JP2021136412A - 半導体記憶装置およびその製造方法 - Google Patents

半導体記憶装置およびその製造方法 Download PDF

Info

Publication number
JP2021136412A
JP2021136412A JP2020034068A JP2020034068A JP2021136412A JP 2021136412 A JP2021136412 A JP 2021136412A JP 2020034068 A JP2020034068 A JP 2020034068A JP 2020034068 A JP2020034068 A JP 2020034068A JP 2021136412 A JP2021136412 A JP 2021136412A
Authority
JP
Japan
Prior art keywords
slit
semiconductor
layer
film
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020034068A
Other languages
English (en)
Inventor
孝之 鹿嶋
Takayuki Kajima
孝之 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2020034068A priority Critical patent/JP2021136412A/ja
Priority to US17/007,871 priority patent/US11665902B2/en
Priority to TW110100241A priority patent/TWI779452B/zh
Priority to CN202110017150.3A priority patent/CN113327928B/zh
Publication of JP2021136412A publication Critical patent/JP2021136412A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】メモリセルアレイの上部にある複数の選択ゲートを確実に分割し、メモリセルアレイを小型化することができるスリットを備えた半導体記憶装置およびその製造方法を提供する。【解決手段】本実施形態による半導体記憶装置は、基板を備える。積層体は、基板の上方に設けられ、複数の第1絶縁層と複数の導電層とを交互に積層して構成されている。複数の柱状部は、積層体を貫通して設けられ、中心部に設けられたコア層、コア層の周囲に設けられた半導体層、および、該半導体層の周囲に設けられたメモリ膜を含む。スリットは、積層体の上部にある上部導電層を分割する。スリットに重複する柱状部において、コア層またはメモリ膜が半導体層から突出している。【選択図】図6

