JP2011137645A - 光学式ガス分析装置、ガス分析方法及び分析装置制御方法 - Google Patents

光学式ガス分析装置、ガス分析方法及び分析装置制御方法 Download PDF

Info

Publication number
JP2011137645A
JP2011137645A JP2009295984A JP2009295984A JP2011137645A JP 2011137645 A JP2011137645 A JP 2011137645A JP 2009295984 A JP2009295984 A JP 2009295984A JP 2009295984 A JP2009295984 A JP 2009295984A JP 2011137645 A JP2011137645 A JP 2011137645A
Authority
JP
Japan
Prior art keywords
temperature
measurement
light
gas
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009295984A
Other languages
English (en)
Inventor
Shinichiro Asaumi
慎一郎 浅海
Ryosuke Yokoo
亮佑 横尾
Yoshinao Takakuwa
義直 高桑
Hisao Suzuki
久雄 鈴木
Masahiro Yamakage
正裕 山陰
Katsutoshi Goto
勝利 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toyota Motor Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toyota Motor Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009295984A priority Critical patent/JP2011137645A/ja
Publication of JP2011137645A publication Critical patent/JP2011137645A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Abstract

【課題】より高い精度でガスを分析することができる光学式ガス分析装置を提供することにある。
【解決手段】測定対象のガスが流れる計測セルと、レーザ光を射出する発光部と、発光部から射出されたレーザ光を計測セルに案内する光学系と、光学系から入射され、計測セルを通過したレーザ光を受光する受光部と、受光部で取得した情報に基づいて、計測セルを流れるガスを分析する分析部と、光学系の温度を調整する温度調整手段と、を有することで上記課題を解決する。
【選択図】図1

