JP2021152555A - ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント - Google Patents

ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント Download PDF

Info

Publication number
JP2021152555A
JP2021152555A JP2021109261A JP2021109261A JP2021152555A JP 2021152555 A JP2021152555 A JP 2021152555A JP 2021109261 A JP2021109261 A JP 2021109261A JP 2021109261 A JP2021109261 A JP 2021109261A JP 2021152555 A JP2021152555 A JP 2021152555A
Authority
JP
Japan
Prior art keywords
light
scattered light
fluid
optical axis
raman scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021109261A
Other languages
English (en)
Inventor
淳 笹原
Atsushi Sasahara
淳 笹原
陽介 恵藤
Yosuke Eto
陽介 恵藤
洋介 北内
Yosuke Kitauchi
洋介 北内
力 富山
Tsutomu Tomiyama
力 富山
祥啓 出口
Yoshihiro Deguchi
祥啓 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Priority to JP2021109261A priority Critical patent/JP2021152555A/ja
Publication of JP2021152555A publication Critical patent/JP2021152555A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • F02C9/22Control of working fluid flow by throttling; by adjusting vanes by adjusting turbine vanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】装置の小型化を図る。【解決手段】ラマン散乱光取得装置11は、励起光を流体G中に導く出射光学系21と、流体Gの流路の一部を画定すると共に、励起光が照射させた流体Gからのラマン散乱光を通過させる散乱光窓42と、散乱光窓42を通過したラマン散乱光を受ける受光面46を有する散乱光受光器44と、を備える。散乱光窓42及び散乱光受光器44の受光面46は、流体G中における励起光の光軸である流体中光軸Awが延びる光軸方向Daで流体G中の励起光の光路が存在する範囲Rw内であって、且つ流体中光軸Awから径方向Drに離れた位置に配置されている。【選択図】図1