Description

本実施形態は、半導体記憶装置およびその製造方法に関する。
近年、メモリセルを三次元的に配置した立体型メモリセルアレイを有する半導体記憶装置が開発されている。このような半導体記憶装置において、選択ゲートを分割するためにスリットがメモリセルアレイの上部に設けられている。
このスリットは、絶縁層および導電層の積層膜とメモリホール内の柱状部に形成される。しかし、導電層および柱状部には金属材料等のエッチング制御し難い材料が用いられている。従って、隣接する選択ゲートを充分に電気的に分離するためにスリット底部の幅を広くしようとすると、スリットの上部開口部が広くなり過ぎ、かつ、スリットの深さが深くなり過ぎてしまう。これは、メモリセルアレイの小型化に反する。また、エッチング制御性が悪いことは、導電層と柱状部とのおけるスリットの深さのばらつきの原因となる。
また、導電層および柱状部はエッチング制御性が悪いため、スリットの内壁はテーパーを有し、スリットの底部は先細りになってしまう。先細りのスリットの底部にある選択ゲートを確実に分割するためには、スリットを深くして、スリットの底部の幅を或る程度拡げる必要がある。このように、スリットのテーパー形状もスリットを深くする原因となる。スリットが深いと、ダミーとなる導電層(ダミーワード線)を積層体に多く準備しておく必要がある。これも、メモリセルアレイの小型化に反する。
メモリセルアレイの上部にある複数の選択ゲートを確実に分割し、メモリセルアレイを小型化することができる半導体記憶装置およびその製造方法を提供する。
本実施形態による半導体記憶装置は、基板を備える。積層体は、基板の上方に設けられ、複数の第1絶縁層と複数の導電層とを交互に積層して構成されている。複数の柱状部は、積層体を貫通して設けられ、中心部に設けられたコア層、コア層の周囲に設けられた半導体層、および、該半導体層の周囲に設けられたメモリ膜を含む。スリットは、積層体の上部にある上部導電層を分割する。スリットに重複する柱状部において、コア層またはメモリ膜が半導体層から突出している。
第1実施形態に係る半導体装置を例示する模式斜視図。 積層体を示す模式平面図。 3次元構造のメモリセルを例示する模式断面図。 3次元構造のメモリセルを例示する模式断面図。 第1実施形態に係る半導体記憶装置を例示する模式平面図。 図3の枠B4の構成をより詳細に示す平面図。 図4の5−5線に沿った断面図。 図4の6−6線に沿った断面図。 第1実施形態による半導体記憶装置の製造方法の一例を示す断面図。 図7に続く、半導体記憶装置の製造方法の一例を示す断面図。 図8に続く、半導体記憶装置の製造方法の一例を示す断面図。 図9に続く、半導体記憶装置の製造方法の一例を示す断面図。 図10に続く、半導体記憶装置の製造方法の一例を示す断面図。 図11に続く、半導体記憶装置の製造方法の一例を示す断面図。 図12に続く、半導体記憶装置の製造方法の一例を示す断面図。 図13に続く、半導体記憶装置の製造方法の一例を示す断面図。 図14に続く、半導体記憶装置の製造方法の一例を示す断面図。 図15に続く、半導体記憶装置の製造方法の一例を示す断面図。 図16に続く、半導体記憶装置の製造方法の一例を示す断面図。 図17に続く、半導体記憶装置の製造方法の一例を示す断面図。 図18に続く、半導体記憶装置の製造方法の一例を示す断面図。 図19に続く、半導体記憶装置の製造方法の一例を示す断面図。
以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。以下の実施形態において、半導体基板の上下方向は、半導体素子が設けられる面を上とした場合の相対方向を示し、重力加速度に従った上下方向と異なる場合がある。図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
図1Aは、第1実施形態に係る半導体記憶装置100aを例示する模式斜視図である。図1Bは、積層体2を示す模式平面図である。本明細書では、積層体2の積層方向をZ方向とする。Z方向と交差、例えば、直交する1つの方向をY方向とする。Z及びY方向のそれぞれと交差、例えば、直交する1つの方向をX方向とする。図2A及び図2Bのそれぞれは、3次元構造のメモリセルを例示する模式断面図である。図3は、第1実施形態に係る半導体記憶装置100aを例示する模式平面図である。
図1A〜図3に示すように、第1実施形態に係る半導体記憶装置100aは、3次元構造のメモリセルを有した不揮発性メモリである。
半導体記憶装置100aは、基体部1と、積層体2と、深いスリットST(板状部3)と、浅いスリットSHEと、複数の柱状部CLとを含む。
基体部1は、基板10、絶縁膜11、導電膜12及び半導体部13を含む。絶縁膜11は、基板10上に設けられている。導電膜12は、絶縁膜11上に設けられている。半導体部13は、導電膜12上に設けられている。基板10は、半導体基板、例えば、シリコン基板である。シリコン(Si)の導電型は、例えば、p型である。基板10の表面領域には、例えば、素子分離領域10iが設けられている。素子分離領域10iは、例えば、シリコン酸化物を含む絶縁領域であり、基板10の表面領域にアクティブエリアAAを区画する。アクティブエリアAAには、トランジスタTrのソース及びドレイン領域が設けられる。トランジスタTrは、不揮発性メモリの周辺回路(CMOS(Complementary Metal Oxide Semiconductor)回路)を構成する。絶縁膜11は、例えば、シリコン酸化物(SiO)を含み、トランジスタTrを絶縁する。絶縁膜11内には、配線11aが設けられている。配線11aは、トランジスタTrと電気的に接続された配線である。導電膜12は、導電性金属、例えば、タングステン(W)を含む。半導体部13は、例えば、シリコンを含む。シリコンの導電型は、例えば、n型である。半導体部13の一部は、アンドープのシリコンを含んでいてもよい。
積層体2は、基板10の上方に設けられており、半導体部13に対してZ方向に位置する。積層体2は、Z方向に沿って複数の導電層21及び複数の絶縁層22を交互に積層して構成されている。導電層21は、導電性金属、例えば、タングステンを含む。絶縁層22は、例えば、シリコン酸化物を含む。絶縁層22は、導電層21同士を絶縁する。導電層21及び絶縁層22のそれぞれの積層数は、任意である。絶縁層22は、例えば、エアギャップであってもよい。積層体2と、半導体部13との間には、例えば、絶縁膜2gが設けられている。絶縁膜2gは、例えば、シリコン酸化物(SiO)を含む。絶縁膜2gは、シリコン酸化物よりも比誘電率が高い高誘電体を含んでいてもよい。高誘電体は、例えば、金属酸化物である。
導電層21は、少なくとも1つのソース側選択ゲートSGSと、複数のワード線WLと、少なくとも1つのドレイン側選択ゲートSGDとを含む。ソース側選択ゲートSGSは、ソース側選択トランジスタSTSのゲート電極である。ワード線WLは、メモリセルMCのゲート電極である。ドレイン側選択ゲートSGDは、ドレイン側選択トランジスタSTDのゲート電極である。ソース側選択ゲートSGSは、積層体2の下部領域に設けられる。ドレイン側選択ゲートSGDは、積層体2の上部領域に設けられる。下部領域は、積層体2の、基体部1に近い側の領域を、上部領域は、積層体2の、基体部1から遠い側の領域を指す。ワード線WLは、ソース側選択ゲートSGSとドレイン側選択ゲートSGDとの間に設けられる。
複数の絶縁層22のうち、ソース側選択ゲートSGSとワード線WLとを絶縁する絶縁層22のZ方向の厚さは、例えば、ワード線WLとワード線WLとを絶縁する絶縁層22のZ方向の厚さよりも、厚くされてもよい。さらに、基体部1から最も離された最上層の絶縁層22の上に、カバー絶縁膜(図示せず)を設けてもよい。カバー絶縁膜は、例えば、シリコン酸化物を含む。
