JP6102897B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP6102897B2
JP6102897B2 JP2014240443A JP2014240443A JP6102897B2 JP 6102897 B2 JP6102897 B2 JP 6102897B2 JP 2014240443 A JP2014240443 A JP 2014240443A JP 2014240443 A JP2014240443 A JP 2014240443A JP 6102897 B2 JP6102897 B2 JP 6102897B2
Authority
JP
Japan
Prior art keywords
arm
circuit
upper arm
bridge circuit
full bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014240443A
Other languages
English (en)
Other versions
JP2016103891A (ja
Inventor
光博 三浦
光博 三浦
一行 佐々木
一行 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014240443A priority Critical patent/JP6102897B2/ja
Priority to US14/948,778 priority patent/US9537414B2/en
Publication of JP2016103891A publication Critical patent/JP2016103891A/ja
Application granted granted Critical
Publication of JP6102897B2 publication Critical patent/JP6102897B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

本発明は、電力変換装置に関する。
1次側コイルと2次側コイルとを有する変圧器と、第1アーム回路と第2アーム回路とを有する1次側フルブリッジ回路と、第3アーム回路と第4アーム回路とを有する2次側フルブリッジ回路とを備える、電力変換装置が知られている(例えば、特許文献1を参照)。
第1アーム回路では、第1上アームと第1下アームとが直列に接続され、第2アーム回路では、第2上アームと第2下アームとが直列に接続され、第3アーム回路では、第3上アームと第3下アームとが直列に接続され、第4アーム回路では、第4上アームと第4下アームとが直列に接続される。
また、1次側フルブリッジ回路では、第1上アームと第1下アームとの中点と第2上アームと第2下アームとの中点を接続するブリッジ部分に、変圧器の1次側コイルが設けられる。一方、2次側フルブリッジ回路では、第3上アームと第3下アームとの中点と第4上アームと第4下アームとの中点を接続するブリッジ部分に、変圧器の2次側コイルが設けられる。
さらに、この電力変換装置は、第1アーム回路のスイッチングと第3アーム回路のスイッチングとの間の第1位相差と、第2アーム回路のスイッチングと第4アーム回路のスイッチングとの間の第2位相差とを調整して、1次側フルブリッジ回路と2次側フルブリッジ回路との間で伝送される伝送電力を制御する制御部を備える。
特開2011−193713号公報
しかしながら、第3上アームがショート故障すると、第4上アームがオンするタイミングで変圧器の2次側コイルに電圧を印加することができないため、1次側フルブリッジ回路と2次側フルブリッジ回路との間で電力伝送を継続することが難しい。第4上アームがショート故障した場合についても同様である。
そこで、第3上アームと第4上アームのいずれか一方がショート故障しても、1次側フルブリッジ回路と2次側フルブリッジ回路との間で電力伝送を継続できる、電力変換装置の提供を目的とする。
一つの案では、
1次側コイルと2次側コイルとを有する変圧器と、
第1上アームと第1下アームとが直列に接続される第1アーム回路と、第2上アームと第2下アームとが直列に接続される第2アーム回路とを有し、前記第1上アームと前記第1下アームとの中点と前記第2上アームと前記第2下アームとの中点を接続するブリッジ部分に前記1次側コイルが設けられる1次側フルブリッジ回路と、
第3上アームと第3下アームとが直列に接続される第3アーム回路と、第4上アームと第4下アームとが直列に接続される第4アーム回路とを有し、前記第3上アームと前記第3下アームとの中点と前記第4上アームと前記第4下アームとの中点を接続するブリッジ部分に前記2次側コイルが設けられる2次側フルブリッジ回路と、
前記第1アーム回路のスイッチングと前記第3アーム回路のスイッチングとの間の第1位相差と、前記第2アーム回路のスイッチングと前記第4アーム回路のスイッチングとの間の第2位相差とを調整して、前記1次側フルブリッジ回路と前記2次側フルブリッジ回路との間で伝送される伝送電力を制御する制御部とを備え、
前記制御部は、前記第3上アームと前記第4上アームのうちショート故障した一方の故障アームが検知された場合、電源の正極の接続先を前記2次側フルブリッジ回路の負極母線に切り替え且つ前記電源の負極の接続先を前記2次側フルブリッジ回路の正極母線に切り替えるとともに、前記第3アーム回路と前記第4アーム回路のうち前記故障アームを含む一方の故障アーム回路とは別の他方のアーム回路のスイッチングの位相を反転させる、電力変換装置が提供される。
一態様によれば、電源の正極と負極の接続先が入れ替わるとともに、他方のアーム回路のスイッチングの位相が反転するので、他方のアーム回路に含まれる上アームと下アームの役割を入れ替えることができる。つまり、他方のアーム回路に含まれる上アームは、下アームの役割を果たし、他方のアーム回路に含まれる下アームは、上アームの役割を果たす。したがって、第3上アームと第4上アームのいずれか一方がショート故障しても、上アームの役割を果たす当該下アームがオンするタイミングで変圧器の2次側コイルに電源の電圧を印加することができるので、1次側フルブリッジ回路と2次側フルブリッジ回路との間で電力伝送を継続することができる。
電力変換装置の一例を示す図である。 電力変換装置の動作の一例を示すタイミングチャートである。 スイッチングの位相を反転させる動作の一例を示す図である。 電力変換装置の動作の一例を示すフローチャートである。 電力変換装置の動作の一例を示すフローチャートである。 電力変換装置の一例を示す図である。
以下、本発明の実施形態を図面に従って説明する。
図1は、電力変換装置の一実施形態である電源装置101の構成の一例を示す図である。電源装置101は、例えば、自動車等の車両に搭載され、車両に搭載される各負荷に配電する車両用電源システムの一例である。電源装置101は、例えば、電源回路10と、制御回路50とを備える。
電源回路10は、少なくとも3つ以上の複数のポートを有し、それらの複数のポートのうちから任意の2つのポートが選択され、選択された2つのポートの間で電力変換を行う機能を有する電力変換回路の一例である。本実施形態の電源回路10は、例えば、第1のポート60aと、第2のポート60cと、第3のポート60bと、コンバータ11とを備える。
第1のポート60aは、電源回路10の第1の端子部の一例であり、例えば、負荷61aが接続される。