Description

本発明は、流体からのラマン散乱光を取得するラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラントに関する。
流体の組成を分析する方法として、流体に励起光を照射し、励起光が照射された流体からのラマン散乱光を分析する方法がある。この方法を実行する装置としては、例えば、以下の特許文献1に記載の組成分析装置がある。この組成分析装置は、流体が内部を流れる計測セルと、励起光であるレーザ光を発振するレーザ発振器と、レーザ発振器からのレーザ光を計測セル内の流体に照射する出射光学系と、レーザ光が照射された流体からのラマン散乱光を受光する受光光学系と、受光光学系で集光されたラマン散乱光を受光する光ファイバーと、光ファイバーで受光された光を分析する分析器と、を備えている。
出射光学系の光軸は、計測セル内を流れる流体の主要な流れ方向に対して垂直な流れ垂直方向に延びている。この出射光学系は、計測セルを基準にして、流れ垂直方向の一方側に設けられている。受光光学系の光軸は、出射光学系の光軸と一致している。よって、受光光学系の光軸も、流れ垂直方向に延びている。この受光光学系は、計測セルを基準にして、流れ垂直方向の他方側に設けられている。
特開2015−072179号公報
組成分析業界では、組成分析装置の小型化を望んでいる。
そこで、本発明は、装置の小型化を図ることができる技術を提供することを目的とする。
上記目的を達成するための発明に係る一態様としてのラマン散乱光取得装置は、
光出射部からの励起光を流体中に導く出射光学系と、前記流体の流路の一部を画定すると共に、前記励起光が照射させた前記流体からのラマン散乱光を通過させる散乱光窓と、前記散乱光窓を通過した前記ラマン散乱光を受ける受光面を有する散乱光受光器と、を備える。前記散乱光窓及び前記散乱光受光器の受光面は、前記流体中における前記励起光の光軸である流体中光軸が延びる光軸方向で前記流体中の前記励起光の光路が存在する範囲内であって、且つ前記流体中光軸に対して垂直な方向である径方向に前記流体中光軸から離れた位置に配置されている。前記受光面は、前記径方向で前記流体中光軸に近づく側である径方向内側を向いている。前記出射光学系は、前記光出射部からの前記励起光が通る出射光ファイバーケーブルと、前記出射光ファイバーケーブルから出射された前記励起光の向きを変える変更器と、を有する。前記出射光ファイバーケーブルの前記励起光を出射する出射面における光軸である出射面光軸は、前記流体中光軸に対して交差する方向に延びている。前記出射光ファイバーケーブルの前記出射面と前記変更器は、前記散乱光受光器の前記受光面を基準にして、前記光軸方向の一方側に配置されている。前記変更器は、前記出射光ファイバーケーブルから出射された前記励起光の光軸を前記流体中光軸に一致させる。前記出射光ファイバーケーブルの前記出射面は、前記流体中光軸に対して垂直な方向であって、前記散乱光受光器の受光面が配置されている前記径方向に、前記流体中光軸から離れた位置に配置されている。
本態様では、散乱光受光器の受光面が、流体中の散乱光発生領域に対して、流体中光軸に垂直な方向に離れた位置に配置されることになる。このため、本態様では、流体中の散乱光発生領域に散乱光受光器の受光面を近づけることができる。よって、本態様では、ラマン散乱光取得装置の小型化を図ることができる。
さらに、本態様では、流体中の散乱光発生領域に散乱光受光器の受光面を近づけることができるため、散乱光受光器の受光面が減衰の少ないラマン散乱光を受けることができる。このため、本態様では、散乱光窓を通過した散乱光を集光させるための集光光学系を省くことができる。よって、本態様では、この観点からも、ラマン散乱光取得装置の小型化を図ることができる。さらに、本態様では、光軸方向におけるラマン散乱光取得装置の幅を小さくすることができる。
ここで、前記ラマン散乱光取得装置において、前記散乱光受光器の前記受光面における光軸である受光面光軸は、前記流体中光軸に対して垂直であってもよい。
本態様では、流体中光軸に対して垂直な方向に進行するラマン散乱光を、短い光路長で効率的に受けることができる。
また、以上のいずれかの前記ラマン散乱光取得装置において、前記散乱光窓で前記流体の流路を画定する内面及び前記内面とは反対側の外面は、いずれも、前記流体中光軸に対して平行であってもよい。
本態様では、流体から発せられるラマン散乱光のうち、流体中光軸に対して垂直な方向に発せられたラマン散乱光を直進させることができる。このため、流体中光軸から散乱光受光器の受光面までの散乱光の光路長を短くすることができる。
また、前記出射光ファイバーケーブルを有する前記ラマン散乱光取得装置において、前記出射面光軸は、前記流体中光軸に対して垂直であってもよい。
本態様では、光軸方向におけるラマン散乱光取得装置の幅をより小さくすることができる。
以上のいずれかの前記ラマン散乱光取得装置において、前記励起光及び前記ラマン散乱光を通過させない光遮蔽部材と、前記光遮蔽部材に励起光を照射する加熱用光ファイバーケーブルと、を備えてもよい。この場合、前記光遮蔽部材は、前記散乱光窓における前記受光面側の外面に接しているとよい。
本態様では、励起光のエネルギーにより散乱光窓を加熱することができる。このため、本態様では、散乱光窓の内面に付着した異物の除去、及び散乱光窓の内への異物の付着の抑制を図ることができる。
さらに、本態様では、散乱光窓の加熱に電気を用いないので、散乱光窓を加熱するために必要な部品、つまり、加熱用光ファイバーケーブルや光遮熱部材に防爆処理を省くことができる。
前記光遮蔽部材を備える前記ラマン散乱光取得装置において、前記光遮蔽部材の内部には、前記散乱光窓の前記外面に沿って広がる空洞が形成されており、前記加熱用光ファイバーケーブルは、前記光遮蔽部材の前記空洞内に励起光を出射してもよい。
本態様では、励起光の全てを光遮蔽部材に照射することができるので、この励起光の光エネルギーを熱エネルギーに変換する効率を高めることができる。
以上のいずれかの前記ラマン散乱光取得装置において、前記出射光学系からの前記励起光を受ける励起受光光学系と、前記光出射部からの前記励起光の光強度と前記励起受光光学系が受けた前記励起光の光強度との差に応じて、前記励起光が通過する複数の部材で構成される励起光光学系の異常を判定する判定部と、を備えてもよい。
本態様では、励起光が通過する複数の部材で構成される励起光光学系の異常を認識することができる。
前記励起受光光学系を備える前記ラマン散乱光取得装置において、前記励起受光光学系は、前記散乱光受光器の前記受光面を基準にして、前記光軸方向で前記出射光学系とは反対側に配置されていてもよい。
以上のいずれかの前記ラマン散乱光取得装置において、前記光出射部を備えてもよい。
上記目的を達成するための発明に係る一態様としての組成分析装置は、
以上のいずれかの前記ラマン散乱光取得装置と、前記散乱光受光器からの出力に基づいて前記流体の組成を分析する分析器と、を備える。
本態様では、流体の組成を分析することができる。
ここで、前記組成分析装置において、前記流体中光軸から前記散乱光受光器の前記受光面までの前記径方向の距離は、前記散乱光受光器が受ける前記ラマン散乱光の光量が、前記分析器で前記流体の組成を分析できる最小光量になる距離以下であってもよい。
上記目的を達成するための発明に係る一態様としてのガスタービンプラントは、
以上のいずれかの前記組成分析装置と、前記流体としての燃料ガスが流れる燃料ガスラインと、前記燃料ガスラインを流れる燃料ガスの流量を調節する燃料調節弁と、前記燃料ガスラインからの燃料ガスの燃焼により駆動するガスタービンと、前記燃料調節弁の開度を指示する制御装置と、を備える。前記ラマン散乱光取得装置は、前記燃料ガスラインに取り付けられている。前記分析器は、前記燃料ガスラインを流れる前記燃料ガスの組成を分析する。前記制御装置は、前記分析器での分析結果に応じて前記燃料調節弁の開度を定め、前記開度を前記燃料調節弁に対して指示する。
本発明では、装置の小型化を図ることができる。
本発明に係る第一実施形態における組成分析装置の構成を示す模式図である。 本発明に係る第一実施形態における光遮熱部材及び加熱用光ファイバーの斜視図である。 流体に照射する励起光の波長に対する各成分から発せられるラマン散乱光の波長のシフト量、及び励起光が所定の波長のときの各成分から発せられるラマン散乱光の波長を示す説明図である。 流体に励起光が照射されたときに各成分から発せられるラマン散乱光の波長と、各波長の強度との関係を示すグラフである。 本発明に係る一実施形態におけるガスタービンプラントの系統図である。 本発明に係る第二実施形態における組成分析装置の構成を示す模式図である。
以下、本発明に係る組成分析装置の実施形態、及びこの組成分析装置を備えるガスタービンプラントの実施形態について、図面を参照して説明する。
「第一実施形態」
