JP2021075414A - 単結晶引上方法及び単結晶引上装置 - Google Patents

単結晶引上方法及び単結晶引上装置 Download PDF

Info

Publication number
JP2021075414A
JP2021075414A JP2019201792A JP2019201792A JP2021075414A JP 2021075414 A JP2021075414 A JP 2021075414A JP 2019201792 A JP2019201792 A JP 2019201792A JP 2019201792 A JP2019201792 A JP 2019201792A JP 2021075414 A JP2021075414 A JP 2021075414A
Authority
JP
Japan
Prior art keywords
single crystal
dopant
silicon melt
silicon
sublimation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019201792A
Other languages
English (en)
Other versions
JP7285197B2 (ja
Inventor
成松 真吾
Shingo Narimatsu
真吾 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Japan Co Ltd
Original Assignee
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Japan Co Ltd filed Critical GlobalWafers Japan Co Ltd
Priority to JP2019201792A priority Critical patent/JP7285197B2/ja
Priority to CN202080077251.3A priority patent/CN114599826A/zh
Priority to PCT/JP2020/039410 priority patent/WO2021090676A1/ja
Priority to DE112020005441.1T priority patent/DE112020005441T5/de
Priority to US17/771,880 priority patent/US20220364258A1/en
Priority to TW109138738A priority patent/TWI730923B/zh
Publication of JP2021075414A publication Critical patent/JP2021075414A/ja
Application granted granted Critical
Publication of JP7285197B2 publication Critical patent/JP7285197B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】チョクラルスキー法によりシリコン単結晶をシリコン溶融液から引き上げる際、肩部形成後、製品部前半形成中において、有転位化を生じさせることなくシリコン溶融液にドーパントを効率よく添加し、低抵抗率の単結晶を得ることのできる単結晶引上方法及び単結晶引上装置を提供する。【解決手段】炉内において育成するシリコン単結晶Cを囲むように配置された熱遮蔽板7の内側を、上方からシリコン融液面M1に向かって流れるとともに、前記シリコン融液面に沿って放射状に広がり、前記ルツボ外に排気される不活性ガス流Gを形成する工程と、前記炉内においてドーパントをガス状にする工程と、ガス状となったドーパントを前記熱遮蔽板の内側に放出する工程と、前記ガス状となったドーパントを前記不活性ガス流に乗せて流す工程と、を備える【選択図】図2