Description

本発明は、測定対象のガスにレーザ光を照射してガスを分析する光学式ガス分析装置、ガス分析方法、及び、ガス分析装置制御方法に関する。
管路内を流れるガス(気体)を分析する方法として、レーザ光を測定光として用いる方法がある。例えば、本件出願人が出願した特許文献1には、測定対象とされるガス状物質に固有な吸収波長のレーザ光を発振する光源と、この光源から発振されるレーザ光の発振波長を少なくとも2つの異なる周波数で変調する手段と、この変調手段により変調されたレーザ光を前記ガス状物質が存在する測定領域に導く手段と、この測定領域において透過または反射または散乱したレーザ光を受光する受光手段と、この受光手段で受光した信号の中から変調された信号を周波数毎に順次それぞれ復調する複数の位相敏感検波器と、を具備することを特徴とするガス濃度計測装置が記載されている。
特開2001−74653号公報
特許文献1に記載されているような、レーザ光を用いてガス濃度を計測することで高い応答性でガス濃度を計測することができる。しかしながら、特許文献1に記載されているガス濃度計測装置では、測定対象を同一濃度として計測を行っても、計測結果が変化することがある。つまり、測定誤差、ノイズが発生することがある。このように測定誤差や、ノイズが発生すると測定精度が低くなってしまう。
本発明は、上記に鑑みてなされたものであって、より高い精度でガスを分析することができる光学式ガス分析装置、ガス分析方法及び分析装置制御方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、測定対象のガスが流れる計測セルと、レーザ光を射出する発光部と、前記発光部から射出されたレーザ光を前記計測セルに案内する光学系と、前記光学系から入射され、前記計測セルを通過したレーザ光を受光する受光部と、前記受光部で取得した情報に基づいて、前記計測セルを流れるガスを分析する分析部と、前記光学系の温度を調整する温度調整手段と、を有することを特徴とする。
これにより、光学系の温度変化に起因するフリンジの移動を抑制することができる。なお、レーザ光を計測セルに案内するのみの導光部材(光ファイバ)の一部、入射部近辺以外の部分は、光学系に含まれない。
前記光学系は、前記発光部から発光されたレーザ光を第1レーザ光と第2レーザ光とに分光する分光器と、前記分光器により分光された第1レーザ光の出力と、第2レーザ光の出力とをそれぞれ調整する可変光減衰器とを有し、前記第1レーザ光を前記計測セルに入射させ、前記第2レーザ光を、前記計測セルを通過させずに受光部に入射させ、前記受光部は、前記計測セルを通過した前記第1レーザ光を受光する第1受光素子と、前記第2レーザ光を受光する第2受光素子とを有し、前記分析部は、前記第1受光素子と前記第2受光素子との差分に基づいて、前記計測セルを流れるガスを分析することが好ましい。これにより、より高精度な計測を行うことができる。
また、前記発光部は、波長の異なるレーザ光を複数射出させ、前記光学系は、前記発光部から射出される複数のレーザ光を合波させる合波器を有し、前記発光部から出力された複数のレーザ光を前記合波器により合波し、合波したレーザ光を前記計測セルに入射させることが好ましい。
これにより、複数の計測を平行して行うことができ、また、光学系を構成する部材が多い場合でも計測精度を高くすることができる。
また、前記温度調整手段は、前記受光部の温度も調整することが好ましい。受光部に起因するフリンジの移動を抑制することができ、計測精度をより高くすることができる。
また、前記温度調整手段は、温度を調整する対象物の全てを1つの閉空間の中に配置して温度を調整することが好ましい。これにより、温度調整機構を1つ設けるのみでよく、装置構成を簡単にすることができる。
また、前記温度調整手段は、温度を調整する対象物を、別々の閉空間の中に配置し温度を調整することが好ましい。これにより、各対象物をより正確に温度調整することができ、温度変化を抑制することができる。
また、前記温度調整手段は、前記閉空間内の温度を一定範囲に保持することが好ましい。これにより、対象物の環境を一定にすることができ、対象物の温度変化を抑制することができる。
また、前記発光部は、レーザ光を発光する発光素子、前記発光素子から発光された光を集光し、外部に出力する発光光学系を有し、前記温度調整手段は、前記発光素子及び発光光学系の温度を調整することが好ましい。発光部の温度変化も抑制することで、計測精度をより高くすることができる。
上述した課題を解決し、目的を達成するために、本発明は、発光部から発光されたレーザ光を光学系で案内して、計測セルに入射させ、前記計測セルを通過したレーザ光を受光部で受光し、受光した光に基づいてガスを分析するガス分析方法であって、前記計測セルに測定対象のガスが充填されていない状態で計測を行う基準計測工程と、前記基準計測工程で計測した結果に基づいて基準値を設定する基準値設定工程と、前記光学系の温度を前記基準計測工程での計測時の温度に維持する計測条件維持工程と、前記計測条件維持工程により、前記光学系の温度を維持しつつ、前記計測セルに測定対象のガスが充填された状態で計測を行うガス計測工程と、前記ガス計測工程での計測結果を、前記基準計測工程での計測結果に基づいて補正し、前記計測セルに充填されているガスを分析する分析工程と、を有することを特徴とする。
これにより、光学系の温度変化に起因するフリンジの移動を抑制しつつ、計測を行うことができ、計測精度を高くすることができる。
また、前記計測条件維持工程は、前記受光部の温度も前記基準計測工程での計測時の温度に維持することが好ましい。これにより、計測誤差をより小さくすることができる。
また、前記基準計測工程は、前記光学系を予め設定された温度に維持して状態で計測を行うことが好ましい。これにより、光学系の条件の変化を少なくすることができ、測定毎の計測誤差も少なくすることができる。
上述した課題を解決し、目的を達成するために、本発明は、発光部から発光されたレーザ光を光学系で案内して、計測セルに入射させ、前記計測セルを通過したレーザ光を受光部で受光し、受光した光に基づいてガスを分析するガス分析装置の制御方法であって、前記光学系の基準温度を設定する基準温度設定工程と、前記光学系の温度を検出する温度検出工程と、前記温度検出工程で検出した温度に応じて、前記光学系の雰囲気の温度を調整する温度調整工程と、を有することを特徴とする。
これにより、光学系の温度変化に起因するフリンジの移動を抑制しつつ、計測を行うことができ、計測精度を高くすることができる。
ここで、前記温度調整工程は、前記温度検出工程で検出した温度と前記基準温度とを用いてフィードバック制御を行い、前記光学系の雰囲気の冷却または加熱を制御することが好ましい。これにより、光学系の温度を一定範囲に維持することができる。
本発明にかかる光学式ガス分析装置、ガス分析方法及び分析装置制御方法は、より高い精度でガスを分析することができるという効果を奏する。
図1は、本発明の光学式ガス分析装置の一実施形態であるガス濃度計測装置の概略構成を示す模式図である。 図2は、ガス濃度計測装置の計測動作を示すフロー図である。 図3は、温度調整部の動作を示すフロー図である。 図4−1は、受光した光の波長と出力強度との関係を模式的に示すグラフである。 図4−2は、受光した光の波長と出力強度との関係を模式的に示すグラフである。 図4−3は、受光した光の波長と出力強度との関係を模式的に示すグラフである。 図4−4は、受光した光の波長と出力強度との関係を模式的に示すグラフである。 図5は、濃度計測結果と、時間との関係を示すグラフである。 図6は、濃度計測結果と、時間との関係を示すグラフである。 図7は、計測値のドリフト量と、温度変化との関係を示すグラフである。 図8は、ガス濃度計測装置の他の実施形態の概略構成を示す模式図である。 図9は、ガス濃度計測装置の他の実施形態の概略構成を示す模式図である。 図10は、ガス濃度計測装置の他の実施形態の概略構成を示す模式図である。 図11は、ガス濃度計測装置の他の実施形態の概略構成を示す模式図である。 図12は、図11に示す発光部の概略構成を示す模式図である。
以下に、本発明にかかる光学式ガス分析装置、ガス分析方法及び分析装置制御方法の一実施形態を図面に基づいて詳細に説明する。なお、下記実施形態では、本発明を、管路を流れる排ガス(測定対象のガス)に含まれる特定の物質(測定対象の物質)の濃度を計測するガス濃度計測装置として用いた場合について説明するが、この実施形態によりこの発明が限定されるものではない。
また、ガス濃度計測装置として用いる場合は、管路を流れる種々のガスについて特定の物質の濃度を計測することができる。例えば、ガス濃度計測装置をディーゼルエンジンに取付、ディーゼルエンジンから排出される排ガスに含まれる物質を計測してもよい。なお、排ガスを排出する機関、つまり測定対象のガスを排出(供給)する装置は、これに限定されず、ガソリンエンジンや、ガスタービン等種々の内燃機関に用いることができる。また、内燃機関を有する装置としては、車両、船舶、発電機等種々の装置が例示される。さらに、ゴミ焼却炉から排出される排ガスに含まれる所定物質の濃度を計測することもできる。また、ガス濃度計測装置は、装置を調整することで、排ガスに含まれる種々の物質の濃度を計測することができる。測定対象となる物質としては、窒素酸化物、硫化酸化物、一酸化炭素、二酸化炭素、アンモニア等が例示される。
(実施形態1)
