JP6135663B2 - 電力変換装置及び電力変換方法 - Google Patents

電力変換装置及び電力変換方法 Download PDF

Info

Publication number
JP6135663B2
JP6135663B2 JP2014266323A JP2014266323A JP6135663B2 JP 6135663 B2 JP6135663 B2 JP 6135663B2 JP 2014266323 A JP2014266323 A JP 2014266323A JP 2014266323 A JP2014266323 A JP 2014266323A JP 6135663 B2 JP6135663 B2 JP 6135663B2
Authority
JP
Japan
Prior art keywords
secondary side
circuit
primary
voltage
lower arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014266323A
Other languages
English (en)
Other versions
JP2016127694A (ja
Inventor
誠文 内原
誠文 内原
一行 佐々木
一行 佐々木
知洋 宇佐美
知洋 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014266323A priority Critical patent/JP6135663B2/ja
Priority to US14/970,920 priority patent/US9590515B2/en
Publication of JP2016127694A publication Critical patent/JP2016127694A/ja
Application granted granted Critical
Publication of JP6135663B2 publication Critical patent/JP6135663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、電力変換装置及び電力変換方法に関する。
従来、複数の1次側ポートを含む1次側変換回路と、複数の2次側ポートを含み、1次側変換回路と変圧器で磁気結合する2次側変換回路との間で伝送される伝送電力を、位相差φに応じて調整する電力変換装置が知られている(例えば、特許文献1を参照)。
特開2011−193713号公報
しかしながら、起動時に高圧バッテリを接続する際、2次側(高圧側)変換回路の短絡故障を検知できないと、該回路に貫通電流が流れてしまい、機器の故障等が生じる恐れがある。
そこで、起動時に、2次側変換回路の短絡故障を検知することを目的とする。
上記目的を達成するため、一態様によれば、
1次側回路に備えられる1次側ポートと、前記1次側回路と変圧器で磁気結合し、2次側第1上アーム、2次側第2上アーム、2次側第1下アーム、2次側第2下アーム、キャパシタとを含む2次側回路に備えられる2次側ポートと、を有し、前記1次側回路のスイッチングと前記2次側回路のスイッチングとの位相差を変更して、前記1次側回路と前記2次側回路との間で伝送される伝送電力を調整する、電力変換方法であって、
前記1次側回路から前記2次側回路に電力を伝送し、前記キャパシタを充電する充電ステップと、
前記キャパシタの電圧が、所定値以上であるか否かを判定する判定ステップと、
前記キャパシタの電圧が、所定値以上である場合に、
前記1次側回路の駆動を停止する停止ステップと、
前記2次側第1上アーム又は前記2次側第2上アームを駆動する駆動ステップと、
前記2次側ポートの電圧変化の有無に基づいて、前記2次側第1下アーム又は前記2次側第2下アームの短絡故障の有無を検知する検知ステップと、を有する、電力変換方法が提供される。
一態様によれば、起動時に、2次側変換回路の短絡故障を検知することができる。
電力変換装置の実施形態である電源装置の構成例を示したブロック図 制御部の構成例を示したブロック図 1次側回路及び2次側回路のスイッチング例を示したタイミングチャート 電力変換装置の故障検知方法の一例を示すフローチャート 電力変換装置の動作の一例を示すタイミングチャート 電力変換装置の動作の一例を示すタイミングチャート 電流の向きと経路の一例を矢印で示す図 電流の向きと経路の一例を矢印で示す図 電流の向きと経路の一例を矢印で示す図
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
<電源装置101の構成>
図1は、電力変換装置の実施形態である電源装置101の構成例を示したブロック図である。電源装置101は、例えば、電源回路10と、制御部50と、センサ部70とを備えた電源システムである。電源装置101は、例えば、自動車等の車両に搭載され、車載の各負荷に配電するシステムである。このような車両の具体例として、ハイブリッド車、プラグインハイブリッド車、電気自動車などが挙げられる。
電源装置101は、例えば、1次側高電圧系負荷(例えば、電動パワーステアリング装置(EPS)、等)61aが接続される第1入出力ポート60aと、1次側低電圧系負荷(例えば、電子制御装置(ECU)、電子制御ブレーキシステム(ECB)、等)61cが接続される第2入出力ポート60cとを、1次側ポートとして有している。1次側低電圧系電源62c(例えば、補機バッテリ)は、1次側低電圧系電源62cと同じ電圧系(例えば、12V系)で動作する1次側低電圧系負荷61cに電力を供給する。また、1次側低電圧系電源62cは、1次側低電圧系電源62cと異なる電圧系(例えば、12V系よりも高い48V系)で動作する1次側高電圧系負荷61aに、電源回路10に構成される1次側変換回路20によって昇圧された電力を供給する。1次側低電圧系電源62cの具体例として、鉛バッテリ等の二次電池が挙げられる。
電源装置101は、例えば、2次側高電圧系負荷61b及び2次側高電圧系電源62b(例えば、主機バッテリ)が接続される第3入出力ポート60bを、2次側ポートとして有している。2次側高電圧系電源62bは、2次側高電圧系電源62bと同じ電圧系(例えば、12V系及び48V系よりも高い288V系)で動作する2次側高電圧系負荷61bに電力を供給する。
電源回路10は、上述の3つの入出力ポートを有し、それらの3つの入出力ポートのうちから任意の2つの入出力ポートが選択され、当該2つの入出力ポートの間で電力変換を行う機能を有する電力変換回路である。なお、電源回路10を備えた電源装置101は、少なくとも3つ以上の複数の入出力ポートを有し、少なくとも3つ以上の複数の入出力ポートのうちどの2つの入出力ポート間でも電力を変換することが可能な装置でもよい。
ポート電力Pa,Pc,Pbは、それぞれ、第1入出力ポート60a,第2入出力ポート60c,第3入出力ポート60bにおける入出力電力(入力電力又は出力電力)である。ポート電圧Va,Vc,Vbは、それぞれ、第1入出力ポート60a,第2入出力ポート60c,第3入出力ポート60bにおける入出力電圧(入力電圧又は出力電圧)である。ポート電流Ia,Ic,Ibは、それぞれ、第1入出力ポート60a,第2入出力ポート60c,第3入出力ポート60bにおける入出力電流(入力電流又は出力電流)である。
電源回路10は、第1入出力ポート60aに設けられるキャパシタC1と、第2入出力ポート60cに設けられるキャパシタC3と、第3入出力ポート60bに設けられるキャパシタC2とを備えている。キャパシタC1,C2,C3の具体例として、フィルムコンデンサ、アルミニウム電解コンデンサ、セラミックコンデンサ、固体高分子コンデンサなどが挙げられる。
