同じであるため、説明を省略する。
 図6に示す3相インバータ10のように、複数のスイッチング素子で構成され、電流経路が各々のスイッチング状態によって切り替わる回路では、電流経路を構成する各々の配線には、電流経路のインダクタンス成分に時間あたりの電流変化を乗じた逆起電力が生じる。逆起電力は、インダクタンス成分をLとし、時間あたりの電流変化をdi/dtするとLdi/dtで表され、特に電流の遮断時には逆起電力が最大となる。この逆起電力が電磁ノイズを伴うノイズ源となり、検出回路1に対して誘導電圧のかたちで干渉を引き起こす。
 3相インバータ10には、回路を構成する部品を接続する電流経路としての配線が複数あり、電流経路となる各配線のインダクタンス成分Lは様々な値となる。そのため、各々のノイズ源が引き起こすノイズレベル(つまり、逆起電力(Ldi/dt))も様々であり、検出回路1との位置関係が一様ではなくノイズレベルが多様に変化する、複数のノイズ源が存在することになる。
 例えば、U相に流れる電流を検出回路1uで検出しているときに、スイッチング素子10a及び10bのスイッチング状態に変化がなく、したがってU相の電流に変化がなくても、V相及びW相を構成するスイッチング素子10c~10fのいずれかのスイッチング状態が変化すると、3相インバータ10を構成する少なくともいずれかの配線のインダクタンス成分に対して電流の変化が生じる。この電流の変化に起因して配線に生じる逆起電力がノイズ源となり、結果として、U相の検出回路1uに対して電磁ノイズの干渉の影響を及ぼすことになる。
 また、3相インバータ10を構成する上アーム側と下アーム側とは交互にスイッチング動作を行うが、3相インバータ10からモータ40に大電流を流すときには、上アーム側のスイッチング素子10a、10c及び10eをオン状態とする(つまり、電流が流れる)時間が長くなり、反対に下アーム側のスイッチング素子10b、10d及び10fをオン状態とする(つまり、電流が流れる)時間は短くなる。そして、図6のように、下アーム側に設けられた検出回路1u、1v及び1wにおいて電流を検出する時間が短くなると、電磁ノイズからの干渉の影響が収まらないうちに電流を検出しなければならず、電流を検出する精度が低下してしまう。このように、電磁ノイズからの干渉の影響を検出回路1u、1v及び1wが受けた状態で、これらの回路の検出線5に流れる電流の情報を用いてモータ40を制御すると、振動や動作不良が発生する要因となる。
 これに対して、検出回路1u、1v及び1wを本開示の構成とすることで、電磁ノイズからの干渉の影響を低減することができ、その結果、電流を検出するときの精度の低下を抑止する効果が得られる。これにより、精度の良い電流検出に基づいた適切なモータ40の制御が可能となる。
 つまり、本開示のインバータは、各相に直列に接続される検出回路1と、スイッチング素子10c~10fを用いて交互にスイッチング動作をする上アーム及び下アームと、スイッチング素子10c~10fをON又はOFFするゲート駆動回路60と、ゲート駆動回路60を制御する制御部50と、を備え、検出回路1は、上アーム又は下アームのいずれかにおいてスイッチング素子10c~10fに直列に接続されて、差動増幅器4の出力を制御部50に入力する、と言い表せる。
実施の形態3.
 図7は、本開示の実施の形態3にかかる、検出回路1を昇圧コンバータに実装した構成例を示す構成図である。ここでは、昇圧コンバータの例として2相昇圧コンバータ100を用いて説明する。
 2相昇圧コンバータ100は、直流電圧源20、平滑コンデンサ30及び90、制御部50、ゲート駆動回路60、リアクトル70、並びに、スイッチング回路80で構成される。
 2相昇圧コンバータ100の電源である直流電圧源20と、平滑コンデンサ30とは並列に接続される。
 また、直流電圧源20の正極20a及び平滑コンデンサ30の正極30aには、並列に接続されたリアクトル70Aの一端70Aaとリアクトル70Bの一端70Baとの接続点70pが接続される。リアクトル70A及び70Bをリアクトル70として扱うものとする。
 また、スイッチング回路80は、スイッチング素子80a及び80b並びに検出回路1Aが直列に接続されたA相レグと、スイッチング素子80c及び80d並びに検出回路1Bが直列に接続されたB相レグと、平滑コンデンサ90とが並列に接続されて構成される。