本発明に係る組成分析装置の第一実施形態、及びこの組成分析装置を備えるガスタービンプラントの実施形態について、図1〜図5を参照して説明する。
本実施形態の組成分析装置が分析する流体は、例えば、配管内を流れる燃料ガスである。具体的には、図5に示すように、ガスタービンプラントのガスタービンを駆動させるための燃料ガスである。
ガスタービンプラントは、ガスタービン110と、ガスタービン110の駆動で発電する発電機120と、ガスタービン110の駆動で燃料ガスを圧縮するガス圧縮機121と、ガスタービン110に供給されるガスの組成を分析する組成分析装置10と、ガスタービン110の状態等を制御する制御装置140と、を備えている。
ガスタービン110は、空気Aを圧縮して圧縮空気を生成する空気圧縮機111と、圧縮空気中で燃料ガスを燃焼させ高温の燃焼ガスを生成する燃焼器115と、燃焼ガスにより駆動するタービン116と、を備えている。
空気圧縮機111は、圧縮機ロータと、これを回転可能に覆う圧縮機ケーシングと、空気Aの吸気量を調節する吸気量調節器112と、を有している。吸気量調節器112は、圧縮機ケーシングの吸込口側に設けられている入口案内翼113と、この入口案内翼113の開度を変える案内翼駆動機114と、を有している。
タービン116は、燃焼ガスにより回転するタービンロータと、このタービンロータを回転可能に覆うタービンケーシングとを有している。圧縮機ロータとタービンロータとは互いに連結され、一体となってガスタービンロータ117を成している。
発電機120は、発電機ロータと、この発電機ロータを回転可能に覆う発電機ケーシングと、を有している。発電機ロータは、ガスタービンロータ117に連結されている。このため、ガスタービンロータ117が回転すると、発電機ロータも、一体的に回転する。
ガス圧縮機121は、圧縮機ロータと、これを回転可能に覆う圧縮機ケーシングと、燃料ガスの吸気量を調節する吸込ガス量調節器122と、を有している。吸込ガス量調節器122は、圧縮機ケーシングの吸込口側に設けられている入口案内翼123と、この入口案内翼123の開度を変える案内翼駆動機124と、を有している。ガス圧縮機121の圧縮機ロータは、減速機126を介して、発電機ロータ又はガスタービンロータ117と機械的に接続されている。このガス圧縮機121の吐出口と燃焼器115とは、高圧燃料ガスライン134で接続されている。
このガスタービンプラントは、製鉄所151及びコークスプラント152から燃料ガスが供給される。製鉄所151は、製鉄所151の高炉から低カロリー燃料ガスとしてのBFG(Blast Furnace Gas)を発生する。この高炉には、BFGが流れるBFGライン131が接続されている。コークスプラント152は、コークスプラント152のコークス炉から高カロリー燃料ガスとしてのCOG(Coke Oven Gas)を発生する。このコークス炉には、COGが流れるCOGライン132が接続されている。COGライン132には、COGの流量を調節するCOG調節弁136が設けられている。BFGライン131とCOGライン132とは、合流して低圧燃料ガスライン133となる。この低圧燃料ガスライン133には、BFG単味、COG単味、BFGとCOGの混合物とのいずれかが流れる。低圧燃料ガスライン133は、ガス圧縮機121の吸込口に接続されている。低圧燃料ガスライン133には、この低圧燃料ガスライン133を通るガス中のダスト等を集塵する電気集塵器(EP(Electrostatic Precipitator))127が設けられている。なお、BFGライン131には、このBFGライン131の途中で転炉での発生ガスであるLDG(Linz-Donawitz converter Gas)等のガスが混入される場合がある。
ガスタービンプラントは、前述のBFGライン131と、COGライン132と、低圧燃料ガスライン133と、COG調節弁136と、電気集塵器127と、を備える。ガスタービンプラントは、さらに、燃料ガス循環ライン135と、循環量調節弁137と、ガス冷却器138と、を備える。燃料ガス循環ライン135の第一端は、高圧燃料ガスライン134に接続されている。また、この燃料ガス循環ライン135の第二端は、低圧燃料ガスライン133中で電気集塵器127よりも上流側の位置に接続されている。ガス冷却器138及び循環量調節弁137は、この燃料ガス循環ライン135に設けられている。ガス冷却器138は、燃料ガス循環ライン135を流れるガスを冷却する。循環量調節弁137の開度が変更されて、燃料ガス循環ライン135を流れるガス流量が変わると、燃焼器115に供給されるガスの流量も変わる。このため、この循環量調節弁137は、燃焼器115に供給される燃料ガスの流量を調節する燃料調節弁として機能する。また、前述したガス圧縮機121の吸込ガス量調節器122も、燃料調節弁として機能する。組成分析装置10は、BFGライン131に設けられている。この組成分析装置10は、BFGライン131を流れるガス(BFG)の組成を分析する。なお、ここでは、BFGライン131に組成分析装置10を設けたが、場合によっては、低圧燃料ガスライン133やCOGライン132に設けてもよい。
制御装置140は、外部からの負荷指令や組成分析装置10が分析したガスBFGの組成等に応じて、循環量調節弁137の開度や入口案内翼113の開度等を制御する。また、制御装置140は、場合よっては、外部からの負荷指令や組成分析装置10が分析したガスG(BFG)の組成等に応じて、COG調節弁136の開度も制御する。
組成分析装置10は、図1に示すように、励起光であるレーザ光が照射された流体Gからのラマン散乱光を取得するラマン散乱光取得装置11と、このラマン散乱光取得装置11が取得したラマン散乱光に基づいて流体Gの組成を分析する分析器70と、を備える。
なお、以下では、ラマン散乱光を単に散乱光という場合もある。
ラマン散乱光取得装置11は、散乱光取得ヘッド12と、分析用レーザ発振器(光出射部)61と、加熱用レーザ発振器62と、これらのレーザ発振器61,62を制御する制御部81と、レーザ光の強度を検知する二つの検知器65,66と、二つの検知器65,66からの出力に応じて散乱光取得ヘッド12の状態を判定する判定部82と、を有する。
分析用レーザ発振器61は、流体Gに照射するレーザ光を発振する。加熱用レーザ発振器62は、散乱光取得ヘッド12の一部を加熱するレーザ光を発振する。
散乱光取得ヘッド12は、ヘッドケーシング13と、光出射部である分析用レーザ発振器61からのレーザ光を流体G中に導く出射光学系21と、流体Gを通過したレーザ光を受光するレーザ受光光学系(励起受光光学系)31と、流体Gの流路の一部を画定すると共に流体Gからのラマン散乱光を通過させる散乱光窓42と、散乱光窓42を通過したラマン散乱光を受ける散乱光受光器44と、散乱光窓42に接している光遮蔽部材50と、加熱用レーザ光を光遮蔽部材50に導く加熱用光ファイバーケーブル55と、を備える。
出射光学系21は、分析用レーザ発振器61からのレーザ光が通る出射光ファイバーケーブル25と、出射光ファイバーケーブル25から出射されたレーザ光の向きを変える出射プリズム(変更器)23と、流体Gの流路の一部を画定すると共にレーザ光を通過させるレーザ出射窓22と、を有する。
出射光ファイバーケーブル25は、光ファイバー(不図示)と、この光ファイバーの外周を覆う被覆材(不図示)と、光ファイバーの端の外周を覆うスリーブ27と、を有する。この出射光ファイバーケーブル25の出射側のスリーブ27は、ヘッドケーシング13に取り付けられている。
出射プリズム23は、出射光ファイバーケーブル25から出射されたレーザ光の光軸を垂直に折り曲げる。言い換えると、出射プリズム23は、出射光ファイバーケーブル25の出射面光軸Aoに対して、出射プリズム23を通過した後のレーザ光の光軸を垂直にする。なお、出射面光軸Aoとは、出射光ファイバーケーブル25で、レーザ光を出射する出射面26における光軸である。この出射プリズム23は、ヘッドケーシング13内に配置され、このヘッドケーシング13に固定されている。
レーザ出射窓22は、出射プリズム23により向きが替えられたレーザ光が通過する。
レーザ出射窓22で流体Gの流路を画定する内面22iと、レーザ出射窓22で出射プリズム23側の外面22oとは、いずれも、出射プリズム23を通過したレーザ光の光軸に対して垂直である。このため、出射プリズム23を通過した後であってレーザ出射窓22に至る前のレーザ光の光軸と、レーザ出射窓22を通過して流体G中に至ったレーザ光の光軸である流体中光軸Awとは、一致している。このレーザ出射窓22は、ヘッドケーシング13に固定されている。
以上で説明した出射光学系21は、集光光学系を有していない。しかしながら、出射光ファイバーケーブル25から出射したレーザ光を流体G中で集光させる集光光学系を有していてもよい。