Description

本発明は、チョクラルスキー法(CZ法)によりシリコン単結晶を引き上げる単結晶引上方法及び単結晶引上装置に関し、例えばN型半導体を形成するために赤燐、砒素などを高濃度にドーピングして低抵抗率の単結晶を得ることのできる単結晶引上方法及び単結晶引上装置に関する。
CZ法によるシリコン単結晶の育成は、図7に示すようなチャンバ50内に設置した石英ルツボ51に原料であるポリシリコンを充填し、石英ルツボ51の周囲に設けられたヒータ52によってポリシリコンを加熱して溶融し、シリコン融液Mとした後、シードチャックに取り付けた種結晶(シード)Pを当該シリコン融液に浸漬し、シードチャックおよび石英ルツボ51を同方向または逆方向に回転させながらシードチャックを引上げることにより行う。
一般に、引上げ開始に先立ち、シリコン融液Mの温度が安定した後、種結晶Pをシリコン融液Mに接触させて種結晶Pの先端部を溶解するネッキングを行う。ネッキングとは、種結晶Pとシリコン融液Mとの接触で発生するサーマルショックによりシリコン単結晶に生じる転位を除去するための不可欠の工程である。
このネッキングによりネック部P1が形成される。また、このネック部P1は、一般的に、直径が3〜4mmで、その長さが最低でも30mm以上が必要で、条件等よっては長さが100〜500mm必要とされている。
また、引上げ開始後の工程としては、ネッキング終了後、直胴部直径にまで結晶を広げる肩部C1の形成工程、製品となる単結晶を育成する直胴部C2の形成工程、直胴部形成工程後の単結晶直径を徐々に小さくするテール部(図示せず)の形成工程が行われる。
ところで、低耐圧パワーデバイス向けのN型半導体を製造するために、赤燐や砒素などのドーパントを高濃度に添加した低抵抗の単結晶Cが求められている。揮発性の高いドーパントの赤燐や砒素等をシリコン融液に添加する方法としては、種結晶Pをシリコン融液Mに浸す前に、固体のドーパントをそのままシリコン融液Mに投入する、或いは、ドーパントをガス状にして、シリコン融液Mの表面に吹き付ける方法が広く知られている。
しかしながら、そのような従来の方法の場合、肩部を形成するまでにシリコン融液Mにドーパントが高濃度に添加されるため、前記ネッキング工程において転位の除去ができないことがあった。
また、ネッキング工程において転位の除去ができたとしても、その後の肩部育成工程において、晶癖線が消失しやすくなり、製品部(直胴部C2)に達するまでに結晶が有転位化するという課題があった。
前記課題を解決する方法として、シリコン融液Mへのドーパントの添加を、肩部C1形成後、製品部(直胴部)前半形成中に行うことが考えられる。
しかしながら、肩部C1形成後に固体のドーパントをシリコン融液Mに投入すると、固体のドーパントが結晶に接触することにより、晶癖線が消失するという課題があった。
そのような課題を解決するため、特許文献1には、図8に示すように固形ドーパントを供給するためのドープ管60を炉内に貫通させ、ドープ管60において炉内の熱で固形ドーパントを昇華させ、これを前記ドープ管60に接続された供給管61を通してシリコン融液Mの液面M1に吹き付ける方法が開示されている。
特開2009−215117
このような方法によれば、肩部C1形成後、直胴部C2前半形成中のタイミングでドーパントをシリコン融液Mに添加し、ドーパント供給量に基づきシリコン融液Mを所望の濃度にすることができる。
しかしながら、特許文献1に開示された方法にあっては、シリコン融液Mの液面M1にガス化したドーパントを局所的に吹き付けるため、融液Mの液面M1が振動し、有転位化しやすくなるため、単結晶Cの育成が困難になるという課題があった。
一方、シリコン溶融Mの液面M1の振動を抑制するために、前記供給管61の先端とシリコン融液M面との距離を大きく空けると、融液面M1まで到達するドーパント量が減少するという課題があった。
また、前記供給管61による吹付け領域が局所的であるため、シリコン融液Mへのドーパントの取り込み率が低いという課題があった。特に、熱を遮蔽する遮蔽シールド58の外側に供給管61の吹出口61aが配置されるため、該吹出口61aから吹き出されたドーパントのガスがシリコン融液Mに接する領域が僅かであり、効率よく融液Mに溶け込ませることができなかった。その結果、シリコン融液Mに溶け込むドーパント量の割合が低くなり、所望の濃度に到達させるまでにドーパント投入量が増加し、最終的にコストが高くなるという課題があった。
本発明は、前記したような事情の下になされたものであり、チョクラルスキー法によりシリコン単結晶をシリコン溶融液から引き上げる際、肩部形成後、製品部前半形成中において、有転位化を生じさせることなくシリコン溶融液にドーパントを効率よく添加し、低抵抗率の単結晶を得ることのできる単結晶引上方法及び単結晶引上装置を提供することを目的とする。