負荷61aは、単数又は複数の高電圧系負荷の一例である。高電圧系(例えば、48V系)の負荷61aの具体例として、操舵をアシストする電動パワーステアリング装置などが挙げられる。
第2のポート60cは、電源回路10の第2の端子部の一例であり、例えば、バッテリ62c及び負荷61cが接続される。
バッテリ62cは、バッテリ62cと同じ電圧系で動作する負荷61cに直流電力を供給可能な低電圧系電源の一例である。低電圧系(例えば、48V系よりも低い12V系)のバッテリ62cは、補機バッテリ(auxiliary battery)と呼ばれることがある。バッテリ62cの具体例として、鉛バッテリ等の二次電池が挙げられる。バッテリ62cは、例えば、不図示のオルタネータ等の充電手段によって充電されることも可能である。
負荷61cは、単数又は複数の低電圧系負荷の一例である。負荷61cは、補機負荷(auxiliary load)と呼ばれることがある。負荷61cの具体例として、所定の機器を制御するECU(電子制御装置)などが挙げられる。
第3のポート60bは、電源回路10の第3の端子部の一例であり、例えば、バッテリ62b及び負荷61bが接続される。
バッテリ62bは、バッテリ62bと同じ電圧系で動作する負荷61bに直流電力を供給可能な高電圧系電源の一例である。高電圧系(例えば、48V系よりも高い288V系)のバッテリ62bは、主機バッテリ(propulsion battery/traction battery)と呼ばれることがある。バッテリ62bの具体例として、リチウムイオンバッテリ等の二次電池が挙げられる。バッテリ62bは、例えば、負荷61bからの回生電力によって充電されることも可能である。
負荷61bは、単数又は複数の高電圧系負荷の一例である。負荷61bの具体例として、直流電力を交流電力に変換するインバータなどが挙げられる。
ポート電圧Va,Vb,Vcは、それぞれ、第1のポート60a,第2のポート60c,第3のポート60bにおける入力電圧又は出力電圧である。
コンバータ11は、一方のポートに入力される直流電力を電圧変換し、電圧変換後の直流電力を他方のポートに出力するDC−DCコンバータの一例である。本実施形態のコンバータ11は、例えば、変圧器400と、1次側フルブリッジ回路200と、2次側フルブリッジ回路300とを備える。1次側フルブリッジ回路200と2次側フルブリッジ回路300とは、変圧器400で磁気結合される。第1のポート60a及び第2のポート60cを含む1次側ポートと、第3のポート60bを含む2次側ポートとは、変圧器400を介して接続される。
変圧器400は、1次側コイル202と2次側コイル302を有し、1次側コイル202と2次側コイル302とが結合係数kで磁気結合することで、1次側コイル202と2次側コイル302との巻き数比が1:Nの変圧器として機能する。Nは、1よりも大きい正数である。変圧器400は、例えば、センタータップ202mを有するセンタータップ式変圧器である。
1次側コイル202は、1次側第1巻線202aと、1次側第2巻線202bと、1次側第1巻線202aと1次側第2巻線202bとの中間接続点から引き出されるセンタータップ202mとを有する。1次側第1巻線202aの巻き数は、1次側第2巻線202bの巻き数と等しい。センタータップ202mは、第2のポート60cの高電位側の端子616に接続される。
1次側フルブリッジ回路200は、変圧器400の1次側に設けられる。1次側フルブリッジ回路200は、変圧器400の1次側コイル202と、1次側磁気結合リアクトル204と、第1上アームU1と、第1下アーム/U1と、第2上アームV1と、第2下アーム/V1とを含んで構成される1次側電力変換部の一例である。
第1上アームU1と、第1下アーム/U1と、第2上アームV1と、第2下アーム/V1は、それぞれ、例えば、Nチャネル型のMOSFETと、当該MOSFETの寄生素子であるボディダイオード(寄生ダイオード)とを含んで構成されるスイッチング素子である。各アームに並列にダイオードが追加接続されてもよい。
1次側フルブリッジ回路200は、第1のポート60aの高電位側の端子613に接続される1次側正極母線298と、第1のポート60a及び第2のポート60cの低電位側の端子614に接続される1次側負極母線299とを有する。
1次側正極母線298と1次側負極母線299との間には、第1上アームU1と第1下アーム/U1とが直列に接続されて構成される第1アーム回路207が接続される。第1アーム回路207は、第1上アームU1及び第1下アーム/U1のオンオフのスイッチング動作による電力変換動作が可能な1次側第1電力変換回路部(1次側U相電力変換回路部)の一例である。
1次側正極母線298と1次側負極母線299との間には、第2上アームV1と第2下アーム/V1とが直列に接続されて構成される第2アーム回路211が接続される。第2アーム回路211は、第1アーム回路207と並列に接続される。第2アーム回路211は、第2上アームV1及び第2下アーム/V1のオンオフのスイッチング動作による電力変換動作が可能な1次側第2電力変換回路部(1次側V相電力変換回路部)の一例である。
第1アーム回路207の中点207mと第2アーム回路211の中点211mを接続するブリッジ部分には、1次側コイル202と1次側磁気結合リアクトル204とが設けられる。ブリッジ部分についてより詳細に接続関係について説明すると、第1アーム回路207の中点207mには、1次側磁気結合リアクトル204の1次側第1リアクトル204aの一方端が接続される。そして、1次側第1リアクトル204aの他方端には、1次側コイル202の一方端が接続される。さらに、1次側コイル202の他方端には、1次側磁気結合リアクトル204の1次側第2リアクトル204bの一方端が接続される。さらに、1次側第2リアクトル204bの他方端が第2アーム回路211の中点211mに接続される。
1次側磁気結合リアクトル204は、1次側第1リアクトル204aと、1次側第1リアクトル204aと結合係数kで磁気結合する1次側第2リアクトル204bとを含んで構成される。
中点207mは、第1上アームU1と第1下アーム/U1との間の1次側第1中間ノードであり、中点211mは、第2上アームV1と第2下アーム/V1との間の1次側第2中間ノードである。中点207mは、1次側第1リアクトル204a、1次側コイル202、1次側第2リアクトル204bをこの順に経由して、中点211mに接続される。
第1のポート60aは、1次側フルブリッジ回路200に接続され、1次側正極母線298と1次側負極母線299との間に設けられる入出力ポートである。第1のポート60aは、端子613と端子614とを含んで構成される。
第2のポート60cは、変圧器400の1次側のセンタータップ202mに接続され、1次側負極母線299と1次側コイル202のセンタータップ202mとの間に設けられる入出力ポートである。第2のポート60cは、端子614と端子616とを含んで構成される。
2次側フルブリッジ回路300は、変圧器400の2次側に設けられる。2次側フルブリッジ回路300は、変圧器400の2次側コイル302と、第3上アームU2と、第3下アーム/U2と、第4上アームV2と、第4下アーム/V2とを含んで構成される2次側電力変換部の一例である。
第3上アームU2と、第3下アーム/U2と、第4上アームV2と、第4下アーム/V2は、それぞれ、例えば、Nチャネル型のMOSFETと、当該MOSFETの寄生素子であるボディダイオード(寄生ダイオード)とを含んで構成されるスイッチング素子である。各アームに並列にダイオードが追加接続されてもよい。