レーザ受光光学系(励起受光光学系)31は、流体Gの流路の一部を画定すると共にレーザ光を通過させるレーザ受光窓32と、レーザ受光窓32を通過したレーザ光の向きを変える受光プリズム33と、受光プリズム33を通過したレーザ光が入射するレーザ受光光ファイバーケーブル35と、受光プリズム33を通過したレーザ光をレーザ受光光ファイバーケーブル35の受光面36に集光させる集光光学系34と、を有する。
レーザ受光窓32は、流体中光軸Aw上に配置されている。レーザ受光窓32で流体Gの流路を画定する内面32iと、レーザ受光窓32で受光プリズム33側の外面32oとは、いずれも、流体中光軸Awに対して垂直である。このため、レーザ受光窓32を通過したレーザ光の光軸は、流体中光軸Awと一致している。このレーザ受光窓32は、ヘッドケーシング13に固定されている。
受光プリズム33は、レーザ受光窓32を通過したレーザ光の光軸を垂直に曲げる。言い換えると、受光プリズム33は、流体中光軸Awに対して、受光プリズム33を通過した後のレーザ光の光軸を垂直にする。この受光プリズム33は、ヘッドケーシング13内に配置され、このヘッドケーシング13に固定されている。
レーザ受光光ファイバーケーブル35は、光ファイバー(不図示)と、この光ファイバーの外周を覆う被覆材(不図示)と、光ファイバーの端の外周を覆うスリーブ37と、を有する。このレーザ受光光ファイバーケーブル35の受光側のスリーブ37は、ヘッドケーシング13に取り付けられている。
レーザ受光光ファイバーケーブル35の受光面光軸Aiは、受光プリズム33を通過した後のレーザ光の光軸と一致する。なお、受光面光軸Aiとは、レーザ受光光ファイバーケーブル35で、受光プリズム33からのレーザ光を受ける受光面36における光軸である。
なお、以下では、流体中光軸Awが延びている方向を光軸方向Daとする。また、流体中光軸Awに垂直な方向のうち、この流体中光軸Awに対してレーザ受光光ファイバーケーブル35の受光面36が存在する方向を径方向Drとする。この径方向Drで、流体中光軸Awに近づく側を径方向内側Driとし、反対側を径方向外側Droとする。
散乱光窓42は、前述したように、散乱光を通過する一方で、レーザ光を反射する。この散乱光窓42は、光軸方向Daで流体G中のレーザ光の光路が存在する範囲Rw内であって、且つ流体中光軸Awから径方向Drに離れた位置に配置されている。散乱光窓42で流体Gの流路を画定する内面42iと、散乱光窓42で内面42iと反対側の面である外面42oとは、いずれも、流体中光軸Awに対して平行である。なお、散乱光窓42の内面42iは径方向内側Driを向き、散乱光窓42の外面42oは径方向外側Droを向いている。
散乱光受光器44は、散乱光窓42を通過した散乱光を受ける散乱光光ファイバーケーブル45を有する。散乱光光ファイバーケーブル45の受光面46は、散乱光窓42と同様に、光軸方向Daで流体G中のレーザ光の光路が存在する範囲Rw内であって、且つ流体中光軸Awから径方向Drに離れた位置に配置されている。但し、この受光面46は、散乱光窓42よりも径方向外側Droに位置し、径方向内側Driを向いている。散乱光光ファイバーケーブル45は、光ファイバー(不図示)と、この光ファイバーの外周を覆う被覆材(不図示)と、光ファイバーの端の外周を覆うスリーブ47と、を有する。この散乱光光ファイバーケーブル45の受光側のスリーブ47は、ヘッドケーシング13に取り付けられている。
出射光ファイバーケーブル25の出射面26、レーザ受光光ファイバーケーブル35の受光面36、及び散乱光光ファイバーケーブル45の受光面46は、いずれも、流体中光軸Awから径方向Drに離れた位置に配置されている。また、出射光ファイバーケーブル25の出射面26、レーザ受光光ファイバーケーブル35の受光面36、及び散乱光光ファイバーケーブル45の受光面46は、いずれも、流体中光軸Awに対して平行な面である。よって、出射光ファイバーケーブル25の出射面光軸Ao、レーザ受光光ファイバーケーブル35の受光面光軸Ai、及び散乱光光ファイバーケーブル45の受光面光軸Arsは、いずれも、互いに平行で、且つ流体中光軸Awに対して垂直である。
光遮蔽部材50は、散乱光窓42の外面42oに接着剤等で接着されている。この光遮蔽部材50は、レーザ光やラマン散乱光を透過させず、これらの光のエネルギーを吸収し易く、且つ熱伝導性の良い部材で形成されている。具体的には、銅や真鍮、又はこれらを含む合金等で形成されている。この光遮蔽部材50の外形状は、図1及び図2に示すように、環状である。この環状の内側は、散乱光が通過する光路になる。この光遮蔽部材50の内部には、散乱光窓42の外面42oに沿って広がり、且つ光遮蔽部材50の外形状に合った環状の空洞51が形成されている。
加熱用光ファイバーケーブル55は、光ファイバー(不図示)と、この光ファイバーの外周を覆う被覆材(不図示)と、光ファイバーの端の外周を覆うスリーブ57と、を有する。この加熱用光ファイバーケーブル55の出射側のスリーブ57は、光遮蔽部材50に取り付けられている。具体的には、光遮蔽部材50の空洞内面及び散乱光窓42の外面42oに対して傾斜した方向から、加熱用光ファイバーケーブル55からのレーザ光が光遮蔽部材50の空洞51内に出射されるよう、加熱用光ファイバーケーブル55のスリーブ57が光遮蔽部材50に取り付けられている。
ヘッドケーシング13は、本体部14と二つの突出部15,16とを有する。本体部14には、出射光ファイバーケーブル25のスリーブ27の一部、レーザ受光光ファイバーケーブル35のスリーブ37の一部、集光光学系34、散乱光光ファイバーケーブル45のスリーブ47、光遮蔽部材50、加熱用光ファイバーケーブル55のスリーブ57が収納され、これらが取り付けられている。本体部14には、ヘッドケーシング13を流体Gが流れる配管131pに取り付けるための取付フランジ17が設けられている。この配管131pは、BFGが流れるBFGライン131を構成する配管である。二つの突出部15,16は、取付フランジ17から遠ざかる方向に本体部14から突出している。二つの突出部15,16は、本体部14に対して突出部15,16が突出している方向に対して垂直な方向に離間している。二つの突出部15,16のうち、第一突出部15には、出射プリズム23が収納され、この出射プリズム23が取り付けられている。また、二つの突出部15,16のうち残りの突出部である第二突出部16には、受光プリズム33が収納され、この受光プリズム33が取り付けられている。第一突出部15で、第二突出部16と対向する面には、レーザ出射窓22が取り付けられている。また、第二突出部16で、第一突出部15と対向する面には、レーザ受光窓32が取り付けられている。よって、二つの突出部15,16が離間している方向は、光軸方向Daである。また、本体部14に対して二つの突出部15,16が突出している方向は、径方向Drである。光軸方向Daにおける二つの突出部15,16の間で、本体部14の径方向内側Driの面には、散乱光窓42が取り付けられている。
取付フランジ17によりヘッドケーシング13が配管131pに取り付けられた状態では、第一突出部15及び第二突出部16、さらに、本体部14の径方向内側Driの部分は、いずれも配管131p内に位置することになる。
二つの検知器65,66のうち、一方の検知器である出射光検知器65は、分析用レーザ発振器61から発振されたレーザ光、又は出射光ファイバーケーブル25内を通るレーザ光の強度を検知する。二つの検知器65,66のうち、残りの検知器である受光検知器66は、レーザ受光光ファイバーケーブル35を通ってきたレーザ光の強度を検知する。
判定部82は、前述したように、二つの検知器65,66からの出力に応じて散乱光取得ヘッド12の状態を判定する。具体的には、例えば、出射光検知器65が検知した光強度と受光検知器66が検知した光強度との差が予め定められた値以上の場合、散乱光取得ヘッド12が異常であると判定する。この判定部82が判定する異常の形態としては、例えば、以下の形態がある。出射光光ファイバーケーブルの出射面光軸Aoの向き、レーザ受光光ファイバーケーブル35の受光面光軸Aiの向きの異常形態がある。また、出射プリズム23や受光プリズム33の配置や向きの異常形態がある。さらに、分析用レーザ発振器61の異常形態がある。レーザ出射窓22やレーザ受光窓32が汚れている形態もある。
分析器70は、散乱光光ファイバーケーブル45が受光した散乱光を複数の波長域毎の光に分光する分光器71と、分光器71で分光された複数の波長域毎の光をデジタル信号で出力するカメラ72と、複数の波長域毎の光に関するデジタル信号に基づいて流体G中の組成を分析する分析部83と、を有する。
コンピュータ80は、機能構成として、以上で説明した制御部81、判定部82、及び分析部83を有する。制御部81、判定部82、及び分析部83は、いずれも、コンピュータ80のメモリ等に記憶されているプログラムと、このプログラムを実行するCPUとを有して構成される。