半導体記憶装置100aは、ソース側選択トランジスタSTSとドレイン側選択トランジスタSTDとの間に直列に接続された複数のメモリセルMCを有する。ソース側選択トランジスタSTS、メモリセルMC及びドレイン側選択トランジスタSTDが直列に接続された構造は“メモリストリング”、もしくは“NANDストリング”と呼ばれる。メモリストリングは、例えば、コンタクトCbを介してビット線BLに接続される。ビット線BLは、積層体2の上方に設けられ、Y方向に延びる。
積層体2内には、複数の深いスリットST、及び、複数の浅いスリットSHEのそれぞれが設けられている。深いスリットSTは、X方向に延び、積層体2の上端から基体部1にかけて積層体2を貫通しつつ、積層体2内に設けられている。板状部3は、深いスリットST内に設けられている(図1B)。板状部3は、例えば、少なくとも絶縁物を含む。この絶縁物は、例えば、シリコン酸化物である。板状部3は、絶縁物によって積層体2と電気的に絶縁されつつ、半導体部13と電気的に接続された導電物を含んでいてもよい。浅いスリットSHEは、X方向に延び、積層体2の上端から積層体2の途中まで設けられている。浅いスリットSHE内には、例えば、絶縁物4が設けられている(図1B)。絶縁物4は、例えば、シリコン酸化物である。
図1Bに示すように、積層体2は、階段部分2sと、メモリセルアレイ2mとを含む。階段部分2sは、積層体2の縁部に設けられている。メモリセルアレイ2mは、階段部分2sによって挟まれ、あるいは、囲まれている。深いスリットSTは、積層体2の一端の階段部分2sから、メモリセルアレイ2mを経て、積層体2の他端の階段部分2sまで設けられている。浅いスリットSHEは、少なくともメモリセルアレイ2mに設けられている。
図3に示すように、メモリセルアレイ2mは、セル領域(Cell)及びタップ領域(Tap)を含む。階段部分2sは、階段領域(Staircase)を含む(図3)。タップ領域は、例えば、セル領域と階段領域との間に設けられている。図3には図示しないが、タップ領域は、セル領域どうしの間に設けられていてもよい。階段領域は、複数の配線37aが設けられる領域である。タップ領域は、配線37b及び37cが設けられる領域である。配線37a〜37cのそれぞれは、例えば、Z方向に延びる。配線37aは、それぞれ、例えば、導電層21と電気的に接続される。配線37bは、例えば、導電膜12と電気的に接続される。配線37cは、例えば、配線11aと電気的に接続される。
図1Bに示す2つの板状部3によって挟まれた積層体2の部分は、ブロック(BLOCK)と呼ばれている。ブロックは、例えば、データ消去の最小単位を構成する。絶縁物4は、ブロック内に設けられている。板状部3と絶縁物4との間の積層体2は、フィンガと呼ばれている。ドレイン側選択ゲートSGDは、フィンガ毎に区切られている。このため、データ書き込み及び読み出し時に、ドレイン側選択ゲートSGDによりブロック内の1つのフィンガを選択状態とすることができる。
複数の柱状部CLのそれぞれは、積層体2内に設けられたメモリホールMH内に設けられている。各柱状部CLは、Z方向に沿って積層体2の上端から積層体2を貫通し、積層体2内及び半導体部13内にかけて設けられている。複数の柱状部CLは、それぞれ、半導体ボディ210、メモリ膜220及びコア層230を含む。柱状部CLは、その中心部に設けられたコア層230、該コア層230の周囲に設けられた半導体ボディ210、および、該半導体ボディ210の周囲に設けられたメモリ膜220を含む。半導体ボディ210は、半導体部13と電気的に接続されている。メモリ膜220は、半導体ボディ210と導電層21との間に、電荷捕獲部を有する。各フィンガからそれぞれ1つずつ選択された複数の柱状部CLは、コンタクトCbを介して1本のビット線BLに共通に接続される。柱状部CLのそれぞれは、例えば、セル領域(Cell)に設けられている(図3)。
図2A及び図2Bに示すように、X−Y平面におけるメモリホールMHの形状は、例えば、円又は楕円である。導電層21と絶縁層22との間には、メモリ膜220の一部を構成するブロック絶縁膜21aが設けられていてもよい。ブロック絶縁膜21aは、例えば、シリコン酸化物膜又は金属酸化物膜である。金属酸化物の1つの例は、アルミニウム酸化物である。導電層21と絶縁層22との間、及び、導電層21とメモリ膜220との間には、バリア膜21bが設けられていてもよい。バリア膜21bは、例えば、導電層21がタングステンである場合、例えば、窒化チタンとチタンとの積層構造膜が選ばれる。ブロック絶縁膜21aは、導電層21からメモリ膜220側への電荷のバックトンネリングを抑制する。バリア膜21bは、導電層21とブロック絶縁膜21aとの密着性を向上させる。
半導体ボディ210の形状は、例えば、底を有した筒状である。半導体ボディ210は、例えば、シリコンを含む。シリコンは、例えば、アモルファスシリコンを結晶化させたポリシリコンである。半導体ボディ210は、例えば、アンドープシリコンである。また、半導体ボディ210は、p型シリコンであっても良い。半導体ボディ210は、ドレイン側選択トランジスタSTD、メモリセルMC及びソース側選択トランジスタSTSのそれぞれのチャネルとなる。
メモリ膜220は、ブロック絶縁膜21a以外の部分が、メモリホールMHの内壁と半導体ボディ210との間に設けられている。メモリ膜220の形状は、例えば、筒状である。複数のメモリセルMCは、半導体ボディ210と、ワード線WLとなる導電層21と、の間に記憶領域を有し、Z方向に積層されている。メモリ膜220は、例えば、カバー絶縁膜221、電荷捕獲膜222及びトンネル絶縁膜223を含む。半導体ボディ210、電荷捕獲膜222及びトンネル絶縁膜223のそれぞれは、Z方向に延びている。
カバー絶縁膜221は、絶縁層22と電荷捕獲膜222との間に設けられている。カバー絶縁膜221は、例えば、シリコン酸化物を含む。カバー絶縁膜221は、犠牲膜(図示せず)を導電層21にリプレースするとき(リプレース工程)、電荷捕獲膜222がエッチングされないように保護する。カバー絶縁膜221は、リプレース工程において、導電層21とメモリ膜220との間から除去されてもよい。この場合、図2A及び図2Bに示すように、導電層21と電荷捕獲膜222との間には、例えば、ブロック絶縁膜21aが設けられる。また、導電層21の形成に、リプレース工程を利用しない場合には、カバー絶縁膜221は、なくてもよい。
電荷捕獲膜222は、ブロック絶縁膜21a及びカバー絶縁膜221とトンネル絶縁膜223との間に設けられている。電荷捕獲膜222は、例えば、シリコン窒化物を含み、膜中に電荷をトラップするトラップサイトを有する。電荷捕獲膜222のうち、ワード線WLとなる導電層21と半導体ボディ210との間に挟まれた部分は、電荷捕獲部としてメモリセルMCの記憶領域を構成する。メモリセルMCのしきい値電圧は、電荷捕獲部中の電荷の有無、又は、電荷捕獲部中に捕獲された電荷の量によって変化する。これにより、メモリセルMCは、情報を保持する。
トンネル絶縁膜223は、半導体ボディ210と電荷捕獲膜222との間に設けられている。トンネル絶縁膜223は、例えば、シリコン酸化物、又は、シリコン酸化物とシリコン窒化物とを含む。トンネル絶縁膜223は、半導体ボディ210と電荷捕獲膜222との間の電位障壁である。例えば、半導体ボディ210から電荷捕獲部へ電子を注入するとき(書き込み動作)、及び、半導体ボディ210から電荷捕獲部へ正孔を注入するとき(消去動作)、電子および正孔が、それぞれトンネル絶縁膜223の電位障壁を通過(トンネリング)する。
コア層230は、筒状の半導体ボディ210の内部スペースを埋め込む。コア層230の形状は、例えば、柱状である。コア層230は、例えば、シリコン酸化物を含み、絶縁性である。