2次側フルブリッジ回路300は、第3のポート60bの高電位側の端子618に接続される2次側正極母線398と、第3のポート60bの低電位側の端子620に接続される2次側負極母線399とを有する。
2次側正極母線398と2次側負極母線399との間には、第3上アームU2と第3下アーム/U2とが直列に接続されて構成される第3アーム回路307が接続される。第3アーム回路307は、第3上アームU2及び第3下アーム/U2のオンオフのスイッチング動作による電力変換動作が可能な2次側第1電力変換回路部(2次側U相電力変換回路部)の一例である。
2次側正極母線398と2次側負極母線399との間には、第4上アームV2と第4下アーム/V2とが直列に接続されて構成される第4アーム回路311が接続される。第4アーム回路311は、第3アーム回路307と並列に接続される。第4アーム回路311は、第4上アームV2及び第4下アーム/V2のオンオフのスイッチング動作による電力変換動作が可能な2次側第2電力変換回路部(2次側V相電力変換回路部)の一例である。
第3アーム回路307の中点307mと第4アーム回路311の中点311mを接続するブリッジ部分には、2次側コイル302が設けられる。ブリッジ部分についてより詳細に接続関係について説明すると、第3アーム回路307の中点307mには、2次側コイル302の一方端が接続される。そして、2次側コイル302の他方端は、第4アーム回路311の中点311mに接続される。
中点307mは、第3上アームU2と第3下アーム/U2との間の2次側第1中間ノードであり、中点311mは、第4上アームV2と第4下アーム/V2との間の2次側第2中間ノードである。中点307mは、2次側コイル302を経由して、中点311mに接続される。
第3のポート60bは、2次側フルブリッジ回路300に接続され、2次側正極母線398と2次側負極母線399との間に設けられる入出力ポートである。第3のポート60bは、端子618と端子620とを含んで構成される。
制御回路50は、コンバータ11の電圧変換動作を制御する制御部の一例であり、コンバータ11を電圧変換動作させる制御信号を生成し、コンバータ11に対して出力する。本実施形態の制御回路50は、1次側フルブリッジ回路200及び2次側フルブリッジ回路300内の各アームをオンオフさせる制御信号を出力する。制御回路50は、例えば、CPU(Central Processing Unit)を備えるマイクロコンピュータ、又はマイクロコンピュータを備える電子回路である。
図2は、各アームのオンオフのタイミングチャートの一例を示す図である。図2において、U1は、第1上アームU1のオンオフ波形であり、V1は、第2上アームV1のオンオフ波形であり、U2は、第3上アームU2のオンオフ波形であり、V2は、第4上アームV2のオンオフ波形である。第1下アーム/U1、第2下アーム/V1、第3下アーム/U2、第4下アーム/V2のオンオフ波形は、それぞれ、第1上アームU1、第2上アームV1、第3上アームU2、第4上アームV2のオンオフ波形を反転した波形である。
なお、上下アームの両オンオフ波形間には、上下アームの両方がオンすることで貫通電流が流れないようにデッドタイムが設けられてもよい。また、図2に示される8つのオンオフ波形において、ハイレベルがオン状態を表し、ローレベルがオフ状態を表している。
制御回路50は、4つの期間を含むスイッチングパターンを繰り返して、各アームをオンオフさせる。第1の期間t2−t4は、上アームU1,U2と下アーム/V1,/V2がオンし、且つ、上アームV1,V2と下アーム/U1,/U2がオフする期間である。第2の期間t5−t7は、下アーム/U1,/U2と下アーム/V1,/V2がオンし、且つ、上アームU1,U2と上アームV1,V2がオフする期間である。第3の期間t8−t10は、下アーム/U1,/U2と上アームV1,V2がオンし、且つ、上アームU1,U2と下アーム/V1,/V2がオフする期間である。第4の期間t11−t12は、下アーム/U1,/U2と下アーム/V1,/V2がオンし、且つ、上アームU1,U2と上アームV1,V2がオフする期間である。
制御回路50は、例えば、デューティ比D(=δ/T)を制御することによって、1次側フルブリッジ回路200の昇圧比又は降圧比を変更できる。
デューティ比Dは、1次側フルブリッジ回路200内の第1上アームU1及び第2上アームV1のスイッチング周期Tに占めるオン時間δの割合である。第1上アームU1のデューティ比Dと第2上アームV1のデューティ比Dとは、互いに等しい。1次側フルブリッジ回路200の昇降圧比は、第1のポート60aと第2のポート60cとの間の変圧比である。
したがって、例えば、
1次側フルブリッジ回路200の昇降圧比
=第2のポート60cの電圧/第1のポート60aの電圧
=δ/T
と表される。
なお、オン時間δは、第1上アームU1及び第2上アームV1のオン時間を表すとともに、第3上アームU2及び第4上アームV2のオン時間を表す。また、1次側フルブリッジ回路200に構成されるアームのスイッチング周期Tと2次側フルブリッジ回路300に構成されるアームのスイッチング周期Tは等しい時間である。
また、制御回路50は、U1とV1との位相差αを、定常時、例えば、180度(π)で動作させ、U2とV2との位相差βも、180度(π)で動作させる。U1とV1との位相差αは、タイミングt2とタイミングt8との間の時間差であり、U2とV2との位相差βは、タイミングt1とタイミングt7との間の時間差である。
さらに、制御回路50は、位相差φ(位相差φu及び位相差φv)を制御することによって、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で変圧器400を介して伝送される伝送電力Pを調整できる。
位相差φは、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で同じ相の電力変換回路部間でのスイッチングタイミングのずれ(タイムラグ)である。
位相差φuは、第1アーム回路207と第3アーム回路307との対応する相間でのスイッチングタイミングのずれであり、第1アーム回路207のスイッチングと第3アーム回路307のスイッチングとの間の時間差である。例えば、位相差φuは、第1上アームU1のターンオンのタイミングt2と第3上アームU2のターンオンのタイミングt1との間の差である。第1アーム回路207のスイッチングと第3アーム回路307のスイッチングは、制御回路50によって互いに同相で(すなわち、U相で)制御される。
位相差φvは、第2アーム回路211と第4アーム回路311との対応する相間でのスイッチングタイミングのずれであり、第2アーム回路211のスイッチングと第4アーム回路311のスイッチングとの間の時間差である。例えば、位相差φvは、第2上アームV1のターンオンのタイミングt8と第4上アームV2のターンオンのタイミングt7との間の差である。第2アーム回路211のスイッチングと第4アーム回路311のスイッチングは、制御回路50によって互いに同相で(すなわち、V相で)制御される。
制御回路50は、位相差φuを正値に且つ位相差φvを正値に制御することにより、1次側フルブリッジ回路200から2次側フルブリッジ回路300に伝送電力Pを伝送し、位相差φuを負値に且つ位相差φvを負値に制御することにより、2次側フルブリッジ回路300から1次側フルブリッジ回路200に伝送電力Pを伝送できる。つまり、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で同じ相の電力変換回路部間において、上アームが先にオンした電力変換回路部を備えるフルブリッジ回路から、上アームが後にオンした電力変換回路部を備えるフルブリッジ回路に、伝送電力Pが伝送される。