 また、平滑コンデンサ90の正極90aは、スイッチング素子80a及び80cに接続され、平滑コンデンサ90の負極90bは、検出回路1A及び1Bに接続される。
 また、スイッチング素子80a及び80bの接続点80p1とリアクトル70Aの他端70Abとが接続され、スイッチング素子80c及び80dの接続点80p2とリアクトル70Bの他端70Bbとが接続される。
 そして、平滑コンデンサ90の負極90bは、直流電圧源20の負極20b及び平滑コンデンサ30の負極30bに接続される。
 制御部50は、直流電圧源20の電圧Vinの情報、平滑コンデンサ90の電圧の情報、並びに、検出回路1Aが検出するスイッチング回路80におけるA相レグの電流の情報及び検出回路1Bが検出するスイッチング回路80におけるB相レグの電流の情報に基づいて、平滑コンデンサ90において所望の出力電圧Voutとするための電圧制御と、A相レグ及びB相レグに流れる電流を等しくさせるための電流制御とを行う。このときの電流制御は、制御部50がゲート駆動回路60を制御し、ゲート駆動回路60がスイッチング回路80のスイッチング素子80a、80b、80c及び80dの各ゲートを制御して駆動させることにより行われる。
 図7に示すような、並列に接続されたスイッチング素子80a及び80bとスイッチング素子80c及び80dとを含む複数の相で構成された昇圧コンバータでは、各相に電流を均等に流す制御(電流のバランス制御)を行うことによって電流密度を揃え、これにより接続されたスイッチング素子80a~80dにおいて許容範囲内に電流を抑えるとともに発熱の仕様を満たし、コンバータ等の変換器の高電力密度化が行われてきた。
 しかしながら、例えば、コンバータ等の変換器を構成する磁性部品をダウンサイジングするなどの目的によって小型化されたスイッチング素子80a~80dを高速駆動させると、1スイッチングあたりの検出回路1A及び1Bに電流を流す時間が短くなり、このことはスイッチング速度を上げて時間あたりの電流変化di/dtを大きくすることに繋がる。これにより、ノイズ源からの干渉の影響による逆起電力を強く受けてしまい、各相に流れる電流を精度良く検出できないという問題が生じてしまう。
 つまり、実施の形態2で説明したインバータと同様に、コンバータ(変換器)においても、スイッチング素子80a~80dをON又はOFFとすることにより、スイッチング回路80を構成する配線のインダクタンス成分に時間あたりの電流変化を乗じた逆起電力が生じて電磁ノイズを伴うノイズ源となり、検出回路1A及び1Bに影響を及ぼす。
 本開示に示した検出回路1によれば、上述のように、電磁ノイズからの干渉のもとで、変換器を高速駆動させたり、電流のバランス制御を行ったりする場合に、逆起電力の影響を相殺して、電流又は電圧を精度良く検出することができるようになる。
 なお、図7では2相昇圧コンバータを例に説明をしたが、昇圧コンバータの相数は2相に限られない。また、変換器の構成は昇圧コンバータに限られず、電流経路にシャント抵抗を挿入するものであれば、同様の効果を得ることができる。
 つまり、本開示の変換器は、各相に直列に接続される検出回路1と、スイッチング素子80a~80dを用いてリアクトル70及びコンデンサ30に流れる電流をON又はOFFするゲート駆動回路60と、ゲート駆動回路を制御する制御部50と、を備え、検出回路1は、スイッチング素子80a~80dに直列に接続されて、差動増幅器4の出力を制御部50に入力する、と言い表せる。
 本開示では、検出回路1の検出器3として、電流経路に抵抗器を用いた電流検出回路の例を説明したが、検出回路1の検出器3として、電圧経路にコンデンサを用いることにより、電圧検出回路において電磁ノイズからの干渉の影響を低減する効果を得ることができる。
1,1u,1v,1w,1A,1B 検出回路、2 経路(電流経路又は電圧経路)、3 検出器、4 差動増幅器、5 検出器、5a-5c 検出線、10 インバータ、10a-10f,80a-80d スイッチング素子、20 直流電圧源、30,90 平滑コンデンサ、40 モータ、50 制御部、60 ゲート駆動回路、70,70a,70b リアクトル、80 スイッチング回路、100 コンバータ(変換器)。