キャパシタC1は、第1入出力ポート60aの高電位側の端子613と、第1入出力ポート60a及び第2入出力ポート60cの低電位側の端子614との間に挿入される。キャパシタC3は、第2入出力ポート60cの高電位側の端子616と、第1入出力ポート60a及び第2入出力ポート60cの低電位側の端子614との間に挿入される。キャパシタC2は、第3入出力ポート60bの高電位側の端子618と、第3入出力ポート60bの低電位側の端子620との間に挿入される。
キャパシタC1,C2,C3は、電源回路10の内部に設けられてもよいし、電源回路10の外部に設けられてもよい。
電源回路10は、1次側変換回路20と、2次側変換回路30とを含んで構成された電力変換回路である。なお、1次側変換回路20と2次側変換回路30とは、1次側磁気結合リアクトル204を介して接続され、且つ、変圧器400(センタータップ式変圧器)で磁気結合されている。第1入出力ポート60a及び第2入出力ポート60cから構成される1次側ポートと、第3入出力ポート60bから構成される2次側ポートとは、変圧器400を介して接続されている。
1次側変換回路20は、1次側フルブリッジ回路200と、第1入出力ポート60aと、第2入出力ポート60cとを含んで構成された1次側回路である。1次側フルブリッジ回路200は、変圧器400の1次側コイル202と、1次側磁気結合リアクトル204と、1次側第1上アームU1と、1次側第1下アーム/U1と、1次側第2上アームV1と、1次側第2下アーム/V1とを含んで構成された1次側電力変換部である。ここで、1次側第1上アームU1と、1次側第1下アーム/U1と、1次側第2上アームV1と、1次側第2下アーム/V1は、それぞれ、例えば、Nチャネル型のMOSFETと、当該MOSFETの寄生素子であるボディダイオードとを含んで構成されたスイッチング素子である。当該MOSFETに並列にダイオードが追加接続されてもよい。
1次側フルブリッジ回路200は、第1入出力ポート60aの高電位側の端子613に接続される1次側正極母線298と、第1入出力ポート60a及び第2入出力ポート60cの低電位側の端子614に接続される1次側負極母線299とを有している。
1次側正極母線298と1次側負極母線299との間には、1次側第1上アームU1と、1次側第1下アーム/U1とを直列接続した1次側第1アーム回路207が取り付けられている。1次側第1アーム回路207は、1次側第1上アームU1及び1次側第1下アーム/U1のオンオフのスイッチング動作による電力変換動作が可能な1次側第1電力変換回路部(1次側U相電力変換回路部)である。さらに、1次側正極母線298と1次側負極母線299との間には、1次側第2上アームV1と、1次側第2下アーム/V1とを直列接続した1次側第2アーム回路211が1次側第1アーム回路207と並列に取り付けられている。1次側第2アーム回路211は、1次側第2上アームV1及び1次側第2下アーム/V1のオンオフのスイッチング動作による電力変換動作が可能な1次側第2電力変換回路部(1次側V相電力変換回路部)である。
1次側第1アーム回路207の中点207mと1次側第2アーム回路211の中点211mを接続するブリッジ部分には、1次側コイル202と1次側磁気結合リアクトル204とが設けられている。ブリッジ部分についてより詳細に接続関係について説明すると、1次側第1アーム回路207の中点207mには、1次側磁気結合リアクトル204の1次側第1リアクトル204aの一方端が接続される。そして、1次側第1リアクトル204aの他方端には、1次側コイル202の一方端が接続される。さらに、1次側コイル202の他方端には、1次側磁気結合リアクトル204の1次側第2リアクトル204bの一方端が接続される。それから、1次側第2リアクトル204bの他方端が1次側第2アーム回路211の中点211mに接続される。なお、1次側磁気結合リアクトル204は、1次側第1リアクトル204aと、1次側第1リアクトル204aと結合係数k1で磁気結合する1次側第2リアクトル204bとを含んで構成される。
中点207mは、1次側第1上アームU1と1次側第1下アーム/U1との間の1次側第1中間ノードであり、中点211mは、1次側第2上アームV1と1次側第2下アーム/V1との間の1次側第2中間ノードである。
第1入出力ポート60aは、1次側正極母線298と1次側負極母線299との間に設けられるポートである。第1入出力ポート60aは、端子613と端子614とを含んで構成される。第2入出力ポート60cは、1次側負極母線299と1次側コイル202のセンタータップ202mとの間に設けられるポートである。第2入出力ポート60cは、端子614と端子616とを含んで構成される。
第1入出力ポート60aのポート電圧Va及び第2入出力ポート60cのポート電圧Vcは、1次側低電圧系電源62cの電圧に依存して変動する。
センタータップ202mは、第2入出力ポート60cの高電位側の端子616に接続されている。センタータップ202mは、1次側コイル202に構成される1次側第1巻線202aと1次側第2巻線202bとの中間接続点である。
2次側変換回路30は、2次側フルブリッジ回路300と、第3入出力ポート60bとを含んで構成された2次側回路である。2次側フルブリッジ回路300は、変圧器400の2次側コイル302と、2次側磁気結合リアクトル304と、2次側第1上アームU2と、2次側第1下アーム/U2と、2次側第2上アームV2と、2次側第2下アーム/V2とを含んで構成された2次側電力変換部である。ここで、2次側第1上アームU2と、2次側第1下アーム/U2と、2次側第2上アームV2と、2次側第2下アーム/V2は、それぞれ、例えば、Nチャネル型のMOSFETと、当該MOSFETの寄生素子であるボディダイオードとを含んで構成されたスイッチング素子である。当該MOSFETに並列にダイオードが追加接続されてもよい。
2次側フルブリッジ回路300は、第3入出力ポート60bの高電位側の端子618に接続される2次側正極母線398と、第3入出力ポート60bの低電位側の端子620に接続される2次側負極母線399とを有している。
2次側正極母線398と2次側負極母線399との間には、2次側第1上アームU2と、2次側第1下アーム/U2とを直列接続した2次側第1アーム回路307が取り付けられている。2次側第1アーム回路307は、2次側第1上アームU2及び2次側第1下アーム/U2のオンオフのスイッチング動作による電力変換動作が可能な2次側第1電力変換回路部(2次側U相電力変換回路部)である。さらに、2次側正極母線398と2次側負極母線399との間には、2次側第2上アームV2と、2次側第2下アーム/V2とを直列接続した2次側第2アーム回路311が2次側第1アーム回路307と並列に取り付けられている。2次側第2アーム回路311は、2次側第2上アームV2及び2次側第2下アーム/V2のオンオフのスイッチング動作による電力変換動作が可能な2次側第2電力変換回路部(2次側V相電力変換回路部)である。
2次側第1アーム回路307の中点307mと2次側第2アーム回路311の中点311mを接続するブリッジ部分には、2次側コイル302と2次側磁気結合リアクトル304とが設けられている。ブリッジ部分についてより詳細に接続関係について説明すると、2次側第1アーム回路307の中点307mには、2次側磁気結合リアクトル304の2次側第1リアクトル304aの一方端が接続される。そして、2次側第1リアクトル304aの他方端には、2次側コイル302の一方端が接続される。さらに、2次側コイル302の他方端には、2次側磁気結合リアクトル304の2次側第2リアクトル304bの一方端が接続される。それから、2次側第2リアクトル304bの他方端が2次側第2アーム回路311の中点311mに接続される。なお、2次側磁気結合リアクトル304は、2次側第1リアクトル304aと、2次側第1リアクトル304aと結合係数k2で磁気結合する2次側第2リアクトル304bとを含んで構成される。