例えば、図2の場合、第3上アームU2のターンオンのタイミングt1が、第1上アームU1のターンオンのタイミングt2よりも先である。したがって、第3上アームU2を有する第3アーム回路307を備える2次側フルブリッジ回路300から、第1上アームU1を有する第1アーム回路207を備える1次側フルブリッジ回路200に、伝送電力Pが伝送される。同様に、第4上アームV2のターンオンのタイミングt7が、第2上アームV1のターンオンのタイミングt8よりも先である。したがって、第4上アームV2を有する第4アーム回路311を備える2次側フルブリッジ回路300から、第2上アームV1を有する第2アーム回路211を備える1次側フルブリッジ回路200に、伝送電力Pが伝送される。
制御回路50は、通常、位相差φuと位相差φvとを互いに等しくしたまま制御するが、伝送電力Pに要求される精度が満たされる範囲内で、位相差φuと位相差φvとを互いにずらして制御してもよい。すなわち、位相差φuと位相差φvは、通常、互いに同じ値に制御されるが、伝送電力Pに要求される精度が満たされれば、互いに異なる値に制御されてもよい。
制御回路50は、例えば、ポート電圧Vcが第2のポート60cに設定される目標電圧Vcoに一致するように、検出回路により検出されるポート電圧Vcをフィードバックしてデューティ比Dを制御できる。あるいは、別のタイミングで、制御回路50は、例えば、ポート電圧Vaが第1のポート60aに設定される目標電圧Vaoに一致するように、検出回路により検出されるポート電圧Vaをフィードバックしてデューティ比Dを制御できる。
更に、制御回路50は、例えば、伝送電力Pが目標伝送電力Poに一致するように、検出回路により検出される伝送電力Pをフィードバックして位相差φを制御できる。制御回路50は、例えば、第3のポート60bから第1のポート60a及び第2のポート60cに伝送される伝送電力PA+Cが目標伝送電力PA+C に一致するように、検出回路により検出される伝送電力PA+Cをフィードバックして位相差φを制御する電力フィードバック制御を実行する。あるいは、別のタイミングで、制御回路50は、例えば、第1のポート60aから第3のポート60bに伝送される伝送電力Pが目標伝送電力P に一致するように、検出回路により検出される伝送電力Pをフィードバックして位相差φを制御する電力フィードバック制御を実行する。
伝送電力PA+Cは、2次側フルブリッジ回路300から変圧器400を介して1次側フルブリッジ回路200に伝送される電力であり、第1のポート60aに伝送される伝送電力Pと第2のポート60cに伝送される伝送電力Pとの和に等しい。伝送電力Pは、第1のポート60aから出力されるポート電圧Vaと第1のポート60aから出力されるポート電流Iaとの積に等しい。伝送電力Pは、第2のポート60cから出力されるポート電圧Vcと第2のポート60cから出力されるポート電流Icとの積に等しい。伝送電力Pは、第3のポート60bから出力されるポート電圧Vbと第3のポート60bから出力されるポート電流Ibとの積に等しい。
このように、電源回路10は、検出回路により各ポートのポート電圧Va,Vb,Vc及びポート電流Ia,Ib,Icを検出することによって、デューティ比Dと位相差φの少なくとも一方を制御することにより各ポート間で電力変換を行う。
図1において、制御回路50は、任意の故障検出方法に従って、第3上アームU2と第4上アームV2のいずれか一方のショート故障の有無を判定する。
制御回路50は、例えば、第3上アームU2をオフさせる期間での第3上アームU2の両端電圧が略零のオン電圧と等しいと検出される場合、第3上アームU2をショート故障した故障アームと判定する。第3上アームU2の両端電圧は、2次側正極母線398と中点307mとの間の電位差である。同様に、制御回路50は、例えば、第4上アームV2をオフさせる期間での第4上アームV2の両端電圧が略零のオン電圧と等しいと検出される場合、第4上アームV2をショート故障した故障アームと判定する。第4上アームV2の両端電圧は、2次側正極母線398と中点311mとの間の電位差である。
制御回路50は、例えば、第3上アームU2をオフさせる期間での中点307mの電圧が2次側正極母線398の電圧と等しいと検出される場合、第3上アームU2をショート故障した故障アームと判定する。同様に、制御回路50は、例えば、第4上アームV2をオフさせる期間での中点311mの電圧が2次側正極母線398の電圧と等しいと検出される場合、第4上アームV2をショート故障した故障アームと判定する。
制御回路50は、例えば、第3上アームU2と第4上アームV2のうち、一方の上アームをオンさせる期間に電圧が2次側コイル302に印加されていないと検出される場合、オンしていないはずの他方の上アームをショート故障した故障アームと判定する。なぜなら、片方の上アームがショート故障しているときにもう片方の上アームがオンすると、第3上アームU2と2次側コイル302と第4上アームV2とを順に経由するループ回路が発生するからである。
制御回路50は、例えば、第3上アームU2の周囲温度が所定の温度閾値よりも高いと検出される場合、第3上アームU2をショート故障した故障アームと判定し、第4上アームV2の周囲温度が所定の温度閾値よりも高いと検出される場合、第4上アームV2をショート故障した故障アームと判定する。なぜなら、ショート故障時は、異常発熱するからである。
制御回路50は、例えば、第3上アームU2のゲート電流Igの変化に基づいて、第3上アームU2のショート故障の有無を判定し、第4上アームV2のゲート電流Igの変化に基づいて、第4上アームV2のショート故障の有無を判定してもよい。
制御回路50は、第3上アームU2と第4上アームV2のうちショート故障した一方の故障アームが検知された場合、バッテリ62bの正極63の接続先を2次側負極母線399に切り替え且つバッテリ62bの負極64の接続先を2次側正極母線398に切り替える。このような切り替え動作により、2次側フルブリッジ回路300の2次側正極母線398と2次側負極母線399との間に入力されるバッテリ62bの電源電圧の正負を反転させることができる。
本実施形態の電源回路10は、例えば、切り替え回路313を備える。本実施形態の制御回路50は、切り替え回路313を切り替え動作させることによって、正極63の接続先を2次側負極母線399に切り替え且つ負極64の接続先を2次側正極母線398に切り替える。
切り替え回路313は、例えば、第1スイッチ314と、第2スイッチ315とを有する。第1スイッチ314は、正極63の接続先を2次側正極母線398と2次側負極母線399とに選択的に切り替えできるので、正極63の接続先を2次側正極母線398から2次側負極母線399に切り替えできる。一方、第2スイッチ315は、負極64の接続先を2次側正極母線398と2次側負極母線399とに選択的に切り替えできるので、負極64の接続先を2次側負極母線399から2次側正極母線398に切り替えできる。
第1スイッチ314は、例えば、2次側フルブリッジ回路300と端子618との間において、2次側正極母線398に直列に挿入されている。第2スイッチ315は、例えば、2次側フルブリッジ回路300と端子620との間において、2次側負極母線399に直列に挿入されている。第1スイッチ314及び第2スイッチ315の具体例として、トランジスタ、リレーなどが挙げられる。