図1は、本発明の光学式ガス分析装置の一実施形態であるガス濃度計測装置の概略構成を示す模式図である。図1に示すガス濃度計測装置10は、計測セル(ガス計測セル)12と、発光部13と、光学系14と、受光部16と、分析部18と、温度調整部19と、制御部50とを有する。なお、ガス濃度計測装置10の計測セル12は、排ガスが流れる第1配管(図示省略)と第2配管(図示省略)との間に設けられている。また、排ガスは、第1配管の上流側から供給され、第1配管、計測セル12、第2配管を通過し、第2配管よりも下流に排出される。なお、第1配管の上流側には、排ガスの発生装置(供給装置)が配置されている。また、制御部50は、各部の動作を制御する制御機能を有し、必要に応じて、各部の動作を制御する。
計測セル12は、基本的に第1配管及び第2配管と連結された主管と、レーザ光を主管内に入射させる入射管と、主管を通過したレーザ光を出射させる出射管とを有する。なお、入射管及び出射管には、レーザ光が通過可能な窓が設けられている。主管は、円筒状の管状部材であり、一方の端部が第1配管と連結され、他方の端部が第2配管と連結されている。つまり、主管は、排ガスが流れる流路の一部となる位置に配置されている。これにより、排ガスは、第1配管、主管、第2配管の順に流れる。また、第1配管を流れる排ガスは、基本的に全て主管に流れ、その後、第2配管に流れる。なお、レーザ光の主管内の通過経路は、種々の設定とすることができる。例えば、主管の軸方向に直交する方向にレーザ光が通過するようにすることができる。また、主管の軸方向に対して所定角度傾斜させてレーザ光を通過させるようにしてもよい。また、反射部材を設け、主管内でレーザ光を反射させ、主管内を往復させて通過させるようにしてもよい。
発光部13は、測定対象の物質が吸収する近赤外波長域のレーザ光を出力する発光素子ユニット20a、20b、20cを有する。ここで、発光素子ユニット20aと、発光素子ユニット20bと、発光素子ユニット20cとは、それぞれ異なる波長のレーザ光を発光させ、出力する。なお、発光素子ユニットで発光させるレーザ光の波長は、測定対象の物質に応じて設定すればよい。例えば、測定対象が一酸化窒素の場合、発光部13は、一酸化窒素を吸収する近赤外波長域のレーザ光を発光させる発光素子を有する。また、測定対象が二酸化窒素の場合、発光部13は、二酸化窒素を吸収する近赤外波長域のレーザ光を発光させる発光素子を有する。また、測定対象が亜酸化窒素の場合、発光部13は、亜酸化窒素を吸収する近赤外波長域のレーザ光を発光させる発光素子を有する。
光学系14は、分光器30a、30b、30cと、可変光減衰器(Variable Optical Attenuator、以下「VOA」という。)32a、32b、32c、34a、34b、34cと、合波器36、38と、を有する。また、光学系14の各部は、光ファイバ等の光を案内する部材(導光部材)で連結されており、レーザ光は、導光部材内を通過して各部に移動される。
分光器30a、30b、30cは、それぞれ、発光素子ユニット20a、20b、20cから射出されたレーザ光を2つのレーザ光に分光する。具体的には、分光器30aは、発光素子ユニット20aから射出されたレーザ光を2つのレーザ光に分光し、分光器30bは、発光素子ユニット20bから射出されたレーザ光を2つのレーザ光に分光し、分光器30cは、発光素子ユニット20cから射出されたレーザ光を2つのレーザ光に分光する。
VOA32a、32b、32c、34a、34b、34cは、レーザ光の出力を調整する、具体的には、一定範囲で減衰量を変更することができる調整機構である。VOA32aとVOA34aは、分光器30aと接続されている。VOA32aは、分光器30aで分光された一方のレーザ光の出力を調整し、VOA34aは、分光器30aで分光された他方のレーザ光の出力を調整する。また、VOA32bとVOA34bは、分光器30bと接続されている。VOA32bは、分光器30bで分光された一方のレーザ光の出力を調整し、VOA34bは、分光器30bで分光された他方のレーザ光の出力を調整する。VOA32cとVOA34cは、分光器30cと接続されている。VOA32cは、分光器30cで分光された一方のレーザ光の出力を調整し、VOA34cは、分光器30cで分光された他方のレーザ光の出力を調整する。
合波器36、38は、複数のレーザ光を合波する。合波器36は、VOA32a、32b、32cとそれぞれ連結されており、VOA32aを通過した一方のレーザ光と、VOA32bを通過した一方のレーザ光と、VOA32cを通過した一方のレーザ光とを、合波する。また、合波器38は、VOA34a、34b、34cとそれぞれ連結されており、VOA34aを通過した一方のレーザ光と、VOA34bを通過した一方のレーザ光と、VOA34cを通過した一方のレーザ光とを、合波する。
光学系14は、以上の構成であり、発光部13の発光素子ユニット20a、20b、20cから出力されたレーザ光をそれぞれ、一方のレーザ光と、他方のレーザ光に分光した後、合波部36で3つの一方のレーザ光を合波して測定光を作成し、合波部38で3つの他方のレーザ光を合波して参照光を作成する。光学系14は、このようにして、波長成分が同様の測定光と参照光を作成する。また、光学系14は、合波部36で合波して作成した測定光を計測セル12に入射させ、合波部38で合波して作成した参照光を、計測セル12を通過せずに受光部16に入射させる。
受光部16は、2つの受光素子24、25を有し、光学系14から出射された2つのレーザ光(測定光と参照光)を受光する。具体的には、受光素子24は、光学系14の合波部36から出力され、計測セル12を通過した測定光を受光する。また、受光素子25は、光学系14の合波部38から出力され、計測セル12を通過していない参照光を受光する。受光素子24、25は、例えば、フォトダイオード(PD、Photodiode)等の光検出器であり、受光したレーザ光の強度を検出する。受光部16は、受光したレーザ光の強度を受光信号として、分析部18に送る。
分析部18は、差分検出部26と解析部28とを有する。差分検出部26は、受光素子24から送られる受光信号と、受光素子25から送られる受光信号との差分を検出し、検出した差分を、解析部28に送る。なお、計測セル12を通過しているレーザ光の受光信号と、計測セルを通過していないレーザ光の受光信号との間の差分を検出することで、計測セルの通過により変化した成分をより正確に抽出することができる。
解析部28は、差分検出部26から送られる信号と、発光部13を駆動させている条件、光学系14(特にVOAによる減衰)の条件とに基づいて、解析を行い、測定対象の物質の濃度を算出する。具体的には、解析部28は、各種条件に基づいて計測セル12に入射したレーザ光の強度を算出し、算出したレーザ光の強度と、受光部16で受光したレーザ光の強度と比較し、排ガスに含まれる測定対象の物質の濃度を算出する。つまり入射光と出射光との強度の比較から、計測セル12を通過することで、計測セル12中の排ガスの測定対象の物質によるレーザ光の吸収量を算出し、その吸収量に基づいて、排ガスに含まれる測定対象の物質の濃度を算出する。
温度調整部19は、光学系14の温度を調整する調整機構であり、筐体40と、温度センサ42と、温度調整機構44とを有する。筐体40は、光学系14の周囲を覆い、光学系14を他の部材から隔離する箱である。つまり、筐体40は、光学系14を1つの閉空間の中に保持する部材である。なお、筐体40には、発光部13から光学系14にレーザ光を案内する導光部材と、光学系14から計測セル12または受光部16にレーザ光を案内する導光部材を通過させる貫通孔等が形成されている。なお、筐体40の形状は特に限定されず、内部に空間がある種々の形状とすることができる。
温度センサ42は、筐体40の内部の温度を検出するセンサである。温度センサ42は、筐体40の内部の任意の位置の温度を検出できればよいが、複数点の温度を検出するようにしてもよい。
温度調整機構44は、筐体40の内部を加熱、冷却して、筐体40の内部の温度を調整する機構であり、例えば加熱、冷却機構となるペルチェ素子を用いることができる。また、冷却には、水冷式、空冷式の冷却機構を用いることができ、加熱には、電気、光等のエネルギを熱に変換する種々の加熱機構を用いることができる。
温度調整部19は、温度センサ42の検出結果に基づいて、温度調整機構44を動作させ、つまり、筐体40の内部を加熱、または冷却し、筐体40内の温度を一定の範囲または一定の温度に維持する。
ガス濃度計測装置10は、以上のような構成であり、発光部13から出力させた近赤外の波長域のレーザ光を、光学系14により測定光と参照光に分離する。その後、測定光を計測セル12の所定経路を通過させた後、受光部16に到達させる。なお、計測セル12内の排ガス中に測定対象の物質が含まれていると、計測セル12を通過するレーザ光が吸収される。そのため、レーザ光は、排ガス中の測定対象の物質の濃度によって、受光部16に到達するレーザ光の出力が変化する。また、参照光は、計測セル12を通過させずに受光部16に到達させる。受光部16は、受光した測定光と参照光をそれぞれ受光信号に変換し、分析部18に出力する。また、分析部18は、発光部13から出力したレーザ光の強度も取得する。分析部18は、測定光の受光信号と参照光の受光信号とから差分を検出し、計測セル12の通過により変化した成分を抽出する。分析部18は、発光部13から出力した光の強度と、受光信号から算出される強度とを比較し、その減少割合から計測セル12内を流れる排ガスの測定対象物の濃度を算出する。このようにガス濃度計測装置10は、いわゆるTDLAS方式(Tunable Diode Laser Absorption Spectroscopy:可変波長ダイオードレーザー分光法)を用い、出力したレーザ光の強度と、受光部16で検出した受光信号とに基づいて主管内の所定位置、つまり、測定位置を通過する排ガス中の測定対象の物質の濃度を、算出及び/または計測する。また、ガス濃度計測装置10は、連続的に測定対象の物質の濃度を、算出及び/または計測することができる。なお、ガス濃度計測装置10は、温度調整部19により光学系14の温度を調整しつつ、計測を行う。