中点307mは、2次側第1上アームU2と2次側第1下アーム/U2との間の2次側第1中間ノードであり、中点311mは、2次側第2上アームV2と2次側第2下アーム/V2との間の2次側第2中間ノードである。
第3入出力ポート60bは、2次側正極母線398と2次側負極母線399との間に設けられるポートである。第3入出力ポート60bは、端子618と端子620とを含んで構成される。
第3入出力ポート60bのポート電圧Vbは、2次側低電圧系電源62bの電圧に依存して変動する。
センタータップ302mは、2次側コイル302に構成される2次側第1巻線302aと2次側第2巻線302bとの中間接続点である。
図1において、電源装置101は、センサ部70を備えている。センサ部70は、第1乃至第3入出力ポート60a,60c,60bの少なくとも一つのポートにおける入出力値Yを所定の検出周期で検出し、その検出した入出力値Yに対応する検出値Ydを制御部50に対して出力する検出手段である。検出値Ydは、入出力電圧を検出して得られた検出電圧でもよいし、入出力電流を検出して得られた検出電流でもよいし、入出力電力を検出して得られた検出電力でもよい。センサ部70は、電源回路10の内部に備えられても外部に備えられてもよい。
センサ部70は、例えば、第1乃至第3入出力ポート60a,60c,60bの少なくとも一つのポートに生ずる入出力電圧を検出する電圧検出部を有している。センサ部70は、例えば、入出力電圧Vaと入出力電圧Vcの少なくとも一方の検出電圧を1次側電圧検出値として出力する1次側電圧検出部と、入出力電圧Vbの検出電圧を2次側電圧検出値として出力する2次側電圧検出部とを有している。
センサ部70の電圧検出部は、例えば、少なくとも一つのポートの入出力電圧値をモニタする電圧センサと、該電圧センサによってモニタされた入出力電圧値に対応する検出電圧を制御部50に対して出力する電圧検出回路とを有している。
電源装置101は、制御部50を備えている。制御部50は、例えば、CPUを内蔵するマイクロコンピュータを備えた電子回路である。制御部50は、電源回路10の内部に備えられても外部に備えられてもよい。
制御部50は、所定の制御パラメータXの値を変化させることによって、電源回路10で行われる電力変換動作をフィードバック制御し、電源回路10の第1乃至第3の各入出力ポート60a,60c,60bにおける入出力値Yを調整できる。主な制御パラメータXとして、位相差φ及びデューティ比D(オン時間δ)の2種類の制御変数が挙げられる。
位相差φは、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で同じ相の電力変換回路部間でのスイッチングタイミングのずれ(タイムラグ)である。デューティ比D(オン時間δ)は、1次側フルブリッジ回路200及び2次側フルブリッジ回路300に構成される各電力変換回路部でのスイッチング波形のデューティ比(オン時間)である。
これらの2つの制御パラメータXは、互いに独立に制御されることが可能である。制御部50は、位相差φ及びデューティ比D(オン時間δ)を用いた1次側フルブリッジ回路200及び2次側フルブリッジ回路300のデューティ比制御及び/又は位相制御によって、電源回路10の各入出力ポートにおける入出力値Yを変化させる。
制御部50は、第1乃至第3入出力ポート60a,60c,60bの少なくとも一つのポートにおける入出力値Yの検出値Ydが、該ポートに設定された目標値Yoに収束する値に、位相差φ又はデューティ比Dが変化するように、電源回路10による電力変換動作をフィードバック制御する。目標値Yoは、例えば、各入出力ポートに接続される負荷(例えば、1次側低電圧系負荷61c等)毎に規定される駆動条件に基づいて、制御部50又は制御部50以外の所定の装置によって設定される指令値である。目標値Yoは、電力がポートから出力されるときには出力目標値として機能し、電力がポートに入力されるときには入力目標値として機能し、目標電圧値でもよいし、目標電流値でもよいし、目標電力値でもよい。
また、制御部50は、1次側変換回路20と2次側変換回路30との間で変圧器400を介して伝送される伝送電力Pが、設定された目標伝送電力に収束する値に、位相差φが変化するように、電源回路10による電力変換動作をフィードバック制御する。伝送電力は、電力伝送量とも呼ばれる。目標伝送電力は、例えば、いずれかのポートにおける検出値Ydと目標値Yoとの偏差に基づいて、制御部50又は制御部50以外の所定の装置によって設定される指令値である。
図2は、制御部50のブロック図である。制御部50は、1次側変換回路20の1次側第1上アームU1等の各スイッチング素子と2次側変換回路30の2次側第1上アームU2等の各スイッチング素子のスイッチング制御を行う機能を有する制御部である。制御部50は、電力変換モード決定処理部502と、位相差φ決定処理部504と、オン時間δ決定処理部506と、1次側スイッチング処理部508と、2次側スイッチング処理部510等を含んで構成される。制御部50は、例えば、CPUを内蔵するマイクロコンピュータを備えた電子回路である。
電力変換モード決定処理部502は、例えば、所定の外部信号(例えば、いずれかのポートにおける検出値Ydと目標値Yoとの偏差を表す信号)に基づいて、次に述べる電源回路10の電力変換モードA〜Fの中から動作モードを選択して決定する。電力変換モードは、第1入出力ポート60aから入力された電力を変換して第2入出力ポート60cへ出力するモードAと、第1入出力ポート60aから入力された電力を変換して第3入出力ポート60bへ出力するモードBがある。
そして、第2入出力ポート60cから入力された電力を変換して第1入出力ポート60aへ出力するモードCと、第2入出力ポート60cから入力された電力を変換して第3入出力ポート60bへ出力するモードDがある。
さらに、第3入出力ポート60bから入力された電力を変換して第1入出力ポート60aへ出力するモードEと、第3入出力ポート60bから入力された電力を変換して第2入出力ポート60cへ出力するモードFがある。
位相差φ決定処理部504は、電源回路10をDC−DCコンバータ回路として機能させるために、1次側変換回路20と2次側変換回路30との間でのスイッチング素子のスイッチング周期運動の位相差φを設定する機能を有する。
オン時間δ決定処理部506は、1次側変換回路20と2次側変換回路30をそれぞれ昇降圧回路として機能させるために、1次側変換回路20と2次側変換回路30のスイッチング素子のオン時間δを設定する機能を有する。
1次側スイッチング処理部508は、電力変換モード決定処理部502と位相差φ決定処理部504とオン時間δ決定処理部506の出力に基づいて、1次側第1上アームU1と、1次側第1下アーム/U1と、1次側第2上アームV1と、1次側第2下アーム/V1の各スイッチング素子をスイッチング制御する機能を有する。
2次側スイッチング処理部510は、電力変換モード決定処理部502と位相差φ決定処理部504とオン時間δ決定処理部506の出力に基づいて、2次側第1上アームU2と、2次側第1下アーム/U2と、2次側第2上アームV2と、2次側第2下アーム/V2の各スイッチング素子をスイッチング制御する機能を有する。