図5に示すように、制御装置140は、コンピュータ80と通信可能である。制御装置140は、判定部82による判定結果を例えば出力(表示)する。さらに、制御装置140は、分析部83による分析結果に応じて、循環量調節弁137の開度や入口案内翼113の開度、場合よっては、COG調節弁136の開度等を制御する。
次に、以上で説明した組成分析装置10の動作について説明する。
分析用レーザ発振器61から発振されたレーザ光は、出射光ファイバーケーブル25に入射し、この出射光ファイバーケーブル25内を通る。出射光ファイバーケーブル25から出射したレーザ光の光軸は、出射プリズム23により垂直に折り曲げられる。光軸が折り曲げられたレーザ光は、レーザ出射窓22を経て、配管131pの流体G中に照射される。
流体Gに励起光が照射されると、流体G中の成分毎に固有の波長のラマン散乱光が生じる。言い換えると、所定の波長のレーザ光を流体Gに照射した場合、図3に示すように、流体G中の成分毎に、レーザ光の波長から固有のシフト量分だけ波長がシフトしたラマン散乱光が生じる。
散乱光は、散乱光窓42を経て、散乱光光ファイバーケーブル45に受光される。この散乱光は、散乱光光ファイバーケーブル45を通って、分析器70の分光器71に導かれる。分光器71は、入射した散乱光を複数の波長域毎に分光する。カメラ72は、図4に示すように、分光器71で分光された複数の波長域毎の光強度をデジタル信号に変換して、これをコンピュータ80の分析部83に出力する。分析部83は、複数の波長域毎の光に関するデジタル信号に基づいて流体G中の組成を分析する。分析部83には、流体Gに照射するレーザ光の波長と、このレーザ光が照射されたときの各成分から発する散乱光の波長のシフト量との関係が予め記憶されている。分析部83は、この関係を用いて、流体G中の成分を分析する。さらに、分析部83は、成分毎の散乱光の強度に基づいて、流体G中の成分濃度を求める。流体GがガスBFGの場合、分析部83は、必要に応じて、BFGの高位発熱量(HHV)又は低位発熱量(LHV)を求める。
以下の式(1)は、BFGが、図4に示すように、二酸化炭素(CO2)、一酸化炭素(CO)、窒素(N2)、メタン(CH4)、水蒸気(H2O)、水素(H2)を含む場合におけるBFGの単位体積当たりの高位発熱量(HHV)を求める式である。また、以下の式(2)は、同じ場合におけるBFGの単位体積当たり低位発熱量(LHV)を求める式である。
Figure 2021152555
Figure 2021152555
なお、HHVは、BFGの燃焼によって生成された水分の凝縮熱を発熱量として含む発熱量(kcal/m3N)である。LHVは、BFGの燃焼によって生成された水分の凝縮熱を発熱量として含まない発熱量(kcal/m3N)である。また、式(1)〜式(8)において、CN2はN2のモル分率で、CCOはCOのモル分率で、CCO2はCO2のモル分率で、CH2OはH2Oのモル分率で、CH2はH2のモル分率で、CCH4はCH4のモル分率である。各成分のモル分率は、以下の式(3)〜式(8)で求めることができる。
Figure 2021152555
Figure 2021152555
Figure 2021152555
Figure 2021152555
Figure 2021152555
Figure 2021152555
分析部83は、BFG中の成分毎の散乱光の強度から、窒素成分の光強度IN2に対する一酸化炭素成分の相対強度ICO/IN2、窒素成分の光強度に対する二酸化炭素成分の相対強度ICO2/IN2、窒素成分の光強度に対する水蒸気成分の相対強度IH2O/IN2、窒素成分の光強度に対する水素成分の相対強度IH2/IN2、窒素成分の光強度に対するメタン成分の相対強度ICH4/IN2を求める。次に、分析部83は、各成分の相対強度と、式(1)又は式(2)、及び式(3)〜式(8)を用いて、BFGの高位発熱量(HHV)又は低位発熱量(LHV)を求める。なお、式(1)〜式(8)は、H2Oを考慮した体積割合に関する式であるが、H2Oを除いたガスの体積割合に関する式で発熱量を求めてもよい。
分析部83で求められた流体G中の成分濃度又は低位発熱量(LHV)等は、ガスタービンプラントの制御装置140に送られる。制御装置140は、前述したように、分析部83から送られてきたデータ、つまり分析結果に基づいて、循環量調節弁137の開度や入口案内翼113の開度等を制御する。
流体Gを通過したレーザ光は、レーザ受光窓32を経て、受光プリズム33に入射する。このレーザ光の光軸は、受光プリズム33により垂直に折り曲げられる。光軸が折り曲げられたレーザ光は、集光光学系34により、レーザ受光光ファイバーケーブル35の受光面36で集光する。レーザ受光光ファイバーケーブル35に入射したレーザ光の強度は、受光検知器66により検知される。
出射光検知器65で検知されたレーザ光の強度、及び受光検知器66により検知されたレーザ光の強度は、コンピュータ80の判定部82に送られる。判定部82は、前述したように、各検知器65,66で検知されたレーザ光の強度に応じて、散乱光取得ヘッド12の状態を判定する。この判定部82の判定結果は、ガスタービンプラントの制御装置140に送られる。制御装置140は、必要に応じて、判定部82の判定結果を表示する。
加熱用レーザ発振器62から発振されたレーザ光は、加熱用光ファイバーケーブル55を経て、光遮蔽部材50の空洞51内に導かれる。レーザ光は、光遮蔽部材50の空洞51内で、空洞内面で乱反射を繰り返す。この結果、レーザ光の光エネルギーは、光遮蔽部材50及びこの光遮蔽部材50と接している散乱光窓42を加熱する熱エネルギーに変換される。すなわち、本実施形態では、散乱光窓42がレーザ光のエネルギーにより加熱される。
また、本実施形態では、加熱用光ファイバーケーブル55からのレーザ光を光遮蔽部材50の空洞51内に導くので、レーザ光の全てを光遮蔽部材50に照射することができ、このレーザ光の光エネルギーを熱エネルギーに変換する効率を高めることができる。
ところで、ヘッドケーシング13内と流体Gの流路とを仕切るレーザ出射窓22の内面22i、レーザ受光窓32の内面32i及び散乱光窓42の内面42iは、流体G中に異物が存在する場合、この異物により汚れる。例えば、流体Gが、BFG(Blast FurnaceGas)とCOG(Coke Oven Gas)とのいずれか一方のガス、又は両者の混合ガスである場合、この流体G中には、灰等の異物が存在する。
ラマン散乱光の強度は、流体Gに照射するレーザ光の強度よりも遥に小さい。このため、散乱光窓42の内面42iが汚れると、散乱光に基づく流体Gの組成分析に支障をきたす。そこで、本実施形態では、前述したように、散乱光窓42を加熱して、散乱光窓42の内面42iに付着した異物の除去、及び散乱光窓42の内面42iへの異物の付着の抑制を図っている。
散乱光窓42を加熱する方法としては、散乱光窓42に電熱線を接触又は近接させ、この電熱線に電流を流して、この散乱光窓42を加熱する方法がある。このように、散乱光窓42に電熱線を接触又は近接させる場合、流体GがBFGやCOG等のように可燃性ガスの場合、電熱線や、この電熱線に電流を供給する電気ケーブルに防爆処理を施しておく必要がある。一方、本実施形態では、散乱光窓42の加熱に電気を用いないので、散乱光窓42を加熱するために必要な部品、具体的には、加熱用光ファイバーケーブル55や光遮熱部材に防爆処理を施す必要がない。よって、本実施形態では、散乱光窓42を加熱するために必要な部品に対する防爆処理のコストを省くことができる。
本実施形態では、前述したように、散乱光受光器44の受光面46が、光軸方向Daで流体G中のレーザ光の光路が存在する範囲Rw内であって、且つ流体中光軸Awから径方向Drに離れた位置に配置されている。言い換えると、本実施形態では、散乱光受光器44の受光面46は、流体G中の散乱光発生領域Rrsに対して、流体中光軸Awに垂直な方向に離れた位置に配置されている。このため、本実施形態では、流体G中の散乱光発生領域Rrsに散乱光受光器44の受光面46を近づけることができる。しかも、本実施形態では、散乱光窓42の内面42i及び外面42o、さらに散乱光受光器44の受光面46が流体中光軸Awに対して平行であるため、散乱光発生領域Rrsから散乱光受光器44の受光面46に至るまでの散乱光の光路長を短くすることができる。よって、本実施形態では、ラマン散乱光取得装置11、及びこのラマン散乱光取得装置11を含む組成分析装置10の小型化を図ることができる。
さらに、本実施形態では、流体G中の散乱光発生領域Rrsに散乱光受光器44の受光面46を近づけることができるため、散乱光受光器44の受光面46が減衰の少ないラマン散乱光を受けることができる。このため、本実施形態では、散乱光窓42を通過した散乱光を集光させるための集光光学系を省くことができる。具体的に、本実施形態では、流体中光軸Awから散乱光受光器44の受光面46までの径方向(流体中光軸に対して垂直な方向)の距離を、散乱光受光器44が受けるラマン散乱光の光量が分析器70で流体Gの組成を分析できる最小光量になる距離以下にすることで、集光光学系を省くことができる。よって、本実施形態では、この観点からも、ラマン散乱光取得装置11、及びこのラマン散乱光取得装置11を含む組成分析装置10の小型化を図ることができる。