次に、ガス濃度計測装置10の動作をより詳細に説明する。ここで、図2は、ガス濃度計測装置の計測動作を示すフロー図である。まず、ガス濃度計測装置10は、測定対象の計測を開始する前に、ステップS12として、基準値の計測を行う。ここで、基準値は、計測セル12に測定対象の排ガスが流れていない状態で計測を行い、算出した値である。つまり、ガス濃度計測装置10は、ステップS12としてオフセット処理を行う。
ガス濃度計測装置10は、ステップS12で基準値を測定したら、ステップS14として温度維持動作を開始する。ここで、温度維持動作とは、温度調整部19により、筐体40の内部、つまり、光学系14の温度条件を維持する、つまり、温度が変化しないように制御する動作である。なお、温度維持動作については、後ほど説明する。
ガス濃度計測装置10は、ステップS14で温度維持動作を開始したら、ステップS16として、測定対象のガスの流通を開始する。具体的には、エンジン等の排ガス供給装置を駆動させ、計測セル12への排ガスの供給を開始する。
ガス濃度計測装置10は、ステップS16でガスの流通を開始したら、ステップS18として、レーザ光による測定を行い、ステップS20として、測定対象の物質の濃度の算出を行う。具体的には、上述した方法で、計測セル12に通過させた測定光と、計測セル12を通過させない参照光とを受光部16により受光し、その受光強度と各値とに基づいて、測定対象の波長における強度を測定する。さらに、ステップS12で算出した基準値を用いて、測定した強度を補正することで、測定対象の物質の濃度を算出する。
ガス濃度計測装置10は、ステップS20で測定対象の物質の濃度を算出したら、ステップS22として測定終了かを判定する。ガス濃度計測装置10は、測定終了ではない(No)と判定したら、ステップS18に進む。このように、ガス濃度計測装置10は、測定が終了するまで、測定と算出を繰り返し、計測セル12を流れる排ガスに含まれる測定対象の物質の濃度の計測、算出を繰り返す。また、ガス濃度計測装置10は、ステップS22で、測定終了(Yes)と判定したら、処理を終了する。
次に、温度調整部19による光学系14の温度維持動作(温度調整動作)について説明する。ここで、図3は、温度調整部の動作を示すフロー図である。ステップS14で温度維持動作が開始されたら、温度調整部19は、ステップS30として、基準値を設定する。ここで、ステップS30における基準値とは、温度制御の基準となる基準温度である。なお、基準温度は、任意の値に設定することができるが、計測精度をより高くすることができ、演算も簡単にできるため、ステップS12で基準値を測定した際の基準温度とすることが好ましい。ステップS30で設定する、基準値は、一定の範囲である。つまり、基準値は、上限と下限を有する一定の温度範囲である。
温度調整部19は、ステップS30で基準温度を設定したら、ステップS32として温度を検出する。具体的には、温度センサ42で、筐体40内の温度を検出する。温度調整部19は、ステップS32で温度を検出したら、ステップS34として、ステップS32で検出した温度が基準値の上限よりも高いかを判定する。温度調整部19は、ステップS34で検出した温度が基準値の上限よりも高い(Yes)と判定したら、ステップS36として、冷却処理を行う。具体的には、温度調整機構44により筐体40内を冷却する。温度調整部19は、ステップS36で筐体40内を冷却したら、ステップS42に進む。
また、温度調整部19は、ステップS34で検出した温度が基準値の上限よりも高くない(No)、つまり基準値の上限以下であると判定したら、ステップS38として、基準値の下限よりも低いかを判定する。温度制御部19は、ステップS38で検出した温度が基準値の下限よりも低い(Yes)と判定したら、ステップS40として、加熱処理を行う。具体的には、温度調整機構44により筐体40内を加熱する。温度調整部19は、ステップS40で筐体40内を加熱したら、ステップS42に進む。また、温度調整部19は、ステップS38で検出した温度が基準値の下限よりも低くない(No)、つまり、基準値の下限以上であると判定したら、ステップS42に進む。
温度調整部19は、ステップS42として、処理終了であるかを判定する。温度調整部19は、ステップS42で、処理終了ではない(No)と判定したら、ステップS32に進む。このように温度調整部19は、処理を終了するまで筐体40内の温度調整を行い、筐体40内の温度を一定範囲、つまり基準値の上限と下限との間の温度に維持する。また、温度調整部19は、ステップS42で処理終了(Yes)と判定したら、処理を終了する。
このように、ガス濃度計測装置10は、温度調整部19により光学系14の周囲の温度を所定範囲に維持しつつ、計測を行うことで、高い精度で排ガスに含まれる測定対象の物質の濃度を計測することができる。
なお、図3では、温度調整部19によって、基準値の上限より高い温度になったら冷却を行い、下限より低い温度になったら加熱を行う場合として説明したが、温度調整部19の制御方法はこれに限定されない。温度調整部19は、フィードバック制御(PI制御、PID制御)を用いて、加熱と冷却を調整するようにしてもよい。例えば、基準値を設定し、温度が基準値となるようにフィードバック制御を行いペルチェ素子に供給する電流の大きさ、また、その電流が流れる方向を制御するようにしてもよい。このようにフィードバック制御を用いることで、より高精度な制御を行うことができ、また、温度調整機構を円滑に使用することができる。また、上記図3に示す制御の場合も、計測温度に応じて加熱の程度(加熱量)、冷却の程度(冷却量)を調整するようにすることが好ましい。
以下、図4−1から図4−4を用いて説明する。図4−1から図4−4は、それぞれ受光した光の波長と出力強度との関係を模式的に示すグラフである。なお、図4−1から図4−4は、それぞれ縦軸を出力強度とし、横軸を周波数とした。なお、出力強度は、受光信号を演算処理した後の値である。具体的には、本実施形態では、測定対象の物質が特定波長のレーザ光を吸収し、その波長域の強度が低くなることを、検出するため、濃度が高くなるほどレーザ光の吸収量が多くなる。図4−1から図4−4では、この吸収量を出力として検出している。つまり、濃度が高く、吸収量が大きくなるほど、出力強度が大きくなる計算を行った結果を示している。
まず、ガス濃度計測装置10では、発光部13、光学系14等のレーザ光を出力し、伝達する機構の特性により、周波数毎に出力のばらつきがあるため、図4−1に示すように、検出される受光信号にも周波数に応じた出力のばらつき(フリンジ)が生じる。なお、このフリンジは、発光部13、光学系14の内部の微細な形状や、反射点間の距離等によって発生し、それぞれの条件に基づいて形状、大きさ、位相が変化するものと考えられている。次に、計測時に計測セル12内に測定対象の物質が一定濃度あると、特定の波長でレーザ光が吸収され、図4−2に示すように、波長αでの出力強度が大きくなる。
ここで、実際の計測では、測定対象の物質による吸収に起因する波長αでの出力強度の変化に、フリンジが加わるため、計測時の出力波形は、図4−3に示すように、図4−1の波形に図4−2の波形を重ねたものとなる。なお、図4−3は、測定対象の物質による吸収が発生する波長αに、フリンジの凹凸の凹部分(谷)が重なった場合である。また測定対象の物質による吸収が発生する波長αに、フリンジの凹凸の凸部分(山)が、重なると図4−4に示すように、出力波形となる。このように、ガス濃度計測装置10は、フリンジの形状が変化すると、実際に計測される出力波形、及び吸収波長における出力が変化する。特に、図4−3から図4−4に示すように、測定対象となる周波数に対して、フリンジの凹部分が重なる状態から凸部分が重なる状態に変化すると計測される出力が大きく変化する。
ここで、光学系14の温度が変化することでもフリンジに位相変化が生じる。つまり、計測中に光学系14に温度変化が生じると、フリンジが周波数に対して移動し、同じ計測を行っていても、出力波形が図4−3に示す状態から、図4−4に示す状態に移動する。
これに対して、ガス濃度計測装置10は、上述したように、温度調整部19により光学系14の温度を一定範囲に維持することで、計測時にフリンジが変化することを抑制することができる。これにより、フリンジの影響を小さくすることができ、計測精度をより高くすることができる。
また、計測前に計測の基準値を設定する、つまりオフセット処理を行うことで、測定対象の物質の濃度のみをより高い精度で計測することができる。つまり、フリンジの移動が発生すると、オフセット処理を行った場合でも、オフセット処理後のフリンジの変化が測定誤差となるが、ガス濃度計測装置10は、フリンジの変化を抑制しつつ、計測前に計測の基準値を設定できるため、初期状態でのフリンジ(つまり図4−1の出力波形)の影響を少なくまたはなくすことができ、かつ、フリンジの移動の発生(つまり、図4−3から図4−4への変化)も抑制することができる。