Claims (10)

  1.  電気回路の電流又は電圧の経路に挿入される検出器と、
     前記検出器で検出される電流又は電圧に応じた電圧を出力する差動増幅器と、
     前記検出器が前記経路と接続する両端のうちの一端と前記差動増幅器のプラス入力端子との間に接続されるプラス側検出線と、
     前記両端のうちの他端と前記差動増幅器のマイナス入力端子との間に接続されるマイナス側検出線と、
     前記検出器の一端及び前記差動増幅器のプラス入力端子の間において、前記プラス側検出線の少なくとも一部に並列に接続される1以上の第1の検出線と、
     前記検出器の他端及び前記差動増幅器のマイナス入力端子の間において、前記マイナス側検出線の少なくとも一部に並列に接続される1以上の第2の検出線と、
    を備え、
     前記第1の検出線及び前記第2の検出線は、外来の電磁ノイズに起因して生じる誘導電圧によって、前記プラス側検出線及び前記マイナス側検出線に生じる前記電磁ノイズに起因した誘導電圧を相殺するように前記電気回路に配置される検出回路。
  2.  前記第1の検出線に含まれる検出線の各々は、前記第2の検出線に含まれる検出線の各々と対をなし、
     前記プラス側検出線、前記マイナス側検出線、前記第1の検出線及び前記第2の検出線の総数は2の倍数となる、
    請求項1に記載の検出回路。
  3.  前記第1の検出線及び前記第2の検出線は、前記プラス側検出線と前記マイナス側検出線との誘導電圧の差である第1の差電圧と、前記第1の検出線と前記第2の検出線との誘導電圧の差である第2の差電圧と、を前記差動増幅器で合成した出力電圧が0となるように配置される、
    請求項1又は2に記載の検出回路。
  4.  多層基板に配線される検出回路であって、
     前記多層基板の同一層において、前記プラス側検出線及び前記第1の検出線に含まれる検出線の各々は、前記マイナス側検出線及び前記第2の検出線に含まれるいずれかの検出線と隣り合って配線され、
     前記多層基板の異なる層において、前記プラス側検出線及び前記第1の検出線に含まれる検出線の各々は、前記マイナス側検出線及び前記第2の検出線に含まれる検出線のいずれかと対向して配線される、
    請求項1から3のいずれか1項に記載の検出回路。
  5.  多層基板に配線される検出回路であって、
     前記多層基板の第1の層に配線された前記プラス側検出線及び前記マイナス側検出線の各々の両端に設けられるスルーホールと、
     各前記スルーホールにより前記第1の層と電気的に接続される前記多層基板の第2の層に配線された前記第1の検出線及び前記第2の検出線と、
    を備え、
     前記プラス側検出線の両端は、それぞれ前記スルーホールを介して前記第1の検出線の両端と接続され、
     前記マイナス側検出線の両端は、それぞれ前記スルーホールを介して前記第2の検出線の両端と接続され、