前記課題を解決するためになされた、本発明に係る単結晶引上方法は、炉内に配置されたルツボ内でシリコン融液を形成し、チョクラルスキー法によりシリコン単結晶を育成するシリコン単結晶の引上方法において、炉内において育成するシリコン単結晶を囲むように配置された熱遮蔽板の内側を、上方からシリコン融液面に向かって流れるとともに、前記シリコン融液面に沿って放射状に広がり、前記ルツボ外に排気される不活性ガス流を形成する工程と、前記炉内においてドーパントをガス状にする工程と、ガス状となったドーパントを前記熱遮蔽板の内側に放出する工程と、前記ガス状となったドーパントを前記不活性ガス流に乗せて流す工程と、を備えることに特徴を有する。
尚、前記ガス状となったドーパントを前記不活性ガス流に乗せて流す工程において、ドーパントが砒素の場合、シリコン融液中のドーパント濃度を少なくとも1.5E20atoms/cm以上とすることが望ましい。
或いは、前記ガス状となったドーパントを前記不活性ガス流に乗せて流す工程において、ドーパントが赤燐の場合、シリコン融液中のドーパント濃度を少なくとも1.9E20atoms/cm以上とすることが望ましい。
このように本発明によれば、炉体内に形成され、シリコン融液の液面全体に接する不活性ガスの流れに乗せてドーパントガスを運ぶ構成とした。それにより、シリコン融液の液面全体からシリコン融液中にドーパントが取り込まれ、ドーパント取り込み率を向上することができる。また、シリコン融液の液面に当たり、融液中に取り込まれなかったドーパントガスは、不活性ガスとともに炉体外へ排気されるため、シリコン融液の液面が振動することなく、転位の発生を防止することができる。
その結果、例えば赤燐や砒素などのドーパントを高濃度に添加した低抵抗率の単結晶を得ることができる。
また、前記課題を解決するためになされた、本発明に係る単結晶引上装置は、ヒータにより加熱される炉内に配置されたルツボ内でシリコン融液を形成し、チョクラルスキー法によりシリコン単結晶を育成するシリコン単結晶引上装置において、前記ルツボの上方において育成するシリコン単結晶を囲むように配置された熱遮蔽板と、前記熱遮蔽板の内周面側において、周方向に沿って環状に形成され、周方向に沿って複数の吹出口が形成された昇華室と、先端側が前記昇華室に連通し、前記昇華室にドーパントを供給するための漏斗部と、を備えることに特徴を有する。
尚、前記漏斗部は、逆円錐状の漏斗部本体と、前記漏斗本体の縮径した先端から前記昇華室まで延びる漏斗管と、を有し、前記漏斗部本体の上部開口は、直径40〜80mmであり、前記漏斗管は、直径4〜10mmであり、前記昇華室の管部内径は20〜50mmであり、環状の前記昇華室の環内径は、育成するシリコン単結晶の径の120〜150%の範囲であることが望ましい。
また、前記昇華室において、前記吹出口は、直径5〜15mmであり、該昇華室の周方向に、10〜30個の範囲で所定間隔を空けて配置されていることが望ましい。
このような構成を炉体内に形成することで、シリコン融液の液面全体に接する不活性ガスの流れに乗せてドーパントガスを運ぶものとした。それにより、シリコン融液の液面全体からシリコン融液中にドーパントが取り込まれ、ドーパント取り込み率を向上することができる。また、シリコン融液の液面に当たり、融液中に取り込まれなかったドーパントガスは、不活性ガスとともに炉体外へ排気されるため、シリコン融液の液面が振動することなく、転位の発生を防止することができる。
その結果、例えば赤燐や砒素などのドーパントを高濃度に添加した低抵抗率の単結晶を得ることができる。
本発明によれば、チョクラルスキー法によりシリコン単結晶をシリコン溶融液から引き上げる際、肩部形成後、製品部前半形成中において、有転位化を生じさせることなくシリコン溶融液にドーパントを効率よく添加し、低抵抗率の単結晶を得ることのできる単結晶引上方法及び単結晶引上装置を提供することができる。
図1は、本発明に係る単結晶引上方法が実施される単結晶引上装置の断面図である。 図2は、図1の単結晶引上装置の主要部を拡大した断面図である。 図3は、昇華治具を拡大して示す斜視図である。 図4は、昇華治具が有する昇華室部材の断面図である。 図5(a)、(b)は、昇華室部材の変形例を示す断面図である。 図6は、実施例の結果を示すグラフである。 図7は、チョクラルスキー法によりシリコン単結晶を引き上げる工程を説明するための断面図である。 図8は、従来の単結晶引上装置の概略構成を示す断面図である。
以下、本発明に係る単結晶引上方法及び単結晶引上装置について図面を用いながら説明する。尚、本発明に係る単結晶引上方法は、単結晶の肩部形成後にシリコン溶融液に高濃度にドーパントを添加し、N型の電気的性質を持つ低抵抗率のシリコン単結晶を得るためのものである。
図1は、本発明に係る単結晶引上方法が実施される単結晶引上装置の断面図である。図2は、図1の単結晶引上装置の主要部を拡大した断面図である。
この単結晶引上装置1は、炉体2内において鉛直軸回りに回転可能且つ昇降可能に設けられたカーボンサセプタ(或いは黒鉛サセプタ)3と、前記カーボンサセプタ3に収容された石英ガラスルツボ4(以下、単にルツボ4と称する)とを備えている。
前記ルツボ4は、直胴部4aと、その下に形成された底部(即ち、小R部4bと大R部4cとを含む範囲)と有しており、カーボンサセプタ3の回転と共に鉛直軸回りに回転可能となされている。