制御部50は、図2に示す処理に限定されず、1次側変換回路20と2次側変換回路30との間で伝送される伝送電力を制御するために必要とされる様々な処理を行うことが可能である。
<電源装置101の動作>
上記電源装置101の動作について、図1及び図2を用いて説明する。例えば、電源回路10の電力変換モードをモードDとして動作させることを要求する外部信号が入力されてきた場合には、制御部50の電力変換モード決定処理部502は、電源回路10の電力変換モードをモードDとして決定する。このとき、第2入出力ポート60cに入力された電圧が1次側変換回路20の昇圧機能によって昇圧され、その昇圧された電圧の電力が電源回路10のDC−DCコンバータ回路としての機能によって第3入出力ポート60b側へと伝送され、第3入出力ポート60bから出力される。
ここで、1次側変換回路20の昇降圧機能について詳細に説明する。第2入出力ポート60cと第1入出力ポート60aについて着目すると、第2入出力ポート60cの端子616は、1次側第1巻線202aと、1次側第1巻線202aに直列接続される1次側第1リアクトル204aを介して、1次側第1アーム回路207の中点207mに接続される。そして、1次側第1アーム回路207の両端は、第1入出力ポート60aに接続されているため、第2入出力ポート60cの端子616と第1入出力ポート60aとの間には昇降圧回路が取り付けられていることとなる。
さらに、第2入出力ポート60cの端子616は、1次側第2巻線202bと、1次側第2巻線202bに直列接続される1次側第2リアクトル204bを介して、1次側第2アーム回路211の中点211mに接続される。そして、1次側第2アーム回路211の両端は、第1入出力ポート60aに接続されているため、第2入出力ポート60cの端子616と第1入出力ポート60aとの間には、昇降圧回路が並列に取り付けられていることとなる。
次に、電源回路10のDC−DCコンバータ回路としての機能について詳細に説明する。第1入出力ポート60aと第3入出力ポート60bについて着目すると、第1入出力ポート60aには、1次側フルブリッジ回路200が接続され、第3入出力ポート60bは、2次側フルブリッジ回路300が接続されている。そして、1次側フルブリッジ回路200のブリッジ部分に設けられる1次側コイル202と、2次側フルブリッジ回路300のブリッジ部分に設けられる2次側コイル302とが結合係数kTで磁気結合することで、変圧器400が巻き数1:Nのセンタータップ式変圧器として機能する。したがって、1次側フルブリッジ回路200と2次側フルブリッジ回路300でのスイッチング素子のスイッチング周期運動の位相差φを調整することで、第1入出力ポート60aに入力された電力を変換して第3入出力ポート60bに伝送させ、あるいは、第3入出力ポート60bに入力された電力を変換して第1入出力ポート60aに伝送させることができる。
図3は、制御部50の制御によって、電源回路10に構成される各アームのオンオフのスイッチング波形のタイミングチャートを示す図である。図3において、U1は、1次側第1上アームU1のオンオフ波形であり、V1は、1次側第2上アームV1のオンオフ波形であり、U2は、2次側第1上アームU2のオンオフ波形であり、V2は、2次側第2上アームV2のオンオフ波形である。1次側第1下アーム/U1、1次側第2下アーム/V1、2次側第1下アーム/U2、2次側第2下アーム/V2のオンオフ波形は、それぞれ、1次側第1上アームU1、1次側第2上アームV1、2次側第1上アームU2、2次側第2上アームV2のオンオフ波形を反転した波形である(図示省略)。なお、上下アームの両オンオフ波形間には、上下アームの両方がオンすることで貫通電流が流れないようにデッドタイムが設けられているとよい。また、図3において、ハイレベルがオン状態を表し、ローレベルがオフ状態を表している。
ここで、U1とV1とU2とV2の各オン時間δを変更することで、1次側変換回路20と2次側変換回路30の昇降圧比を変更することができる。例えば、U1とV1とU2とV2の各オン時間δを互いに等しくすることで、1次側変換回路20の昇降圧比と2次側変換回路30の昇降圧比を等しくできる。
オン時間δ決定処理部506は、1次側変換回路20と2次側変換回路30の昇降圧比が互いに等しくなるように、U1とV1とU2とV2の各オン時間δを互いに等しくする(各オン時間δ=1次側オン時間δ11=2次側オン時間δ12=時間値β)。
1次側変換回路20の昇降圧比は、1次側フルブリッジ回路200に構成されるスイッチング素子(アーム)のスイッチング周期Tに占めるオン時間δの割合であるデューティ比Dによって決まる。同様に、2次側変換回路30の昇降圧比は、2次側フルブリッジ回路300に構成されるスイッチング素子(アーム)のスイッチング周期Tに占めるオン時間δの割合であるデューティ比Dによって決まる。1次側変換回路20の昇降圧比は、第1入出力ポート60aと第2入出力ポート60cとの間の変圧比であり、2次側変換回路30の昇降圧比は、第3入出力ポート60bと第4入出力ポート60dとの間の変圧比である。
したがって、例えば、
1次側変換回路20の昇降圧比
=第2入出力ポート60cの電圧/第1入出力ポート60aの電圧
=δ11/T=β/T
2次側変換回路30の昇降圧比
=第4入出力ポート60dの電圧/第3入出力ポート60bの電圧
=δ12/T=β/T
と表される。つまり、1次側変換回路20と2次側変換回路30の昇降圧比は互いに同じ値(=β/T)である。
なお、図3のオン時間δは、1次側第1上アームU1及び1次側第2上アームV1のオン時間δ11を表すとともに、2次側第1上アームU2及び2次側第2上アームV2のオン時間δ12を表す。また、1次側フルブリッジ回路200に構成されるアームのスイッチング周期Tと2次側フルブリッジ回路300に構成されるアームのスイッチング周期Tは等しい時間である。
また、U1とV1との位相差は、180度(π)で動作させ、U2とV2との位相差も180度(π)で動作させる。さらに、U1とU2の位相差φを変更することで、1次側変換回路20と2次側変換回路30の間の電力伝送量Pを調整することができ、位相差φ>0であれば、1次側変換回路20から2次側変換回路30に伝送し、位相差φ<0であれば、2次側変換回路30から1次側変換回路20に伝送することができる。
位相差φは、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で同じ相の電力変換回路部間でのスイッチングタイミングのずれ(タイムラグ)である。例えば、位相差φは、1次側第1アーム回路207と2次側第1アーム回路307との間でのスイッチングタイミングのずれであり、1次側第2アーム回路211と2次側第2アーム回路311との間でのスイッチングタイミングのずれである。それらのずれは互いに等しいまま制御される。つまり、U1とU2の位相差φ及びV1とV2の位相差φは、同じ値に制御される。
したがって、例えば、電源回路10の電力変換モードをモードFとして動作させることを要求する外部信号が入力されてきた場合に、電力変換モード決定処理部502はモードFを選択することを決定する。そして、オン時間δ決定処理部506は、1次側変換回路20を第2入出力ポート60cに入力された電圧を昇圧して第1入出力ポート60aに出力する昇圧回路として機能させる場合の昇圧比を規定するオン時間δを設定する。なお、2次側変換回路30では、オン時間δ決定処理部506によって設定されたオン時間δによって規定された降圧比で第3入出力ポート60bに入力された電圧を降圧して出力する降圧回路として機能する。さらに、位相差φ決定処理部504は、第1入出力ポート60aに入力された電力を所望の電力伝送量Pで第3入出力ポート60bに伝送するための位相差φを設定する。