     前記第1の検出線及び前記第2の検出線からなる対の配線は、互いに長さが等しく、かつ、前記第1の検出線及び前記第2の検出線と前記スルーホールとの接続部分の重心に対して点対称に配置される、
    請求項1から3のいずれか1項に記載の検出回路。
  6.  基板に配線される検出回路であって、
     前記基板の同一面において、前記プラス側検出線及び前記第1の検出線に含まれる前記検出線の各々と、前記マイナス側検出線及び前記第2の検出線に含まれる前記検出線の各々とからなる複数の対が並行して配線され、さらに、前記複数の対のうちの隣り合う2対に含まれる、互いに隣り合う2つの前記検出線は、前記差動増幅器のプラス入力端子又はマイナス入力端子に接続される、
    請求項1から3のいずれか1項に記載の検出回路。
  7.  前記検出器は抵抗器であって、
     前記抵抗器に電流が流れる際に両端に生じる電圧に基づいて、前記抵抗器が電気的に接続された主回路に流れる電流又は電圧の値を検出又は測定する、
    請求項1から6のいずれか1項に記載の検出回路。
  8.  前記検出器はコンデンサであって、
     前記コンデンサの蓄電電圧に基づいて、前記コンデンサが電気的に接続された主回路に流れる電流又は電圧の値を検出又は測定する、
    請求項1から6のいずれか1項に記載の検出回路。
  9.  各相に直列に接続される、請求項1から6のいずれか1項に記載の検出回路と、
     スイッチング素子を用いて交互にスイッチング動作をする上アーム及び下アームと、
     前記スイッチング素子をON又はOFFするゲート駆動回路と、
     前記ゲート駆動回路を制御する制御部と、
    を備え、
     前記検出回路は、前記上アーム又は前記下アームのいずれかにおいて各相の前記スイッチング素子に直列に接続されて、前記差動増幅器の出力を前記制御部に入力する、
    インバータ。
  10.  各相に直列に接続される、請求項1から6のいずれか1項に記載の検出回路と、
     スイッチング素子を用いてリアクトル及び第1の平滑コンデンサに流れる電流をON又はOFFするゲート駆動回路と、
     前記ゲート駆動回路を制御する制御部と、
    を備え、
     前記検出回路1は、各相の前記スイッチング素子に直列に接続されて、前記差動増幅器の出力を前記制御部に入力する、
    変換器。
PCT/JP2021/043468 2021-11-26 2021-11-26 検出回路 WO2023095306A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/043468 WO2023095306A1 (ja) 2021-11-26 2021-11-26 検出回路
JP2023541247A JP7366321B1 (ja) 2021-11-26 2021-11-26 検出回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043468 WO2023095306A1 (ja) 2021-11-26 2021-11-26 検出回路