制御回路50は、第3上アームU2と第4上アームV2のうちショート故障した一方の故障アームが検知された場合、上述のように正極63と負極64の接続先を入れ替えるとともに、第3アーム回路307と第4アーム回路311のうち当該故障アームを含む一方の故障アーム回路とは別の他方のアーム回路のスイッチングの位相を反転させる。
制御回路50は、例えば、ショート故障した第3上アームU2が検知された場合、上述のように正極63と負極64の接続先を入れ替えるとともに、第3上アームU2を含む第3アーム回路307に並列接続される第4アーム回路311のスイッチングの位相を反転させる。これにより、第4アーム回路311に含まれる第4上アームV2と第4下アーム/V2の役割を入れ替えることができる。つまり、第4上アームV2は、下アームの役割を果たし、第4下アーム/V2は、上アームの役割を果たす。したがって、第3上アームU2がショート故障しても、上アームの役割を果たす第4下アーム/V2がオンするタイミングで2次側コイル302にバッテリ62bのポート電圧Vbを印加することができるので、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で電力伝送を継続することができる。
一方、制御回路50は、例えば、ショート故障した第4上アームV2が検知された場合、上述のように正極63と負極64の接続先を入れ替えるとともに、第4上アームV2を含む第4アーム回路311に並列接続される第3アーム回路307のスイッチングの位相を反転させる。これにより、第3アーム回路307に含まれる第3上アームU2と第3下アーム/U2の役割を入れ替えることができる。つまり、第3上アームU2は、下アームの役割を果たし、第3下アーム/U2は、上アームの役割を果たす。したがって、第4上アームV2がショート故障しても、上アームの役割を果たす第3下アーム/U2がオンするタイミングで2次側コイル302にバッテリ62bのポート電圧Vbを印加することができるので、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で電力伝送を継続することができる。
次に、第4上アームV2のショート故障が検知される場合を例に挙げて、第4上アームV2のショート故障が検知される前後で、第3アーム回路307のスイッチングの位相を反転させることについて説明する。
図3は、ショート故障した第4上アームV2が検知される前後の、第3アーム回路307と第1アーム回路207のスイッチング波形の一例を示す図である。図3は、図2と同様に、第3アーム回路307に含まれる第3上アームU2と第3下アーム/U2のオンオフ波形の一例を示し、第1アーム回路207に含まれる第1上アームU1と第1下アーム/U1のオンオフ波形の一例を示す。
ショート故障した第4上アームV2が検知される前の正常時、制御回路50は、第3上アームU2をデューティ比D1(=δ1/T)で制御し、第3下アーム/U2をデューティ比D2(=δ2/T)で制御する。第3上アームU2のオン時間δ1は、ショート故障した第4上アームV2が検知される前の第3上アームU2のターンオンのタイミングtaから、第3上アームU2のターンオフのタイミングまでの経過時間である。一方、第3下アーム/U2のオン時間δ2は、ショート故障した第4上アームV2が検知される前の第3下アーム/U2のターンオンのタイミングtbから、第3下アーム/U2のターンオフのタイミングまでの経過時間である。
オン時間δ2は、オン時間δ1よりも長い。また、ショート故障した第4上アームV2が検知される前の位相差φuは、第1上アームU1のターンオンのタイミングと第3上アームU2のターンオンのタイミングとの間の時間差である。
制御回路50は、ショート故障した第4上アームV2が検知された場合、まず、第3アーム回路307の上下アームのデューティ比を入れ替える。制御回路50は、タイミングtaからのオン時間をδ1からδ2に長く変更することによって、第3上アームU2のデューティ比をD1からD2に大きく変更する。一方、制御回路50は、タイミングtbからのオン時間をδ2からδ1に短く変更することによって、第3下アーム/U2のデューティ比をD2からD1に小さく変更する。
次に、制御回路50は、第3上アームU2のターンオンタイミングをタイミングtaからδ1だけ遅らせて、第3上アームU2をデューティ比D2で制御する。一方、制御回路50は、第3下アーム/U2のターンオンタイミングをタイミングtbからδ1だけ早めて、第3下アーム/U2をデューティ比D1で制御する。なお、制御回路50は、ショート故障した第4上アームV2が検知される前後で、第1アーム回路207の上下アームについてデューティ比の入れ替えもターンオンタイミングの移相も行わなくてよい。
このように、制御回路50は、第3アーム回路307の上下アームについてデューティ比の入れ替えとターンオンタイミングの移相を行うことにより、第1上アームU1のターンオンのタイミングと第3下アーム/U2のターンオンのタイミングとの間の時間差を位相差φuに変更できる。つまり、制御回路50は、ショート故障した第4上アームV2が検知された後の第3下アーム/U2を、第3上アームU2とみなして動作させることができ、ショート故障した第4上アームV2が検知された後の第3上アームU2を、第3下アーム/U2とみなして動作させることができる。
したがって、制御回路50は、ショート故障した第4上アームV2が検知された後でも、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で電力伝送を継続することができる。図3の場合、制御回路50は、ショート故障した第4上アームV2が検知される前後で、2次側フルブリッジ回路300から1次側フルブリッジ回路200に向けて、位相差φuに応じた伝送電力Pを伝送できる。
図1において、制御回路50は、例えば、ショート故障した第3上アームU2が検知された場合、第3下アーム/U2のオンを禁止する。これにより、第3下アーム/U2がオンすることによって第3アーム回路307を上下に流れる貫通電流の発生を防止することができる。同様に、制御回路50は、例えば、ショート故障した第4上アームV2が検知された場合、第4下アーム/V2のオンを禁止する。これにより、第4下アーム/V2がオンすることによって第4アーム回路311を上下に流れる貫通電流の発生を防止することができる。
制御回路50は、例えば、ショート故障した故障アームが第3上アームU2である場合、第1上アームU1及び第1下アーム/U1のオンを禁止してもよい。なぜなら、第3上アームU2がショート故障すると、第3上アームU2のターンオンタイミングと第1上アームU1のターンオンタイミングとの位相差φuをそもそも生成することができないからである。第1上アームU1及び第1下アーム/U1のオンが禁止されることによって、例えば、第1上アームU1及び第1下アーム/U1のオンによって発生する消費電力の削減が可能となる。
同様に、制御回路50は、例えば、ショート故障した故障アームが第4上アームV2である場合、第2上アームV1及び第2下アーム/V1のオンを禁止してもよい。なぜなら、第4上アームV2がショート故障すると、第4上アームV2のターンオンタイミングと第2上アームV1のターンオンタイミングとの位相差φvをそもそも生成することができないからである。第2上アームV1及び第2下アーム/V1のオンが禁止されることによって、例えば、第2上アームV1及び第2下アーム/V1のオンによって発生する消費電力の削減が可能となる。