尚、カーボンサセプタ3の下方には、このカーボンサセプタ3を鉛直軸回りに回転させる回転モータなどの回転手段(図示せず)と、カーボンサセプタ3を昇降移動させるサセプタ昇降手段(図示せず)とが設けられている。
また単結晶引上装置1は、ルツボ4に装填された半導体原料(原料ポリシリコン)を溶融してシリコン溶融液M(以下、単に溶融液Mと呼ぶ)とする抵抗加熱によるサイドヒータ5と、ワイヤ6を巻き上げ、育成される単結晶Cを引上げる引上機構(図示せず)とを備えている。前記引上機構が有するワイヤ6の先端には、種結晶Pが取り付けられている。
また、ルツボ4内に形成される溶融液Mの上方には、育成中の単結晶Cに対するサイドヒータ5や溶融液M等からの余計な輻射熱を遮蔽するために、上下に開口を有する円筒状の輻射シールド7(熱遮蔽板)が設けられている。
尚、輻射シールド7の下端と溶融液面との間のギャップは、育成する単結晶の所望の特性に応じて所定の距離を維持するよう制御される。
前記炉体2は、ルツボ4等を収容するメインチャンバ2aと、前記メインチャンバ2aの頂部から上方に延びて、単結晶Cを引き上げるための引上チャンバ2bとにより形成される。前記引上チャンバ2bの周面には、不活性ガスGを炉体2内に導入するためのガス供給管2b1が形成され、メインチャンバ2aの底面には、炉体2内に導入された前記不活性ガスGを炉体2外へ排出するためのガス排気管2a1が設けられている。
それにより、炉体2内に導入された不活性ガスGは、図1に矢印で示すように、輻射シールド7の上部開口7a側から該輻射シールド7内を下方に流れ、シリコン溶融液Mの液面に当たった後、輻射シールド7の外周面側を上ってルツボ4の外側へ流れ、ルツボ4下方の前記ガス排気管2a1より炉体2外へ排気されるようになっている。
また、輻射シールド7の内側には、固形のドーパントを昇華させ、ドーパントガスDとするとともに、炉体2内にドーパントガスDを放出するための昇華治具10が設けられている。この昇華治具10は、全体がシリカガラスにより形成されており、固形ドーパントを昇華させてドーパントガスとするための昇華室部材11(昇華室)と、前記昇華室部材11に固形ドーパントを供給するための漏斗管12(漏斗部)及び漏斗部本体13(漏斗部)により構成される。
前記昇華室部材11は、輻射シールド7の内周面に沿って周方向に環状に延設されるとともに、断面円形の管体として形成されている。
また、前記漏斗管12は、直管状に形成された炉体2内において前記昇華室部材11に、その下端が連通接続されている。また、前記漏斗管12の上端は、逆円錐状に形成された前記漏斗部本体13の下端部に連通接続されている。
即ち、漏斗部本体13に固形ドーパントが供給されると、供給された固形ドーパントは漏斗管12を通って管体である昇華室部材11内に供給される。昇華室部材11内に供給された固形ドーパントは、高温とされた炉体2内の熱によって昇華され、ドーパントガスとなる。そして、昇華室部材11内に形成されたドーパントガスは、昇華室部材11に形成された後述の吹出口11aから炉体2内へ吹き出されるようになっている。
図3は、昇華治具10を拡大した斜視図である。また、図4は、昇華治具10が有する昇華室部材11の断面図である。
前記昇華室部材11は、断面円形の管体が環状に形成されたものであり、シリコン融液Mの液面と平行(即ち水平)になるように配置される。
図3に示すように、昇華室部材11には、内部で昇華したドーパントを例えば環中心に向けて放出するために複数(例えば10〜30個)の吹出口11aが設けられている。
図示するように、それら複数の吹出口11aは、環状の昇華室部材11の内側側面に周方向に沿って例えば等間隔に形成されている。具体的には、図4に示すように単結晶引上軸に向かった水平方向を0°とし、垂直上方向を90°とすると、前記吹出口11aは0°〜90°の範囲内に配置されることが望ましい(例えば45°)。これは、吹出口11aから吹き出されたドーパントガスをすぐさま不活性ガスGの流れに乗せることができるためである。
また、図4に示すように前記昇華室部材11の管内径Aは、昇華したドーパントガスの漏斗管12への逆流を防止し、かつドーパントガスが管内に滞留しないように、直径20mm以上50mm以下に形成されている。
また、昇華室部材11の環内径Bは、育成する単結晶Cの径の120%以上150%以下とすることが望ましい。これは、環内径Bが120%より小さいと、育成中の単結晶Cと昇華室部材11とが接触する虞があるためであり、150%より大きいと、吹出口11aから吹き出されるドーパントガスの量が、吹出口11a間で不均一になりやすい(漏斗管12に近い吹出口11aほど吹き出し量が多くなる)ためである。
また、前記吹出口11aの径は、5mm以上15mm以下に形成されることが望ましい。これは、吹出口11aの径が、5mmよりも小さいと、昇華室部材11内で昇華したドーパントガスが漏斗管12へ逆流する虞があるためであり、15mmより大きいと、昇華していないドーパントが吹出口11aから落下する虞があるためである。