以下、図5及び図6を用いて具体例を説明する。本具体例では、温度調整部を設けた本実施形態のガス濃度計測装置と、温度調整部を設けないガス濃度計測装置とで、計測を行った。なお、計測では、測定対象の物質を一酸化炭素とし、計測セル12にあるガスを一定濃度の一酸化炭素を含むガスとした。つまり、濃度が変化しないガスの計測を行い、装置の計測精度を試験した。計測結果を図5及び図6に示す。ここで、図5及び図6は、濃度計測結果と、時間との関係を示すグラフである。また、図5に示すグラフは、温度調整部を設けた本実施形態のガス濃度計測装置による計測結果であり、図6に示すグラフは、温度調整部を設けないガス濃度計測装置による計測結果である。なお、図5及び図6は、縦軸をCO(一酸化炭素)の計測濃度(%/FS(フーリエ級数(Fourier series)))とし横軸を時間(s)た。なお、図5に示す測定では、30分(1800秒)間測定を行い、図6に示す測定では、60分(3600秒)間測定を行った。
図5に示すように、温度調整部を設けた本実施形態のガス濃度計測装置による計測では、COの計測濃度の変化を小さくすることができ、具体的には、基準値を中心として±2%/FSの範囲の精度で計測できることがわかる。これに対して、図6に示すように、温度調整部を設けず、光学系の温度を制御しない場合では、計測値の変化が大きくなることがわかる。具体的には、基準値を中心として±2%/FSの範囲を超える値も計測されることがわかる。このように、温度調整部を設け、光学系の温度(筐体内の温度)を一定範囲に維持することで、計測精度を高くすることができる。
ここで、温度調整部19は、筐体40内の温度変化を0.3℃以下とすることが好ましい。具体的には、基準値を基準として、±0.3℃の範囲に維持することが好ましい。つまり、上限を基準値+0.3℃以下と設定し、下限を基準値−0.3度以上に設定することが好ましい。ここで、図7は、計測値のドリフト量と、温度変化との関係を示すグラフである。なお、図7では、縦軸をドリフト量(%/FS)とし、横軸を基準値に対する温度変化(℃)とした。なお、ドリフト量とは、濃度の計測の際の基準値(計測によって測定されるべき値)に対する変化量(差分)である。図7に示すように、基準値に対する温度変化を0.3℃以下とすることで、ドリフト量を2%/FS(本測定では、1.5%/FS以下)とすることができる。これにより、測定誤差をより小さくすることができる。
ここで、温度調整部19の筐体40は、外周を断熱材料で覆う構成とすることが好ましい。このように断熱材料で外周を覆うことで、筐体40の内部に筐体40の外部からの熱が伝わることを抑制することができる。なお、筐体40は、温度調整機構44により、筐体40の内部から取得した熱を放出する部分、加熱する部分は、熱交換可能とすることが好ましい。また、放熱領域には、ヒートシンク、ヒートパイプを設けることが好ましい。
また、筐体40は、内部を例えば、金属等の熱伝導性の高い部材で構成することが好ましい。このように筐体40の内部の熱伝導性を高くすることで、筐体40の内部の温度を高い精度で調整することが可能となる。
なお、基準値を設定するための計測(ステップS12の計測)は、光学系の周囲の温度(温度センサにより検出される温度)を予め設定された温度にして計測を行うことが好ましい。これにより、周波数に対するフリンジの大きさの変化を小さくすることができ、計測間での誤差を小さくすることができる。例えば、測定前に暖機運転等を行うことで、所定の温度状態にすることができる。
(実施形態2)
上記実施形態では、温度調整部19により光学系14の温度(光学系14を含む空間の温度)を調整したが、本発明はこれに限定されず、さらに、温度調整部により受光部の温度も調整してもよい。以下、図8を用いて、他の実施形態について説明する。ここで、図8は、ガス濃度計測装置の他の実施形態の概略構成を示す模式図である。なお、図8に示すガス濃度計測装置60は、温度調整部を除いて他の構成は、ガス濃度計測装置10と同様の構成である。そこで、ガス濃度計測装置60の構成で、ガス濃度計測装置10と同様の構成の部分は、同一の符号を付してその説明は省略し、以下、ガス濃度計測装置60に特有の点を説明する。
図8に示すガス濃度計測装置60は、計測セル12と、発光部13と、光学系14と、受光部16と、分析部18と、温度調整部62と、制御部50とを有する。なお、計測セル12と、発光部13と、光学系14と、受光部16と、分析部18と、制御部50とは、図1に示すガス濃度計測装置10の各部と同様の構成であるので、説明を省略する。
温度調整部62は、筐体64と、温度センサ42と、温度調整機構44とを有する。筐体64は、光学系14と受光部16との周囲を覆い、光学系14と受光部16とを他の部材から隔離する箱である。つまり、筐体64は、光学系14と受光部16とを1つの閉空間の中に保持する部材である。なお、温度センサ42と、温度調整機構44とは、温度調整部19の各部と同様の構成であるので、説明を省略する。
温度調整部62は、温度センサ42によって検出した結果に基づいて温度調整機構44の動作を制御することで、筐体64内の温度を一定範囲に維持することができる。つまり、光学系14と受光部16の周囲の温度を一定範囲に維持することができる。これにより、光学系14のみならず受光部16の温度変化も抑制することができる。
ここで、受光部16を構成する受光素子24、25もレーザ光を案内する機構等を備えているため、フリンジを発生させる。受光部16で発生するフリンジは、光学系14で発生するフリンジよりも小さいが、受光部16の温度変化を抑制し、受光部16で発生するフリンジの移動も抑制できることで、計測精度をより高くすることができる。
(実施形態3)
上記実施形態では、複数の発光素子ユニットを備える発光部を用い、複数波長のレーザ光を合波した測定光を用いたが、本発明はこれに限定されない。以下、図9を用いて、他の実施形態について説明する。ここで、図9は、ガス濃度計測装置の他の実施形態の概略構成を示す模式図である。なお、図9に示すガス濃度計測装置80は、各構成部材の個数(ユニット数)を除いて他の構成は、ガス濃度計測装置10と同様の構成である。そこで、ガス濃度計測装置80の構成で、ガス濃度計測装置10と同様の構成の部分は、同一の符号を付してその説明は省略し、以下、ガス濃度計測装置80に特有の点を説明する。
図9に示すガス濃度計測装置80は、計測セル12と、発光部82と、光学系84と、受光部16と、分析部18と、温度調整部86と、制御部50とを有する。なお、計測セル12と、受光部16と、分析部18と、制御部50とは、図1に示すガス濃度計測装置10の各部と同様の構成であるので、説明を省略する。
発光部82は、発光素子ユニット20aを有する。また、光学系84は、分光器30aと、VOA32a、34aとを有する。また、温度調整部86は、筐体88と、温度センサ42と、温度調整機構44とで構成されている。各部の構成は、基本的に、温度調整部19と同様である。温度調整部86の筐体88は、光学系84を覆うように配置されている。温度調整部86は、筐体88で外周を覆っている、光学系84の分光器30aと、VOA32a、34aと、を所定範囲の温度に維持する。
ガス濃度計測装置80は、1つの発光素子ユニット20aとそれに対応する光学系84のみを有し、1つの発光素子ユニット20aから射出されたレーザ光を分光し、一方を測定光として、計測セル12に入射させ、他方を参照光として、そのまま受光部16に入射させる。なお、上記構成は、測定対象の物質が1つの物質である場合に有効に利用することができる。測定対象の物質が1つの物質、つまり単一ガス計測のガス濃度計測装置80も、温度調整部86により、光学系84(光学系84が配置されている雰囲気の温度)の温度を一定範囲に維持することで、高い精度で排ガスに含まれる測定対象の物質の濃度を計測することができる。
(実施形態4)
上記実施形態では、1つの筐体で、光学系を覆い、光学系(光学系が配置されている雰囲気)の温度を調整したが、本発明はこれに限定されない。以下、図10を用いて、他の実施形態について説明する。ここで、図10は、ガス濃度計測装置の他の実施形態の概略構成を示す模式図である。なお、図10に示すガス濃度計測装置100は、温度調整部101の構成を除いて他の構成は、ガス濃度計測装置80と同様の構成である。そこで、ガス濃度計測装置100の構成で、ガス濃度計測装置80と同様の構成の部分は、同一の符号を付してその説明は省略し、以下、ガス濃度計測装置100に特有の点を説明する。
図10に示すガス濃度計測装置100は、計測セル12と、発光部82と、光学系84と、受光部16と、分析部18と、温度調整部101と、制御部50とを有する。なお、計測セル12と、発光部82と、光学系84と、受光部16と、分析部18と、制御部50とは、図9に示すガス濃度計測装置80の各部と同様の構成であるので、説明を省略する。
温度調整部101は、温度調整ユニット102、104、106で構成されている。ここで、温度調整ユニット102は、第1筐体110aと、温調素子112aと、温調器114aと、第2筐体116aとで構成され、分光器30aに対応して設けられている。また、温度調整ユニット104は、第1筐体110bと、温調素子112bと、温調器114bと、第2筐体116bとで構成され、VOA32aに対応して設けられている。また、温度調整ユニット106は、第1筐体110cと、温調素子112cと、温調器114cと、第2筐体116cとで構成され、VOA34aに対応して設けられている。ここで、温度調整ユニット102と、温度調整ユニット104と、温度調整ユニット106とは、配置位置が異なるのみで、基本的構成は、同様であるので、以下、代表して、温度調整ユニット102の各部について説明する。
第1筐体110aは、分光器30aの外周を覆う金属製の箱状の部材である。第1筐体110aは、分光器30aを1つの閉空間の中に保持する部材である。温調素子112aは、第1筐体110aに隣接して配置されており、第1筐体110aを加熱、冷却して、第1筐体110aの内部の雰囲気、及び分光器30aの温度を調整する素子である。また、温調器114aは、温調素子112aを制御する制御部である。例えば、温調素子112aとしてペルチェ素子を用いる場合、温調器114aは、温調素子112aに流す電流、電圧を制御し、加熱、冷却を制御する。なお、温調素子112a及び温調器114aの組み合わせが上述の温度調整機構に対応する。