1次側スイッチング処理部508は、1次側変換回路20を昇圧回路として、かつ、1次側変換回路20をDC−DCコンバータ回路の一部として機能させるように、1次側第1上アームU1と、1次側第1下アーム/U1と、1次側第2上アームV1と、1次側第2下アーム/V1の各スイッチング素子をスイッチング制御する。
2次側スイッチング処理部510は、2次側変換回路30を降圧回路として、かつ、2次側変換回路30をDC−DCコンバータ回路の一部として機能させるように、2次側第1上アームU2と、2次側第1下アーム/U2と、2次側第2上アームV2と、2次側第2下アーム/V2の各スイッチング素子をスイッチング制御する。
上記のように、1次側変換回路20および2次側変換回路30を昇圧回路あるいは降圧回路として機能させることができ、かつ、電源回路10を双方向DC−DCコンバータ回路としても機能させることができる。したがって、電力変換モードA〜Fの全てのモードの電力変換を行うことができ、換言すれば、3つの入出力ポートのうちから選択された2つの入出力ポート間で電力変換をすることができる。
制御部50により位相差φ、等価インダクタンスL、等に応じて調整される伝送電力P(電力伝送量Pともいう)は、1次側変換回路20と2次側変換回路30において一方の変換回路から他方の変換回路に変圧器400を介して送られる電力であり、
P=(N×Va×Vb)/(π×ω×L)×F(D,φ)
・・・式1
で表される。
なお、Nは、変圧器400の巻き数比、Vaは、第1入出力ポート60aの入出力電圧(1次側変換回路20の1次側正極母線298と1次側正極母線299との間の電圧)、Vbは、第3入出力ポート60bの入出力電圧(2次側変換回路30の1次側正極母線398と1次側正極母線399との間の電圧)である。πは、円周率、ω(=2π×f=2π/T)は、1次側変換回路20及び2次側変換回路30のスイッチングの角周波数である。fは、1次側変換回路20及び2次側変換回路30のスイッチング周波数、Tは、1次側変換回路20及び2次側変換回路30のスイッチング周期、Lは、磁気結合リアクトル204,304と変圧器400の電力伝送に関わる等価インダクタンスである。F(D,φ)は、デューティ比Dと位相差φを変数とする関数であり、デューティ比Dに依存せずに、位相差φが増加するにつれて単調増加する変数である。デューティ比D及び位相差φは、所定の上下限値に挟まれた範囲内で変化するように設計された制御パラメータである。
等価インダクタンスLは、1次側磁気結合リアクトル204及び/又は2次側磁気結合リアクトル304が接続された変圧器400の簡易等価回路上で定義できる。等価インダクタンスLは、簡易等価回路において、1次側磁気結合リアクトル204の漏れインダクタンス及び/又は2次側磁気結合リアクトルの漏れインダクタンスと、変圧器400の漏れインダクタンスとを合成した合成インダクタンスである。
例えば、2次側変換回路30側から測定される等価インダクタンスL(2次側換算値LEQ2)は、
EQ2 = 2L(1−k)N + 2L(1−k) + LT2(1−k
・・・式2
と表すことができる。
は、1次側磁気結合リアクトル204の自己インダクタンス、kは、1次側磁気結合リアクトル204の結合係数、Nは、変圧器400の巻き数比、Lは、2次側磁気結合リアクトル304の自己インダクタンス、kは、2次側磁気結合リアクトル304の結合係数、LT2は、変圧器400の2次側の励磁インダクタンス、kは、変圧器400の結合係数である。なお、第2入出力ポート60c又は第4入出力ポート60dを使用しない場合、式2において、第1項又は第2項で表される漏れインダクタンスが無い場合もありうる。
ところで、電源装置101において、変圧器400又は磁気結合リアクトル204,304のコア材や巻き線の寸法公差が比較的大きいので、結合係数k,k,kや自己インダクタンスは大きくばらつく。特に、コイル部品組み付け後は、応力や歪みにより、結合係数k,k,k、自己インダクタンス、共にばらつきが顕著になる。この結果、等価インダクタンスLのばらつきも大きくなり、伝送電力Pにもばらつきが発生する。
伝送電力Pは、式1から明らかなように、位相差φ及び等価インダクタンスLに依存する。例えば、等価インダクタンスLの値が大きいほど、伝送電力Pは小さくなり、等価インダクタンスLの値が小さいほど、伝送電力Pは大きくなる。従って、制御パラメータの1つである位相差φ、等価インダクタンスL等を適切に調整することで、伝送電力Pを制御できる。
<電源装置101の動作のフローチャート>
図4は、電源装置101の起動時に、2次側変換回路30(2次側第1下アーム/U2、2次側第2下アーム/V2、等)の短絡故障の有無を検知する方法の一例を示すフローチャートである。図4の電力変換方法は、例えば、制御部50によって実行される。
ステップS10において、制御部50は、イグニッションオン(IG−ON)等に伴って、1次側変換回路20(1次側第1上アームU1、1次側第1下アーム/U1、1次側第2上アームV1、1次側第2下アーム/V1)をデューティ駆動し、ポート電圧Vaを昇圧する。IG−ONとは、車両を走行可能な状態にするために、イグニッションスイッチをオンすることを指す。
ステップS20において、制御部50は、2次側変換回路30により全波整流を行い、キャパシタC2を充電する。この際、制御部50は、突入電流を抑制するために、2次側第2上アームV2及び2次側第1上アームU2をハーフオン状態としても良い。
ステップS30において、制御部50は、キャパシタC2の電圧が、所定値以上であるか否かを判定する。キャパシタC2の電圧が、所定値以上である場合(YES)、制御部50は、ステップS40の処理を行う。キャパシタC2の電圧が、所定値より小さい場合(NO)、制御部50は、再びステップS10の処理を行う。所定値は、道路運送車両の保安基準等に基づいて定めることができ、例えば、56V以上60V以下(絶縁が不要な安全な電圧)とすることができる。
ステップS40において、制御部50は、1次側変換回路20のデューティ駆動を停止する。
ステップS50において、制御部50は、2次側第1上アームU2又は2次側第2上アームV2を駆動する。
ステップS60において、制御部50は、ポート電圧Vbの変化の有無を判定する。ポート電圧Vbに変化が有る場合(YES)、制御部50は、ステップS70の処理を行う。ポート電圧Vbに変化が無い場合(NO)、制御部50は、ステップS90の処理を行う。
ポート電圧Vbに変化が有る場合、変化の仕方によって、制御部50は、2次側第1下アーム/U2、2次側第2下アーム/V2において、何れのアームが短絡故障しているかを判定することが可能である。例えば、図5(A)に示すように、2次側第2上アームV2のオフからオンへの切り替わりに伴って、ポート電圧Vbが瞬時に変化する場合、制御部50は、2次側第2下アーム/V2が短絡故障していると判定することができる。又、例えば、図5(B)に示すように、2次側第2上アームV2のオフからオンへの切り替わりに伴って、ポート電圧Vbが徐々に変化する場合、制御部50は、2次側第1下アーム/U2が短絡故障していると判定することができる。
なお、図5(B)において、ポート電圧Vbが徐々に変化するのは、相間のインダクタンス成分によるものである。判定閾値は、理論的に求めても良いし、経験的に求めても良い。2次側第2上アームV2をオンした後、100nsec後にポート電圧Vbが半分以下になること、等を判定閾値として定めても良い。