また、前記漏斗部本体13の上部開口13aの直径は、40mm以上80mm以下が望ましい。これは、上部開口13aの径が40mmより小さいと、ドーパント供給管14から放出されたドーパントが漏斗部本体13の外側に溢れる虞があるためである。一方、上部開口13aの径が80mmより大きいと、漏斗部本体13の重量が大きくなり、漏斗管12への負荷が多きくなりすぎるためである。
また、前記漏斗管12の管内径は、4mm以上10mm以下に形成されることが望ましい。これは、管内径が4mmより小さいと、通過させるドーパントが途中で詰まる虞があるためであり、管内径が10mmより大きいと、昇華室部材11内で昇華したドーパントが漏斗管12内へ逆流する虞があるためである。
また、前記漏斗部本体13の上部開口13aには、シリカガラスからなるドーパント供給管14の下端が挿入され、このドーパント供給管14は、メインチャンバ2aの外側に挿通されている。前記ドーパント供給管14の上端は、炉体2外に配置され、固形のドーパント(赤燐、或いは砒素など)を収容するドーパント室15に連通接続されている。尚、固形のドーパントの平均粒径は、2.0mmである。
このように構成された単結晶引上装置1において、例えば、直径206mm(製品径200mm)、直胴部長さ1600mmの単結晶Cを育成する場合、次のように引き上げが行われる。即ち、最初にルツボ3に原料ポリシリコンを装填し、コンピュータ(図示せず)が有する記憶手段に記憶されたプログラムに基づき結晶育成工程が開始される。
先ず、図1に示すように炉体2の上部に設けられたガス供給管2b1から不活性ガスG(主にアルゴンガス)が炉体2内に導入される。不活性ガスGは、輻射シールド7の内側を上から下へ通過し、ルツボ4に装填された原料ポリシリコン(溶融後はシリコン融液M)へぶつかる。さらに不活性ガスGは、輻射シールド7の外周面とルツボ内周面との間を下から上へ流れ、ルツボの外側を上から下へ流れ、ガス排気管2a1から炉体2外へ排気される。これにより炉体2内は、不活性ガスGの雰囲気が形成されるとともに、全体として上方から下方へ流れる不活性ガス流が形成される。
また、ルツボ4内に装填された原料ポリシリコンは、サイドヒータ5による加熱によって溶融され、シリコン融液Mとされる。それにより遮蔽シールド7の内側を上方からシリコン融液面M1に向かって流れる不活性ガスGは、前記シリコン融液面M1に沿って放射状に広がり、前記ルツボ4外に排気される。
さらに、ルツボ4が所定の高さ位置において所定の回転速度(rpm)で回転動作される。次いで、ワイヤ6が降ろされて種結晶Pがシリコン融液Mに接触され、種結晶Pの先端部を溶解するネッキングが行われ、ネック部P1が形成開始される。
ネック部P1が形成されると、サイドヒータ5への供給電力や、引上げ速度(通常、毎分数ミリの速度)などをパラメータとして引上げ条件が調整され、ルツボ4の回転方向とは逆方向に所定の回転速度で種結晶Pが回転開始される。そして、結晶径が拡径されて肩部C1が形成され、製品部分となる直胴部C2を形成する直胴工程に移行する。
ここで、シリコン単結晶Cの肩部C1形成後、直胴部C2形成の前半段階において、ドーパント室15からドーパント供給管14を介して漏斗部本体13に固形のドーパント(赤燐、或いは砒素など)が供給される。漏斗部本体13に供給された固形のドーパントは、漏斗管12を通って輻射シールド7の内側に配置された昇華室部材11内に供給される。そして昇華室部材11内に供給された固形のドーパントは、炉内の熱によって昇華し、図2に示すようにドーパントガスDとなって複数の吹出口11aから放出される。
尚、昇華室部材11への固形ドーパントの投入量とシリコン融液Mにおけるドーパント濃度との関係式を予め把握しておくことにより、シリコン融液M及び単結晶Cのドーパント濃度、引いては単結晶Cの抵抗率を所望の値にすることができる。
本発明に係る方法にあっては、ドーパントが赤燐の場合、シリコン融液M中のドーパント濃度を、1.9E20atoms/cm程度とすることが望ましく、それにより単結晶Cの抵抗率を1.1mΩcm程度にすることができる。また、ドーパントが砒素の場合、シリコン融液M中のドーパント濃度を、1.5E20atoms/cm程度とすることが望ましく、それにより単結晶Cの抵抗率を1.8mΩcm程度にすることができる。
前記複数の吹出口11aから放出されたドーパントガスDは、輻射シールド7内を上から下へ流れる不活性ガスGの流れに乗って下方へ流れ、シリコン融液Mの液面に接触する。これによりシリコン融液Mにドーパントガスが効率的に吸収されて取り込まれ、シリコン融液中のドーパント濃度が上昇する。その結果、シリコン融液Mから育成される単結晶Cの直胴部は、ドーパント濃度が高くなり、低抵抗率の結晶が形成されていく。
このように、不活性ガスGの流れに乗って、ドーパントガスDがシリコン融液Mに取り込まれるが、取り込まれなかったドーパントガスDは不活性ガスGとともに炉体2外へ排出される。即ち、ドーパントガスDのシリコン融液Mへの吹付けは、炉体2内に形成される不活性ガスGの流れに乗じるものであるため、シリコン融液Mの液面が振動することなく、転位の発生が防止される。
また、ドーパントガスDが不活性ガスGの流れによって、シリコン融液Mの液面全体に接触するため、シリコン融液Mに効率的にドーパントが取り込まれ、ドーパントの取り込み率が上昇する。