第2筐体116aは、第1筐体110aと温調素子112aの外周を覆うように配置された箱状部材であり、温調素子112aから排出された熱を効率よく排出する放熱板として機能する。また、第1筐体110aと温調素子112aとを1つの閉空間に配置することで、温調素子112aと第1筐体110aとの間での熱交換の効率を向上させている。また、第1筐体110aが温調素子112a以外から熱の影響を受けることを抑制している。これにより、温調素子112aによる温度調整をより高精度に行うことを可能としている。温度調整ユニット102は、以上のような構成であり、第1筐体110a及び第2筐体116aで分光器30aの外周を覆い、温調素子112a、温調器114aで第1筐体110a内の温度、分光器30aの温度を調整することで、分光器30aの周囲の温度を一定範囲に保持する。
また、上述と同様に、温度調整ユニット104は、VOA32aの周囲の温度を一定範囲に保持し、温度調整ユニット106は、VOA34aの周囲の温度を一定範囲に保持する。
ガス濃度計測装置100のように、光学系84の各構成部材を別々の閉空間に配置し、その空間内の温度を一定範囲に維持することでも、光学系84の各構成部材(構成部材が配置されている雰囲気の温度)の温度を一定範囲に維持することができ、高い精度で排ガスに含まれる測定対象の物質の濃度を計測することができる。
また、このように、別々の温度調整ユニットを用いて、温度調整を行う場合は、温度調整ユニットを全て同一の温度に維持する必要はなく、各温度調整ユニットでの温度変化を一定温度範囲以内に維持すればよい。つまり、基準として設定した温度からの変化を一定値以下とすればよく、基準として設定した温度は、温度調整ユニット毎に異なる値でもよい。温度変化を抑制することで、フリンジの移動を抑制することができ、計測値に発生する誤差を抑制することができる。
なお、各温度調整ユニットは、さらに温度センサを備え、温度センサの検出結果に基づいて、温度を調整するようにしてもよい。また、温調素子を常に一定温度に維持することでも、制御対象の温度を一定に維持するようにすることができる。
また、各構成部材を別々にする必要はなく、一部の構成部材は、同じ閉空間内に配置してもよい。例えば、2つのVOAは、同じ筐体(同じ温度調整ユニット)に配置し、分光器は、別の筐体(別の温度調整ユニット)に配置するようにしてもよい。
(実施形態5)
上記実施形態では、いずれも差分光学系、つまり、レーザ光を分光し、測定光と参照光とに分け、計測セルを通過させない参照光を用いて測定光を補正して、受光信号を検出する測定方法を用いたが本発明はこれに限定されない。以下、図11及び図12を用いて、他の実施形態について説明する。ここで、図11は、ガス濃度計測装置の他の実施形態の概略構成を示す模式図であり、図12は、図11に示す発光部の概略構成を示す模式図である。なお、図11に示すガス濃度計測装置120で、ガス濃度計測装置10と同様の構成の部分は、同一の符号を付してその説明は省略する。
図11に示すガス濃度計測装置120は、計測セル12と、発光部122と、受光素子24と、分析部124と、温度調整部130と、制御部50とを有する。なお、ガス濃度計測装置120は、1つの受光素子24が受光部を構成する。
発光部122は、発光素子ユニット20aを有する。発光素子ユニット20aについては後ほど説明する。また、分析部124は、受光素子24で受光信号を増幅させるアンプ126と、アンプ126で増幅された受光信号を解析する解析部128とを有する。
次に、図12を用いて、発光素子ユニット20aと、温度調整部130の構成を説明する。発光素子ユニット20aは、図12に示すように、発光素子140と、ペルチェ素子142と、レンズ144と、光ファイバ146とを有する。発光素子140は、所定波長域のレーザ光を発光させる素子であり、例えば、電圧が印加されることで、レーザ光を発光させる半導体レーザ等を用いることができる。ペルチェ素子142は、発光素子140の温度を調整する温度調整機構である。ペルチェ素子142により発光素子140の温度を調整することで、発光素子140の発光効率、発光特性等を維持する。レンズ144は、発光素子140から出力されたレーザ光を集光させる集光レンズである。光ファイバ146は、レーザ光を案内する導光部材であり、一方の端部がレンズ144と対面している。
発光素子ユニット20aは、発光素子140から発光されたレーザ光をレンズ144により集光して、光ファイバ146に入射させ、光ファイバ146により、対象物(本実施形態では、計測セル12の光入射位置)まで案内することで、目的位置にレーザ光を入射させる。また、ペルチェ素子142で発光素子140の温度を調整することで、発光素子140から安定してレーザ光を発光させることができる。
次に、温度調整部130は、筐体150と、温度センサ152と、温度調整機構154とを有する。筐体150は、発光素子ユニット20aの外周、具体的には、発光素子140と、ペルチェ素子142と、レンズ144と、光ファイバ146の外周を覆い、各部を1つの閉空間の中に配置させる箱上の部材である。なお、光ファイバ146は、レーザ光が入射される側の端部近傍の一部のみ筐体150の内部に配置されており、他の部分は筐体150の外部に配置されている。また、温度センサ152と、温度調整機構154とは、上述した温度センサ42、温度調整機構44と同様の構成であるので、説明を省略する。なお、温度調整機構154は、筐体150の内部に埋め込まれて、配置されている。温度調整機構154は、筐体150の外周面に設けても、筐体150の内部に設けてもよい。
温度調整部130は、温度センサ152に基づいて、温度調整機構154の動作を制御することで、筐体150の内部の温度を一定範囲に維持する。これにより、発光素子ユニット20aの温度変化を抑制することができる。具体的には、発光素子140のみならず、レンズ144、光ファイバ146の入射側の一部の温度変化を抑制することができる。
ガス濃度計測装置120は、発光部122からレーザ光を照射させて、計測セル12に入射させる。入射されたレーザ光は、計測セル12を通過した後、受光素子24に入射される。受光素子24は、受光したレーザ光の受光信号を分析部124に送る。分析部124は、送られた受光信号を解析、具体的には、計測セル12を通過することで吸収されたレーザ光の所定波長の強度を算出することで、計測セル12を流れる排ガスに含まれる測定対象の物質の濃度を算出する。なお、分析部124は、受光素子で受光したレーザ光の強度と、発光部122から出力したレーザ光の強度及び光を案内する構成(セル通過時の減光等)の特性を加味することで、濃度を算出することができる。
ここで、発光素子ユニット20aもレンズ144、光ファイバ146等の光学系を備えているため、温度変化によりフリンジを発生させる。これに対して、温度調整部130により、温度変化を抑制することで、レンズ144、光ファイバ146の特性の変化を抑制でき、また、各部の位置関係が、膨張収縮などにより変化することも抑制できる。これにより、発光素子ユニット20aで発生するフリンジの移動を抑制することができ、計測精度を高くすることができる。
このように、光を分光させ(さらには、合波させ)る差分光学系の計測装置に限定されず、温度調整部により、種々の光学系の温度変化を抑制することにより、計測精度を高くすることができる。また、上述した発光部の温度調整部は、差分光学系のガス濃度計測装置に設けてもよい。温度調整部により、温度変化を抑制させた光学系、特に計測セル入射前の光学系を多くすることで、計測精度をより高くすることができる。
また、上記実施形態では、いずれも計測セルの主管と、排ガスを流す案内管とを別部材としたが、一体としてもよい。例えば、計測セルの主管が排ガスを排出する装置に直接連結してもよい。
また、計測セルの主管の管形状は、レーザ光が通過できればよく、断面が円となる管としても、断面が多角形になる管としても、断面が楕円形となる管としてもよい。また、管の内周の断面と外周の断面が異なる形状となってもよい。
また、上記実施形態では、本発明の効果をより好適に得ることができ、高精度な計測を行うことが可能となるため、いわゆるTDLAS方式により、ガスに含まれる対象物質の濃度を計測する場合として説明したが、本発明はこれに限定されず、レーザ光を利用して(透過させる)ことで、ガスの分析を行う種々の装置、方法に用いることができる。
以上のように、本発明にかかる光学式ガス分析装置、ガス分析方法及び分析装置制御方法は、計測セル内を充填されたガスを分析するのに有用である。
10、60、80、100、120 ガス濃度計測装置
12 計測セル
13、82、122 発光部
14、84 光学系
16 受光部
18、124 分析部
19、62、86、130 温度調整部
20a、20b、20c 発光素子ユニット
24、25 受光素子
26 差分検出部
28 解析部
30a、30b、30b 分光器
32a、32b、32c、34a、34b、34c VOA
36、38 合波器
40、64 筐体
42 温度センサ
44 温度調整機構
102、104、106 温度調整ユニット
110a、110b、110c 第1筐体
112a、112b、112c 温調素子
114a、114b、114c 温調器
116a、116b、116c 第2筐体
140 発光素子
142 ペルチェ素子
144 レンズ
146 光ファイバ