図4は、電源装置101の動作の一例を示すフローチャートである。
ステップS10で、制御回路50は、第3上アームU2と第4上アームV2のいずれか一方のショート故障の有無を判定する。
ステップS20で、制御回路50は、ステップS10において第3上アームU2と第4上アームV2のいずれか一方のショート故障があると判定した場合、所定の通知先(例えば、メモリや負荷など)に故障情報を通知する。制御回路50は、例えば、1次側フルブリッジ回路200から電力を取得する負荷61a,61cと2次側フルブリッジ回路300から電力を取得する負荷61bの少なくとも一つに、ショート故障した故障アームの発生を知らせる故障情報を通知する。これにより、例えば、故障情報を受信した各負荷が、故障アームの発生に対処する動作を実行できる。
第3上アームU2と第4上アームV2のいずれか一方がショート故障すると、電源装置101は、各負荷に必要な全電力を元通り供給することが難しい。そのため、制御回路50は、予め決められた優先度に応じて各負荷に電力が供給されるように、1次側フルブリッジ回路200及び2次側フルブリッジ回路300を制御する。制御回路50は、優先度が基準よりも低い負荷の動作を停止させてもよいし、優先度が基準よりも低い負荷の動作モードをスリープモード等の低消費電力モードに一時的に切り替えてもよい。制御回路50は、優先度が基準よりも低い負荷を、1次側フルブリッジ回路200又は2次側フルブリッジ回路300から切り離してもよい。
ステップS30で、制御回路50は、故障アーム回路(ショート故障した上アームを有するアーム回路)に含まれる下アームのオンを禁止する。これにより、故障アーム回路の上下アームに流れる貫通電流の発生を防止することができる。
ステップS35で、制御回路50は、故障アーム回路に並列接続される他方のアーム回路に含まれる上下アームのオンを禁止する。他方のアーム回路に含まれる上下アームとは、第3上アームU2がショート故障の場合、第4上アームV2及び第4下アーム/V2に相当し、第4上アームV2がショート故障の場合、第3上アームU2及び第3下アーム/U2に相当する。
他方のアーム回路に含まれる上下アームのオンが禁止されることにより、2次側フルブリッジ回路300に流れる電流が最小限に抑えられる。したがって、例えば、2次側のバッテリ62bの電極の接続先が後述のステップS50で切り替わる時に発生するサージを抑制することができる。
ステップS40で、制御回路50は、ポート電圧Vaが第1のポート60aに設定される目標電圧Vaoに一致するように、1次側フルブリッジ回路200を降圧動作から昇圧動作に切り替える。これにより、第3上アームU2と第4上アームV2のいずれか一方のショート故障によって、2次側フルブリッジ回路300から1次側フルブリッジ回路200に伝送される伝送電力Pが低下又は無くなっても、負荷61aが必要とする電力をバッテリ62cから補うことができる。例えば、1次側フルブリッジ回路200は、第2のポート60cの端子616を介してセンタータップ202mに入力される電力を昇圧し、昇圧した電力を負荷61aに供給する。
なお、ステップS20,S30,S35,S40の各動作は、同時に実行されてもよい。あるいは、ステップS20,S30,S35,S40の各動作の実行順序は、前後してもよい。
ステップS50で、制御回路50は、バッテリ62bの正極63の接続先を2次側負極母線399に切り替え且つバッテリ62bの負極64の接続先を2次側正極母線398に切り替える。この際、制御回路50は、正極63の接続をオープンにしてから、負極64を2次側正極母線398に接続し、負極64を2次側正極母線398に接続してから、正極63を2次側負極母線399に接続するように、切り替え回路313を制御する。あるいは、制御回路50は、負極64の接続をオープンにしてから、正極63を2次側負極母線399に接続し、正極63を2次側負極母線399に接続してから、負極64を2次側正極母線398に接続するように、切り替え回路313を制御する。これにより、バッテリ62bのショートを防止することができる。
ステップS60で、制御回路50は、故障アーム回路に並列接続される他方のアーム回路のスイッチングの位相を、ショート故障した上アームがステップS10において検知される前の位相に対して反転させる。これにより、他方のアーム回路の上下アームの役割を入れ替えることができる。
ステップS70で、制御回路50は、故障アーム回路に対応する1次側のアーム回路に含まれる上下アームのオンを禁止する。例えば、制御回路50は、ショート故障した故障アームが第3上アームU2である場合、第1上アームU1及び第1下アーム/U1のオンを禁止し、ショート故障した故障アームが第4上アームV2である場合、第2上アームV1及び第2下アーム/V1のオンを禁止する。これにより、1次側フルブリッジ回路200で発生する消費電力の削減が可能となる。
ステップS80で、制御回路50は、ポート電圧Vcが第2のポート60cに設定される目標電圧Vcoに一致するように、1次側フルブリッジ回路200を昇圧動作から降圧動作に切り替える。なぜなら、ステップS50,S60の動作によって、2次側フルブリッジ回路200から1次側フルブリッジ回路100への電力伝送が継続するので、負荷61aが必要とする電力を伝送電力Pで補うことができるからである。
図5は、図4のステップS80の実行後の電源装置101の動作の一例を示すフローチャートである。
制御回路50は、通常、ポート電圧Vcが第2のポート60cに設定される目標電圧Vcoに一致するようにデューティ比Dを制御し、ポート電圧Vaが第1のポート60aに設定される目標電圧Vaoに一致するように位相差φを制御する。しかし、正極63と負極64の接続先が入れ替えられるとともに、故障アーム回路に並列接続される他方のアーム回路の位相が反転した後は、伝送可能な伝送電力Pの最大値が低下する(概ね、正常時の半分)。したがって、比較的優先度の高い負荷61aの要求電力が高くなる等によって、各負荷の要求電力が電源回路10が供給可能な最大電力を超え、位相差φの絶対値が上限値(ガード値)に達する可能性がある。一方、負荷61aは、ポート電圧Vaのある程度の変動を吸収できる。そこで、図4のステップS80の実行後、制御回路50は、図5に示される手順に従って、ポート電圧Vcの維持をポート電圧Vaの維持よりも優先させ、且つ、位相差φの絶対値が上限値で固定されないように、ポート電圧Vaの電圧低下を許容する制御を行う。
ステップS110で、制御回路50は、位相差φが上限値φmaxに等しいか否かを判定する。ショート故障時に伝送可能な伝送電力Pは、正常時に伝送可能な伝送電力Pに対して約半分であるので、正常時の位相差φの上限値φmaxがφとすると、ショート故障時の位相差φの上限値φmaxは「φ/2」である。
ステップS120で、制御回路50は、位相差φが「φ/2」で固定されているとステップS110において判定した場合、ポート電圧Vaの許容電圧範囲の下限値Vaminを正常時の値よりも低い値に再設定する。これにより、ショート故障時のポート電圧Vaが、正常時よりも低下することを許容することができる。
ステップS130で、制御回路50は、ポート電圧Vaの検出値がステップS120において再設定された下限値Vaminよりも低いか否かを判定する。ポート電圧Vaの検出値がステップS120において再設定された下限値Vaminよりも低い場合、負荷61aの要求電力を伝送電力Pだけで賄うことは限界である。