シリコン単結晶Cが引き上げられ、直胴部C2の形成が進むにつれ、ルツボ4を収容するカーボンサセプタ3は上昇移動され、位置固定された輻射シールド7及びサイドヒータ4に対する溶融液面M1の位置が維持される。
直胴工程が終了すると、結晶径を縮小して結晶底部(図示せず)を形成する縮径工程が行われ、単結晶Cの引き上げが完了する。
以上のように、本実施の形態によれば、炉体2内に形成され、シリコン融液Mの液面全体に接する不活性ガスGの流れに乗せてドーパントガスDを運ぶ構成とした。それにより、シリコン融液Mの液面全体からシリコン融液M中にドーパントが取り込まれ、ドーパント取り込み率を向上することができる。また、シリコン融液Mの液面に当たり、融液中に取り込まれなかったドーパントガスDは、不活性ガスGとともに炉体2外へ排気されるため、シリコン融液Mの液面が振動することなく、転位の発生を防止することができる。
その結果、例えば赤燐や砒素などのドーパントを高濃度に添加した低抵抗率の単結晶Cを得ることができる。
尚、前記実施の形態においては、複数の吹出口11aは、図4に示した0°〜90°の範囲内に配置することが望ましいものとしたが、本発明にあっては、その形態に限定されるものではない。
例えば、図5(a)に示すように昇華室部材11の下面(270°)に吹出口11aを配置してもよく、或いは、図5(b)に示すように、昇華室部材11の上面、下面、側面などに千鳥状に吹出口11aを設けてもよい。
また、前記実施の形態においては、昇華室部材11の管の断面形状を円形としたが、本発明にあっては、その構成に限定されず、断面が台形、矩形、三角形のいずれの形状であってもよい。
本発明に係る単結晶引上方法及び単結晶引上装置について、実施例に基づきさらに説明する。
(実施例1)
実施例1では、上述の実施形態に示した構成の単結晶引上装置において、ルツボに150kgの原料ポリシリコンを投入し、直径206mmのシリコン単結晶の引上げを行なった。ドーパントとして直胴部の育成前半において赤燐を使用し、本実施形態に示した昇華治具10を用いてドープした。
また、昇華治具10において、漏斗部本体13の上部開口13aの直径は80mm、漏斗管12の直径は6mm、昇華室部材11の管内径Aは40mm、昇華室部材11の環内径Bは直径240mmとした。
また、昇華室部材11に形成する吹出口11aは、昇華室部材11の環の周に沿って10箇所に等分配置した。各吹出口11aの直径は、8mmに形成した。また、各吹出口11aの配置角度(図4に示す角度の定義)は、45°とした。
ドーパントの投入は、肩部形成後に5〜10/回ずつ、複数回に分けて計1000gに達するまで昇華室部材11内へ投入した。尚、ドーパントを投入する度、固形のドーパントが昇華したことを目視で確認し、次のドーパント投入を行なった。
上記条件において3本の単結晶育成を行い、シリコン融液面の振動発生の有無、結晶育成過程での転位発生の有無、ドーパント効率を評価項目とした。尚、ドーパント効率とは、製品となる直胴部を縦に割り、抵抗率を測定した結果であり、それはガス化したドーパントの抵抗率への寄与度を示すものである。
(比較例1)
比較例1では、実施例1で使用した昇華治具は用いず、輻射シールドの外側において、シリコン融液の液面に、局所的にガス化したドーパントを吹き付けた。
その他の条件は、実施例1と同じである。
(結果)
実施例1において、すべてのドーパントを投入し、引き上げた単結晶の抵抗率を四探針法で測定した結果、3回の引き上げのいずれにおいても1.1Ωcm以下となった。
一方、比較例1において、すべてのドーパントを投入し、引き上げた単結晶の抵抗率を四探針法で測定した結果、3回の引き上げのいずれにおいても2.0mΩcm以上となった。
表1に、実施例1及び比較例1の結果として、シリコン融液面の振動発生の有無、結晶育成過程での転位発生の有無を示す。
(表1)
Figure 2021075414
表1に示すように実施例1では、液面振動、有転位のいずれも生じなかった。
一方、比較例1では、液面振動が発生し、それが原因と思われる有転位が3回の引き上げ中、2回の引き上げで発生した。
また、図6に、ドーパント効率の結果として、製品となる直胴部を縦割りして測定した抵抗率をグラフで示す。図6のグラフにおいて、横軸は直胴部(製品部)の長さ、縦軸は抵抗率(mΩcm)を示す。
図6のグラフに示されるように、実施例1では、比較例1の場合よりも抵抗率が低い単結晶が得られ、ドーパントとしてシリコン融液に吸収される割合が約2倍となることを確認した。
以上の実施例の結果から、本発明によれば、有転位化を生じさせることなくシリコン溶融液に揮発性の高いドーパントを効率よく添加することができ、低抵抗率の単結晶を得ることができると確認した。
1 単結晶引上装置
2 炉体
3 サセプタ
4 ルツボ
5 サイドヒータ
6 ワイヤ
7 輻射シールド(熱遮蔽板)
10 昇華治具
11 昇華室部材
11a 吹出口
12 漏斗管(漏斗部)
13 漏斗部本体(漏斗部)
14 ドーパント供給管
15 ドーパント室
M シリコン融液
C シリコン単結晶
C1 肩部
C2 直胴部
G 不活性ガス
D ドーパントガス