Claims (13)

  1. 測定対象のガスが流れる計測セルと、
    レーザ光を射出する発光部と、
    前記発光部から射出されたレーザ光を前記計測セルに案内する光学系と、
    前記光学系から入射され、前記計測セルを通過したレーザ光を受光する受光部と、
    前記受光部で取得した情報に基づいて、前記計測セルを流れるガスを分析する分析部と、
    前記光学系の温度を調整する温度調整手段と、を有することを特徴とする光学式ガス分析装置。
  2. 前記光学系は、前記発光部から発光されたレーザ光を第1レーザ光と第2レーザ光とに分光する分光器と、前記分光器により分光された第1レーザ光の出力と、第2レーザ光の出力とをそれぞれ調整する可変光減衰器とを有し、前記第1レーザ光を前記計測セルに入射させ、前記第2レーザ光を、前記計測セルを通過させずに受光部に入射させ、
    前記受光部は、前記計測セルを通過した前記第1レーザ光を受光する第1受光素子と、前記第2レーザ光を受光する第2受光素子とを有し、
    前記分析部は、前記第1受光素子と前記第2受光素子との差分に基づいて、前記計測セルを流れるガスを分析することを特徴とする請求項1に記載の光学式ガス分析装置。
  3. 前記発光部は、波長の異なるレーザ光を複数射出させ、
    前記光学系は、前記発光部から射出される複数のレーザ光を合波させる合波器を有し、
    前記発光部から出力された複数のレーザ光を前記合波器により合波し、合波したレーザ光を前記計測セルに入射させることを特徴とする請求項1または2に記載の光学式ガス分析装置。
  4. 前記温度調整手段は、前記受光部の温度も調整することを特徴とする請求項1から3のいずれか1項に記載の光学式ガス分析装置。
  5. 前記温度調整手段は、温度を調整する対象物の全てを1つの閉空間の中に配置して温度を調整することを特徴とする請求項1から4のいずれか1項に記載の光学式ガス分析装置。
  6. 前記温度調整手段は、温度を調整する対象物を、別々の閉空間の中に配置し温度を調整することを特徴とする請求項1から4のいずれか1項に記載の光学式ガス分析装置。
  7. 前記温度調整手段は、前記閉空間内の温度を一定範囲に保持することを特徴とする請求項5または6に記載の光学式ガス分析装置。
  8. 前記発光部は、レーザ光を発光する発光素子、前記発光素子から発光された光を集光し、外部に出力する発光光学系を有し、
    前記温度調整手段は、前記発光素子及び発光光学系の温度を調整することを特徴とする請求項1から7のいずれか1項に記載の光学式ガス分析装置。
  9. 発光部から発光されたレーザ光を光学系で案内して、計測セルに入射させ、前記計測セルを通過したレーザ光を受光部で受光し、受光した光に基づいてガスを分析するガス分析方法であって、
    前記計測セルに測定対象のガスが充填されていない状態で計測を行う基準計測工程と、
    前記基準計測工程で計測した結果に基づいて基準値を設定する基準値設定工程と、
    前記光学系の温度を前記基準計測工程での計測時の温度に維持する計測条件維持工程と、
    前記計測条件維持工程により、前記光学系の温度を維持しつつ、前記計測セルに測定対象のガスが充填された状態で計測を行うガス計測工程と、
    前記ガス計測工程での計測結果を、前記基準計測工程での計測結果に基づいて補正し、前記計測セルに充填されているガスを分析する分析工程と、を有することを特徴とするガス分析方法。
  10. 前記計測条件維持工程は、前記受光部の温度も前記基準計測工程での計測時の温度に維持することを特徴とする請求項9に記載のガス分析方法。
  11. 前記基準計測工程は、前記光学系を予め設定された温度に維持して状態で計測を行うことを特徴とする請求項9または10に記載のガス分析方法。
  12. 発光部から発光されたレーザ光を光学系で案内して、計測セルに入射させ、前記計測セルを通過したレーザ光を受光部で受光し、受光した光に基づいてガスを分析するガス分析装置の制御方法であって、
    前記光学系の基準温度を設定する基準温度設定工程と、
    前記光学系の温度を検出する温度検出工程と、
    前記温度検出工程で検出した温度に応じて、前記光学系の雰囲気の温度を調整する温度調整工程と、を有することを特徴とする分析装置制御方法。
  13. 前記温度調整工程は、前記温度検出工程で検出した温度と前記基準温度とを用いてフィードバック制御を行い、前記光学系の雰囲気の冷却または加熱を制御することを特徴とする請求項12に記載の分析装置制御方法。
JP2009295984A 2009-12-25 2009-12-25 光学式ガス分析装置、ガス分析方法及び分析装置制御方法 Pending JP2011137645A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295984A JP2011137645A (ja) 2009-12-25 2009-12-25 光学式ガス分析装置、ガス分析方法及び分析装置制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295984A JP2011137645A (ja) 2009-12-25 2009-12-25 光学式ガス分析装置、ガス分析方法及び分析装置制御方法