そこで、ステップS140で、制御回路50は、ポート電圧Vaの検出値がステップS120において再設定された下限値Vaminよりも低い場合、1次側フルブリッジ回路200の動作を降圧動作から昇圧動作に切り替える。これにより、負荷61aの要求電力を、伝送電力Pだけでなくバッテリ62cからの電力でも賄うことができる。
ステップS150で、制御回路50は、所定の通知先(例えば、メモリや負荷など)に異常情報を通知する。制御回路50は、例えば、負荷61a,61b,61cの少なくとも一つの負荷に、電源装置101がショート故障よりも深刻な状況下であることを知らせる異常情報を通知する。
図6は、電力変換装置の一実施形態である電源装置102の構成の一例を示す図である。図1の構成と同様の構成についての説明は、省略する。電源装置102は、例えば、電源回路12と、制御回路50とを備える。電源回路12は、並列に接続される複数のコンバータを有する。コンバータ13とコンバータ14は、図1のコンバータ11と同一の構成を有する。コンバータ13が供給可能な最大電力とコンバータ14が供給可能な最大電力は、同じでも異なってもよい。
コンバータ13,14のそれぞれの1次側正極母線298は、互いに接続される。コンバータ13,14のそれぞれの1次側負極母線299は、互いに接続される。コンバータ13,14のそれぞれのセンタータップ202mは、互いに接続される。コンバータ13,14のそれぞれの2次側正極母線398は、互いに接続される。コンバータ13,14のそれぞれの2次側負極母線399は、互いに接続される。
制御回路50は、コンバータ13,14のいずれか一方の2次側の上アームのショート故障が検知された場合、バッテリ62bの電極の接続先を切り替え回路313により入れ替えるとともに、第3アーム回路307と第4アーム回路311のうち当該故障アームを含む一方の故障アーム回路とは別の他方のアーム回路のスイッチングの位相を反転させる。これにより、コンバータ13,14において、ショート故障が検知された方のコンバータが供給可能な最大電力は、ショート故障の検知前後でほぼ半減するが、ショート故障が検知されない方のコンバータが供給可能な最大電力は、ショート故障の前後でほぼ不変にすることができる。
以上、電力変換装置を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
例えば、各アームは、MOSFETに限られず、オンオフ動作する他の半導体スイッチング素子でもよい。例えば、各アームは、IGBT、MOSFETなどの絶縁ゲートによる電圧制御型パワー素子でもよいし、バイポーラトランジスタでもよい。
また、上述の説明において、1次側を2次側と定義し、2次側を1次側と定義してもよい。
10,12 電源回路
11,13,14 コンバータ
50 制御回路
62b バッテリ
63 正極
64 負極
101,102 電源装置
200 1次側フルブリッジ回路
202 1次側コイル
202m センタータップ
204 1次側磁気結合リアクトル
207 第1アーム回路
207m 中点
211 第2アーム回路
211m 中点
298 1次側正極母線
299 1次側負極母線
300 2次側フルブリッジ回路
302 2次側コイル
307 第3アーム回路
307m 中点
311 第4アーム回路
311m 中点
313 切り替え回路
314 第1スイッチ
315 第2スイッチ
398 2次側正極母線
399 2次側負極母線
400 変圧器
U1,V1,U2,V2 上アーム
/U1,/V1,/U2,/V2 下アーム

Claims (7)

  1. 1次側コイルと2次側コイルとを有する変圧器と、
    第1上アームと第1下アームとが直列に接続される第1アーム回路と、第2上アームと第2下アームとが直列に接続される第2アーム回路とを有し、前記第1上アームと前記第1下アームとの中点と前記第2上アームと前記第2下アームとの中点を接続するブリッジ部分に前記1次側コイルが設けられる1次側フルブリッジ回路と、
    第3上アームと第3下アームとが直列に接続される第3アーム回路と、第4上アームと第4下アームとが直列に接続される第4アーム回路とを有し、前記第3上アームと前記第3下アームとの中点と前記第4上アームと前記第4下アームとの中点を接続するブリッジ部分に前記2次側コイルが設けられる2次側フルブリッジ回路と、
    前記第1アーム回路のスイッチングと前記第3アーム回路のスイッチングとの間の第1位相差と、前記第2アーム回路のスイッチングと前記第4アーム回路のスイッチングとの間の第2位相差とを調整して、前記1次側フルブリッジ回路と前記2次側フルブリッジ回路との間で伝送される伝送電力を制御する制御部とを備え、
    前記制御部は、前記第3上アームと前記第4上アームのうちショート故障した一方の故障アームが検知された場合、電源の正極の接続先を前記2次側フルブリッジ回路の負極母線に切り替え且つ前記電源の負極の接続先を前記2次側フルブリッジ回路の正極母線に切り替えるとともに、前記第3アーム回路と前記第4アーム回路のうち前記故障アームを含む一方の故障アーム回路とは別の他方のアーム回路のスイッチングの位相を反転させる、電力変換装置。
  2. 前記制御部は、前記第3下アームと前記第4下アームのうち、前記故障アーム回路に含まれる下アームのオンを禁止する、請求項1に記載の電力変換装置。
  3. 前記制御部は、前記故障アームが前記第3上アームである場合、前記第1上アーム及び前記第1下アームのオンを禁止し、前記故障アームが前記第4上アームである場合、前記第2上アーム及び前記第2下アームのオンを禁止する、請求項2に記載の電力変換装置。
  4. 前記制御部は、前記電源の正極の接続先を前記2次側フルブリッジ回路の負極母線に切り替え且つ前記電源の負極の接続先を前記2次側フルブリッジ回路の正極母線に切り替える前に、前記他方のアーム回路に含まれる上アーム及び下アームのオンを禁止する、請求項2又は3に記載の電力変換装置。
  5. 前記1次側コイルの両端に接続される2つのリアクトルが磁気結合して構成される磁気結合リアクトルが前記1次側フルブリッジ回路の前記ブリッジ部分に設けられ、
    前記1次側フルブリッジ回路は、前記故障アームが検知された場合、前記1次側コイルのセンタータップに入力される電力を昇圧し、昇圧した電力を負荷に供給する、請求項1に記載の電力変換装置。
  6. 前記制御部は、前記1次側フルブリッジ回路から電力を取得する負荷と前記2次側フルブリッジ回路から電力を取得する負荷の少なくとも一方に、故障情報を通知する、請求項1に記載の電力変換装置。
  7. 前記変圧器と前記1次側フルブリッジ回路と前記2次側フルブリッジ回路とを備えるコンバータを複数備え、
    前記1次側フルブリッジ回路のそれぞれの正極母線は、互いに接続され、
    前記1次側フルブリッジ回路のそれぞれの負極母線は、互いに接続され、
    前記2次側フルブリッジ回路のそれぞれの正極母線は、互いに接続され、
    前記2次側フルブリッジ回路のそれぞれの負極母線は、互いに接続される、請求項1から6のいずれか一項に記載の電力変換装置。
JP2014240443A 2014-11-27 2014-11-27 電力変換装置 Expired - Fee Related JP6102897B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014240443A JP6102897B2 (ja) 2014-11-27 2014-11-27 電力変換装置