Claims (6)

  1. 炉内に配置されたルツボ内でシリコン融液を形成し、チョクラルスキー法によりシリコン単結晶を育成するシリコン単結晶の引上方法において、
    炉内において育成するシリコン単結晶を囲むように配置された熱遮蔽板の内側を、上方からシリコン融液面に向かって流れるとともに、前記シリコン融液面に沿って放射状に広がり、前記ルツボ外に排気される不活性ガス流を形成する工程と、
    前記炉内においてドーパントをガス状にする工程と、
    ガス状となったドーパントを前記熱遮蔽板の内側に放出する工程と、
    前記ガス状となったドーパントを前記不活性ガス流に乗せて流す工程と、を備えることを特徴とする単結晶引上方法。
  2. 前記ガス状となったドーパントを前記不活性ガス流に乗せて流す工程において、
    ドーパントが砒素の場合、シリコン融液中のドーパント濃度を少なくとも1.5E20atoms/cm以上とすることを特徴とする請求項1に記載された単結晶引上方法。
  3. 前記ガス状となったドーパントを前記不活性ガス流に乗せて流す工程において、
    ドーパントが赤燐の場合、シリコン融液中のドーパント濃度を少なくとも1.9E20atoms/cm以上とすることを特徴とする請求項1に記載された単結晶引上方法。
  4. ヒータにより加熱される炉内に配置されたルツボ内でシリコン融液を形成し、チョクラルスキー法によりシリコン単結晶を育成するシリコン単結晶引上装置において、
    前記ルツボの上方において育成するシリコン単結晶を囲むように配置された熱遮蔽板と、
    前記熱遮蔽板の内周面側において、周方向に沿って環状に形成され、周方向に沿って複数の吹出口が形成された昇華室と、
    先端側が前記昇華室に連通し、前記昇華室にドーパントを供給するための漏斗部と、を備えることを特徴とする単結晶引上装置。
  5. 前記漏斗部は、逆円錐状の漏斗部本体と、前記漏斗本体の縮径した先端から前記昇華室まで延びる漏斗管と、を有し、
    前記漏斗部本体の上部開口は、直径40〜80mmであり、前記漏斗管は、直径4〜10mmであり、
    前記昇華室の管部内径は20〜50mmであり、環状の前記昇華室の環内径は、育成するシリコン単結晶の径の120〜150%の範囲であることを特徴とする請求項4に記載された単結晶引上装置。
  6. 前記昇華室において、前記吹出口は、直径5〜15mmであり、該昇華室の周方向に、10〜30個の範囲で所定間隔を空けて配置されていることを特徴とする請求項4または請求項5に記載された単結晶引上装置。
JP2019201792A 2019-11-06 2019-11-06 単結晶引上方法及び単結晶引上装置 Active JP7285197B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019201792A JP7285197B2 (ja) 2019-11-06 2019-11-06 単結晶引上方法及び単結晶引上装置
CN202080077251.3A CN114599826A (zh) 2019-11-06 2020-10-20 单晶提拉方法和单晶提拉装置
PCT/JP2020/039410 WO2021090676A1 (ja) 2019-11-06 2020-10-20 単結晶引上方法及び単結晶引上装置
DE112020005441.1T DE112020005441T5 (de) 2019-11-06 2020-10-20 Verfahren und vorrichtung zum ziehen eines einkristalls
US17/771,880 US20220364258A1 (en) 2019-11-06 2020-10-20 Method and apparatus for pulling single crystal
TW109138738A TWI730923B (zh) 2019-11-06 2020-11-06 單晶拉引方法以及單晶拉引裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201792A JP7285197B2 (ja) 2019-11-06 2019-11-06 単結晶引上方法及び単結晶引上装置