Publications (1)

Publication Number Publication Date
WO2023095306A1 true WO2023095306A1 (ja) 2023-06-01

Family

ID=86539223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043468 WO2023095306A1 (ja) 2021-11-26 2021-11-26 検出回路

Country Status (2)

Country Link
JP (1) JP7366321B1 (ja)
WO (1) WO2023095306A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191179A (ja) * 2000-12-21 2002-07-05 Yaskawa Electric Corp インバータ装置
JP2003014792A (ja) * 2001-04-27 2003-01-15 Denso Corp フライングキャパシタ式組電池電圧検出装置
JP2003114243A (ja) * 2001-10-02 2003-04-18 Denso Corp 組電池電圧検出回路
JP2005156353A (ja) * 2003-11-26 2005-06-16 Nissan Motor Co Ltd 組電池の電圧検出回路
JP2015002333A (ja) * 2013-06-18 2015-01-05 株式会社村田製作所 抵抗内蔵基板およびこれを備える電流検出モジュール
JP2015017832A (ja) * 2013-07-09 2015-01-29 コーア株式会社 電流検出装置
JP2015194460A (ja) * 2014-03-17 2015-11-05 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2019045254A (ja) * 2017-08-31 2019-03-22 Koa株式会社 電流検出装置
WO2019167244A1 (ja) * 2018-03-02 2019-09-06 三菱電機株式会社 電力変換装置および電動機システム
WO2019171997A1 (ja) * 2018-03-08 2019-09-12 三菱電機株式会社 電力変換装置
WO2019202730A1 (ja) * 2018-04-20 2019-10-24 三菱電機株式会社 電動パワーステアリング装置
JP2020046207A (ja) * 2018-09-14 2020-03-26 Koa株式会社 電流検出装置
CN110383666B (zh) * 2017-03-06 2021-09-03 日立安斯泰莫株式会社 电动机的驱动控制装置及其驱动控制方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191179A (ja) * 2000-12-21 2002-07-05 Yaskawa Electric Corp インバータ装置
JP2003014792A (ja) * 2001-04-27 2003-01-15 Denso Corp フライングキャパシタ式組電池電圧検出装置
JP2003114243A (ja) * 2001-10-02 2003-04-18 Denso Corp 組電池電圧検出回路
JP2005156353A (ja) * 2003-11-26 2005-06-16 Nissan Motor Co Ltd 組電池の電圧検出回路
JP2015002333A (ja) * 2013-06-18 2015-01-05 株式会社村田製作所 抵抗内蔵基板およびこれを備える電流検出モジュール
JP2015017832A (ja) * 2013-07-09 2015-01-29 コーア株式会社 電流検出装置
JP2015194460A (ja) * 2014-03-17 2015-11-05 富士電機株式会社 半導体装置および半導体装置の製造方法
CN110383666B (zh) * 2017-03-06 2021-09-03 日立安斯泰莫株式会社 电动机的驱动控制装置及其驱动控制方法
JP2019045254A (ja) * 2017-08-31 2019-03-22 Koa株式会社 電流検出装置
WO2019167244A1 (ja) * 2018-03-02 2019-09-06 三菱電機株式会社 電力変換装置および電動機システム
WO2019171997A1 (ja) * 2018-03-08 2019-09-12 三菱電機株式会社 電力変換装置
WO2019202730A1 (ja) * 2018-04-20 2019-10-24 三菱電機株式会社 電動パワーステアリング装置
JP2020046207A (ja) * 2018-09-14 2020-03-26 Koa株式会社 電流検出装置

Also Published As

Publication number Publication date
JPWO2023095306A1 (ja) 2023-06-01
JP7366321B1 (ja) 2023-10-20

Similar Documents

Publication Publication Date Title
EP2715385B1 (en) Detecting device and current sensor
EP2284554A1 (en) Magnetic sensor with bridge circuit including magnetoresistance effect elements
US9964602B2 (en) Magnetic sensor
CN113203885B (zh) 电流传感器、磁传感器和电路
CN106370911B (zh) 电流检测电路
JP6617156B2 (ja) 磁界検知装置
CN107796981B (zh) 不受噪声影响的电流检测电路
JP6070460B2 (ja) 電流検知回路及びそれを備えた磁気検出装置
WO2023095306A1 (ja) 検出回路
JP6743770B2 (ja) ポジションセンサ
JP2010002388A (ja) 磁気比例式電流センサ
JP2016121960A (ja) 電流センサ
JP7160005B2 (ja) 磁歪式センサ用温度検出回路、磁歪式センサ、及び磁歪式センサの温度検出方法
WO2018159776A1 (ja) 磁気センサ
JP3099336B2 (ja) 電磁型デジタル電流検出器
JP2012052912A (ja) 電流センサ
US11221352B2 (en) Magnetic-balance-system current sensor
JP2016142652A (ja) 電力センサー
JP2020187014A (ja) センサ装置
JP4771094B2 (ja) 磁気平衡式電流センサ
JP7225694B2 (ja) 磁気センサ
JP7094473B1 (ja) コモンモードフィルタ
WO2019069763A1 (ja) 電流センサ
WO2022113732A1 (ja) モータ制御装置
JP2016133499A (ja) 電力センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023541247

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965676

Country of ref document: EP

Kind code of ref document: A1