図3の複数の柱状部CLHRのそれぞれは、積層体2内に設けられたホールHR内に設けられている。ホールHRは、Z方向に沿って積層体2の上端から積層体2を貫通し、積層体2内及び半導体部13内にかけて設けられている。柱状部CLHRのそれぞれは、少なくとも絶縁物5を含む。絶縁物5は、例えば、シリコン酸化物である。また、柱状部CLHRのそれぞれは、柱状部CLと同じ構造であっても良い。柱状部CLHRのそれぞれは、例えば、階段領域(Staircase)及びタップ領域(Tap)に設けられている。柱状部CLHRは、犠牲膜(図示せず)を導電層21にリプレースするとき(リプレース工程)、階段領域及びタップ領域に形成される空隙を保持するための支持部材として機能する。複数の柱状部CLC4を、積層体2のタップ領域(Tap)、絶縁膜32及び絶縁膜31内に形成する。柱状部CLC4のそれぞれは、配線37cを含む。配線37cは、絶縁物36cによって積層体2から電気的に絶縁されている。配線37cは、配線11a等のいずれかに電気的に接続されている。
柱状部CL、即ち、メモリホールMHは、平面レイアウトにおいて、Y方向に隣接する2つのスリットST間に、六方最密配置のように配置されている。浅いスリットSHEは、図4に示すように、一部の柱状部CLの上に重複するように設けられている。浅いスリットSHEの下にある柱状部CLは、メモリセルを構成しない。
図1Aの半導体部13は、例えば、n型の半導体層131と、n型の半導体層132と、n型もしくはアンドープの半導体層133と、を含む。半導体層131は、導電膜12と接する。半導体層132は、半導体層131及び半導体ボディ210のそれぞれと接する。例えば、半導体層132は、メモリ膜220が除去された部分に延在し、半導体ボディ210に接する。また、半導体層132は、X−Y平面において、半導体ボディ210を囲むように設けられる。半導体層133は、半導体層132と接する。
半導体記憶装置100aは、半導体部14を、さらに含む。半導体部14は、積層体2と半導体部13との間に位置している。半導体部14は、半導体層134を含む。半導体層134は、絶縁層22のうち、半導体部13に最も近い絶縁層22bと、絶縁膜2gとの間に設けられている。半導体層134の導電型は、例えば、n型である。半導体層134は、例えば、ソース側選択ゲートSGSとして機能する。
図4は、図3の枠B4の構成をより詳細に示す平面図である。図4には、柱状部CL(即ち、メモリホールMH)および浅いスリットSHEの配置関係が示されている。柱状部CLは、例えば、六方最密配置されている。浅いスリットSHEは、X方向に延伸しており、X方向に配列された1列の柱状部CLに重複するように設けられている。
図5は、図4の5−5線に沿った断面図である。図6は、図4の6−6線に沿った断面図である。柱状部CLの基本的な構成は、図2Aおよび図2Bを参照して説明した通りである。
図5に示すように、スリットSHEは、積層体2の積層方向(Z方向)に設けられ、積層体2のうち上部にある上部導電層(SGD0、SGD1、WLDD0)および上部絶縁層(22u)を貫通している。上部導電層(SGD0、SGD1、WLDD0)のうち、SGD0、SGD1は、ドレイン側選択ゲートである。本実施形態では、積層体2の導電層21のうち上部の5層がドレイン側選択ゲートSGD0、SGD1として機能する。WLDD0は、ダミーワード線である。ダミーワード線WLDD0は、メモリセルアレイのワード線と同じ構成を有するが、ワード線として機能せず、スリットSHEのエッチング領域として設けられている。従って、スリットSHEの溝のエッチングは、ダミーワード線WLDD0のいずれかの位置で停止するように制御される。本実施形態では、積層体2の導電層21のうちドレイン側選択ゲートSGD0、SGD1の直下の4層がダミーワード線WLDD0として設けられている。スリットSHEは、ダミーワード線WLDD0まで設けられている。これに伴い、上部導電層(SGD0、SGD1、WLDD0)間にある上部絶縁層22uにもスリットSHEが貫通している。尚、ドレイン側選択ゲートの数およびダミーワード線の数は、特に限定しない。
スリットSHEは、図3および図4に示すように、X方向に連続して設けられており、ドレイン側選択ゲートSGD0、SGD1をそれぞれY方向に分割するように設けられている。スリットSHEによって分割された一方のドレイン側選択ゲートSGD0、SGD1と、他方のドレイン側選択ゲートSGD0、SGD1とは、それぞれ異なるフィンガに対応する。例えば、スリットSHEの右側にあるドレイン側選択ゲートSGD0、SGD1(以下、まとめてSGD_Rともいう)はスリットSHEの右側にある複数の柱状部(図示せず)に対応しており、このフィンガを選択することができる。即ち、ドレイン側選択ゲートSGD_Rに対応するドレイン側選択トランジスタがオン状態になると、それに対応するフィンガFNGが選択される。選択されたフィンガFNGの柱状部CLはビット線BLに接続される。また、スリットSHEの左側にあるドレイン側選択ゲートSGD0、SGD1(以下、まとめてSGD_Lともいう)はスリットSHEの左側にある複数の柱状部CLに対応し、このフィンガを選択することができる。即ち、ドレイン側選択ゲートSGD_Lに対応するドレイン側選択トランジスタがオン状態になると、それに対応するフィンガFNGが選択される。選択されたフィンガFNGの柱状部CLはビット線BLに接続される。尚、図5の柱状部CLは、ドレイン側選択ゲートSGD_Lによって選択される。
Y方向に隣接するドレイン側選択ゲートSGD_Rと、ドレイン側選択ゲートSGD_Lとが容量結合によって互いに影響し合わないように、スリットSHEは、各ドレイン側選択ゲートSGD0、SGD1を或る程度広い幅で分割することが好ましい。即ち、ドレイン側選択ゲートSGD_Rとドレイン側選択ゲートSGD_Lとの間の間隔は、或る程度広くとることが好ましい。
しかし、ドレイン側選択ゲートSGD0、SGD1およびダミーワード線WLDD0には、例えば、タングステン等のようなエッチングし難い金属材料が用いられている。このため、スリットSHEの溝を形成するためのエッチング工程には、長時間がかかるとともに、スリットSHEの内壁がテーパー状に形成される。これにより、スリットSHEの幅は、上部において広く、上部から底部に近付くに従って狭くなる。
スリットSHEの内壁がテーパー状になっていることによって、スリットSHEの上部の幅W0は比較的広いが、底部の幅W1が狭くなる。従って、上部にあるドレイン側選択ゲートSGD0は、スリットSHEによって充分に広く分離されていても、下部のドレイン側選択ゲートSGD1の分離幅が不十分になるおそれがある。これに対処するためにスリットSHEの底部の分割幅を広くするためにオーバーエッチングすると、スリットSHEの溝の上部開口部が広くなり過ぎ、スリットSHEのレイアウト面積が大きくなってしまう。これは、メモリセルアレイ2mの小型化に反する。また、スリットSHEの溝をオーバーエッチングすると、スリットSHEの溝の深さが深くなり過ぎ、ダミーワード線の層数を増大させる必要が生じる。これは、メモリセルアレイ2mの小型化に反する。
さらに、図4に示すように、積層体2の積層方向(Z方向)から見たときに、積層体2および柱状部CL(メモリホールMH)上にスリットSHEが重畳して形成される。例えば、RIE(Reactive Ion Etching)法等の異方性エッチングを用いて積層体2上のスリットSHEおよび柱状部CL上のスリットSHEの溝を同時に形成する場合、スリットSHEは、積層体2と柱状部CLとの材質の違いによって深さが異なってくる。スリットSHEの深さのばらつきは、やはり、ダミーワード線の層数の増大に繋がる。
そこで、本実施形態では、スリットSHEの形成工程を、積層体2のエッチング工程(第1エッチング工程)と柱状部CLのエッチング工程(第2エッチング工程)とに分ける。以下、図6に示すように、便宜的に、積層体2に形成されたスリットをSHE_2とし、柱状部CLに形成されたスリットをSHE_CLとする。