ステップS70において、制御部50は、2次側第1下アーム/U2又は2次側第2下アーム/V2に短絡故障が有ることを検知する。従って、制御部50は、電源装置101の通常起動を許可しない。
ステップS80において、制御部50は、他ECUやドライバ等に、警告を通知する。
ステップS90において、制御部50は、2次側第1下アーム/U2及び2次側第2下アーム/V2に短絡故障が無いことを検知する。従って、制御部50は、電源装置101の通常起動を許可する。
上述の様に、制御部50は、起動時に高圧バッテリを接続する前に、補機バッテリから僅かな電力を、安全な電圧レベルで高圧側キャパシタへと供給し、高圧側上アーム駆動時における高圧側ポートの電圧変化に基づいて、高圧側下アームの短絡故障を検知する。これにより、高圧側回路に貫通電流が流れることでの、機器の故障等を抑制し、安全に車両を起動させることができる。又、専用検知回路、プリチャージ回路等を付加することでの手間やコストを省くことができる。
<タイミングチャート及び電流の向きと経路>
図6は、図4に示される故障検知方法により、故障検知を行う場合におけるタイミングチャートの一例である。図6の時間軸上に示されるS10、S20、S30、S40、S50、S60、S70、S80、S90は、図4の各ステップS10、S20、S30、S40、S50、S60、S70、S80、S90が実行されるタイミングに対応する。又、図6において、U1、/U1等のパルス波形は、各アームのオンオフ波形を示し、Va(C1)、Vb(C2)は、それぞれ、ポート電圧Va、ポート電圧Vbの電圧波形を示す。ポート電圧Vaは、ポート60aの電圧であり、キャパシタC1の電圧に等しい。ポート電圧Vbは、ポート60bの電圧であり、キャパシタC2の電圧に等しい。
図7は、図6のタイミングt1からタイミングt4までの期間で、1次側第1下アーム/U1がオンしているときのキャパシタC2の充電電流の向きと経路を示している。図8は、図6のタイミングt1からタイミングt4までの期間で、1次側第1上アームU1がオンしているときのキャパシタC2の充電電流の向きと経路を示している。図9は、図6のタイミングt5以降の期間で、2次側第1下アーム/U2に短絡故障が有り、2次側第2上アームV2をオンしているときの放電電流の向きと経路を示している。
図6のt1からt2までの間(ステップS10)において、制御部50は、1次側第1上アームU1、1次側第1下アーム/U1、1次側第2上アームV1、1次側第2下アーム/V1をデューティ駆動し、ポート電圧Vaを昇圧する。例えば、1次側第1下アーム/U1がオンの場合、図7の左側矢印に示すように、1次側低電圧系電源62cからポート60cに入力される電力Pcは、センタータップ202m、巻線202a、リアクトル204a、1次側第1下アーム/U1を経由して、ポート60aへと供給される。又、例えば、1次側第1上アームU1がオンの場合、図8の左側矢印に示すように、1次側低電圧系電源62cからポート60cに入力される電力Pcは、センタータップ202m、巻線202a、リアクトル204a、1次側第1上アームU1を経由して、キャパシタC1へと供給される。
1次側第1上アームU1及び1次側第2上アームV1のオンデューティを長くして、1次側第1下アーム/U1及び1次側第2下アーム/V1のオンデューティを短くすることで、昇圧比を小さくできる。例えば、ポート電圧Vc=12Vに対し、通常時は、上アームのオンデューティ=25%と設定し、ポート電圧Va=48Vまで昇圧するが、故障検出時は、上アームのオンデューティ=85%と設定し、ポート電圧Va=14Vまで昇圧することで、昇圧比を小さくできる(図6のVa参照)。但し、ポート60cには、12Vバッテリが常時接続されているものとする。
図6のt2からt4までの間(ステップS20)において、制御部50は、2次側第2上アームV2及び2次側第1上アームU2により、全波整流を行い(寄生ダイオードによるダイオードブリッジ)、キャパシタC2を充電する。図7及び図8の右側矢印に示すように、変圧器400が励磁されて、2次側変換回路30に交流電流が流れることで、ポート60bに接続されるキャパシタC2は、充電される。
ポート電圧Vbは、変圧器400の巻き数比(1:N)により、定まる。例えば、巻線比1:4とすると、通常時は、ポート電圧Va=48Vが、1:4で変換されて、ポート電圧Vb=200Vとなるが、故障検出時は、ポート電圧Va=14Vが、1:4で変換されて、ポート電圧Vb=56V(安全な電圧)となる(図6のVb参照)。
図6のt3(ステップS30)において、制御部50は、キャパシタC2が、想定通りに充電されているか否か(例えば、キャパシタC2の電圧>56Vを満たしているか否か)を確認し、キャパシタC2の電圧(ポート電圧Vb)を計測し、キャパシタC2の電圧と所定値とを、比較する。これにより、制御部50は、キャパシタC2の電圧が、安全な電圧であるかを確認することができる。
図6のt4(ステップS40)において、制御部50は、キャパシタC2の電圧が所定値以上であることを確認した後、1次側第1上アームU1、1次側第1下アーム/U1、1次側第2上アームV1、1次側第2下アーム/V1をオフする。
図6のt5(ステップS50)において、制御部50は、2次側第1上アームU2又は2次側第2上アームV2をオンする。
図6のt5以降(ステップS60)において、制御部50は、ポート電圧Vbにおける電圧変化の有無を確認し、2次側第1下アーム/U2又は2次側第2下アーム/V2に短絡故障が有るか、無いかを検知する。
図6のt5以降(ステップS70、ステップS80)において、2次側第1下アーム/U2又は2次側第2下アーム/V2に短絡故障が有る(ポート電圧Vb=0)場合、制御部50は、電源装置101の通常起動を許可せず、警告を通知する。例えば、図9の矢印に示すように、キャパシタC2に充電された電流が、2次側第2上アームV2、2次側第1下アーム/U2等を経由して、ポート60bへと流れる(徐々にポート電圧Vbが0に近づく)場合、制御部50は、2次側第1下アーム/U2に短絡故障が有ることを通知する(図5(B)参照)。
図6のt5以降(ステップS90)において、2次側第1下アーム/U2又は2次側第2下アーム/V2に短絡故障が無い場合、制御部50は、電源装置101の通常起動を許可する。
以上、電力変換装置及び電力変換方法を実施形態例により説明したが、本発明は上記実施形態例に限定されるものではない。他の実施形態例の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
例えば、上述の実施形態では、スイッチング素子の一例として、オンオフ動作する半導体素子であるMOSFETを挙げた。しかしながら、スイッチング素子は、例えば、IGBT、MOSFETなどの絶縁ゲートによる電圧制御型パワー素子でもよいし、バイポーラトランジスタでもよい。
また、本発明は、少なくとも3つ以上の複数の入出力ポートを有し、少なくとも3つ以上の複数の入出力ポートのうちどの2つの入出力ポート間でも電力を変換することが可能な電力変換装置に適用できる。例えば、本発明は、図1に例示された3つの入出力ポートに、新たな入出力ポートを追加した構成を有する電源装置に対しても適用できる。
20 1次側変換回路
30 2次側変換回路
50 制御部
60a 第1入出力ポート
60b 第3入出力ポート
60c 第2入出力ポート
62b 2次側高電圧系電源
62c 1次側低電圧系電源
101 電源装置(電力変換装置の一例)
400 変圧器
U*,V* 上アーム
/U*,/V* 下アーム