Publications (1)

Publication Number Publication Date
JP2011137645A true JP2011137645A (ja) 2011-07-14

Family

ID=44349213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295984A Pending JP2011137645A (ja) 2009-12-25 2009-12-25 光学式ガス分析装置、ガス分析方法及び分析装置制御方法

Country Status (1)

Country Link
JP (1) JP2011137645A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049168A (ja) * 2013-09-03 2015-03-16 株式会社島津製作所 ガス吸光度測定装置
CN113607687A (zh) * 2021-09-17 2021-11-05 清华大学 一种基于气体吸收光谱的单端漫反射多组分测量系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100276A (en) * 1976-02-18 1977-08-23 Mitsubishi Electric Corp Gas densitometer
JPH01307641A (ja) * 1988-06-06 1989-12-12 Toyota Central Res & Dev Lab Inc 粉塵濃度測定装置
JP2001074653A (ja) * 1999-08-31 2001-03-23 Mitsubishi Heavy Ind Ltd ガス濃度計測装置及び燃焼炉
JP2005172465A (ja) * 2003-12-08 2005-06-30 Sysmex Corp 粒子測定装置
JP2008051598A (ja) * 2006-08-23 2008-03-06 Toyota Motor Corp ガス分析装置及びガス分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100276A (en) * 1976-02-18 1977-08-23 Mitsubishi Electric Corp Gas densitometer
JPH01307641A (ja) * 1988-06-06 1989-12-12 Toyota Central Res & Dev Lab Inc 粉塵濃度測定装置
JP2001074653A (ja) * 1999-08-31 2001-03-23 Mitsubishi Heavy Ind Ltd ガス濃度計測装置及び燃焼炉
JP2005172465A (ja) * 2003-12-08 2005-06-30 Sysmex Corp 粒子測定装置
JP2008051598A (ja) * 2006-08-23 2008-03-06 Toyota Motor Corp ガス分析装置及びガス分析方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049168A (ja) * 2013-09-03 2015-03-16 株式会社島津製作所 ガス吸光度測定装置
CN113607687A (zh) * 2021-09-17 2021-11-05 清华大学 一种基于气体吸收光谱的单端漫反射多组分测量系统

Similar Documents

Publication Publication Date Title
JP6128361B2 (ja) 多成分用レーザ式ガス分析計
JP6271139B2 (ja) 温度計
JP2009216385A (ja) ガス分析装置及びガス分析装置におけるレーザの波長掃引制御方法
KR20140033368A (ko) 집적 회로 검사 장치
JP2006337326A (ja) 排ガス分析装置および排ガス分析方法
JP5155913B2 (ja) 排ガス分析装置
KR102056794B1 (ko) 미세 광경로를 이용한 다종가스 동시 측정 tdlas 정렬 시스템
JP2019117147A (ja) ガス分析装置
JP4211670B2 (ja) ガス分析装置及びガス分析方法
JP2000121558A (ja) 計測装置
WO2014162536A1 (ja) 多成分用レーザ式ガス分析計
JP5811942B2 (ja) ガス濃度測定装置
JP5794167B2 (ja) ガス分析装置
JP2008268064A (ja) 多成分対応レーザ式ガス分析計
JP2009041941A (ja) ガス濃度測定装置およびガス濃度測定方法
JP2011137645A (ja) 光学式ガス分析装置、ガス分析方法及び分析装置制御方法
JP5594514B2 (ja) レーザ式ガス分析計
JP5371295B2 (ja) 電磁波の分析装置
JP5643172B2 (ja) 受光部のスペックル軽減機能を有する分光器
CN109425590B (zh) 多种气体同时测量tdlas对齐系统
KR101614851B1 (ko) 광학적 온도분포 정밀계측 장치 및 방법
JP3909999B2 (ja) 溶融金属分析方法およびその装置
KR20130007447A (ko) 온도 계측 장치, 기판 처리 장치 및 온도 계측 방법
JP2006184077A (ja) 受光部のスペックル軽減機能を有する分光器
JP6710839B2 (ja) レーザ光を用いたガス分析装置及びそれに用いる計測セル

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104