積層体2の第1エッチング工程では、RIE法等を用いて積層体2にスリットSHE_2の溝を選択的に形成し、柱状部CLの第2エッチング工程では、ウェットエッチングで柱状部CLの半導体ボディ210を選択的にエッチングする。第2エッチング工程では、半導体ボディ210を選択的にエッチングして、柱状部CLにおけるメモリ膜220およびコア層230を残置させる。
第1エッチング工程と第2エッチング工程との間ではリソグラフィ工程は行われず、マスクを変更しない。よって、第1および第2エッチング工程では、エッチング方法を変えることによって、スリットSHE_2、SHE_CLを自己整合的に形成する。
図6に示すように、スリットSHE_CLに重複する柱状部CLにおいて、メモリ膜220およびコア層230は、或る程度エッチングされているが、積層方向(Z方向)の上方へ半導体ボディ210から突出している。換言すると、スリットSHE_CL内のメモリ膜220の上端Et_220およびコア層230の上端Et_230は、スリットSHE_CL内の半導体ボディ210の上端Et_210よりも上方にある。従って、スリットSHE_CL内の柱状部CLでは、メモリ膜220とコア層230との間に絶縁膜50が埋め込まれる。コア層230の周囲とその上には、絶縁膜50が設けられる。即ち、スリットSHE_CL内の半導体ボディ210の上部が絶縁膜50に置換されている。これにより、半導体ボディ210は、ソース層として機能する導電膜12及び半導体部13に接続されているものの、読み出し動作等における電荷がスリットSHE内の半導体ボディ210に入ってくることを抑制することができる。
また、スリットSHE_CLに重複する柱状部CLにおいて、メモリ膜220の上端Et_220およびコア層230の上端Et_230は、積層体2のスリットSHE_2の底部Eb_2よりも上方に位置する。一方、スリットSHE_CL内の半導体ボディ210の上端Et_210は、積層体2に設けられたスリットSHE_2の底部Eb_2よりも深い位置(下方)にある。即ち、本実施形態において、スリットSHE_2、SHE_CLは、メモリ膜220の領域、コア層230の領域、積層体2の領域、半導体ボディ210の領域の順に深くなっている。
図6に示すように、スリットSHE_2、SHE_CLは、一体のスリットSHEとしてX方向に連続して設けられている。従って、スリットSHE_2、SHE_CL内には、同一の絶縁膜50が充填されている。つまり、図5の柱状部CL内の絶縁膜50は、図6を参照して分かるように、スリットSHE内の絶縁膜50と同一材料である。絶縁膜50には、例えば、シリコン酸化膜等の絶縁膜が用いられる。
このように、本実施形態では、スリットSHEの形成工程が、積層体2のエッチング工程と柱状部CLのエッチング工程との2段階に分けられており、スリットSHE_2とスリットSHE_CLとは、異なるエッチング方法でエッチングする。よって、スリットSHE_2およびスリットSHE_CLのエッチング制御が容易になる。例えば、スリットSHE_2およびスリットSHE_CLのそれぞれの深さの制御が容易になる。その結果、スリットSHE_2またはスリットSHE_CLが過剰に深くエッチングされることが抑制される。これは、スリットSHEの開口幅を狭くすることができ、スリットSHEのレイアウト面積を小さくすることを可能にする。また、スリットSHE_2またはスリットSHE_CLが過剰に深くならないので、ダミーワード線の層数も減らすことができる。その結果、メモリセルアレイ2mの小型化に繋がる。
尚、図示しないが、スリットSHEは、絶縁膜50で完全に埋め込まれていなくてもよい。即ち、スリットSHE内には、空洞(ボイド)があってもよい。
図7〜図20は、第1実施形態による半導体記憶装置の製造方法の一例を示す断面図である。図7〜図20は、図3の7−7線に沿った断面に対応する。
図7に示すように、素子分離領域10iを基板10内に形成し、トランジスタTrを、アクティブエリアAA内に形成する。次いで、絶縁膜11を、基板10上に形成する。絶縁膜11は、例えば、層間絶縁膜であり、配線11aを含む。なお、配線11aは、例えば、多層配線であり、図7においては、配線11aaと、配線11aaの上方に設けられた配線11abとを、例示する。次いで、配線11ab上に、絶縁膜11dを形成する。絶縁膜11dは、例えば、シリコン酸化物を含む。次いで、導電膜12を、絶縁膜11d上に形成する。
次に、図8に示すように、半導体層131を、導電膜12上に形成する。半導体層131は、例えば、n型ドープトシリコンを含む。導電膜12および半導体部13は、一体の半導体部12、13としてもよい。次いで、中間膜13aを、半導体層131上に形成する。中間膜13aは、例えば、シリコン酸化物を含む。次いで、犠牲膜13bを、中間膜13a上に形成する。犠牲膜13bは、例えば、n型ドープトシリコン、あるいはアンドープシリコンを含む。次いで、中間膜13cを、犠牲膜13b上に形成する。中間膜13cは、例えば、シリコン酸化物を含む。次いで、半導体層133を、中間膜13c上に形成する。半導体層133は、例えば、n型ドープトシリコン、あるいはアンドープシリコンを含む。これにより、例えば、製造中における基体部1の基礎構造が得られる。
次に、絶縁膜2gを、半導体層133及び絶縁膜32上に形成する。絶縁膜2gは、例えば、シリコン酸化物、あるいは金属酸化物を含む。次いで、半導体層134を、絶縁膜2g上に形成する。半導体層134は、例えば、n型ドープトシリコンを含む。これにより、半導体部14が形成される。次いで、半導体層134上に、絶縁層22bを形成する。引き続き、絶縁層22b上に、犠牲膜23と絶縁層22とを交互に積層する。絶縁層22及び22bのそれぞれは、例えば、シリコン酸化物を含む。犠牲膜23は、例えば、シリコン窒化物を含む。これにより、半導体部13に対してZ方向に位置した、製造中における積層体2の基礎構造が得られる。
次に、図示しないが、絶縁層22及び犠牲膜23を階段状に加工して、階段領域(Staircase)を形成する。また、柱状部CLHRが形成される。
次に、図9に示すように、セル領域(Cell)において、積層体2、半導体層134、絶縁膜2g、半導体層133、中間膜13c、犠牲膜13b、中間膜13a及び半導体層131を異方性エッチングし、メモリホールMHを形成する。メモリホールMHは、積層体2の上端から半導体層131の途中まで形成される。尚、メモリホールMHを介して、半導体層134、絶縁膜2g、半導体層133、中間膜13c、犠牲膜13b、中間膜13a及び半導体層131を等方性エッチングし、半導体部13に対応した部分(例えば、半導体層131、犠牲膜13b及び半導体層133)と、半導体部14に対応した部分(例えば、半導体層134)とにおいて、メモリホールMHの径を拡張してもよい。
次に、図10に示すように、メモリ膜220を、メモリホールMH内に形成する。メモリ膜220は、シリコン窒化物及びシリコン酸化物を含む。次いで、半導体ボディ210を、メモリ膜220上に形成する。半導体ボディ210は、例えば、アンドープシリコン、あるいはp形のドープトシリコンを含む。次いで、コア層230を、半導体ボディ210上に形成する。コア層230は、例えば、シリコン酸化物を含む。これにより、メモリホールMHは、半導体ボディ210、メモリ膜220及びコア層230によって埋め込まれる。
次に、図11に示すように、積層体2、半導体層134、絶縁膜2g、半導体層133、中間膜13c及び犠牲膜13bを異方性エッチングし、深いスリットSTを形成する。深いスリットSTは、積層体2の上端から犠牲膜13bの途中まで形成される。
次に、図12に示すように、ストッパ膜3sを、深いスリットSTの側壁上に形成する。ストッパ膜3sは、例えば、シリコン窒化物を含む。