Claims (10)

  1. 1次側回路に備えられる1次側ポートと、前記1次側回路と変圧器で磁気結合し、2次側第1上アーム、2次側第2上アーム、2次側第1下アーム、2次側第2下アーム、キャパシタとを含む2次側回路に備えられる2次側ポートと、を有し、前記1次側回路のスイッチングと前記2次側回路のスイッチングとの位相差を変更して、前記1次側回路と前記2次側回路との間で伝送される伝送電力を調整する、電力変換方法であって、
    前記1次側回路から前記2次側回路に電力を伝送し、前記キャパシタを充電する充電ステップと、
    前記キャパシタの電圧が、所定値以上であるか否かを判定する判定ステップと、
    前記キャパシタの電圧が、所定値以上である場合に、
    前記1次側回路の駆動を停止する停止ステップと、
    前記2次側第1上アーム又は前記2次側第2上アームを駆動する駆動ステップと、
    前記2次側ポートの電圧変化の有無に基づいて、前記2次側第1下アーム又は前記2次側第2下アームの短絡故障の有無を検知する検知ステップと、を有する、電力変換方法。
  2. 1次側回路に備えられる1次側ポートと、前記1次側回路と変圧器で磁気結合し、2次側第1上アーム、2次側第2上アーム、2次側第1下アーム、2次側第2下アーム、キャパシタとを含む2次側回路に備えられる2次側ポートと、を有し、前記1次側回路のスイッチングと前記2次側回路のスイッチングとの位相差を変更して、前記1次側回路と前記2次側回路との間で伝送される伝送電力を調整する、電力変換方法であって、
    前記1次側ポートの電圧を昇圧する昇圧ステップと、
    前記キャパシタを充電する充電ステップと、
    前記キャパシタの電圧が、所定値以上であるか否かを判定する判定ステップと、
    前記キャパシタの電圧が、所定値以上である場合に、
    前記1次側回路の駆動を停止する停止ステップと、
    前記2次側第1上アーム又は前記2次側第2上アームを駆動する駆動ステップと、
    前記2次側ポートの電圧変化の有無に基づいて、前記2次側第1下アーム又は前記2次側第2下アームの短絡故障の有無を検知する検知ステップと、を有する、電力変換方法。
  3. 前記2次側ポートの電圧に変化が有る場合に、
    前記2次側第1下アーム又は前記2次側第2下アームに短絡故障が有ることを検知する検知ステップと、
    警告を通知する通知ステップと、を有する、請求項1又は2に記載の電力変換方法。
  4. 前記2次側ポートの電圧に変化が無い場合に、
    前記2次側第1下アーム及び前記2次側第2下アームに短絡故障を無いことを検知する検知ステップと、を有する、請求項1又は2に記載の電力変換方法。
  5. 前記所定値は、60Vである、請求項1乃至4のいずれか一項に記載の電力変換方法。
  6. 1次側ポートを備える1次側回路と、
    2次側第1上アーム、2次側第2上アーム、2次側第1下アーム、2次側第2下アーム、キャパシタとを含む2次側ポートを備え、前記1次側回路と変圧器で磁気結合する2次側回路と、
    前記1次側回路のスイッチングと前記2次側回路のスイッチングとの位相差を変更することによって、前記1次側回路と前記2次側回路との間で伝送される伝送電力を制御する制御部と、を備える電力変換装置であって、
    前記制御部は、
    前記1次側回路から前記2次側回路に電力を伝送し、前記キャパシタを充電し、
    前記キャパシタの電圧が、所定値以上であるか否かを判定し、
    前記キャパシタの電圧が、所定値以上である場合に、前記1次側回路の駆動を停止し、前記2次側第1上アーム又は前記2次側第2上アームを駆動し、前記2次側ポートの電圧変化の有無に基づいて、前記2次側第1下アーム又は前記2次側第2下アームの短絡故障の有無を検知する、電力変換装置。
  7. 1次側ポートを備える1次側回路と、
    2次側第1上アーム、2次側第2上アーム、2次側第1下アーム、2次側第2下アーム、キャパシタとを含む2次側ポートを備え、前記1次側回路と変圧器で磁気結合する2次側回路と、
    前記1次側回路のスイッチングと前記2次側回路のスイッチングとの位相差を変更することによって、前記1次側回路と前記2次側回路との間で伝送される伝送電力を制御する制御部と、を備える電力変換装置であって、
    前記制御部は、
    前記1次側ポートの電圧を昇圧し、
    前記キャパシタを充電し、
    前記キャパシタの電圧が、所定値以上であるか否かを判定し、
    前記キャパシタの電圧が、所定値以上である場合に、前記1次側回路の駆動を停止し、前記2次側第1上アーム又は前記2次側第2上アームを駆動し、前記2次側ポートの電圧変化の有無に基づいて、前記2次側第1下アーム又は前記2次側第2下アームの短絡故障の有無を検知する、電力変換装置。
  8. 前記2次側ポートの電圧に変化が有る場合に、
    前記2次側第1下アーム又は前記2次側第2下アームに短絡故障が有ることを検知し、警告を通知する、請求項6又は7に記載の電力変換装置。
  9. 前記2次側ポートの電圧に変化が無い場合に、
    前記2次側第1下アーム及び前記2次側第2下アームに短絡故障を無いことを検知する、請求項6又は7に記載の電力変換装置。
  10. 前記所定値は、60Vである、請求項6乃至9のいずれか一項に記載の電力変換装置。
JP2014266323A 2014-12-26 2014-12-26 電力変換装置及び電力変換方法 Active JP6135663B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014266323A JP6135663B2 (ja) 2014-12-26 2014-12-26 電力変換装置及び電力変換方法
US14/970,920 US9590515B2 (en) 2014-12-26 2015-12-16 Electric power conversion apparatus and electric power conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266323A JP6135663B2 (ja) 2014-12-26 2014-12-26 電力変換装置及び電力変換方法