さらに、本実施形態では、前述したように、出射光ファイバーケーブル25の出射面光軸Ao、レーザ受光光ファイバーケーブル35の受光面光軸Ai、及び散乱光光ファイバーケーブル45の受光面光軸Arsが、いずれも、互いに平行で、且つ流体中光軸Awに対して垂直である。よって、本実施形態では、ラマン散乱光取得装置11、及びこのラマン散乱光取得装置11を含む組成分析装置10の光軸方向Daの幅を抑えることができる。
「第二実施形態」
本発明に係る組成分析装置の第二実施形態について、図6を参照して説明する。
本実施形態の組成分析装置は、出射プリズム23及び受光プリズム33が流体Gに接する点と、複数の光遮蔽部材50aを備える点で、第一実施形態の組成分析装置と異なり、その他の点は、基本的に第一実施形態の組成分析装置と同じである。
本実施形態の散乱光窓42aは、第一実施形態の散乱光窓42と同様に、流体中光軸Awから径方向Drに離れた位置に配置されている。本実施形態の散乱光窓42aでも、流体Gの流路を画定する内面42iと、散乱光窓42aで内面42iと反対側の面である外面42oとは、いずれも、流体中光軸Awに対して平行である。但し、本実施形態の散乱光窓42aは、光軸方向Daの長さが第一実施形態の散乱光窓42よりも長い。具体的に、本実施形態の散乱光窓42aは、光軸方向Daで、散乱光光ファイバーケーブル45の受光面光軸Arsを基準にして、出射光ファイバーケーブル25の出射面光軸Aoの位置より遠い位置まで延びている。さらに、本実施形態の散乱光窓42aは、光軸方向Daで、散乱光光ファイバーケーブル45の受光面光軸Arsを基準にして、レーザ受光光ファイバーケーブル35の受光面光軸Aiの位置より遠い位置まで延びている。すなわち、本実施形態の散乱光窓42aは、光軸方向Daで、出射光ファイバーケーブル25の出射面光軸Aoの位置及びレーザ受光光ファイバーケーブル35の受光面光軸Aiの位置にも存在する。このため、本実施形態の散乱光窓42aは、光軸方向Daで流体G中のレーザ光の光路が存在する範囲Rw内では、散乱光を通過する一方で、レーザ光を反射する処理が施され、上記範囲Rw外では、レーザ光を反射する処理が施されておらず、レーザ光を通過する。
本実施形態の出射光学系21aは、分析用レーザ発振器61からのレーザ光が通る出射光ファイバーケーブル25と、散乱光窓42aの一部と、出射光ファイバーケーブル25から出射され散乱光窓42aを通過したレーザ光の向きを変える出射プリズム(変更器)23と、を有する。出射プリズム23の入射面23iは散乱光窓42aの外面42oに接している。一方、出射プリズム23の出射面23oは、流体Gの流路を画定する面を形成する。このため、本実施形態の出射光学系21aは、レーザ出射窓22を有していない。
レーザ受光光学系(励起受光光学系)31aは、レーザ光の向きを変える受光プリズム33と、散乱光窓42aの一部と、レーザ受光光ファイバーケーブル35と、受光プリズム33及び散乱光窓42aを通過したレーザ光をレーザ受光光ファイバーケーブル35の受光面36に集光させる集光光学系34と、を有する。受光プリズム33の入射面23iは、流体Gの流路を画定する面を形成する。このため、本実施形態のレーザ受光光学系31aは、レーザ受光窓32を有していない。受光プリズム33の出射面33oは、散乱光窓42aの外面42oに接している。
以上のように、本実施形態では、第一実施形態におけるレーザ出射窓22及びレーザ受光窓32を有していないので、装置が簡略化し、製造コストを抑えることができる。
第一実施形態では、光遮蔽部材50が一つであり、その外形状は環状である。一方、本実施形態では、前述したように、複数の光遮蔽部材50aを備えている。複数の光遮蔽部材50aは、いずれも、散乱光窓42aの外面42oに接着剤等で接着されている。この光遮蔽部材50は、レーザ光やラマン散乱光を透過させず、これらの光のエネルギーを吸収し易く、且つ熱伝導性の良い部材で形成されている。複数の光遮蔽部材50aは、散乱光光ファイバーケーブル45の受光面光軸Arsに対する周方向に互い離間している。複数の光遮蔽部材50aのそれぞれには、加熱用光ファイバーケーブル55のスリーブ57が第一実施形態と同様に取り付けられている。各加熱用光ファイバーケーブル55には、加熱用レーザ発振器62が接続されている。
以上のように、光遮蔽部材は、一つであっても、複数で有ってもよい。
また、本実施形態では、レーザ出射窓22及びレーザ受光窓32が散乱光窓42aに接しているため、加熱用レーザ発振器62から発振されたレーザ光のエネルギーにより散乱光窓42aが加熱されると、出射プリズム23及び受光プリズム33も加熱される。このため、出射プリズム23の出射面23o及び受光プリズム33の入射面33iに付着した流体G中の異物の除去、さらに、出射プリズム23の出射面23o及び受光プリズム33の入射面33iへの異物の付着の抑制を図ることができる。
「変形例等」
以上で説明した実施形態において、Aに対してBが垂直であるとは、Aに対するBの角度が90°である場合のみならず、Aに対するBの角度が88°〜92°程度で、Aに対してBが実質的に垂直な場合も含まれる。また、AとBとが互いに平行であるとは、Aに対するBの角度が0°である場合のみならず、Aに対するBの角度が−2°〜+2°程度で、Aに対してBが実質的に平行な場合も含まれる。
以上の実施形態では、レーザ受光光学系(励起受光光学系)31,31aは、集光光学系34を有している。しかしながら、レーザ受光光学系31に入射するレーザ光の強度が、光出射部である分析用レーザ発振器61からのレーザ光の強度に対して極めて小さい値でなければ、この集光光学系34を省略してもよい。
以上の実施形態のレーザ受光光学系(励起受光光学系)31,31aは、散乱光取得ヘッド12の異常を判定するために設けられている光学系である。よって、散乱光取得ヘッド12の異常を判定する必要がない場合には、レーザ受光光学系(励起受光光学系)31,31aを省略してもよい。
以上の実施形態における変更器は、出射プリズム23や受光プリズム33である。しかしながら、変更器は、ミラーであってもよい。
以上の実施形態の散乱光受光器44は、集光光学系を有してない。しかしながら、この散乱光受光器44は、集光光学系を有してもよい。
以上の実施形態の分析対象である流体Gは、BFG単味であるガスGである。しかしながら、分析対象である流体Gは、COG単味、BFGとCOGの混合物、BFGとCOGとLDGの混合物でもよい。さらに、分析対象の流体Gは、他の燃料ガス、例えば、天然ガスや、バイオガス等であってもよい。また、分析対象の流体Gは、燃料ガスでなくてもよい。
10:組成分析装置
11:ラマン散乱光取得装置
12:散乱光取得ヘッド
13:ヘッドケーシング
14:本体部
15:第一突出部
16:第二突出部
17:取付フランジ
21,21a:出射光学系
22:レーザ出射窓
22i:内面
22o:外面
23:出射プリズム(変更器)
23i:入射面
23o:出射面
25:出射光ファイバーケーブル
26:出射面
27:スリーブ
31,31a:レーザ受光光学系(励起受光光学系)
32:レーザ受光窓
32i:内面
32o:外面
33:受光プリズム(変更器)
33i:入射面
33o:出射面
34:集光光学系
35:レーザ受光光ファイバーケーブル
36:受光面
37:スリーブ
42,42a:散乱光窓
42i:内面
42o:外面
44:散乱光受光器
45:散乱光光ファイバーケーブル
46:受光面
47:スリーブ
50:光遮蔽部材
51:空洞
55:加熱用光ファイバーケーブル
57:スリーブ
61:分析用レーザ発振器(光出射部)
62:加熱用レーザ発振器
65:出射光検知器
66:受光検知器
70:分析器
71:分光器
72:カメラ
80:コンピュータ
81:制御部
82:判定部
83:分析部
110:ガスタービン
111:空気圧縮機
112:吸気量調節器
115:燃焼器
116:タービン
120:発電機
121:ガス圧縮機
122:吸込ガス量調節器(燃料調節弁)
126:減速機
127:電気集塵器
131:BFGライン
132:COGライン
133:低圧燃料ガスライン
133p:配管
134:高圧燃料ガスライン
135:燃料ガス循環ライン
136:COG調節弁
137:循環量調節弁(燃料調節弁)
138:ガス冷却器
140:制御装置
G:流体(燃料ガス)
Rrs:散乱光発生領域
Ao:出射光ファイバーケーブル25の出射面光軸
Ai:レーザ受光光ファイバーケーブルの受光面光軸
Ars:散乱光光ファイバーケーブルの受光面光軸
Aw:流体中光軸
Da:光軸方向
Dr;径方向
Dri:径方向内側
Dro:径方向外側