次に、図13に示すように、深いスリットSTを介して、犠牲膜13bを等方性エッチングし、犠牲膜13bを除去する。この等方性エッチング工程においては、例えば、シリコン酸化物及びシリコン窒化物と比較して、n型ドープトシリコン、あるいはアンドープシリコンをより速くエッチングすることが可能なエッチャントが選択される。これにより、中間膜13aと中間膜13cとの間には、空間S1が形成される。さらに、深いスリットSTを介して、メモリ膜220のカバー絶縁膜221(図2A及び図2B)を等方性エッチングし、カバー絶縁膜221を除去する。この等方性エッチング工程においては、例えば、シリコン窒化物と比較して、シリコン酸化物をより速くエッチングすることが可能なエッチャントが選択される。次いで、深いスリットSTを介して、メモリ膜220の電荷捕獲膜222(図2A及び図2B)を等方性エッチングし、電荷捕獲膜222を除去する。この等方性エッチング工程においては、例えば、シリコン酸化物と比較して、シリコン窒化物をより速くエッチングすることが可能なエッチャントが選択される。次いで、深いスリットSTを介して、メモリ膜220のトンネル絶縁膜223((図2A及び図2B)を除去する。この過程において、中間膜13a及び中間膜13cも除去される。この等方性エッチング工程においては、例えば、シリコン窒化物と比較して、シリコン酸化物をより速くエッチングすることが可能なエッチャントが選択される。これにより、空間S1は、半導体層131と半導体層133との間に拡張され、柱状部CLにおいては、半導体ボディ210が空間S1に露出する。半導体ボディ210が露出した箇所は、接触箇所210cとなる。
次に、図14に示すように、深いスリットSTを介して、空間S1内を半導体で埋め込み、半導体層132を形成する。半導体層132は、例えば、n型ドープトシリコンである。
次に、図15に示すように、深いスリットSTを介して、ストッパ膜3s及び犠牲膜23を等方性エッチングし、ストッパ膜3s及び犠牲膜23を除去する。これにより、絶縁層22間には、空間S2が形成される。この等方性エッチング工程においては、例えば、シリコン酸化物およびポリシリコンと比較して、シリコン窒化物をより速くエッチングすることが可能なエッチャントが選択される。
次に、図16に示すように、深いスリットSTを介して、空間S2内を導電物で埋め込み、導電層21を形成する。導電層21は、例えば、タングステンを含む。
次に、図17に示すように、深いスリットSTを絶縁物で埋め込み、板状部3を形成する。板状部3は、例えば、シリコン酸化物を含む。
次に、図18に示すように絶縁膜を堆積した後、浅いスリットSHEを形成するために、積層体2の積層方向(Z方向)に、積層体2の上部にある上部導電層(図5のSGD0、SGD1、WLDD0)に対応する導電層21および絶縁層22をエッチングする。スリットSHEが、例えば、図5の上部導電層SGD0、SGD1、ダミーワード線WLDD0を貫通するように形成される。このとき、絶縁層22だけでなく、タングステン等の金属材料からなる導電層21もエッチングするので、図18に示すように、スリットSHEは、その幅が底部に近付くに従って狭くなるようにテーパーを有する。
ここで、スリットSHEの形成工程をより詳細に説明する。
図19〜図20は、スリットSHEの形成工程をより詳細に示す断面図である。図19〜図20は、図6に対応する断面を示し、図18の19−19線に沿った断面に対応する。
まず、リソグラフィ技術を用いて、スリットSHE以外の領域をレジスト(図示せず)で被覆し、レジストをスリットSHEのパターンに成形する。次に、レジストをマスクとして、ハードマスクHMをパターニングする。
次に、図19に示すように、ハードマスクHMをマスクとして用いて積層体2の上部にある上部導電層(SGD0、SGD14、WLDD0)をRIE法等で異方的にエッチングし、スリットSHE_2の溝TR_2を形成する(第1エッチング工程)。このとき、エッチングガスには、例えば、塩素系とフッ素系の混合ガスが用いられる。例えば、上部導電層(例えば、タングステン)では塩素系ガスの混合比率を高くしてエッチングし、絶縁層22(例えば、シリコン酸化膜)は、フッ素系ガスの混合比を高くしてエッチングする。これにより、上部導電層およびそれらの間の絶縁層22を、選択的にエッチングすることができる。半導体ボディ210(例えば、ポリシリコン)はスリットSHE_2の加工時に多少けずれるが、スリットSHE_2の底よりも高い位置まで残る。即ち、本実施形態では、積層体2および柱状部CLの両方をエッチングするガス(例えば、塩素系ガスのみ)を用いず、積層体2を選択的にエッチングするガス(例えば、塩素系とフッ素系の混合ガス)を用いる。これにより、図19に示すようにスリットSHE_2の溝TR_2が深く形成され、スリットSHE_CLの溝TR_CLは、半導体ボディ210まで浅く形成される。
次に、図20に示すように、同一ハードマスクHMをマスクとして用いて、柱状部CL内の半導体ボディ210をウェットエッチング法で等方的にエッチングする(第2エッチング工程)。これにより、スリットSHE_CLの溝TR_CLが半導体ボディ210の部分において選択的に深くエッチングされる。逆に、コア層230およびメモリ膜220は、あまりエッチングされず、半導体ボディ210からZ方向に突出する。エッチング液には、例えば、DHF(Diluted Hydrofluoric Acid)およびTMY(トリメチル-2ヒドロキシエチルアンモニウムハイドロオキサイド)が用いられる。このエッチング液によって半導体ボディ210(例えば、ポリシリコン)を選択的にエッチングすることができる。
また、半導体ボディ210のエッチングは、スリットSHE_2の底と同程度もしくはスリットSHE_2からその下のワード線WLの深さまでエッチングされている。
尚、第1および第2エッチング工程では、同一マスクを用いて実行される。即ち、スリットSHE_2、SHE_CLの両方を露出するハードマスクHMを形成した後、第1および第2エッチング工程はハードマスクHMを変更せずに続けて実行される。第1エッチング工程では、RIE法によって異方的にエッチングするが、エッチングガスによって積層体2を選択的にエッチングする。第2エッチング工程では、ウェットエッチングによって等方的に半導体ボディ210を選択的にエッチングする。これにより、第1および第2エッチング工程では、同一マスクを用いても、積層体2または半導体ボディ210を制御性良くエッチングすることができる。スリットSHEは、ばらつき少なくかつ自己整合的に形成することができる。
次に、溝TR_CL、TR_2に絶縁膜50を埋め込む。これにより、図6に示すように、スリットSHE_CL、SHE_2が形成される。
この後、図示しないが、周知の方法に従って、積層体2の上方に層間絶縁膜、コンタクトプラグ、ビット線BL等を形成する。これにより、図1Aに示す半導体記憶装置100aが完成する。
このように、本実施形態によれば、スリットSHEの形成工程が、積層体2の第1エッチング工程と柱状部CLの第2エッチング工程との2段階に分けられており、スリットSHE_2とスリットSHE_CLとは、同一マスクを用いつつも、異なるエッチング方法で形成される。よって、スリットSHE_2およびスリットSHE_CLのそれぞれのエッチング制御が容易になる。その結果、スリットSHE_2またはスリットSHE_CLが過剰に深くエッチングされない。これは、スリットSHEの開口幅を狭くすることができ、スリットSHEのレイアウト面積を小さくすることを可能にする。また、スリットSHE_2またはスリットSHE_CLが過剰に深くならないので、ダミーワード線の層数も減らすことができる。その結果、メモリセルアレイ2mの小型化に繋がる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
2 積層体、CL 柱状部、SHE スリット、SGD0,SGD1 ドレイン側選択ゲート、WLDD0 ダミーワード線、22,22u 絶縁層、50 絶縁膜、210 半導体ボディ、220 メモリ膜、230 コア層