Publications (2)

Publication Number Publication Date
JP2016127694A JP2016127694A (ja) 2016-07-11
JP6135663B2 true JP6135663B2 (ja) 2017-05-31

Family

ID=56165457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266323A Active JP6135663B2 (ja) 2014-12-26 2014-12-26 電力変換装置及び電力変換方法

Country Status (2)

Country Link
US (1) US9590515B2 (ja)
JP (1) JP6135663B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102898B2 (ja) * 2014-11-27 2017-03-29 トヨタ自動車株式会社 電力変換装置
JP6643144B2 (ja) * 2016-02-29 2020-02-12 株式会社Soken 点火回路の故障診断装置
US10411611B2 (en) * 2016-04-04 2019-09-10 Microsoft Technology Licensing, Llc Voltage discharge circuit
US10396671B2 (en) * 2017-01-20 2019-08-27 Astec International Limited Power supplies having power switches controllable with a varying frequency, duty cycle and/or phase to regulate outputs
JP6902962B2 (ja) * 2017-08-22 2021-07-14 ダイヤモンド電機株式会社 コンバータ
JP6902963B2 (ja) * 2017-08-22 2021-07-14 ダイヤモンド電機株式会社 コンバータ
JP7089377B2 (ja) * 2018-03-02 2022-06-22 株式会社豊田中央研究所 電力変換装置
JP7079934B2 (ja) * 2018-11-15 2022-06-03 株式会社Soken 電力変換装置
JP7129927B2 (ja) * 2019-02-07 2022-09-02 Ntn株式会社 絶縁型スイッチング電源
US11575326B2 (en) * 2020-11-27 2023-02-07 Lear Corporation Wide high voltage-input range DC-DC converter
US11724611B2 (en) * 2021-12-09 2023-08-15 Ford Global Technologies, Llc High-voltage vehicle bus system

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2903863B2 (ja) * 1992-05-29 1999-06-14 三菱電機株式会社 インバータ装置
US5625539A (en) * 1994-05-30 1997-04-29 Sharp Kabushiki Kaisha Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
JP2004357437A (ja) * 2003-05-29 2004-12-16 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置及びその故障診断方法
JP4430531B2 (ja) * 2004-12-28 2010-03-10 株式会社日立製作所 双方向絶縁型dc−dcコンバータ
JP2007318849A (ja) 2006-05-24 2007-12-06 Toyota Motor Corp 電気自動車の電気システム
CN101523710B (zh) * 2006-06-06 2014-03-05 威廉·亚历山大 通用功率变换器
JP5358873B2 (ja) * 2006-08-23 2013-12-04 オムロン株式会社 パワーコンディショナ装置
JP5441481B2 (ja) * 2009-04-16 2014-03-12 東芝三菱電機産業システム株式会社 インバータ装置の故障診断方法
JP5815939B2 (ja) * 2010-02-17 2015-11-17 株式会社豊田中央研究所 電力変換回路及び電力変換回路システム
JP5808678B2 (ja) 2012-01-18 2015-11-10 本田技研工業株式会社 電動車両
JP5705178B2 (ja) * 2012-07-30 2015-04-22 三菱電機株式会社 電力変換装置、電源切替装置、住宅及び電力変換方法
JP5741558B2 (ja) * 2012-11-09 2015-07-01 トヨタ自動車株式会社 電力変換装置
JP5682611B2 (ja) * 2012-11-09 2015-03-11 トヨタ自動車株式会社 電力変換装置及び電力変換装置の故障検出方法
JP5807649B2 (ja) * 2013-02-15 2015-11-10 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP5783195B2 (ja) * 2013-02-18 2015-09-24 トヨタ自動車株式会社 電源装置及び制御方法
JP2015065345A (ja) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 リアクトル装置及び電力変換装置
JP5971269B2 (ja) * 2014-02-07 2016-08-17 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP5929943B2 (ja) * 2014-02-21 2016-06-08 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP6003932B2 (ja) 2014-03-11 2016-10-05 トヨタ自動車株式会社 電力変換装置及びその起動方法
JP5958487B2 (ja) * 2014-03-11 2016-08-02 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP5928519B2 (ja) * 2014-04-09 2016-06-01 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP2015202001A (ja) * 2014-04-09 2015-11-12 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP6036741B2 (ja) * 2014-04-09 2016-11-30 トヨタ自動車株式会社 電力変換装置
JP6160547B2 (ja) * 2014-04-10 2017-07-12 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP6115552B2 (ja) * 2014-11-26 2017-04-19 トヨタ自動車株式会社 電力変換装置
JP6102898B2 (ja) * 2014-11-27 2017-03-29 トヨタ自動車株式会社 電力変換装置
JP6201969B2 (ja) * 2014-11-28 2017-09-27 トヨタ自動車株式会社 車両用電源システム

Also Published As

Publication number Publication date
US9590515B2 (en) 2017-03-07
JP2016127694A (ja) 2016-07-11
US20160190944A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP6135663B2 (ja) 電力変換装置及び電力変換方法
JP6003932B2 (ja) 電力変換装置及びその起動方法
JP5958487B2 (ja) 電力変換装置及び電力変換方法
JP5971269B2 (ja) 電力変換装置及び電力変換方法
JP6102898B2 (ja) 電力変換装置
JP5812040B2 (ja) 電力変換装置
JP6036741B2 (ja) 電力変換装置
JP6160547B2 (ja) 電力変換装置及び電力変換方法
JP5929943B2 (ja) 電力変換装置及び電力変換方法
JP2015204639A (ja) 電力変換装置及びその制御方法
JP2015202001A (ja) 電力変換装置及び電力変換方法
JP5387629B2 (ja) Dcdcコンバータの制御装置
JP5928519B2 (ja) 電力変換装置及び電力変換方法
JP6102897B2 (ja) 電力変換装置
CN104811042A (zh) 电力转换装置和电力转换方法
JP6065753B2 (ja) Dc/dcコンバータおよびバッテリ充放電装置
JP6908010B2 (ja) スイッチの駆動装置
US9871402B2 (en) Electric power conversion apparatus and method of controlling the same
WO2018235438A1 (ja) Dc-dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP5645679B2 (ja) 電圧変換装置
JP5915626B2 (ja) 電力変換装置及び電力変換方法
JP2014230373A (ja) 電力変換装置及び電圧変換方法
JP2012170173A (ja) 駆動装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R151 Written notification of patent or utility model registration

Ref document number: 6135663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151