Publications (2)

Publication Number Publication Date
JP2021075414A true JP2021075414A (ja) 2021-05-20
JP7285197B2 JP7285197B2 (ja) 2023-06-01

Family

ID=75848344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201792A Active JP7285197B2 (ja) 2019-11-06 2019-11-06 単結晶引上方法及び単結晶引上装置

Country Status (6)

Country Link
US (1) US20220364258A1 (ja)
JP (1) JP7285197B2 (ja)
CN (1) CN114599826A (ja)
DE (1) DE112020005441T5 (ja)
TW (1) TWI730923B (ja)
WO (1) WO2021090676A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143776A (ja) * 2008-12-17 2010-07-01 Sumco Techxiv株式会社 シリコン単結晶引上装置
JP2011162436A (ja) * 2010-02-10 2011-08-25 Siltronic Ag るつぼに含まれた融液からシリコンから成る単結晶を引き上げる方法、及びこの方法によって製造された単結晶
JP2018070428A (ja) * 2016-11-01 2018-05-10 信越半導体株式会社 単結晶引上げ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5302556B2 (ja) 2008-03-11 2013-10-02 Sumco Techxiv株式会社 シリコン単結晶引上装置及びシリコン単結晶の製造方法
JP5222162B2 (ja) * 2009-01-16 2013-06-26 Sumco Techxiv株式会社 シリコン単結晶の製造方法
JP2010163305A (ja) * 2009-01-14 2010-07-29 Sumco Techxiv株式会社 シリコン単結晶引上装置
JP2011132043A (ja) * 2009-12-22 2011-07-07 Covalent Materials Corp シリコン単結晶引上装置及びそれを用いたシリコン単結晶の製造方法
WO2014100482A1 (en) * 2012-12-21 2014-06-26 Sunedison, Inc. Dopant funnel for loading and dispensing dopant
JP2016503964A (ja) * 2012-12-31 2016-02-08 エムイーエムシー・エレクトロニック・マテリアルズ・ソシエタ・ペル・アチオニMEMC Electronic Materials, SpA インジウムドープシリコンウェハおよびそれを用いた太陽電池セル
JP6729470B2 (ja) * 2017-04-14 2020-07-22 株式会社Sumco 単結晶の製造方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143776A (ja) * 2008-12-17 2010-07-01 Sumco Techxiv株式会社 シリコン単結晶引上装置
JP2011162436A (ja) * 2010-02-10 2011-08-25 Siltronic Ag るつぼに含まれた融液からシリコンから成る単結晶を引き上げる方法、及びこの方法によって製造された単結晶
JP2018070428A (ja) * 2016-11-01 2018-05-10 信越半導体株式会社 単結晶引上げ装置

Also Published As

Publication number Publication date
CN114599826A (zh) 2022-06-07
TWI730923B (zh) 2021-06-11
WO2021090676A1 (ja) 2021-05-14
DE112020005441T5 (de) 2022-08-25
TW202124793A (zh) 2021-07-01
US20220364258A1 (en) 2022-11-17
JP7285197B2 (ja) 2023-06-01

Similar Documents

Publication Publication Date Title
JP2011132043A (ja) シリコン単結晶引上装置及びそれを用いたシリコン単結晶の製造方法
JP5176101B2 (ja) シリコン単結晶の製造方法および装置並びにシリコン単結晶インゴット
KR100758162B1 (ko) 질소 도핑된 실리콘 단결정의 제조 방법
US8840721B2 (en) Method of manufacturing silicon single crystal
DK2679706T3 (en) PROCEDURE FOR MANUFACTURING N-TYPE SILICON MONO CRYSTAL
JPWO2005075714A1 (ja) 単結晶半導体の製造装置および製造方法
WO2021090676A1 (ja) 単結晶引上方法及び単結晶引上装置
JP2017222551A (ja) シリコン単結晶の製造方法
JP4982034B2 (ja) シリコン単結晶の製造方法
JP2009132552A (ja) シリコン単結晶の製造方法
JP2008087981A (ja) ドーパントの注入方法及びn型シリコン単結晶
JP2010064930A (ja) シリコン単結晶引上方法およびこれに用いるドーピング装置
JP4595450B2 (ja) 炭素ドープシリコン単結晶の製造方法
WO1999037833A1 (fr) Appareil de tirage de cristal unique
JP2013121891A (ja) 単結晶の製造方法
JP5222162B2 (ja) シリコン単結晶の製造方法
KR101725690B1 (ko) 단결정 성장장치
JP7359241B2 (ja) シリコン単結晶の製造方法
TWI806139B (zh) 單結晶製造裝置
JP5345511B2 (ja) シリコン単結晶製造装置およびシリコン単結晶製造方法
JP3900816B2 (ja) シリコンウェーハの製造方法
JP2013116828A (ja) 単結晶の製造方法
JP2018184318A (ja) シリコン単結晶の製造方法
JP5077320B2 (ja) N型シリコン単結晶の製造方法及びリンドープn型シリコン単結晶
JP2024018607A (ja) シリコン単結晶

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150