Claims (5)

  1. 基板と、
    前記基板の上方に設けられ、複数の第1絶縁層と複数の導電層とを交互に積層して構成された積層体と、
    前記積層体を貫通して設けられ、中心部に設けられたコア層、該コア層の周囲に設けられた半導体層、および、該半導体層の周囲に設けられたメモリ膜を含む複数の柱状部と、
    前記積層体の上部にある上部導電層を分割するスリットとを備え、
    前記スリットに重複する前記柱状部において、前記コア層または前記メモリ膜が前記半導体層から突出している、半導体記憶装置。
  2. 前記スリットに重複する前記柱状部において、前記コア層または前記メモリ膜の上端は、前記積層体に設けられた前記スリットの底部よりも上方に位置する、請求項1に記載の半導体記憶装置。
  3. 前記スリットに重複する前記柱状部における前記半導体層の上端は、前記積層体に設けられた前記スリットの底部よりも下方に位置する、請求項1または請求項2に記載の半導体記憶装置。
  4. 前記スリットに重複する前記柱状部内において、前記コア層と前記メモリ膜との間に設けられた第2絶縁層をさらに備えた、請求項1から請求項3のいずれか一項に記載の半導体記憶装置。
  5. 基板の上方に複数の第1絶縁層と複数の導電層とが交互に積層された積層体を形成し、絶縁膜を含むコア層、該コア層の周囲に設けられた半導体層、および、該半導体層の周囲に設けられたメモリ膜を含む複数の柱状部を、前記積層体の積層方向に延伸するように該積層体内に形成し、
    前記積層体の上部にある上部導電層にスリットを形成する第1エッチングを実行し、
    前記スリットに重複する前記柱状部において、前記コア層が前記半導体層から前記積層体の積層方向へ突出するように前記半導体層をエッチングする第2エッチングを実行し、
    前記スリット内に第2絶縁層を埋め込む、ことを具備する、半導体記憶装置の製造方法。


JP2020034068A 2020-02-28 2020-02-28 半導体記憶装置およびその製造方法 Pending JP2021136412A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020034068A JP2021136412A (ja) 2020-02-28 2020-02-28 半導体記憶装置およびその製造方法
US17/007,871 US11665902B2 (en) 2020-02-28 2020-08-31 Semiconductor storage device and manufacturing method thereof
TW110100241A TWI779452B (zh) 2020-02-28 2021-01-05 半導體記憶裝置及其製造方法
CN202110017150.3A CN113327928B (zh) 2020-02-28 2021-01-07 半导体存储装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020034068A JP2021136412A (ja) 2020-02-28 2020-02-28 半導体記憶装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2021136412A true JP2021136412A (ja) 2021-09-13

Family

ID=77413502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034068A Pending JP2021136412A (ja) 2020-02-28 2020-02-28 半導体記憶装置およびその製造方法

Country Status (4)

Country Link
US (1) US11665902B2 (ja)
JP (1) JP2021136412A (ja)
CN (1) CN113327928B (ja)
TW (1) TWI779452B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023036399A (ja) * 2021-09-02 2023-03-14 キオクシア株式会社 半導体装置及び半導体記憶装置と半導体装置の製造方法
JP2023036377A (ja) * 2021-09-02 2023-03-14 キオクシア株式会社 半導体記憶装置およびその製造方法
US11894073B2 (en) * 2021-09-28 2024-02-06 Sandisk Technologies Llc Proactive refresh of edge data word line for semi-circle drain side select gate
US11848059B2 (en) * 2021-11-18 2023-12-19 Sandisk Technologies Llc Techniques for erasing the memory cells of edge word lines

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10109641B2 (en) * 2015-08-10 2018-10-23 Toshiba Memory Corporation Semiconductor device and method for manufacturing same
US9929169B2 (en) * 2015-09-09 2018-03-27 Toshiba Memory Corporation Semiconductor device and method for manufacturing the same
JP6495838B2 (ja) * 2016-01-27 2019-04-03 東芝メモリ株式会社 半導体記憶装置及びその製造方法
US9887273B2 (en) * 2016-03-31 2018-02-06 Toshiba Memory Corporation Semiconductor memory device
JP2018142654A (ja) * 2017-02-28 2018-09-13 東芝メモリ株式会社 半導体装置及びその製造方法
JP2019102685A (ja) * 2017-12-05 2019-06-24 東芝メモリ株式会社 半導体装置
JP2019169568A (ja) * 2018-03-22 2019-10-03 東芝メモリ株式会社 半導体装置
JP2019169539A (ja) 2018-03-22 2019-10-03 東芝メモリ株式会社 半導体記憶装置
US20190312050A1 (en) * 2018-04-10 2019-10-10 Macronix International Co., Ltd. String select line gate oxide method for 3d vertical channel nand memory
JP2019212689A (ja) * 2018-05-31 2019-12-12 東芝メモリ株式会社 半導体メモリ
CN109148453B (zh) * 2018-09-19 2023-01-24 长江存储科技有限责任公司 制造半导体器件的方法与3d存储器件
CN109273452B (zh) * 2018-09-19 2020-08-25 长江存储科技有限责任公司 3d存储器件及其制造方法
US10566348B1 (en) 2018-11-05 2020-02-18 Macronix International Co., Ltd. Tilted hemi-cylindrical 3D NAND array having bottom reference conductor
CN109585454B (zh) * 2018-11-20 2023-08-22 长江存储科技有限责任公司 3d存储器件及其制造方法
CN110176460B (zh) * 2019-03-29 2021-05-28 长江存储科技有限责任公司 3d存储器件及其制造方法
CN110211966B (zh) * 2019-06-18 2020-11-20 长江存储科技有限责任公司 一种3d nand存储器件及其制造方法

Also Published As

Publication number Publication date
US20210272980A1 (en) 2021-09-02
TWI779452B (zh) 2022-10-01
US11665902B2 (en) 2023-05-30
CN113327928B (zh) 2024-01-19
TW202133265A (zh) 2021-09-01
CN113327928A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
JP5121792B2 (ja) 半導体装置の製造方法
CN109037227B (zh) 3d存储器件及其制造方法
JP2021136412A (ja) 半導体記憶装置およびその製造方法
KR101731060B1 (ko) 수직형 반도체 소자 및 그 제조 방법
CN110277401B (zh) 半导体装置
CN109390349B (zh) 3d存储器件及其制造方法
TW202010055A (zh) 半導體記憶體裝置
KR20150064520A (ko) 반도체 장치 및 그 제조방법
US9960177B2 (en) Semiconductor device and manufacturing method of the same
KR20150116510A (ko) 반도체 장치 및 그 제조방법
TWI776337B (zh) 半導體記憶裝置及其製造方法
JP2019153693A (ja) 半導体装置およびその製造方法
US11552099B2 (en) Vertical-type nonvolatile memory device including an extension area contact structure
JP2015060874A (ja) 不揮発性半導体記憶装置
US10283519B2 (en) Three dimensional NAND string memory device
KR20130005434A (ko) 불휘발성 메모리 소자
CN111508964A (zh) 3d存储器件及其制造方法
KR20200032872A (ko) 멀티-스택 구조체를 갖는 반도체 소자
CN109273457B (zh) 3d存储器件及其制造方法
CN112259551A (zh) 半导体器件及其制造方法
KR20190123170A (ko) 반도체 소자의 제조 방법
CN111180458B (zh) 3d存储器件及其制造方法
TWI809424B (zh) 半導體裝置
US20240074187A1 (en) Semiconductor device and manufacturing method of a semiconductor device
US20240074186A1 (en) Semiconductor device and manufacturing method of semiconductor device