Claims (12)

  1. 光出射部からの励起光を流体中に導く出射光学系と、
    前記流体の流路の一部を画定すると共に、前記励起光が照射させた前記流体からのラマン散乱光を通過させる散乱光窓と、
    前記散乱光窓を通過した前記ラマン散乱光を受ける受光面を有する散乱光受光器と、
    を備え、
    前記散乱光窓及び前記散乱光受光器の受光面は、前記流体中における前記励起光の光軸である流体中光軸が延びる光軸方向で前記流体中の前記励起光の光路が存在する範囲内であって、且つ前記流体中光軸に対して垂直な方向である径方向に前記流体中光軸から離れた位置に配置され、
    前記受光面は、前記径方向で前記流体中光軸に近づく側である径方向内側を向き、
    前記出射光学系は、前記光出射部からの前記励起光が通る出射光ファイバーケーブルと、前記出射光ファイバーケーブルから出射された前記励起光の向きを変える変更器と、を有し、
    前記出射光ファイバーケーブルの前記励起光を出射する出射面における光軸である出射面光軸は、前記流体中光軸に対して交差する方向に延び、
    前記出射光ファイバーケーブルの前記出射面と前記変更器は、前記散乱光受光器の前記受光面を基準にして、前記光軸方向の一方側に配置され、
    前記変更器は、前記出射光ファイバーケーブルから出射された前記励起光の光軸を前記流体中光軸に一致させ、
    前記出射光ファイバーケーブルの前記出射面は、前記流体中光軸に対して垂直な方向であって、前記散乱光受光器の受光面が配置されている前記径方向に、前記流体中光軸から離れた位置に配置されている、
    ラマン散乱光取得装置。
  2. 請求項1に記載のラマン散乱光取得装置において、
    前記散乱光受光器の前記受光面における光軸である受光面光軸は、前記流体中光軸に対して垂直である、
    ラマン散乱光取得装置。
  3. 請求項1又は2に記載のラマン散乱光取得装置において、
    前記散乱光窓で前記流体の流路を画定する内面及び前記内面とは反対側の外面は、いずれも、前記流体中光軸に対して平行である、
    ラマン散乱光取得装置。
  4. 請求項1から3のいずれか一項に記載のラマン散乱光取得装置において、
    前記出射面光軸は、前記流体中光軸に対して垂直である、
    ラマン散乱光取得装置。
  5. 請求項1から4のいずれか一項に記載のラマン散乱光取得装置において、
    前記励起光及び前記ラマン散乱光を通過させない光遮蔽部材と、
    前記光遮蔽部材に励起光を照射する加熱用光ファイバーケーブルと、
    を備え、
    前記光遮蔽部材は、前記散乱光窓における前記受光面側の外面に接している、
    ラマン散乱光取得装置。
  6. 請求項5に記載のラマン散乱光取得装置において、
    前記光遮蔽部材の内部には、前記散乱光窓の前記外面に沿って広がる空洞が形成されており、
    前記加熱用光ファイバーケーブルは、前記光遮蔽部材の前記空洞内に励起光を出射する、
    ラマン散乱光取得装置。
  7. 請求項1から6のいずれか一項に記載のラマン散乱光取得装置において、
    前記出射光学系からの前記励起光を受ける励起受光光学系と、
    前記光出射部からの前記励起光の光強度と前記励起受光光学系が受けた前記励起光の光強度との差に応じて、前記励起光が通過する複数の部材で構成される励起光光学系の異常を判定する判定部と、
    を備える、
    ラマン散乱光取得装置。
  8. 請求項7に記載のラマン散乱光取得装置において、
    前記励起受光光学系は、前記散乱光受光器の前記受光面を基準にして、前記光軸方向で前記出射光学系とは反対側に配置されている、
    ラマン散乱光取得装置。
  9. 請求項1から8のいずれか一項に記載のラマン散乱光取得装置において、
    前記光出射部を備える、
    ラマン散乱光取得装置。
  10. 請求項1から9のいずれか一項に記載のラマン散乱光取得装置と、
    前記散乱光受光器からの出力に基づいて前記流体の組成を分析する分析器と、
    を備える組成分析装置。
  11. 請求項10に記載の組成分析装置において、
    前記流体中光軸から前記散乱光受光器の前記受光面までの前記径方向の距離は、前記散乱光受光器が受ける前記ラマン散乱光の光量が、前記分析器で前記流体の組成を分析できる最小光量になる距離以下である、
    組成分析装置。
  12. 請求項10又は11に記載の組成分析装置と、
    前記流体としての燃料ガスが流れる燃料ガスラインと、
    前記燃料ガスラインを流れる燃料ガスの流量を調節する燃料調節弁と、
    前記燃料ガスラインからの燃料ガスの燃焼により駆動するガスタービンと、
    前記燃料調節弁の開度を指示する制御装置と、
    を備え、
    前記ラマン散乱光取得装置は、前記燃料ガスラインに取り付けられ、
    前記分析器は、前記燃料ガスラインを流れる前記燃料ガスの組成を分析し、
    前記制御装置は、前記分析器での分析結果に応じて前記燃料調節弁の開度を定め、前記開度を前記燃料調節弁に対して指示する、
    ガスタービンプラント。
JP2021109261A 2017-12-07 2021-06-30 ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント Pending JP2021152555A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021109261A JP2021152555A (ja) 2017-12-07 2021-06-30 ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017235523A JP6908511B2 (ja) 2017-12-07 2017-12-07 ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント
JP2021109261A JP2021152555A (ja) 2017-12-07 2021-06-30 ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017235523A Division JP6908511B2 (ja) 2017-12-07 2017-12-07 ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント

Publications (1)

Publication Number Publication Date
JP2021152555A true JP2021152555A (ja) 2021-09-30

Family

ID=66750585

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017235523A Active JP6908511B2 (ja) 2017-12-07 2017-12-07 ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント
JP2021109261A Pending JP2021152555A (ja) 2017-12-07 2021-06-30 ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017235523A Active JP6908511B2 (ja) 2017-12-07 2017-12-07 ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント

Country Status (6)

Country Link
US (1) US11371942B2 (ja)
EP (1) EP3722789A4 (ja)
JP (2) JP6908511B2 (ja)
KR (1) KR102390528B1 (ja)
CN (1) CN111656167A (ja)
WO (1) WO2019111953A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365874B2 (ja) 2019-11-28 2023-10-20 Jfeスチール株式会社 オンラインガス分析装置、電気集塵器の運転方法および脱硫塔の運転方法
CN114441501B (zh) * 2022-01-10 2023-01-13 仪凰(无锡)光谱测控有限公司 基于物联网的拉曼光谱检测系统及方法
KR102635721B1 (ko) 2023-08-02 2024-02-13 주식회사 이노템즈 가스터빈 연소 최적화 분석설비를 위한 시스템 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294740A (ja) * 1993-04-09 1994-10-21 Mitsubishi Heavy Ind Ltd ガスの温度及び成分濃度計測法
JP2011080768A (ja) * 2009-10-02 2011-04-21 Mitsubishi Heavy Ind Ltd ガス分析装置
WO2015005075A1 (ja) * 2013-07-11 2015-01-15 株式会社島津製作所 ラマン分光分析装置
JP2015072179A (ja) * 2013-10-02 2015-04-16 三菱重工業株式会社 流体組成分析装置、熱量計、これを備えているガスタービンプラント、及びその運転方法
JP2016029343A (ja) * 2014-07-25 2016-03-03 株式会社島津製作所 流体試料測定装置及び流体試料測定データ処理装置
JP2016080349A (ja) * 2014-10-09 2016-05-16 株式会社四国総合研究所 水素ガス濃度計測装置および方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681151A (ja) * 1992-09-01 1994-03-22 Mitsubishi Materials Corp 容器の窓の清浄方法
JP2671745B2 (ja) * 1993-03-26 1997-10-29 有限会社新興光器製作所 内視鏡
JP3081889B2 (ja) 1996-02-27 2000-08-28 工業技術院長 レーザパルス幅圧縮方法と装置
JPH09260303A (ja) * 1996-03-19 1997-10-03 Toshiba Corp 半導体製造装置のクリーニング方法および半導体製造装置
JPH1064862A (ja) * 1996-08-20 1998-03-06 Nikon Corp 洗浄装置
JP3842982B2 (ja) 2001-03-22 2006-11-08 三菱重工業株式会社 ガス発熱量測定装置、ガス化装置、ガス発熱量測定方法及びガス化方法
US7301125B2 (en) * 2001-05-31 2007-11-27 Ric Investments, Llc Heater for optical gas sensor
JP4160866B2 (ja) 2003-06-30 2008-10-08 三菱重工業株式会社 光計測装置
JP4445452B2 (ja) * 2005-10-18 2010-04-07 アンリツ株式会社 ガス検知装置
WO2013031316A1 (ja) * 2011-09-01 2013-03-07 三菱重工業株式会社 流体組成分析機構及び発熱量計測装置並びに発電プラント
FR2998966B1 (fr) * 2012-11-30 2015-06-26 Indatech Sonde pour mesures optiques en milieu turbide, et systeme de mesure optique mettant en œuvre cette sonde.
US9831953B2 (en) * 2014-01-16 2017-11-28 Mitsubishi Electric Corporation Excitation light source device and optical transmission system
WO2015160520A1 (en) * 2014-04-14 2015-10-22 General Electric Comapny Method and systems to analyze a gas-mixture
JP2016036431A (ja) 2014-08-06 2016-03-22 松浦 祐司 気道内ガス分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294740A (ja) * 1993-04-09 1994-10-21 Mitsubishi Heavy Ind Ltd ガスの温度及び成分濃度計測法
JP2011080768A (ja) * 2009-10-02 2011-04-21 Mitsubishi Heavy Ind Ltd ガス分析装置
WO2015005075A1 (ja) * 2013-07-11 2015-01-15 株式会社島津製作所 ラマン分光分析装置
JP2015072179A (ja) * 2013-10-02 2015-04-16 三菱重工業株式会社 流体組成分析装置、熱量計、これを備えているガスタービンプラント、及びその運転方法
JP2016029343A (ja) * 2014-07-25 2016-03-03 株式会社島津製作所 流体試料測定装置及び流体試料測定データ処理装置
JP2016080349A (ja) * 2014-10-09 2016-05-16 株式会社四国総合研究所 水素ガス濃度計測装置および方法

Also Published As

Publication number Publication date
US11371942B2 (en) 2022-06-28
CN111656167A (zh) 2020-09-11
US20210364440A1 (en) 2021-11-25
JP2019100984A (ja) 2019-06-24
JP6908511B2 (ja) 2021-07-28
KR102390528B1 (ko) 2022-04-25
WO2019111953A1 (ja) 2019-06-13
EP3722789A1 (en) 2020-10-14
EP3722789A4 (en) 2021-08-11
KR20200090891A (ko) 2020-07-29

Similar Documents

Publication Publication Date Title
JP2021152555A (ja) ラマン散乱光取得装置、これを備える組成分析装置、及びガスタービンプラント
KR101789364B1 (ko) 유체 조성 분석 기구, 발열량 계측 장치 및 발전 플랜트 및 유체 조성 분석 방법
WO2015181956A1 (ja) 多成分用レーザ式ガス分析計
JP2009216385A (ja) ガス分析装置及びガス分析装置におけるレーザの波長掃引制御方法
WO2012071326A2 (en) Gas sensing system employing raman scattering
JP5875741B1 (ja) ガス計測装置とその計測方法
JP2013127414A (ja) 多成分用レーザ式ガス分析計
JP2014182106A5 (ja)
JP4211670B2 (ja) ガス分析装置及びガス分析方法
JP5422493B2 (ja) ガス発熱量計測装置及びガス発熱量計測方法
JP5721684B2 (ja) データ取得方法
WO2014162536A1 (ja) 多成分用レーザ式ガス分析計
JP2012242311A (ja) ガス分析装置
JP3842982B2 (ja) ガス発熱量測定装置、ガス化装置、ガス発熱量測定方法及びガス化方法
JP6165014B2 (ja) 流体組成分析装置、熱量計、これを備えているガスタービンプラント、及びその運転方法
JP3643663B2 (ja) 複合発電プラント
US20130057856A1 (en) Fluid composition analysis mechanism, calorific value measurement device, power plant and fluid composition analysis method
JP2011191125A (ja) 発熱量計測装置およびこれを備えたガス焚き発電プラント
WO2013005332A1 (ja) 水素濃度計測装置及び水素濃度計測方法
JP2015072180A (ja) 流体組成分析装置、熱量計、これを備えているガスタービンプラント、及びその運転方法
JP2011137645A (ja) 光学式ガス分析装置、ガス分析方法及び分析装置制御方法
JP2020030112A (ja) レーザ分析計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412