US14/948,778 US9537414B2 (en) 2014-11-27 2015-11-23 Power conversion apparatus that switches electrode connection when a short-circuit is detected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240443A JP6102897B2 (ja) 2014-11-27 2014-11-27 電力変換装置

Publications (2)

Publication Number Publication Date
JP2016103891A JP2016103891A (ja) 2016-06-02
JP6102897B2 true JP6102897B2 (ja) 2017-03-29

Family

ID=56079816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240443A Expired - Fee Related JP6102897B2 (ja) 2014-11-27 2014-11-27 電力変換装置

Country Status (2)

Country Link
US (1) US9537414B2 (ja)
JP (1) JP6102897B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929943B2 (ja) * 2014-02-21 2016-06-08 トヨタ自動車株式会社 電力変換装置及び電力変換方法
FR3033102B1 (fr) * 2015-02-20 2018-05-11 Devialet Alimentation a decoupage a branches commandees
JP6819525B2 (ja) * 2017-09-20 2021-01-27 トヨタ自動車株式会社 電力変換回路
JP7030254B2 (ja) * 2018-06-25 2022-03-07 ダイヤゼブラ電機株式会社 Dc-dcコンバータ
JP7306326B2 (ja) * 2020-05-25 2023-07-11 Tdk株式会社 Dabコンバータ
US11575326B2 (en) * 2020-11-27 2023-02-07 Lear Corporation Wide high voltage-input range DC-DC converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199741A (ja) * 2001-11-26 2002-07-12 Hitachi Ltd Igbt用ゲート駆動装置
US7245510B2 (en) * 2005-07-07 2007-07-17 Power Integrations, Inc. Method and apparatus for conditional response to a fault condition in a switching power supply
JP2009177990A (ja) * 2008-01-28 2009-08-06 Hitachi Ltd スイッチング電源装置及びこれを用いた電気機器
JP5815939B2 (ja) 2010-02-17 2015-11-17 株式会社豊田中央研究所 電力変換回路及び電力変換回路システム
JP5682611B2 (ja) * 2012-11-09 2015-03-11 トヨタ自動車株式会社 電力変換装置及び電力変換装置の故障検出方法
JP5807649B2 (ja) * 2013-02-15 2015-11-10 トヨタ自動車株式会社 電力変換装置及び電力変換方法

Also Published As

Publication number Publication date
US9537414B2 (en) 2017-01-03
JP2016103891A (ja) 2016-06-02
US20160156274A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6102897B2 (ja) 電力変換装置
US9793791B2 (en) Power conversion apparatus and method for starting up the same
JP6135663B2 (ja) 電力変換装置及び電力変換方法
US9419532B2 (en) Electric power conversion system and electric power conversion method for stopping power upon a failure
US9450499B2 (en) Electric power conversion circuit system
US9685877B2 (en) Power conversion apparatus
US9209701B2 (en) Electric power conversion system
US9325244B2 (en) Power supply system
US9525356B2 (en) Electric power conversion system
US11121634B2 (en) Bidirectional DC-to-DC converter with inrush current suppression
US20150295504A1 (en) Electric power conversion apparatus and method of controlling the same
US9602007B2 (en) Power conversion apparatus
US9712064B2 (en) Protection circuitry for power conversion device and power conversion method using the same
US9744856B2 (en) Power conversion apparatus
JP2014096944A (ja) 電力変換装置及び電力変換装置の故障検出方法
JP2013034268A (ja) Dcdcコンバータの制御装置
JP2016195511A (ja) 電力変換装置
US20160172984A1 (en) Electric power conversion system
US9871402B2 (en) Electric power conversion apparatus and method of controlling the same
JP2021065039A (ja) スイッチの駆動装置
CA2996871C (en) Power converting device and method of controlling power converting device
JP2020058205A (ja) スイッチの駆動装置
KR20190063340A (ko) 멀티로드 제어가 가능한 dc-dc 컨버터

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R151 Written notification of patent or utility model registration

Ref document number: 6102897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees