JP2020508342A - 三環式化合物及びその応用 - Google Patents

三環式化合物及びその応用 Download PDF

Info

Publication number
JP2020508342A
JP2020508342A JP2019557752A JP2019557752A JP2020508342A JP 2020508342 A JP2020508342 A JP 2020508342A JP 2019557752 A JP2019557752 A JP 2019557752A JP 2019557752 A JP2019557752 A JP 2019557752A JP 2020508342 A JP2020508342 A JP 2020508342A
Authority
JP
Japan
Prior art keywords
group
synthesis
compound
added
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019557752A
Other languages
English (en)
Other versions
JP6764039B2 (ja
Inventor
海▲鷹▼ ▲賀▼
海▲鷹▼ ▲賀▼
静 王
静 王
志▲ガン▼ 江
志▲ガン▼ 江
▲亞▼▲訊▼ ▲楊▼
▲亞▼▲訊▼ ▲楊▼
▲鵬▼ 邵
▲鵬▼ 邵
臣 ▲張▼
臣 ▲張▼
健 黎
健 黎
曙▲輝▼ ▲陳▼
曙▲輝▼ ▲陳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Cosunter Pharmaceutical Co Ltd
Original Assignee
Fujian Cosunter Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Cosunter Pharmaceutical Co Ltd filed Critical Fujian Cosunter Pharmaceutical Co Ltd
Publication of JP2020508342A publication Critical patent/JP2020508342A/ja
Application granted granted Critical
Publication of JP6764039B2 publication Critical patent/JP6764039B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/554Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本発明は、式(I)で表される化合物、その互変異性体またはその薬学的に許容される塩を開示し、HBVに関連する疾患を治療するための薬物の製造における化合物、その互変異性体またはその薬学的に許容される塩の応用を開示した。【化1】

Description

関連出願の相互参照
本出願は、2018年1月4日に提出された中国特許出願CN201810008592.X、2017年8月1日に提出された中国特許出願CN201710648155.X及び2017年2月23日に提出されたCN201710100309.1の優先権を主張し、当該出願のすべての内容は、参照により本明細書に組み込まれる。
(技術分野)
本発明は、式(I)で表される化合物、その互変異性体またはその薬学的に許容される塩に関し、HBVに関連する疾患を治療するための薬物の製造における化合物、その互変異性体またはその薬学的に許容される塩の応用に関する。
B型肝炎は、B型肝炎ウイルスの侵入によって引き起こされる炎症反応で、肝疼痛、肝脾腫、肝線維症などの一連の問題を引き起こす可能性があり、深刻な場合、重度の肝硬変、さらには肝癌を引き起こす可能性がある。統計によると、世界には約3.5〜4億のB型肝炎ウイルスキャリアがあり、その1/3のキャリアが中国にあり、中国のB型肝炎による死亡者数は年間50万人にものぼる。
現時点では、世界にB型肝炎治療薬は特にないが、中国のB型肝炎治療薬の第一選択薬は、主にヌクレオシド薬、インターフェロン及び漢方薬であるが、高コスト、再発の容易さなどの問題があるので、新しいタイプの抗B型肝炎薬を開発することが不可欠である。
WO2008154817A1は、以下のようなGLS4の構造を開示した。
Figure 2020508342
WO2008154817A1
新しいタイプの抗B型肝炎薬を開発することが不可欠である。
本発明は、式(I)で表される化合物、その異性体またはその薬学的に許容される塩を提供し、
Figure 2020508342
は、単結合及び−C1−6アルキル基(alkyl group)−から選択され、
は、H、Cl、F、Br、Iから選択され、または選択的に1、2または3個のRで置換されたC1−3アルキル基から選択され、
は、選択的に1、2または3個のRで置換されたC1−3ヘテロアルキル基(heteroalkyl group)、4〜8員のヘテロシクロアルキル基(heterocycloalkyl group)、5〜10員のヘテロアリール基(heteroaryl group)、4〜8員の部分不飽和ヘテロシクリル基(heterocyclyl group)、フェニル基(phenyl group)、C1−3アルキル基、C3−8シクロアルキル基(cycloalkyl group)、4〜8員のヘテロシクロアルキル基−O−及び5〜10員のヘテロアリール基−O−から選択され、
は、H及びC1−3アルキル基から選択され、
Rは、それぞれ独立してH、Cl、F、Br、I、NH、OH、CNから選択され、または選択的に1、2または3個のR’で置換されたC1−6アルキル基、C1−6ヘテロアルキル基、フェニル基、フェニル基−O−C(=O)−及び5〜6員のヘテロアリール基から選択され、
R’は、それぞれ独立してCl、F、Br、I、NH、CH、CN及び−N(CHから選択され、
前記C1−3ヘテロアルキル基、4〜8員のヘテロシクロアルキル基、5〜10員のヘテロアリール基、C1−6ヘテロアルキル基、5〜6員のヘテロアリール基、4〜8員の部分不飽和ヘテロシクリル基の「ヘテロ」は、それぞれ独立して−S−、−O−、−NH−、N、−C(=O)−、−O−C(=O)−、−S(=O)−、−S(=O)−、−NH−C(=O)−、−NH−C(=O)−O−から選択され、
以上のいずれの場合において、ヘテロ原子またはヘテロ原子団の数は、それぞれ独立して1、2、3または4から選択される。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、または選択的に1、2または3個のR’で置換されたC1−3アルキル基、C1−6アルキル基−O−C(=O)−、C1−6アルキル基−C(=O)−、C1−3アルキル基−S(=O)−、C1−3アルキル基−S(=O)−、C1−3アルキルアミノ基(alkylamino group)、フェニル基、フェニル基−O−C(=O)−及びピリジル基(pyridyl group)から選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、または選択的に1、2または3個のRで置換された
Figure 2020508342
から選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換されたC1−3アルコキシ基(alkoxy group)、テトラヒドロフラニル基(tetrahydrofuranyl group)、チアゾリル基(thiazolyl group)、3−アザビシクロ[3.1.0]ヘキサン基(3−azabicyclo[3.1.0]hexane group)、ピリジル基、ベンズイミダゾリル基(benzimidazolyl group)、チエニル基(hienyl group)、ピラゾリル基(pyrazolyl group)、ベンゾチアゾリル基(benzothiazolyl group)、イミダゾ[1,2−a]ピリジル(imidazo[1,2−a]pyridyl)、メチル基、C1−3アルキルチオ基(alkylthio group)、C1−3アルキル基−S(=O)−、シクロペンチル基(cyclopentyl group)、フェニル基、アゼチジン基(azetidine group)、ピペリジニル基(piperidinyl group)、ピロリジニル基(pyrrolidinyl group)、オキサゾリル基(oxazolyl group)、ピロリジン−2−オン基(pyrrolidin−2−one group)、ピリジン−2(1H)−オン基(yridine−2(1H)−one group)、シクロヘキサン基(cyclohexane group)、シクロプロパン基(cyclopropane group)、イソチアゾリジン−1,1−ジオキシド基(isothiazolidine−1,1−dioxide group)、ピリミジニル基(pyrimidinyl group)、1,3,4−チアジアゾリル基(1,3,4−thiadiazolyl group)、オキサゾリジン−2−オン基(oxazolidin−2−one group)、テトラヒドロピラニル基(tetrahydropyranyl group)、シクロペンチル基−O−、ピリジル基−O−、シクロヘキセンオキシド基、1,4−ジオキサニル基(1,4−dioxanyl group)、1,4−ジオキソヘプチル基(1,4−dioxoheptyl group)、モルホリニル基(morpholinyl group)及び2,3−ジヒドロベンゾ[b][1,4]ジオキシン基(2,3−dihydrobenzo[b][1,4]dioxine)から選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換された
Figure 2020508342
から選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記Lは、
Figure 2020508342
から選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記Rは、H、CH及び−CHCHから選択され、他の変数は本発明に定義の通りである。
本発明のいくつかの形態において、前記構造単位
Figure 2020508342
は、
Figure 2020508342

Figure 2020508342
から選択され、他の変数は本発明に定義の通りである。
本発明の他のいくつかの形態は、前記変数によって任意に組み合わせて提供される。
本発明のいくつかの形態において、前記化合物、その異性体またはその薬学的に許容される塩は、
Figure 2020508342
から選択され、
ここで、
mは、1、2または3から選択され、
nは、1または2から選択され、
rは、0または1から選択され、
は、NまたはCHから選択され、
R、L、R、Rは、本発明に定義の通りである。
本発明のいくつかの形態において、前記化合物、その異性体またはその薬学的に許容される塩は、
Figure 2020508342
から選択され、
ここで、
R、L、R、R及びnは、本発明に定義の通りである。
本発明は、式(I)で表される化合物、その異性体またはその薬学的に許容される塩を提供し、
Figure 2020508342
は、単結合または−C1−6アルキル基−から選択され、
は、H、Cl、F、Br、Iから選択され、または選択的に1、2または3個のRで置換されたC1−3アルキル基から選択され、
は、選択的に1、2または3個のRで置換されたC1−3ヘテロアルキル基、4〜8員のヘテロシクロアルキル基、5〜10員のヘテロアリール基、4〜8員の部分不飽和ヘテロシクリル基、フェニル基、C1−3アルキル基、C3−8シクロアルキル基、4〜8員のヘテロシクロアルキル基−O−、5〜10員のヘテロアリール基−O−から選択され、
は、HまたはC1−3アルキル基から選択され、
Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、または選択的に1、2または3個のR’で置換されたC1−6アルキル基、C1−6ヘテロアルキル基、フェニル基、フェニル基−O−C(=O)−、5〜6員のヘテロアリール基から選択され、
R’は、Cl、F、Br、I、NH、CH、CN、−N(CHから選択され、
前記C1−3ヘテロアルキル基、4〜8員のヘテロシクロアルキル基、5〜10員のヘテロアリール基、C1−6ヘテロアルキル基、5〜6員のヘテロアリール基、4〜8員の部分不飽和ヘテロシクリル基の「ヘテロ」は、それぞれ独立して−S−、−O−、−NH−、N、−C(=O)−、−O−C(=O)−、−S(=O)−、−S(=O)−、−NH−C(=O)−、−NH−C(=O)−O−から選択され、
以上のいずれの場合において、ヘテロ原子またはヘテロ原子団の数は、それぞれ独立して1、2、3または4から選択される。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、または選択的に1、2または3個のR’で置換されたC1−3アルキル基、C1−6アルキル基−O−C(=O)−、C1−6アルキル基−C(=O)−、C1−3アルキル基−S(=O)−、C1−3アルキル基−S(=O)−、C1−3アルキルアミノ基(alkylamino group)、フェニル基、フェニル基−O−C(=O)−、ピリジル基から選択される。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、または選択的に1、2または3個のR’で置換された
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342



から選択される。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換されたC1−3アルコキシ基、テトラヒドロフラニル基、チアゾリル基、3−アザビシクロ[3.1.0]ヘキサン基、ピリジル基、ベンズイミダゾリル基、チエニル基、ピラゾリル基、ベンゾチアゾリル基、イミダゾ[1,2−a]ピリジル、メチル基、C1−3アルキルチオ基、C1−3アルキル基−S(=O)−、シクロペンチル基、フェニル基、アゼチジン基、ピペリジニル基、ピロリジニル基、オキサゾリル基、ピロリジン−2−オン基、ピリジン−2(1H)−オン基、シクロヘキサン基、シクロプロパン基、イソチアゾリジン−1,1−ジオキシド基、ピリミジニル基、1,3,4−チアジアゾリル基、オキサゾリジン−2−オン基、テトラヒドロピラニル基、シクロペンチル基−O−、ピリジル基−O−、シクロヘキサンオキシド基、1,4−ジオキサニル基、1,4−ジオキソヘプチル基、モルホリニル基から選択される。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換された
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Lは、
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、H、CH、−CHCHから選択される。
本発明のいくつかの形態において、前記構造単位
Figure 2020508342
は、
Figure 2020508342

Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、または選択的に1、2または3個のR’で置換されたC1−3アルキル基、C1−6アルキル基−O−C(=O)−、C1−6アルキル基−C(=O)−、C1−3アルキル基−S(=O)−、C1−3アルキル基−S(=O)−、C1−3アルキルアミノ基、フェニル基、フェニル基−O−C(=O)−、ピリジル基から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、または選択的に1、2または3個のR’で置換された
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換されたC1−3アルコキシ基、テトラヒドロフラニル基、チアゾリル基、3−アザビシクロ[3.1.0]ヘキサン基、ピリジル基、ベンズイミダゾリル基、チエニル基、ピラゾリル基、ベンゾチアゾリル基、イミダゾ[1,2−a]ピリジル、メチル基、C1−3アルキルチオ基、C1−3アルキル基−S(=O)−、シクロペンチル基、フェニル基、アゼチジン基、ピペリジニル基、ピロリジニル基、オキサゾリル基、ピロリジン−2−オン基、ピリジン−2(1H)−オン基、シクロヘキサン基、シクロプロパン基、イソチアゾリジン−1,1−ジオキシド基、ピリミジニル基、1,3,4−チアジアゾリル基、オキサゾリジン−2−オン基、テトラヒドロピラニル基、シクロペンチル基−O−、ピリジル基−O−、シクロヘキサンオキシド基、1,4−ジオキサニル基、1,4−ジオキソヘプチル基、モルホリニル基から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換された
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Lは、
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、H、CH、−CHCHから選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記構造単位
Figure 2020508342
は、
Figure 2020508342

Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
他のいくつかの形態は、本発明の変数によって任意に組み合わせて提供される。
本発明のいくつかの形態において、前記化合物、その異性体またはその薬学的に許容される塩は、
Figure 2020508342
から選択され、
ここで、
mは、1、2または3から選択され、
nは、1または2から選択され、
rは、0または1から選択され、
は、NまたはCHから選択され、
R、L、R、Rは、上記に定義の通りである。
本発明の式(I)で表される化合物、その異性体またはその薬学的に許容される塩において、
Figure 2020508342
は、単結合または−C1−6アルキル基−から選択され、
は、H、Cl、F、Brから選択され、または選択的に1、2または3個のRで置換されたC1−3アルキル基から選択され、
は、選択的に1、2または3個のRで置換されたC1−3ヘテロアルキル基、4〜8員のヘテロシクロアルキル基、5〜10員のヘテロアリール基から選択され、
は、HまたはC1−3アルキル基から選択され、
Rは、H、Cl、F、Br、NH、OHから選択され、または選択的に1、2または3個のR’で置換されたC1−3アルキル基、C1−6アルキル基−O−C(=O)−から選択され、
R’は、Cl、F、Br、NHから選択され、
前記4〜8員のヘテロシクロアルキル基、5〜10員のヘテロアリール基の「ヘテロ」は、それぞれ独立して−S−、−O−、−NH−、Nから選択され、
以上のいずれの場合において、ヘテロ原子またはヘテロ原子団の数は、それぞれ独立して1、2または3から選択される。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、NH、OHから選択され、または選択的に1、2または3個のR’で置換された
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、Me、Etから選択される。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換された:C1−3アルコキシ基、テトラヒドロフラニル基、チアゾリル基、3−アザビシクロ[3.1.0]ヘキサン基、ピリジル基、ベンズイミダゾリル基、チエニル基、ピラゾリル基、ベンゾチアゾリル基、イミダゾ[1,2−a]ピリジルから選択される。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換された
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Lは、
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、H、CH、−CHCHから選択される。
本発明のいくつかの形態において、前記構造単位
Figure 2020508342
は、
Figure 2020508342
から選択される。
本発明のいくつかの形態において、前記Rは、H、Cl、F、Br、NH、OHから選択され、または選択的に1、2または3個のR’で置換された
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記R1は、H、Cl、F、Br、Me、Etから選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換されたC1−3アルコキシ基、テトラヒドロフラニル基、チアゾリル基、3−アザビシクロ[3.1.0]ヘキサン基、ピリジル基、ベンズイミダゾリル基、チエニル基、ピラゾリル基、ベンゾチアゾリル基、イミダゾ[1,2−a]ピリジルから選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、選択的に1、2または3個のRで置換された
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Lは、
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記Rは、H、CH、−CHCHから選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記構造単位
Figure 2020508342
は、
Figure 2020508342
から選択され、他の変数は上記に定義の通りである。
本発明のいくつかの形態において、前記化合物、その異性体またはその薬学的に許容される塩は、
Figure 2020508342
から選択され、
ここで、R、L、R、Rは、上記に定義の通りであり、nは、1または2から選択される。
本発明は、下記式の化合物、その異性体またはその薬学的に許容される塩をさらに提供する。
Figure 2020508342

Figure 2020508342

Figure 2020508342

Figure 2020508342

Figure 2020508342

Figure 2020508342
本発明のいくつかの形態において、前記化合物、その異性体またはその薬学的に許容される塩は、
Figure 2020508342
から選択される。
本発明は、治療有効量の前記化合物、その異性体またはその薬学的に許容される塩、及び薬学的に許容される担体を含む薬学的組成物をさらに提供する。
本発明は、HBVに関連する疾患を治療するための薬物の製造における、前記化合物、その異性体またはその薬学的に許容される塩の応用をさらに提供する。
本発明は、前記薬学的組成物HBVに関連する疾患を治療するための薬物の製造における前記薬学的組成物の応用をさらに提供する。
(技術効果)
新規タイプの抗B型肝炎薬物として、本発明の化合物は、HBVに対して有意な阻害効果を有し、イヌ薬物動態学の良好な単一または部分指数、及び良好なインビボ効能を有し、そして用量依存的効果を有する。
血漿中のB型肝炎ウイルスDNAレベルである。折れ線1は、ブランク対照において、10%のsolutol水溶液を1日1回採用し(QD)、経口投与(PO)の方法を採用したことを表す。折れ線2は、用量が15mg/kgである試験化合物WX325を1日2回採用し(BID)、8時間間隔で経口投与(PO)の方法を採用したことを表す。折れ線3は、用量が50mg/kgである試験化合物WX325を1日2回採用し(BID)、8時間間隔で経口投与(PO)の方法を採用したことを表す。折れ線5は、用量が150mg/kgである試験化合物WX325を1日2回採用し(BID)、8時間間隔で経口投与(PO)の方法を採用したことを表す。折れ線6は、用量が15mg/kgである陽性化合物であるテノホビル(TDF)を1日2回採用し(BID)、8時間間隔で経口投与(PO)の方法を採用したことを表す。LLOQは、検出下限を表し、day post−first doseは投与日数を表す。 28日目の肝臓中のB型肝炎ウイルスDNAレベルである。注:QDは、1日1回投与を表し、BIDは1日2回投与を表し、MPKは、mg/kgを表し、Vehicleはブランク対照を表す。
(定義と説明)
他に説明しない限り、本明細書で使用される以下の用語及び文句は、以下の意味を有することを意図している。1つの特定の用語または文句は、特定の定義がない限り、未確定または不明確であると見なされるべきではなく、通常の意味で理解されるべきである。本明細書に商品名が表示されている場合、それに対応する商品またはその活性成分を指すことを意図する。ここで使用される用語「薬学的に許容される」とは、それらの化合物、材料、組成物および/または剤形を対象とすることで、それらが健全な医学的判断の範囲内で、人間と動物の組織とが接触して使われることに適応され、過度の毒性、刺激性、アレルギー反応または他の問題または合併症を伴わずに、合理的な利益/リスク比率に見合うことである。
用語「薬学的に許容される塩」とは、本発明の化合物の塩を意味し、本発明に発見された特定の置換基を有する化合物と、比較的非毒性である酸または塩基とから製造される。本発明の化合物が比較的酸性の官能基(functional group)を含む場合、純粋な溶液または適切な不活性溶媒に、十分な量の塩基が、その化合物の中性形態と接触する方式によって、塩基付加塩を得ることができる。薬学的に許容される塩基付加塩(alkali−addition salt)は、ナトリウム(sodium)、カリウム(potassium)、カルシウム(calcium)、アンモニウム(ammonium)、有機アンモニウム(organic ammonia)、またはマグネシウム塩(magnesium salt)または類似な塩を含む。本発明の化合物に比較的塩基性の官能基が含まれる場合、純粋な溶液または適切な不活性溶媒で、十分な量の酸が、その化合物の中性形態と接触する方式によって、酸付加塩を得ることができる。薬学的に許容される酸付加塩(acid−addition salt)においての実例は、塩酸(hydrochloric acid)、臭化水素酸塩(hydrobromic acid)、硝酸(nitric acid)、炭酸(carbonic acid)、重炭酸塩(bicarbonate)、リン酸(phosphoric acid)、リン酸一水素(hydrogen phosphate)、リン酸ジヒドロ(dihydrogen phosphate)、硫酸(sulfuric acid)、重硫酸塩(hydrogen sulfate)、ヨウ化水素酸(hydroiodic acid)、亜リン酸(phosphorous acid)等の無機酸塩(organic acid salt)と、酢酸(acetic acid,)、プロピオン酸(propionic acid)、イソ酪酸(isobutyric acid)、マレイン酸(maleic acid)、マロン酸(malonic acid)、安息香酸(benzoic acid)、コハク酸(succinic acid)、スベリン酸(suberic acid)、フマル酸(fumaric acid)、乳酸(lactic acid)、マンデル酸(mandelic acid)、フタル酸(phthalic acid)、ベンゼンスルホン酸(phenylsulfonicacid)、p−トルエンスルホン酸(p−toluenesulfonic acid)、クエン酸(citric acid)、酒石酸(tartaric acid)及びメタンスルホン酸(methylsulfonic acid)等の類似な酸である有機酸塩(salt oforganic acid)とを、含み、アミノ酸(amino acid)(例えばアルギニン(arginine)等)の塩と、グルクロン酸等の有機酸の塩とを、さらに含む。本発明のある特定の化合物は、塩基性及び酸性である官能基を含んでいるので、任意の塩基または酸付加塩に変換することができる。
本発明の薬学的に許容される塩は、酸基または塩基を含む母体化合物によって、従来の化学的方法を通じて合成されることができる。一般的に、このような塩の調製方法は、水または有機溶媒または両者の混合物に、遊離酸または塩基形式のその化合物と、化学的に計量した適当な塩基または酸を反応させることにより製造される。
塩の形式に加えて、本発明に提供される化合物には、さらにプロドラッグの形態が存在する。本明細書に説明された化合物のプロドラッグは、容易に生理的条件下で、化学変化を生じることにより、本発明の化合物に変換される。なお、プロドラッグは、体内環境の中で、化学的または生化学の方法によって、本発明の化合物に変換されることができる。
本発明のある化合物は、水及び物形態を含む非溶媒及び形態、または溶媒及び形態で存在することができる。一般的に、溶媒及び形態は非溶媒及び形態同等であり、すべて本発明の範囲内に属している。
本発明の化合物は、特定の幾何または立体異性体形態で存在してもよい。本発明は、すべてのこのような化合物が、シス−トランス異性体、(−)−と(+)−ペア鏡像体、(R)−と(S)−のエナンチオマー、ジアステレオマー、(D)−の異性体、(L)−の異性体、及びそのラセミ混合物とその他の混合物、例えば、エナンチオマーまたはジアステレオマーから濃縮された混合物を含むことを意図し、すべてのこのような混合物は、すべて本発明の範囲内に属している。アルキル基等の置換基には、他の不斉炭素原子が存在することができる。すべてのこのような異性体及びそれらの混合物は、すべて本発明の範囲内に属している。
他に説明しない限り、用語「エナンチオマー」または「光学異性体」は、互いの鏡像である立体異性体を意味する。
他に説明しない限り、用語「シス−トランス異性体」または「幾何異性体」は、二重結合または環形成炭素原子のために単結合を自由に回転させることができないことによって引き起こされる。
他に説明しない限り、用語「ジアステレオマー」とは、分子が2つまたは多数のキラル中心を有し、分子が非鏡映関係にある立体異性体を意味する。
他に説明しない限り、「(D)」または「(+)」は、右旋性を意味し、「(L)」または「(−)」は、左旋性を意味し、「(DL)」または「(±)」は、ラセミ体を意味する。
他に説明しない限り、くさび形実線キー
Figure 2020508342
及び、
くさび形破線キー
Figure 2020508342
で、ステレオセンターの1つの絶対配置を示し、
直線の実線キー
Figure 2020508342
及び、
直線の破線キー
Figure 2020508342
で、ステレオセンターの相対配置を示し、
波線
Figure 2020508342

くさび形実線キー
Figure 2020508342
または、
くさび形破線キー
Figure 2020508342
を示し、
または、
波線
Figure 2020508342
で、
直線の実線キー
Figure 2020508342
及び、
直線の破線キー
Figure 2020508342
を示した。
本発明の化合物は、特に存在してもよい。他に説明しない限り、用語「互変異性体」または「互変異性体形態」は、室温下で、異なる官能性異性体が動的平衡にあり、そして互いに急速に変換され得ることを意味する。互変異性体が可能であれば(例えば、溶液中)、互変異性体の化学平衡を達成することができる。例えば、プロトン互変異性体(proton tautomer)(プロトトロピー互変異性体(prototropic tautomer)とも称する)は、ケト−エノール異性化及びイミン−エンなどのプロトン移動による相互変換を含む。原子価異性体(valence tautomer)は、いくつかのキー付き電子の相互変換を含む。ケト−エノール互変異性化の具体例は、ペンタン−2,4−ジオンと4−ヒドロキシペンタ−3-エン−2−オンとの2つの互変異性体の間の相互変換である。
他に説明しない限り、用語「1つの異性体に富む」、「異性体に富む」、「1つのエナンチオマーに富む」または「エナンチオマーに富む」は、1つの異性体またはエナンチオマーの含有量が100%未満であり、また、当該異性体またエナンチオマーの含有量が60%より大きいか等しく、または70%より大きいか等しく、または80%より大きいか等しく、または90%より大きいか等しく、または95%より大きいか等しく、または96%より大きいか等しく、または97%より大きいか等しく、または98%より大きいか等しく、または99%より大きいか等しく、または99.5%より大きいか等しく、または99.6%より大きいか等しく、または99.7%より大きいか等しく、または99.8%より大きいか等しく、または99.9%より大きいか等しいことを意味する。
他に説明しない限り、用語「異性体過剰率」または「エナンチオマー過剰率」は、2つの異性体間または2つのエナンチオマーの相対百分率間の差を意味する。例えば、一方の異性体またはエナンチオマーの含有量は90%であり、他方の異性体またはエナンチオマーの含有量は10%である場合、異性体またはエナンチオマー過剰率(ee値)は、80%である。
キラル合成またはキラル試薬、またはその他の従来の技術を採用し、光学活性の(R)−及び(S)−異性体及びD及びL異性体を製造することができる。本発明におけるある化合物のエナンチオマーを希望の場合、不斉合成またはキラル補助剤を有する誘導作用を利用して、製造することができ、ここで、得られたジアステレオマーの混合物を分離し、また補助基は、切断されて純粋な所望のエナンチオマーを提供することである。または、分子が、塩基性官能基(例えば、アミノ基)または酸性官能基(例えば、カルボキシル基)を含む場合、適切な光学活性の酸または塩基とジアステレオマーの塩を形成して、当該技術分野で周知されている従来の方法によりジアステレオマーを分割してから、回収して、純粋なエナンチオマーを得る。その他、エナンチオマー及びジアステレオマーの分離は、一般的に、クロマトグラフィーにより実現され、前記クロマトグラフィーは、キラル固定相を採用しており、またいずれかの化学誘導法と結合されている(例えば、アミンからカルバマートを生成する)。本発明の化合物は、一つまたは複数の当該化合物を構成した原子に、不自然な比率である原子の同位体を含むことができる。例えば、放射性同位体を利用し、例えば、三重水素(H)、ヨウ素−125(125I)またはC−14(14C)である化合物を標識することができる。他の例としては、水素を重水素で置換して重水素化薬物を形成することができ、重水素化薬物と炭素で構成される結合は、一般的な水素と炭素で構成される結合より堅固であり、重水素化されない薬物と比較して、重水素化薬物は、毒性の副作用を減らし、薬物の安定性を高め、有効性を高め、そして薬物の生物学的半減期を延ばすという利点を有する。本発明の化合物においてのすべての同位体から構成された変換は、放射性か否かに係らず、すべて本発明の範囲内に属している。
「選択的」または「選択的に」とは、必ずしもそうとは限らないが、後で説明される事象または状態が発生する可能性があること、またその説明がその事象または状態が発生する場合と発生しない場合を含むことを意味する。
用語「置換される」とは、重水素と水素の変形を含むことができる特定原子上のいずれか一つまたは複数の水素原子が、置換基によって置換されることを指し、また特定原子の原子価状態が正常であれば、置換された後の化合物は安定的である。置換基はオキシ基(即ち、=O)である場合、2個の水素原子が、置換されたことを意味する。オキシ基の置換は、アリール基には発生しない。用語「任意に置換された」とは、置換されてもよく、また置換されなくても良いことを指し、特に断らない限り、置換基の種類と数が、化学的に実現できることを前提に、いずれでもよい。
いずれかの変数(例えば、R)は、化合物の組成または構造で、一回以上表示される場合、それは、それぞれの場合における定義はすべて独立的である。従って、例えば、一個の基が0〜2個のRに置換される場合、前記基は、多くていずれか2個のRに置換されることができ、またそれぞれの場合のRは、すべて独立的なオプションを有する。また、置換基及び/又はその変異の組み合わせは、ただこのような組み合わせが安定な化合物を生成する場合に許可されることである。
−(CRR)−のように、1つの連結基の数が0である場合、それは連結基が単結合であることを示す。
その中の変数の一つが単結合から選択される場合、それに接続されている2つのグループは直接接続されていることを表し、例えば、LがA−L−Z中の単結合を表す場合、その構造は実際にはA−Zである。
置換基が空いている場合、それは置換基が存在しないことを意味し、例えば、A−XにおいてXが空の場合、その構造は実際にはAである。1つの置換基が1つの環上の1個以上の原子に結合することができる場合、その置換基は当該環上の任意の原子に結合していてもよく、例えば、構造単位
Figure 2020508342
または
Figure 2020508342
は、置換基Rがシクロヘキシルまたはシクロヘキサジエン上の任意の位置で置換されることができることを意味する。列挙された置換基の中で、それがどの原子によって置換基に結合されているのかを指定していない場合、このような置換基は、そのいずれかの原子によって、結合されてもよい。例えば、置換基としてのピリジル基は、ピリジン環上のいずれかの炭素原子を介して置換基に結合していてもよい。列挙された連結基がその結合方向を示さない場合、結合方向は任意であり、例えば、
Figure 2020508342
において、結合基Lは−M−W−であり、このとき、−M−W−は環Aと環Bとを左から右への読み順と同じ方向に接続して
Figure 2020508342
を構成してもよく、環Aと環Bとで左から右への読み順と逆方向に接続して
Figure 2020508342
を構成してもよい。前記連結基、置換基および/またはその変形体の組み合わせは、そのような組み合わせが安定な化合物をもたらす場合に限り許容される。
特に断らない限り、用語「ヘテロ」は「ヘテロ原子」または「ヘテロ原子団」(即ち、ヘテロ原子を含む原子団)を表し、炭素(C)及び水素(H)を除いた原子を含んでも良く、前記ヘテロ原子を含む原子団でも良い。例えば、酸素(O)、窒素(N)、硫黄(S)、ケイ素(Si)、ゲルマニウム(Ge)、アルミニウム(Al)、ホウ素(B)、−O−、−S−、=O、=S、−C(=O)O−、−C(=O)−、−C(=S)−、−S(=O)及び−S(=O)−、等を含み、またいずれかの置換された−C(=O)N(H)−、−N(H)−、−C(=NH)−、−S(=O)N(H)−、または−S(=O)N(H)−を含んでも良い。
特に断らない限り、「環」は、置換または無置換のシクロアルキル、ヘテロシクロアルキル、シクロアルケニル、ヘテロシクロアルケニル、シクロアルキニル、ヘテロシクロアルキニル、アリールまたはヘテロアリールを表す。環は、単環、連結環、スピロ環、並列環または架橋環を含む。環の原子の数は、一般的に、員環数として定義され、例えば、「5〜7員環」とは、5〜7個の原子がサラウンド配置されることを指す。特に断らない限り、その環は、いずれか1〜3個のヘテロ原子を含む。従って、「5〜7員環」は、例えばフェニルピリジン及びピペリジニルを含み、一方、用語「5〜7員シクロヘテロシクロアルキル基」は、ピリジル及びピペリジニルを含むが、フェニルは含まない。用語「環」は、少なくとも一個の環を含む環系をさらに含み、ここでそれぞれの「環」は、すべて独立に前記定義に符合されている。
特に断らない限り、用語「ヘテロシクリル」または「ヘテロシクリル基」とは、含ヘテロ原子またはヘテロ原子団的安定的な単環式、二環式または三環式のヘテロシクリルを指し、それらは、飽和、部分的に不飽及びまたは不飽及び(芳香族)の状態になってもよく、それらは、炭素原子と、1、2、3または4個の独立にN、O及びSから選択されたシクロヘテロ原子を含み、ここで、前記のいずれかのヘテロシクリルは、一個のベンゼン環に縮合して二環式を形成することができる。窒素および硫黄のヘテロ原子は、任意に酸性化されることができる(即ち、NO及びS(O)p、pは、1また2である)。窒素原子は、置換または未置換されたものである(即ち、NまたはNRであり、ここでRは、Hまたは本明細書に定義された他の置換基である)。前記ヘテロシクリルは、いずれかのヘテロ原子または炭素原子のペンダント基に密着されることにより、安定的な構造を形成する。生成した化合物が安定的であれば、本明細書における前記ヘテロシクリルの炭素位置または窒素位置は置換されることができる。ヘテロシクリルにおいての窒素原子は、任意に四級化される。技術方案において、ヘテロシクリルにおけるS及O原子の総数が1個を超えた場合、これらのヘテロ原子は、互いに隣接されないことが好ましい。他の技術方案において、ヘテロシクリルにおけるS及O原子の総数は、一個を超えない。本明細書において、用語「芳香族複素環基」または「ヘテロアリール基」とは、安定的な5、6、7員の単環式または二環式または7、8、9または10員二環式複素環基の芳香環を指し、それは炭素原子と、1、2、3または4個の独立にN、O及びSから選択されたシクロヘテロ原子とを含む。窒素原子は、置換または無置換のものでも良い(即ち、NまたはNRであり、ここでRは、Hまたは本明細書で定義された他の置換基である)。窒素及び硫黄ヘテロ原子は、任意に酸性化されることができる(即ち、NO及びS(O)p、pは、1また2である)。注意したいのは、芳香族複素環においてのS及びO原子の総数は、1個を超えない。架橋環は、また複素環の定義に含まれている。一個または複数個の原子(即ち、C、O、NまたはS)が、2個の隣接していない炭素原子または窒素原子に接続される場合、架橋環形成する。架橋環は、一個の炭素原子、2個の炭素原子、一個の窒素原子、2個の窒素原子及び一個の炭素−窒素基を含むがそれに限定されないことが好ましい。注意したいのは、一個の架橋は、いつも単環式を三環式に変換される。架橋環において、環上の置換基は、架橋に示されても良い。
複素環式化合物の実例は、アクリジニル基(acridinyl group)、アゾシニル(azocinyl)、ベンゾイミダゾリル基(benzimidazolyl group)、ベンゾフラニル基(benzofuranyl group)、ベンゾメルカプトフリル基(benzomercaptofuranyl group)、ベンゾメルカプトフェニル(benzomercatophenyl)、ベンゾオキサゾリル(benzoxazolyl)、ベンゾオキサゾリニル(benzoxazolinyl)、ベンゾチアゾリル(benzothiazolyl)、ベンゾトリアゾリル(benzotriazolyl)、ベンゾテトラゾリル(benzotetrazolyl)、ベンゾイソオキサゾリル(benzoisoxazolyl)、ベンゾイソチアゾリル(benzoisothiazolyl)、ベンゾイミダゾリニル(benzoimidazolinyl)、カルバゾリル(carbazolyl)、4aH−カルバゾリル(4aH−carbazolyl)、カルボリニル(carbolinyl)、クロマニル(chromanyl)、クロメニル(chromenyl)、シンノリニル、デカヒドロキノリル(cinnolinyl decahydroquinolyl)、2H,6H−1,5,2−ジチアジニル(2H,6H−1,5,2−dithiazinyl)、ジヒドロフロ[2,3−b]テトラヒドロフラニル(dihydrofuro[2,3−b]tetrahydrofuranyl)、フリル(furanyl)、フラザニル(furazanyl)、イミダゾリジニル(imidazolidinyl)、イミダゾリニル(imidazolinyl)、イミダゾリル(imidazolyl)、1H−インダゾリル(1H−indazolyl)、インドールアルケニル(indoalkenyl)、インドリニル(Indolinyl)、インドリジニル(indolizinyl)、インドリル(indolyl)、3H−インドリル(3H−indolyl,)、イソベンゾフラニル(isobenzofuranyl)、イソインドリル(isoindolyl)、イソインドリニル(isoindolinyl)、イソキノリニル(isoquinolyl)、イソチアゾリル(isothiazolyl)、イソオキサゾリル(isoxazolyl)、メチレンジオキシフェニル(methylenedioxyphenyl)、モルホリニル(morpholinyl)、ナフチリジニル(naphthyridinyl)、オクタヒドロイソキノリニル(octahydroisoquinolyl)、オキサジアゾリル(oxadiazolyl)、1,2,3−オキサジアゾリル(1,2,3−oxadiazolyl)、1,2,4−オキサジアゾリル(1,2,4−oxadiazolyl)、1,2,5−オキサジアゾリル(1,2,5−oxadiazolyl)、1,3,4−オキサジアゾリル(1,3,4−oxadiazolyl)、オキサゾリジニル(oxazolidinyl)、オキサゾリル(oxazolyl)、インドキシル、ピリミジニル(pyrimidyl)、フェナントリジニル(phenanthridinyl)、フェナントロリニル(phenanthrolinyl)、フェナジニル(phenazinyl)、フェノチアジニル(phenothiazinyl)、ベンゾキサンチル(benzopurinyl)、フェノキサジニル(phenoxazinyl)、プタラジニル(phthalazinyl)、ピペラジニル(piperazinyl)、ピペリジニル(piperidyl)、ピペリドニル、4−ピペリドニル(4−piperidonyl)、ピペロニル(piperonyl)、プテリジニル(pteridyl)、プリニル、ピラニル(pyranyl)、ピラジニル(pyrazinyl)、ピラゾリジニル(pyrazolidinyl)、ピラゾリニル(pyrazolinyl)、ピラゾリル(pyrazolyl)、ピリダジニル(pyridazinyl)、ピリドオキサゾリル(oxazolopyridine)、ピリドイミダゾリル(pyridinomidazolyl)、ピリドチアゾリル、ピリジニル(pyridinyl)、ピロリジニル(pyrrolidinyl)、ピロリニル(pyrrolinyl)、2H−ピロリル(2H−pyrrolyl)、ピロリル(pyrrolyl)、キナゾリニル(quinazolinyl)、キノリニル(quinolyl)、4H−キノリジニル(4H−quinolizinyl)、キノキサリニル(quinoxalinyl)、キヌクリジニル(quinuclidinyl)、テトラヒドロフラニル(tetrahydrofuryl)、テトラヒドロイソキノリニル(tetrahydroisoquinolinyl)、テトラヒドロキノリニル(tetrahydroquinolinyl)、テトラゾリル(tetrazolyl)、6H−1,2,5−チアジアジニル(6H−1,2,5−thiadiazinyl)、1,2,3−チアジアゾリル(1,2,3−thiadiazolyl)、1,2,4−チアジアゾリル(1,2,4−thiadiazolyl)、1,2,5−チアジアゾリル(1,2,5−thiadiazolyl)、1,3,4−チアジアゾリル(1,3,4−thiadiazolyl)、チアントレニル、チアゾリル(thiazolyl)、イソチアゾリル(isothiazolyl)、チエニル(thienyl)、チエノオキサゾリル、チエノチアゾリル、チエノイミダゾリル(thienoimidazolyl)、チエニル(thienyl)、トリアジニル(triazinyl)、1H−1,2,3−トリアゾリル(1H−1,2,3−triazolyl)、2H−1,2,3−トリアゾリル(2H−1,2,3−triazolyl)、1H−1,2,4−トリアゾリル(1H−1,2,4−triazolyl)、4H−1,2,4−トリアゾリル(4H−1,2,4−triazolyl)、及びキサンテニル(xanthenyl)を含むがそれに限定されない。また縮合環化合物及びスピロ化合物をさらに含む。
特に断らない限り、用語「炭化水素基」またはその下位概念(例えば、アルキル基、アルケニル基、アルキニル基、アリール基等)自体、または他の置換基一部分として、直鎖で、分岐鎖でまたは環状である炭化水素基またはこれらの組み合わせは、完全飽和(例えば、アルキル基)あるいは一価または多価不飽和(例えば)、アルケニル基、アルキニル基、アリール基でもよく、一置換または多置換されたものでもよく、一価(例えばメチル基)、二価(例えば、メチレン)または多価(例えば、メチン基)であるものでもよく、また二価または多価基、特定の数を有する炭素原子を含んでもよい(例えば、C−C12は、1乃至12個の炭素を示し、C1−12は、C、C、C、C、C、C、C、C、C、C10、C11及びC12から選択され、C3−12は、C、C、C、C、C、C、C、C10、C11及びC12から選択される。)。「炭化水素基」は、脂肪族炭化水素基と芳香族炭化水素基とを含むが、それに限定されなく、前記脂肪族炭化水素基は、チェーン状及び環状を含み、具体的にアルキル基、アルケニル基及びアルキニル基を含むがそれに限定されなく、前記芳香族炭化水素基は、例えば、ベンゼン、ナフタレン(naphthalene)等の6〜12員の芳香族炭化水素基を含むがそれに限定されない。いくつかの実施例において、用語「炭化水素基」は、直鎖または分岐鎖である基、またはそれらの組み合わせを表し、完全飽和あるいは一価または多価不飽和でも良く、二価及び多価基を含んでも良く。飽及び炭化水素基の実例は、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、tert−ブチル、イソブチル、sec−ブチル、イソブチル、シクロヘキシル、(シクロヘキシル)メチル、シクロプロピルメチル、及びn−アミル(n−amyl)、n−ヘキシル(n−hexyl)、n−ヘプチル(n−heptyl)、n−オクチル(n−octyl)等の原子団の同族体または異性体を含むがそれに限定されない。不飽和炭化水素基は、一個または複数個の二重結合または三重の結合を有することで、その実例は、ビニール(vinyl)、2−プロペニル(2−propenyl)、ブテニル(butenyl)、クロチル(crotyl)、2−イソペンテニル(2−isopentenyl)、2−(ブタジエニル)(2−(butadienyl))、2、4−ペンタジエニル(2,4−pentadienyl)、3−(1、4−ペンタジエニル)(3−(1,4−pentadienyl))、エチニル(acetenyl)、1−プロピニル(1−propinyl)と3−プロピニル、3−ブチニル(3−butynyl)並びにより高級な同族体及び異性体を含むがそれに限定されない。
特に断らない限り、用語「ヘテロ炭化水素基」またはその下位概念(例えば、ヘテロアルキル基、ヘテロアルケニル基、ヘテロアルキニル基、ヘテロアリール基等)の自体または他の用語と組み合わせて、一定の数を有する炭素原子と少なくとも一個のヘテロ原子とから構成される安定した直鎖、分岐鎖または環状である炭化水素基の原子団またはその組み合わせを表す。いくつかの実施例において、用語「ヘテロアルキル基」自体または他の用語と組み合わせて、一定の数を有する炭素原子と少なくとも一個のヘテロ原子とから構成される安定した直鎖、分岐鎖であるアルキル基原子団またはその組成物を表す。例示的な一実施例において、ヘテロ原子は、B、O、N及びSから選択され、ここで窒素と硫黄原子は、任意に酸性化され、窒素原子は、任意に四級化される。ヘテロ原子またはヘテロ原子団は、ヘテロ炭化水素基のいずれかの内部の位置に配置されても良く、当該炭化水素基が分子の残り部分に密着された位置を含む。しかし、用語「アルコキシ基」、「アルキルアミノ基」及び「アルキルチオ基」(またはチオアルコキシ基)は、それぞれ1つの酸素原子、アミノ基または硫黄原子を介して分子の残りの部分に結合しているアルキル基を指すために慣用的に用いられる。実例は、−CH−CH−O−CH、−CH−CH−NH−CH、−CH−CH−N(CH)−CH、−CH−S−CH−CH、−CH−CH、−S(O)−CH、−CH−CH−S(O)−CH、−CH=CH−O−CH、−CH−CH=N−OCH及び−CH=CH−N(CH)−CHを含むがそれに限定されない。例えば−CH−NH−OCHのように、多くて2個のヘテロ原子は連続できる。
特に断らない限り、用語「シクロ炭化水素基」、「ヘテロシクロ炭化水素基」、またはその下位概念(例えばアリール基、ヘテロアリール基、シクロアルキル基、ヘテロシクロアルキル基、シクロアルケニル基、ヘテロシクロアルケニル基、シクロアルキニル基、ヘテロシクロアルキニル基等)自体またはその他の用語と組み合わせて、それぞれに環化された「炭化水素基」、「ヘテロ炭化水素基」を表す。なお、ヘテロ炭化水素基またはヘテロシクロ炭化水素基(例えば、ヘテロアルキル基、ヘテロシクロアルキル基)の場合は、ヘテロ原子は、前記ヘテロシクリルが分子の残り部分に密着された位置を占めることができる。シクロ炭化水素基の実例は、シクロペンチル、シクロヘキシル、1−シクロヘキセニル(1−cyclohexenyl)、3−シクロヘキセニル(3−cyclohexenyl)、シクロヘプチル(cycloheptyl)等を含むがそれに限定されない。ヘテロシクリル基の非限制性の実例は、1−(1,2,5,6−テトラヒドロピリジル)(1−(1,2,5,6−tetrahydropyridyl))、1−ピペリジニル(1−piperidyl)、2−ピペリジニル(2−piperidyl)、3−ピペリジニル(3−piperidyl)、4−モルホリニル(4−morpholinyl)、3−モルホリニル(3−morpholinyl)、テトラヒドロフラン−2−イル(tetrahydrofuran−2−yl)、テトラヒドロフランインドール−3−イル(tetrahydrofuranylindol−3−yl)、テトラヒドロチオフェン−2−イル(tetrahydrothiophene−2−yl)、テトラヒドロ−3−イル(tetrahydrothiophene−3−yl)、1−ピペラジニル(1−piperazinyl)及び2−ピペラジニル(2−piperazinyl)を含む。
特に断らない限り、用語「ヘテロシクロアルキル基」自体、または他の用語と組み合わせて、それぞれ環化「ヘテロ炭化水素基」を表し、当該「ヘテロシクロアルキル基」において、ヘテロ原子は、ヘテロシクロアルキル基と分子の残りの部分の接続位置を占めることができる。いくつかの実施形態において、前記ヘテロシクロアルキル基は、4〜6員のヘテロシクロアルキル基であり、他のいくつかの実施形態において、前記ヘテロシクロアルキル基は、5〜6員のヘテロシクレン基である。ヘテロシクロアルキル基の例は、アザシクロブチル(azacyclobutyl)、オキセタニル(oxetanyl)、チオシクロブチル(thiacyclobutyl)、ピロリジニル、ピラゾリジニル(pyrazolidinyl)、イミダゾリジニル(imidazolidinyl)、テトラヒドロチオフェニル(tetrahydrothiophenyl)、テトラヒドロフラニル、テトラヒドロピラニル基、ピペリジニル、ピペリジニル(piperidinyl)、モルホリニル、ジオキソアルキル(dioxoalkyl)、ジチアアルキル(dithiaalkyl)、イソオキサゾリジニル(isoxazolidinyl)、イソチアゾリジニル(isothiazolidinyl)、1,2−オキサジニル(1,2−oxazinyl)、1,2−チアジニル(1,2−thiazinyl)、ヘキサヒドロピリダジニル(hexahydropyridazinyl)、ホモピペラジニル(homo piperazinyl)、ホモピペリジニル(homopiperidinyl)またはオキセパニル(oxepanyl)を含むが、これに限定されない。
特に断らない限り、用語「アルキル基」は、直鎖または分岐鎖の飽和炭化水素基を表し、一置換(例えば、−CHF)または多置換(例えば、−CF)であり得、そして一価(例えば、メチル基)、二価(例えば、メチレン基)または多価(例えば、メチン基)であり得る。アルキル基の例には、メチル基(Me)、エチル基(Et)、プロピル基(例えば、n−プロピル基及びイソプロピル基)、ブチル基(例えば、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基)、ペンチル基(例えば、n−ペンチル基、イソペンチル基、ネオペンチル基)などが含まれる。
特に断らない限り、「アルケニル基」は、鎖の任意の位置に1つまたは多数の炭素−炭素二重結合を有するアルキル基を指し、一置換または多置換であり得、そして一価、二価または多価であり得る。アルケニル基の例には、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基などが含まれる。
特に断らない限り、「アルキニル基」は、鎖の任意の位置に1つまたは多数の炭素−炭素三重結合を有するアルキル基を指し、一置換または多置換であり得、そして一価、二価または多価であり得る。アルキニル基の例には、エチニル基、プロピニル基、ブチニル基、ペンチニル基などが含まれる。
特に断らない限り、シクロアルキル基は、任意の安定な環式または多環式炭化水素基を含み、任意の炭素原子は飽和であり、一置換または多置換であり得、そして一価、二価または多価であり得る。これらのシクロアルキル基の例としては、シクロプロピル基、ノルボルニル基、[2.2.2]ビシクロオクタン基、[4.4.0]ビシクロデカン基などが挙げられるが、これらに限定されない。
特に断らない限り、シクロアルケニル基は、任意の安定な環式または多環式炭化水素基を含み、当該炭化水素基は、環の任意の位置に1つまたは多数の炭素−炭素二重結合を有し、一置換または多置換であり得、そして一価、二価または多価であり得る。これらのシクロアルケニル基の例としては、シクロペンテニル、シクロヘキセニルなどが挙げられるが、これらに限定されない。
特に断らない限り、シクロアルキニル基は、任意の安定な環式または多環式炭化水素基を含み、当該炭化水素基は、環の任意の位置に1つまたは多数の炭素−炭素三重結合を有し、一置換または多置換であり得、そして一価、二価または多価であり得る。
特に断らない限り、用語「ハロゲン化」または「ハロゲン」自体または他の置換基としての一部分は、フッ素原子、塩素原子、臭素原子またはヨウ素原子を表す。また、用語「ハロアルキル基」は、モノハロアルキル基とポリハロアルキル基を含むことを意味する。例えば、用語「ハロ(C−C)アルキル」は、トリフルオロメチル基、2、2、2−トリフルオロエチル、4−クロロブチル及び3−ブロモプロピル等を含むがそれに限定されないことを意味する。特に断らない限り、ハロアルキル基の実例は、トリフルオロメチル基、トリクロロメチル基、ペンタフルオロエチル基、及びペンタクロロエチル基を含むが、それに限定されない。
「アルコキシ基」は、酸素ブリッジによって、結合された特定数の炭素原子を有する前記アルキル基を表し、特に断らない限り、C1−6アルコキシ基は、C、C、C、C、C及びCアルコキシ基を含む。アルコキシ基の例には、メトキシ基、エトキシ基、n−プロポキシ、イソプロポキシ基、n−ブトキシ、sec−ブトキシ、tert−ブトキシ、n−ペントキシ及びS−ペントキシが含まれるがそれに限定されない。
特に断らない限り、用語「アリール基」は、多価不飽及びの芳香族炭化水素の置換基を表し、一置換または多置換されたものでも良く、一価、二価または多価であっても良く、それは単環式または多環(好ましくは1乃至3個の環であり、その中でいずれか一つの環は芳香族である)であっても良く、またそれらは一緒に縮合されたり、共有結合されている。用語「ヘテロアリール基」は、1個乃至4個のヘテロ原子を含むアリール基(または環)を指す。例示的な一実例において、ヘテロ原子は、B、N、O及びSから選択され、ここで窒素及び硫黄原子は、任意に酸性化され、窒素原子は、任意に四級化される。ヘテロアリール基は、ヘテロ原子によって、分子の残り部分に結合される。アリール基またはヘテロアリール基の非限制性の実施例は、フェニル基、ナフチル、ビフェニル、ピロリル、ピラゾリル、イミダゾリル、フェニル−オキサゾリル、イソキサゾリル、チアゾリル、フリル、チエニル、ピリジル、ピリミジニル、ベンゾチアゾリル、フラニル、ベンズイミダゾリル、インドリル、イソキノリル、キノキサリニル、キノリル、1−ナフチル(1−naphthyl)、2−ナフチル(2−naphthyl)、4−ビフェニル(4−biphenyl)、1−ピロリル(1−pyrrolyl)、2−ピロリル(2−pyrrolyl)、3−ピロリル(3−pyrrolyl)、3−ピラゾリル(3−pyrazolyl)、2−イミダゾールリル(2−imidazolyl)、4−イミダゾールリル(4−imidazolyl)、ピラジニル(pyrazinyl)、2−オキサゾリル(2−oxazolyl)、4−オキサゾリル(4−oxazolyl)、2−フェニル−4−オキサゾリル(2−phenyl−4−oxazolyl)、5−オキサゾリル(5−oxazolyl)、3−イソオキサゾリル(3−isoxazolyl)、4−イソオキサゾリル(4−isoxazolyl)、5−イソオキサゾリル(5−isoxazolyl)、2−チアゾリル(2−thiazolyl)、4−チアゾリル(4−thiazolyl)、5−チアゾリル(5−thiazolyl)、2−フリル(2−furanyl)、3−フリル(3−furanyl)、2−チエニル(2−thienyl)、3−チエニル(3−thienyl)、2−ピリジル、3−ピリジル(3−pyridyl)、4−ピリジル(4−pyridyl)、2−ピリミジル(2−pyrimidinyl)、4−ピリミジル(2−pyrimidinyl)、5−ベンゾチアゾリル(5−benzothiazolyl)、プリニル、2−ベンズイミダゾリル(2−benzoimidazolyl)、5−インドリル(5−indolyl)、1−イソキノリル(1−isoquinolyl)、5−イソキノリル(5−isoquinolyl)、2−キノキサリニル(2−quinoxalyl)、5−キノキサリニル(5−quinoxalyl)、3−キノリル(3−quinolyl)及び6−キノリル(6−quinolyl)を含む。上記のアリール基及びヘテロアリール基環系のいずれかの置換基は、下記の許容される置換基の群から選択される。
特に断りがない限り、アリール基は、他の用語と組み合わせて使用される場合(例えば、アリールオキシ基、アリールチオ基、アラルキル基)、前記の定義に示すようなアリール基及びヘテロアリール環を含む。従って、用語「アラルキル基」は、アリール基がアルキル基に密着されたそれらの基(例えば、ベンジル(benzyl)、フェニルエチル(phenylethyl)、ピリジルメチル基等)を含むことを指し、またその中の炭素原子(例えば、メチレン)、例えば酸素原子で置換されたそのアルキル基、例えば、フェノキシメチル(phenoxymethyl)、2−ピリジルオキシメチル−3−(1−ナフトキシ)プロピル(2−pyridyloxymethyl−3−(1−naphthoxy)propyl)を含む。
用語「脱離基」とは、置換反応(例えば、求核置換反応)によって、他の官能基または原子で置換される官能基または原子を指す。例えば、代表的な脱離基には、トリフルオロメタンスルフォネート(TrifluoroMethanesulfonate)と、塩素、臭素、ヨウ素と、例えばメタンスルフォネート(methane sulfonate)、トシラート(tosylate)、ブロシレート(brosylate)、p−ブロモベンゼンスルホン酸(p−bromobenzenesulfonate)、p−トシラート(p−tosylate)等のスルホン酸基(sulfonate group)と、例えばアセトキシ基(acetoxy group)、トリフルオロアセトキシ(trifluoroacetoxy)等のアシルオキシ基(acyloxy group)とが含まれている。
用語「保護基」は、「アミノ基の保護基」、「ヒドロキシ基の保護基」または「チオール基の保護基」を含むがそれに限定されない。用語「アミノ基の保護基」とは、アミノ窒素上の副反応を防止するために適切な保護基を指す。代表的なアミノ基の保護基は、ホルミル基(formyl group)と、例えばアルカノイル基(alkanoyl group)(例えば、アセチル基(acetyl group)、トリクロロアセチル(trichloroacetyl)またはトリフルオロアセチル(trifluoroacetyl))のようなアシル基(acyl group)と、tert−ブトキシカルボニル基(tert−butoxycarbonyl group,Boc)のようなアルコキシカルボニル基(arkoxycarbonylgroup)と、ベンジルオキシカルボニル基(benzyloxycarbonyl(Cbz)group,)及び9−フルオレニルメトキシカルボニル基(9−fluorenylmethoxycarbonyl(Fmoc)group)のようなアリールメトキシカルボニル基(aryl methoxycarbonyl group)と、ベンジル(benzyl(Bn))、トリフェニル(triphenyl(Tr))、1,1−ビス−(4’−メトキシフェニル)メチル(1,1−bis−(4’−methoxyphenyl)methyl)のようなアリールメチル基(aryl methyl group)、トリメチルシリル(trimethylsilyl(TMS))及びtert−ブチルジメチルシリル(tert−butyldimethylsilyl(TBS))のようなシリル基(Silyl group)等を含むがそれに限定されない。用語「ヒドロキシ基の保護基」とは、ヒドロキシ基の副反応を防止するのに適切な保護基を指す。代表的なヒドロキシ基の保護基は、メチル基、エチル基およびtert−ブチル基のようなアルキル基と、アルカノイル基(例えば、アセチル基)のようなアシル基と、ベンジル(Bn)、p−メトキシベンジル基(p−methoxybenzyl(PMB))、9−フルオレニルメチル(9−fluorenylmethyl(Fm))、およびジフェニルメチル(diphenylmethyl(DPM))のようなアリールメチル基と、トリメチルシリル(TMS)及びtert−ブチルジメチルシリル(TBS)のようなシリル基等を含むがそれに限定されない。
本発明の化合物は、本発明の当業者が周知されている多様な方法により製造されることで、以下に挙げられている具体的な実施形態、それと他の化学合成方法の結合により形成された実施形態及び本発明の当業者に周知されている均等の交換方式を含み、好ましい実施形態は、本発明の実施例を含むが、それに限定されない。
本発明に使用されている溶媒は、市販されているものから獲得することができる。本発明は、以下の略語を使用する。aqは、水を表し、HATUは、O−(7−アザベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスフェート(O−(7−azabenzotriazol−1−yl)−N,N,N’,N’−tetramethyluronium hexafluorophosphate)を表し、EDCは、N−(3−ジメチルアミノプロピル)−N’−エチルカルボジイミド塩酸塩(N−(3−dimethylaminopropyl)−N’−ethylcarbodiimide hydrochloride)を表し、m−CPBAは、3−クロロペルオキシ安息香酸(3−chloroperoxybenzoic acid)を表し、eqは、当量、等量を表し、CDIは、カルボニルジイミダゾールを表し、DCMは、ジクロロメタンを表し、PEは、石油エーテルを表し、DIADは、アゾジカルボン酸ジイソプロピル(diisopropyl azodicarboxylate)を表し、DMFは、N,N−ジメチルホルムアミドを表し、DMSOは、ジメチルスルホキシド(dimethyl sulfoxide)を表し、EtOAcは酢酸エチルを表し、EtOHは、エタノール(ethanol)を表し、MeOHは、メタノール(methanol)を表し、CBzは、アミン保護基であるベンジルオキシカルボニル基を表し、BOCは、アミン保護基としてのtert−ブチルカルボニル基を表し、HOAcは、酢酸を表し、NaCNBHは、シアノ水素化ホウ素ナトリウムを表し、r.t.は、室温を表し、O/Nは、一晩を表し、THFは、テトラヒドロフランを表し、BocOは、ジ−tert−ブチルジカーボネートを表し、TFAは、トリフルオロ酢酸を表し、DIPEAはジイソプロピルエチルアミンを表し、SOClは、塩化チオニルを表し、CSは、二硫化炭素を表し、TsOHは、p−トルエンスルホン酸を表し、NFSIは、N−フルオロ−N−(フェニルスルホニル)ベンゼンスルホンアミド(N−fluoro−N−(phenylsulfonyl)benzenesulfonamide)を表し、NCSは、1−クロロピロリジン−2,5−ジオンを表し、n−BuNFは、テトラブチルアンモニウムフルオリド(tetrabutylammonium fluoride)を表し、iPrOHは、2−プロパノールを表し、mpは、融点を表し、LDAは、リチウムジイソプロピルアミド(lithium diisopropylamide)を表し、EDCIは、カルボジイミドを表し、HOBtは、1−ヒドロキシベンゾトリアゾール(1−hydroxybenzotriazole)を表し、Pd(dppf)Clは、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]二塩化パラジウム([1,1’−bis(diphenylphosphino)ferrocene]palladium dichloride)を表し、MgSO4は、硫酸マグネシウムを表し、DMAPは、4−ジメチルアミノピリジンを表し、EEDQは、1−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキノリンを表し、LAWESSON’は2,4−ビス(p−メトキシフェニル)−1,3−ジチオ−ジホスフェタン−2,4−スルフィド(2,4−bis(p−methoxyphenyl)−1,3−dithio−diphosphetane−2,4−sulfide)(Lausen試薬)を表し、TEAは、トリエタノールアミンを表し、TosClは、塩化p−トルエンスルホニルを表し、EtNは、トリエチルアミンを表し、BF・EtOは、三フッ化ホウ素エーテラートを表し、Raney−Niは、ラネーニッケルを表し、PPhは、トリフェニルホスフィンを表し、IPAはイソプロパノールを表し、DPBSは、ダルベッコリン酸緩衝液を表し、DIEAは、N,N−ジイソプロピルエチルアミンを表し、Pd(PPhは、テトラキス(トリフェニルホスフィン)パラジウムを表し、t−BuOKは、カリウムt−ブトキシドを表す。
化合物は、手作りまたはChemDraw(登録商標)ソフトウェアにより命名され、市販の化合物は、業者のカタログの中の名称を採用する。
(図面の簡単な説明)
(図1)血漿中のB型肝炎ウイルスDNAレベルである。折れ線1は、ブランク対照において、10%のsolutol水溶液を1日1回採用し(QD)、経口投与(PO)の方法を採用したことを表す。折れ線2は、用量が15mg/kgである試験化合物WX325を1日2回採用し(BID)、8時間間隔で経口投与(PO)の方法を採用したことを表す。折れ線3は、用量が50mg/kgである試験化合物WX325を1日2回採用し(BID)、8時間間隔で経口投与(PO)の方法を採用したことを表す。折れ線5は、用量が150mg/kgである試験化合物WX325を1日2回採用し(BID)、8時間間隔で経口投与(PO)の方法を採用したことを表す。折れ線6は、用量が15mg/kgである陽性化合物であるテノホビル(TDF)を1日2回採用し(BID)、8時間間隔で経口投与(PO)の方法を採用したことを表す。LLOQは、検出下限を表し、day post−first doseは投与日数を表す。
(図2)28日目の肝臓中のB型肝炎ウイルスDNAレベルである。注:QDは、1日1回投与を表し、BIDは1日2回投与を表し、MPKは、mg/kgを表し、Vehicleはブランク対照を表す。
(発明を実施するための形態)
本発明を以下の実施例によって詳細に説明するが、本発明を限定することを意図するものではない。本発明を詳細に説明し、具体的な実施形態を本明細書に開示したが、当業者にとって、本発明の精神と範囲を逸脱することなく、本発明の具体的な実施形態に様々な修正と変更を加えることができることは明らかである。
参照例1:フラグメントBB−1
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物BB−1−3の合成
窒素保護下で、予め乾燥した3リットルの三口フラスコにBB−1−1(40g,319.68mmol)を加えた後、それにテトラヒドロフラン500mL)を加えた。0℃でそれにカリウムtert−ブトキシドのテトラヒドロフラン溶液(1M,479.52mL)を滴下した。滴下終了後、反応液を0℃で15分間攪拌して反応させた。15分後、BB−1−2(115.28g,383.62mmol)のテトラヒドロフラン溶液(500mL)を0℃で前記反応液にゆっくり滴下した。滴下終了後、反応液を25℃に戻して4.5時間攪拌した。水(600mL)を加えてクエンチ反応させ、反応液を酢酸エチル(1L×3)で抽出した。有機相を無水硫酸ナトリウムで乾燥し、ろ過し、減圧して溶剤を除去してBB−1−3の粗生成物を得た。粗生成物をスラリー化してBB−1−3を得た。H NMR(400MHz,CHLOROFORM−d) δ=8.29(d,J=8.3Hz,1H),7.97−7.88(m,2H),7.65(dd,J=2.0,3.3Hz,1H),7.13(dd,J=1.9,3.6Hz,1H),6.36(t,J=3.5Hz,1H),3.74(s,3H)。
ステップ2:化合物BB−1−4の合成
鉄粉(21.02g,376.45mmol)を18℃でBB−1−3(29.30g,75.29mmol)の酢酸(200.00mL)溶液に加え、反応液を70℃に昇温させて2時間反応させた。ろ過して固形物を除去し、フィルターケーキを大量の酢酸エチルで洗浄した。ろ液を収集して、飽和炭酸水素ナトリウムでろ液のPH値を7〜8に調節した。抽出分液して、有機相を飽和塩化ナトリウム溶液で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過し、減圧して溶剤を除去してBB−1−4の粗生成物を得た。粗生成物をカラムクロマトグラフィーにより精製してBB−1−4(15g)を得た。H NMR(400MHz,CHLOROFORM−d)δ=7.61(dd,J=2.0,3.3Hz,1H),7.42(d,J=8.8Hz,1H),7.01(dd,J=1.9,3.6Hz,1H),6.82(d,J=1.8Hz,1H),6.78(dd,J=1.8,8.8Hz,1H),6.23(t,J=3.4Hz,1H),5.15(br s,2H),3.69(s,3H)。
ステップ3:化合物BB−1の合成
BB−1−4(57g,158.69mmol)をトルエン(50mL)に溶解し、それにトリメチルアルミニウム(2M,79.34mL)のトルエン溶液を加えて、110℃に昇温させ、2時間攪拌した。反応液を室温に冷却した後、4リットルの水に注ぎ込み、その後大量の酢酸エチルで抽出した。有機相を併せて、有機相を無水硫酸ナトリウムで乾燥し、ろ過し、減圧して溶剤を除去して生成物の粗生成物を得た。粗生成物をカラムクロマトグラフィーにより分離してBB−1(48g)を得た。H NMR(400MHz,DMSO−d)δ=11.16(s,1H),7.91(d,J=8.5Hz,1H),7.70−7.53(m,3H),7.15(dd,J=1.6,3.6Hz,1H),6.53(t,J=3.4Hz,1H)。
参照例2:フラグメントBB−2
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物BB−2−1の合成
予め乾燥した水素化瓶にBB−1(6g,18.34mmol)、トリエチルアミン(1.86g,18.34mmol,2.54mL)、Pd(dppf)Cl.CHCl(1.50g,1.83mmol)及び溶媒メタノール(360mL)、DMF(36.00mL)を加えた。添加終了後、反応液系にCOを通過させ、80℃、50psiで、12時間攪拌した。反応系を室温に冷却した後、減圧濃縮してメタノールとDMFを除去して生成物の粗生成物を得た。粗生成物を酢酸エチル(800mL)で溶解し、有機相を水(300mL×2)で洗浄し、有機相を無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して溶剤を除去して生成物BB−2−1を得た。H NMR(400MHz,DMSO−d6)δ=11.27(s,1H),8.15(d,J=8.4Hz,1H),8.05(s,1H),7.91(d,J=8.4Hz,1H),7.67−7.59(m,1H),7.17(dd,J=1.7,3.4Hz,1H),6.56(t,J=3.4Hz,1H),3.97−3.82(m,3H)。
ステップ2:化合物BB−2の合成
乾燥した一口瓶に原料であるBB−2−1(1.5g,4.90mmol)、水酸化リチウム一水和物(205mg,4.90mmol)及びテトラヒドロフラン(15mL)、水(3mL)を加え、その後親指瓶を60℃のオイルバスで4時間攪拌した。減圧濃縮してTHFを除去し、その後20ミリリットルの水を加え、2Mの希塩酸でpH値を3程度に調節し、固体を析出し、ろ過して固体を収集してBB−2を得た。H NMR(400MHz,DMSO−d6)δ=11.26(s,1H),8.13(d,J=8.2Hz,1H),8.02(d,J=1.3Hz,1H),7.90(dd,J=1.5,8.2Hz,1H),7.62(dd,J=1.8,3.1Hz,1H),7.16(dd,J=1.7,3.6Hz,1H),6.55(t,J=3.4Hz,1H)。
参照例3:フラグメントBB−3
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物BB−3−2の合成
0℃で、予め乾燥した250ミリリットルのフラスコにBB−3−1(10.00g,47.07mmol)及びクロロホルム(50.00mL)を加え、その後、それに塩化スルフリル(12.71g,94.14mmol,9.41mL)を滴下した。添加終了後、25℃で3時間攪拌した。反応液を氷水(100mL)に加え、水相をジクロロメタンで抽出(100mL×3)した。有機相を併せて、中性になるまで水で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮してBB−3−2を得て、直接に次のステップの反応に使用した。
ステップ2:化合物BB−3−3の合成
予め乾燥した250ミリリットルのフラスコにBB−3−2(10.00g,40.50mmol)及びメタノール(100mL)を加え、その後、それにナトリウムメトキシド(2.63g,48.60mmol)を加えた。添加終了後、反応液を窒素保護し、25℃で1時間攪拌して反応させた。減圧濃縮してメタノールを除去した後、ジクロロメタン(100mL)を加えて希釈し、有機相を順次に水(40mL)、飽和食塩水(30mL)で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮して粗生成物を得た。粗生成物をフラッシュカラムクロマトグラフィーにより分離し、精製してBB−3−3を得た。H NMR(400MHz,CHLOROFORM−d)δ=9.17(br s,1H),6.93−6.90(m,1H),6.82(dd,J=1.8,2.6Hz,1H),3.88(s,3H)
ステップ3:化合物BB−3−4の合成
予め乾燥した窒素保護下で、250ミリリットルの三口フラスコにカリウムtert−ブトキシド(1M,62.68mL)及びテトラヒドロフラン30mL)を加え、その後0℃でそれにBB−3−3(4.00g,25.07mmol,1.00eq)のテトラヒドロフラン(40mL)溶液をゆっくり滴下した。反応系を25℃に昇温させ、15分後攪拌し、また0℃でBB−1−2(15.07g,50.14mmol)のテトラヒドロフラン(10.00mL)溶液をゆっくり滴下した。添加終了後、反応液を窒素保護し、25℃で4.5時間攪拌した。水(150mL)を加えてクエンチ反応させ、反応液を減圧濃縮してテトラヒドロフランを除去した後、水相を酢酸エチル(100mL×3)で抽出し、無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して粗生成物を得た。粗生成物をフラッシュカラムクロマトグラフィーにより分離し、精製してBB−3−4を得た。H NMR(400MHz,DMSO−d)δ=8.53(d,J=2.0Hz,1H),8.17(dd,J=1.9,8.6Hz,1H),7.96(d,J=2.0Hz,1H),7.89(d,J=8.7Hz,1H),7.36(d,J=2.0Hz,1H),3.65(s,3H)。
ステップ4:化合物BB−3−5の合成
予め乾燥した親指瓶にBB−3−4(300.00mg,708.18μmol)及び酢酸(3.00mL)を加え、その後、それに鉄粉(197.76mg,3.54mmol)を加えた。添加終了後、反応液を窒素保護し、70℃で40分間攪拌して反応させた。反応系を室温に冷却した後、飽和炭酸水素ナトリウム水溶液をpH=6になるまで反応系に滴下し、酢酸エチル(15mL×3)で抽出し、飽和食塩水(20mL×2)で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して生成物BB−3−5を得た。H NMR(400MHz,DMSO−d)δ=8.23(d,J=2.0Hz,1H),7.67(d,J=8.8Hz,1H),7.16(d,J=2.0Hz,1H),7.09(d,J=1.9Hz,1H),6.87(dd,J=1.9,8.8Hz,1H),6.50(s,2H),3.71(s,3H)。
ステップ5:化合物BB−3−6の合成
予め乾燥した50ミリリットルのフラスコにBB−3−5(1.00g,2.54mmol)及びトルエン(10mL)を加え、その後、それにトリメチルアルミニウムのトルエン溶液(2.5M,1.52mL)を加えた。添加終了後、反応液を窒素保護下で、80℃で1.5時間攪拌した。反応系を室温に冷却した後、反応液に水(30mL)を加えてクエンチし、淡黄色の固体を析出し、固体が完全に溶解するまで2Mの塩酸を滴下し、水相を酢酸エチル(75mL×2)で抽出し、無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して生成物BB−3−6を得た。H NMR(400MHz,DMSO−d)δ=11.33(s,1H),7.93(d,J=8.3Hz,1H),7.85(d,J=1.8Hz,1H),7.68−7.64(m,2H),7.21(d,J=1.8Hz,1H)
ステップ6:化合物BB−3−7の合成
予め乾燥した水素化瓶にBB−3−6(170.00mg,470.13μmol)、トリエチルアミン(71.36mg,705.20μmol,97.75uL)、Pd(dppf)Cl.CHCl(38.39mg,47.01μmol)及びメタノール(10mL)、DMF(1.00mL)を加えた。添加終了後、反応系に一酸化炭素ガスを通過させ、80℃、50psiで12時間攪拌した。反応系を室温に冷却した後、減圧濃縮してメタノール及びDMFを除去した後、生成物の粗生成物を得た。粗生成物をフラッシュカラムクロマトグラフィーにより分離してBB−3−7を得た。H NMR(400MHz,DMSO−d)δ=13.78(s,1H),11.45(s,1H),11.53−11.36(m,1H),8.16(d,J=8.4Hz,1H),8.04(d,J=1.1Hz,1H),7.94(dd,J=1.4,8.3Hz,1H),7.89(d,J=2.0Hz,1H),7.26−7.18(m,1H),3.91(s,3H)。
ステップ7:化合物BB−3の合成
予め乾燥した親指瓶にBB−3−7(50.00mg,146.74μmol)、希塩酸(6M,300.00μL)及びジオキサン(600.00μL)を加えた。添加終了後、反応液を窒素保護し、50℃で58時間攪拌して反応させた。反応液をろ過して生成物BB−3を得た。H NMR(400MHz,DMSO−d)。δ=13.79(s,1H),11.45(s,1H),8.13(d,J=8.3Hz,1H),8.01(s,1H),7.94−7.87(m,2H),7.24−7.20(m,1H)。
参照例4:フラグメントBB−4
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物BB−4−3の合成
窒素保護下で、化合物BB−4−1(2.90g,19.26mmol)、BB−4−2(1.45g,14.06mmol)及びMgSO(4.82g,40.06mmol)をエタノール(30mL)に溶解した。反応液を85℃に昇温させ、12時間攪拌した。飽和炭酸ナトリウム溶液(30mL)を加えてクエンチ反応させ、反応液を酢酸エチルで抽出した(20mL×3)。有機相を併せて、有機相を飽和塩化ナトリウム溶液で洗浄した(10mL×2)。有機相を無水硫酸ナトリウムで乾燥し、ろ過し、減圧して溶剤を除去した。粗生成物をカラムクロマトグラフィーによりBB−4−3を得た。H NMR(400MHz,DMSO−d)δ=8.30(s,1H),4.29(q,J=7.2Hz,2H),3.32−3.26(m,1H),1.34(d,J=6.9Hz,6H),1.28(t,J=7.1Hz,3H)。
ステップ2:化合物BB−4−4の合成
0℃で、BB−4−3(1.7g,8.53mmol)のテトラヒドロフラン(5.00mL)溶液をリチウムテトラヒドロアルミニウム(809.39mg,21.33mmol)のテトラヒドロフラン(5.00mL)溶液に滴下した。反応液を5℃で2時間攪拌し、その後25℃に昇温させて12時間攪拌した。反応液に結晶水を含む硫酸ナトリウムを加えてクエンチ反応させた。ろ過し、フィルターケーキを大量の酢酸エチルで洗浄し、ろ液を収集した。ろ液を無水硫酸ナトリウムで乾燥し、ろ過し、減圧して溶剤を除去し、BB−4−4を得て、直接に次のステップの反応に使用した。H NMR(400MHz,METHANOL−d4)δ=7.47(s,1H),4.61(d,J=5.6Hz,2H),3.29−3.16(m,1H),1.30(d,J=6.9Hz,6H)。
ステップ3:化合物BB−4−5の合成
0℃でBB−4−4(200.00mg,1.27mmol)のジクロロメタン(3.00mL)溶液にDMAP(15.52mg,127.00μmol)及びトリエチルアミン(385.53mg,3.81mmol,528.12μL)を加えた。その後、それに塩化メタンスルホニル(218.22mg,1.91mmol,147.45μL)を滴下した。反応を徐々に25℃に昇温させ、当該温度を維持して3時間反応させた。水(5mL)を加えてクエンチ反応させ、その後ジクロロメタン(10mL×3)で抽出した。有機相を併せて、無水硫酸ナトリウムで乾燥した。ろ過し、減圧して溶剤を除去し、BB−4−5を得て、直接に次のステップの反応に使用した。
ステップ4:化合物BB−4−6の合成
25℃でBB−4−5(200.00mg,1.14mmol)のDMF(2.00mL)溶液にアジ化ナトリウム(148.22mg,2.28mmol)を加えた。反応を80℃に昇温させ、16時間攪拌した。飽和炭酸ナトリウム溶液(2.00mL)を加えてクエンチ反応させ、その後酢酸エチル(5mL×3)で抽出した。有機相を併せて、飽和塩化ナトリウムで洗浄した。有機相を無水硫酸ナトリウムで乾燥し、ろ過し、減圧して溶剤を除去した。粗生成物を薄層クロマトグラフィーで分離してBB−4−6を得た。H NMR(400MHz,DMSO−d)δ=7.76−7.59(m,1H),4.69(s,2H),3.26(td,J=6.8,13.7Hz,1H),1.32(d,J=6.8Hz,6H)。
ステップ5:化合物BB−4の合成
化合物BB−4−6(90.00mg,493.83μmol)のテトラヒドロフラン(2.00mL)及び水(400.00μL)の溶液にトリフェニルホスフィン(259.05mg,987.66μmol)を加えた。反応を25℃で2時間攪拌した。減圧して溶剤を除去し、生成物の粗生成物を得た。粗生成物を薄層クロマトグラフィーで分離して、BB−4を得て、直接に次のステップの反応に使用した。
参照例5:フラグメントBB−5
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物BB−5−2の合成
乾燥した500ミリリットルの三口フラスコに化合物BB−5−1(9.70g,39.88mmol)及びジクロロメタン(100.00mL)を加え、反応系を−78℃に冷却し、反応系にDAST(25.71g,159.52mmol,21.07mL)を滴下した。滴下終了後、当該三口フラスコを25℃のオイルバスに置き、4時間攪拌した。反応系を0℃に冷却し、それに飽和炭酸水素ナトリウム水溶液をゆっくり滴下してpH値10を程度になるまで調節し、ジクロロメタン層を収集し、水相をまたジクロロメタンで抽出(50mL×2)し、有機相を併せて、無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、BB−5−2を得た。
ステップ2:化合物BB−5−3の合成
乾燥した500ミリリットル一口瓶に化合物BB−5−2(9.05g,34.12mmol)及び4Mの塩化水素酢酸エチル溶液(100.00mL)を加え、その後当該一口瓶を25℃のオイルバスに置き、1時間攪拌した。反応液を減圧濃縮して、BB−5−3を得た。当該粗生成物を直接に次のステップの反応に使用した。
ステップ3:化合物BB−5−4の合成
乾燥した一口瓶に化合物BB−5−3(6.88g,34.13mmol)、二酸化マンガン(11.87g,136.51mmol)及びテトラヒドロフラン(100mL)を加え、窒素で3回置換し、その後当該一口瓶を70℃のオイルバスに置き、4時間攪拌した。当該反応液をろ過し、ろ液を減圧濃縮して、褐色固体の粗生成物を得た。当該粗生成物をシリカゲルカラムクロマトグラフィーによりBB−5−4を得た。
ステップ4:化合物BB−5−5の合成
乾燥した500ミリリットルの三口フラスコにカリウムtert−ブトキシドのテトラヒドロフラン溶液(1M,64.63mL)を加え、0℃で、反応系に化合物BB−5−4(3.7g,25.85mmol)のテトラヒドロフラン(60mL)溶液を滴下し、反応系を25℃で15分間攪拌した。その後0℃で、反応系に化合物BB−1−2(15.54g,51.71mmol)のテトラフラン(40mL)溶液を滴下した。最後に、当該三口フラスコを25℃のオイルバスに置き、5時間を攪拌した。当該反応混合物をろ過し、フィルターケーキを酢酸エチル(100mL)で洗浄し、ろ液を濃縮して粗生成物を得た。当該粗生成物をシリカゲルカラムクロマトグラフィーにより、BB−5−5を得た。H NMR(400MHz,CHLOROFORM−d)δ=8.29(d,J=8.6Hz,1H),7.98−7.91(m,2H),7.44(dd,J=2.3,3.2Hz,1H),6.90(d,J=2.2Hz,1H),3.75(s,3H)。
ステップ5:化合物BB−5−6の合成
乾燥した一口瓶に化合物BB−5−5(900mg,2.21mmol)、鉄粉(493.76mg,8.84mmol)及び酢酸(5mL)を加え、窒素で3回置換し、その後当該反応を70℃のオイルバスに置き、1時間攪拌した。当該反応混合物を珪藻土を詰めた5穴漏斗を通じて熱ろ過し、フィルターケーキをジクロロメタン(10mL)で洗浄し、ろ液を減圧濃縮して、BB−5−6を得た。
ステップ6:化合物BB−5の合成
乾燥した一口瓶に化合物BB−5−6(1.1g,2.92mmol)及びトルエン(10mL)を加え、窒素で3回置換し、トリメチルアルミニウムのトルエン溶液(2.5M,1.75mL)を加え、その後当該反応を110℃のオイルバスに置き、2時間攪拌した。反応系に10ミリリットルの水を加え、酢酸エチルで抽出(30mL×3)し、有機相を併せて、無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮してBB−5を得た。
参照例6:フラグメントBB−6
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物BB−6−2の合成
予め乾燥した500mlの三口フラスコにカリウムtert−ブトキシド(1M,39.17mL)及びTHF(50mL)を加え、その後真空にし、窒素で3回置換し、0℃に冷却して、WX186−1(5g,32.64mmol)のTHF(50mL)溶液を滴下し、温度を0〜5℃に制御し、加えた後25℃に昇温させ、20分間攪拌して、溶液は白色の懸濁液に変わった。0℃に冷却し、BB−6−1(10.95g,39.17mmol)のTHF(100mL)溶液をゆっくり滴下し、温度が5℃を超えないように制御し、溶液は色が濃い赤色の液体に変わった。滴下終了後、25℃に昇温させ、12時間攪拌し、溶液の色は黄色に変わった。反応液を300mLの水に注ぎ、クエンチ反応させ、300mLの酢酸エチルを加えて抽出し、250mLの飽和食塩水で併せた有機相を洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を収集し、減圧して溶剤を除去し、BB−6−2を得た。
ステップ2:化合物BB−6−3の合成
予め乾燥した500mLの三口フラスコに原料BB−6−2(12.5g,31.54mmol)及び酢酸(250mL)を加え、十分に溶解させ、その後鉄粉(7.05g,126.14mmol)を加え、70℃で5時間反応させた。反応液を熱いうちに珪藻土を通してろ過し、ろ液を500mLのEtOAcで洗浄し、ろ液を収集し、減圧して溶剤を除去し、粗生成物のBB−6−3を得て、直接に次のステップの反応に使用した。
ステップ3:化合物BB−6−4の合成
予め乾燥した250mLの一口瓶に原料BB−6−3(14g,38.21mmol)及びトルエン(150mL)を加えて、その後トリメチルアルミニウム(2M,28.66mL)をゆっくり滴下し、滴下終了後、110℃で5時間攪拌した。300mLの飽和リン酸二水素ナトリウム水溶液を加え、クエンチ反応させ、その後500mLのEtOAcを加え、十分に攪拌し、珪藻土を通してろ過し、ろ液で分液し、水相を2×300mLのEtOAcで抽出し、有機相を併せて、250mLの飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧して溶剤を除去し、BB−6−4を得た。
ステップ4:化合物BB−6の合成
予め乾燥した250mLの一口瓶に原料BB−6−4(9g,28.10mmol)及び溶剤THF(90mL)を加え、その後LiOH.HO(2.36g,56.20mmol)の水(25mL)溶液を加え、溶液の色は濃い赤色に変わり、反応は25℃で2時間反応させ、1MのHClをpH=2〜3になるまで溶液に加え、アイスバスで固体を冷却して析出し、しばらく撹拌してろ過し、フィルターケーキを氷水50mLに注ぎ、得られた固体をオイルポンプで引き上げてBB−6を得た。
実施例1:WX143
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX143の合成
予め乾燥した親指瓶にBB−3(15.00mg,45.91μmol)、EDCI(13.20mg,68.86μmol)、HOBt(9.31mg,68.86μmol)、DIPEA(10.68mg,82.64μmol)及び溶剤DMF(1.00mL)を加え、最後に0℃でそれにWX143−1(6.96mg,45.91μmol,1.00eq)を加えた。添加終了後、反応液を窒素保護し、25℃で12時間攪拌して反応させた。反応液をろ過して、生成物の粗生成物を得た。粗生成物をHPLCにより分離して、WX143を得た。
実施例2:WX145
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX145−2の合成
予め乾燥した100ミリリットルのフラスコにカリウムtert−ブトキシド(1M,15.67mL)を加え、その後テトラヒドロフラン(15mL)を加えた。0℃で、WX145−1(1.00g,6.27mmol)のテトラヒドロフラン(15mL)溶液を反応液にゆっくり滴下し、その後反応液を20℃で15分間攪拌して反応させた。その後、BB−1−2(3.77g,12.54mmol,2.00eq)のテトラヒドロフラン(20mL)溶液を0℃でゆっくり滴下した。反応系を20℃に戻して4.5時間攪拌した。反応液を酢酸エチル及び水(1:1,100mL)で希釈し、水層を酢酸エチルで(100mL×2)洗浄し、有機層を併せ、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。カラムクロマトグラフィーにより分離して、WX145−2を得た。H NMR(400MHz,DMSO−d)δ=8.54(d,J=2.0Hz,1H),8.18(dd,J=2.0,8.6Hz,1H),7.85−7.79(m,2H),6.76(d,J=3.7Hz,1H),3.66(s,3H)。
ステップ2:化合物WX145−3の合成
乾燥した親指瓶に原料WX145−2(450.00mg,1.06mmol)及び酢酸(2.00mL)加えて、攪拌して溶解させた。その後、鉄粉(296.01mg,5.30mmol)を加え、窒素ガスで3回置換した。反応系を70℃に置き、2時間攪拌した。減圧濃縮して、粗生成物を得た。粗生成物をカラムクロマトグラフィーによりWX145−3を得た。H NMR(400MHz,METHANOL−d4)δ=7.55(d,J=3.5Hz,1H),7.48(d,J=8.8Hz,1H),6.96−6.84(m,2H),6.32(d,J=3.5Hz,1H),5.20(br s,2H),3.85(s,3H)。
ステップ3:化合物WX145−4の合成
乾燥した100ミリリットルの一口瓶にWX145−3(410.00mg,1.04mmol)及びトルエン(1.00mL)を加えて、攪拌して溶解させた。その後、トリメチルアルミニウムのトルエン溶液(2.5M,624.94μL)を加え、窒素ガスで3回置換した。反応系を110℃で1.5時間攪拌した。1:1の水及び酢酸エチル(10mL)を加え、酢酸エチル(5mL×3)で抽出し、有機相を併せて、無水硫酸ナトリウムで乾燥し、減圧濃縮して、粗生成物を得た。粗生成物をカラムクロマトグラフィーにより、WX145−4を得た。H NMR(400MHz,DMSO−d6)δ=11.30(s,1H),7.91(d,J=8.6Hz,1H),7.67−7.62(m,3H),6.68(d,J=3.5Hz,1H)。
ステップ4:化合物WX145の合成
WX145−4(50.00mg,138.27μmol)及びBB−4(23.77mg,152.10μmol)をDMF(3.00mL)に溶解し、その後、それにトリエチルアミン(13.99mg,138.27μmol,19.16μL)及びPd(dppf)Cl(10.12mg,13.83μmol)を加えた。アルゴンで3回置換した後、一酸化炭素で3回置換した後、50PSI間で加圧し、反応液を80℃に加熱し、16時間攪拌した。反応液を室温に冷却し、直接に濃縮して粗生成物を得た。粗生成物をHPLCにより分離して、WX145を得た。H NMR(400MHz,DMSO−d6)δ=11.36(s,1H),9.49−9.43(m,1H),8.10(d,J=8.2Hz,1H),7.88(s,1H),7.82(d,J=8.4Hz,1H),7.64(d,J=3.3Hz,1H),7.56(s,1H),6.68(d,J=3.3Hz,1H),4.62(d,J=5.7Hz,2H),3.21(td,J=7.0,13.8Hz,1H),1.28(d,J=6.8Hz,6H)。
実施例3:WX146
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX146の合成
化合物WX146の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.22(s,1H),8.85(d,J=4.2Hz,1H),8.10(d,J=8.4Hz,1H),7.86(s,1H),7.77(d,J=8.4Hz,1H),7.61(d,J=1.1Hz,1H),7.18−7.11(m,1H),6.54(t,J=3.3Hz,1H),3.53(d,J=11.0Hz,2H),3.40−3.32(m,3H),1.79(br s,2H),1.39(s,9H)。
実施例4:WX170及びWX171
Figure 2020508342
合成経路:

Figure 2020508342
ステップ1:化合物WX170及びWX171の合成
化合物WX170及びWX171の合成は、実施例2におけるステップ4のWX145の合成を参照した。
化合物WX170:H NMR(400MHz,DMSO−d)δ=11.22(s,1H),8.77(br t,J=5.5Hz,1H),8.10(d,J=8.5Hz,1H),7.86(d,J=1.5Hz,1H),7.78(dd,J=1.5,8.0Hz,1H),7.61(dd,J=2.0,3.0Hz,1H),7.15(dd,J=1.5,3.5Hz,1H),6.54(t,J=3.3Hz,1H),3.82−3.69(m,2H),3.63−3.53(m,1H),3.33−3.25(m,2H),2.01−1.89(m,1H),1.88−1.74(m,2H),1.73−1.65(m,2H),1.49−1.28(m,1H);
化合物WX171:H NMR(400MHz,DMSO−d)δ=11.22(s,1H),8.77(br t,J=5.4Hz,1H),8.10(d,J=8.3Hz,1H),7.86(d,J=1.3Hz,1H),7.78(dd,J=1.3,8.3Hz,1H),7.61(dd,J=1.8,3.0Hz,1H),7.15(dd,J=1.8,3.5Hz,1H),6.54(t,J=3.4Hz,1H),3.90−3.68(m,2H),3.65−3.53(m,1H),3.33−3.25(m,2H),1.99−1.91(m,1H),1.86−1.75(m,2H),1.69(q,J=6.9Hz,2H),1.47−1.34(m,1H)。
キラル分離条件:キラルカラム:OJ(250mm×30mm,5μm);移動相:0.1%のアンモニア水/エタノール;流速:60mL/min;カラム温度:40℃。
化合物WX171対応保持時間:3.949分(ピーク2);
化合物WX170対応保持時間:3.658分(ピーク1)。
実施例5:WX175
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX175の合成
予め乾燥した50ミリリットルのフラスコにBB−2−1(85.00mg,277.51μmol)及び化合物WX175−1(24.74mg,277.51μmol,28.44μL)を加え、その後トルエン(5.00mL)を加えた。またトリメチルアルミニウムのトルエン溶液(2M,208.13μL)を25℃で下反応液にゆっくり加え、また反応液を110℃で1時間攪拌して反応させた。反応液を酢酸エチル及び水(1:1,20mL)で希釈し、水層を酢酸エチルで洗浄し(20mL×2),有機層を併せ、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。粗生成物をpre−HPLCにより分離して、WX175を得た。H NMR(400MHz,DMSO−d)δ=8.79(br t,J=5.4Hz,1H),8.11(d,J=8.3Hz,1H),7.87(s,1H),7.79(dd,J=1.5,8.3Hz,1H),7.62(dd,J=1.6,2.9Hz,1H),7.16(dd,J=1.8,3.5Hz,1H),6.55(t,J=3.4Hz,1H),3.37−3.34(m,2H),3.32−3.27(m,2H),3.23(s,3H),1.75(q,J=6.7Hz,2H)。
実施例6:WX176
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX176の合成
化合物WX176の合成は、実施例2におけるステップ4のWX145の合成を参照した。H NMR(400MHz,METHANOL−d)δ=8.52(br d,J=4.3Hz,1H),8.17(d,J=8.8Hz,1H),7.90−7.80(m,3H),7.55(dd,J=1.8,3.0Hz,1H),7.49−7.44(m,1H),7.35(dd,J=5.3,7.0Hz,1H),7.19(dd,J=1.6,3.6Hz,1H),6.52(t,J=3.3Hz,1H),4.72(s,2H)。
実施例7:WX254
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX254の合成
化合物WX254の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.21(s,1H),9.44(t,J=5.7Hz,1H),8.11(d,J=8.4Hz,1H),7.90(s,1H),7.80(dd,J=1.2,8.3Hz,1H),7.61(dd,J=1.8,2.9Hz,1H),7.56(s,1H),7.15(dd,J=1.5,3.5Hz,1H),6.54(t,J=3.3Hz,1H),4.61(d,J=5.7Hz,2H),3.20(t,J=6.8Hz,1H),1.28(d,J=6.8Hz,6H)。
実施例8:WX255
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX255の合成
化合物WX255の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.40(br s,1H),9.51(br s,1H),8.11(d,J=8.3Hz,1H),7.91(s,1H),7.89−7.82(m,2H),7.56(s,1H),7.20(d,J=1.9Hz,1H),4.61(br d,J=5.6Hz,2H),3.20(quin,J=6.8Hz,1H),1.28(d,J=6.9Hz,6H)。
実施例9:WX257
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX257の合成
化合物WX257の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.21(s,1H),9.53(t,J=5.6Hz,1H),8.12(d,J=8.4Hz,1H),7.90(d,J=1.5Hz,1H),7.80(dd,J=1.5,8.4Hz,1H),7.63−7.58(m,2H),7.15(dd,J=1.7,3.6Hz,1H),6.57−6.52(m,1H),4.60(d,J=5.5Hz,2H)。
実施例10:WX258
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX258の合成
化合物WX258の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.42−11.12(m,1H),9.69−9.28(m,1H),8.19(s,1H),8.11(d,J=8.4Hz,1H),7.97(d,J=1.1Hz,1H),7.90(dd,J=1.1,8.4Hz,1H),7.85(br d,J=3.7Hz,2H),7.61(dd,J=1.7,3.0Hz,1H),7.31(br s,1H),7.14(dd,J=1.8,3.5Hz,1H),6.54(t,J=3.3Hz,1H),5.07(d,J=4.4Hz,2H),2.99(s,3H)。
実施例11:WX259
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX259の合成
化合物WX259の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.21(s,1H),9.32(t,J=5.7Hz,1H),8.12(d,J=8.4Hz,1H),7.90(d,J=1.5Hz,1H),7.81(dd,J=1.5,8.4Hz,1H),7.61(dd,J=1.8,3.1Hz,1H),7.29(d,J=5.1Hz,1H),7.15(dd,J=1.8,3.5Hz,1H),6.84(d,J=5.1Hz,1H),6.54(t,J=3.3Hz,1H),4.55(d,J=5.7Hz,2H),2.22(s,3H)。
実施例12:WX260
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX260の合成
化合物WX260の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.23(s,1H),9.54(t,J=5.6Hz,1H),8.11(d,J=8.2Hz,1H),7.89(d,J=1.3Hz,1H),7.80(dd,J=1.4,8.3Hz,1H),7.60(dd,J=1.8,3.1Hz,1H),7.14(dd,J=1.8,3.5Hz,1H),6.53(t,J=3.4Hz,1H),4.53(d,J=5.7Hz,2H),2.67−2.62(m,3H),2.38(s,3H)。
実施例13:WX261
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX261の合成
化合物WX261の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.25(s,1H),9.69(t,J=5.2Hz,1H),8.92(s,1H),8.18(s,1H),8.20−8.16(m,1H),8.20−8.16(m,1H),8.20−8.16(m,1H),8.11(d,J=8.2Hz,1H),7.95−7.82(m,4H),7.60(dd,J=1.8,3.1Hz,1H),7.14(dd,J=1.7,3.6Hz,1H),6.53(t,J=3.3Hz,1H),4.88(d,J=5.3Hz,2H),2.44(s,3H)。
実施例14:WX262
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX262の合成
化合物WX262の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.21(s,1H),9.37(t,J=5.8Hz,1H),8.11(d,J=8.2Hz,1H),7.90(d,J=1.3Hz,1H),7.80(dd,J=1.4,8.3Hz,1H),7.61(dd,J=1.5,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.79(d,J=3.3Hz,1H),6.62(dd,J=1.1,3.3Hz,1H),6.54(t,J=3.3Hz,1H),4.53(d,J=5.7Hz,2H),2.38(s,3H)。
実施例15:WX263
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX263の合成
化合物WX263の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.22(s,1H),9.31(br t,J=5.5Hz,1H),8.11(d,J=8.2Hz,1H),7.91(s,1H),7.83(dd,J=1.4,8.3Hz,1H),7.61(dd,J=1.6,3.0Hz,1H),7.32(d,J=1.6Hz,1H),7.15(dd,J=1.6,3.5Hz,1H),6.54(t,J=3.4Hz,1H),6.18(d,J=1.6Hz,1H),4.52(d,J=5.5Hz,2H),3.81(s,3H)。
実施例16:WX265
Figure 2020508342
合成経路
Figure 2020508342
ステップ1:化合物WX265の合成
化合物WX265の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.24(s,1H),9.48−9.40(m,1H),8.86−8.75(m,2H),8.14(d,J=8.3Hz,1H),7.93(s,1H),7.86(br d,J=8.3Hz,1H),7.76(d,J=5.0Hz,1H),7.62(br d,J=1.3Hz,1H),7.21−7.10(m,1H),6.54(t,J=3.3Hz,1H),4.69(br d,J=4.6Hz,2H)。
実施例17:WX266
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX266の合成
化合物WX266の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.22(s,1H),8.17−7.97(m,3H),7.65−7.59(m,1H),7.58−7.44(m,4H),7.22−7.10(m,1H),6.55(br s,1H),5.18−4.83(m,2H),3.10−3.00(m,3H)。
実施例18:WX267
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX267の合成
化合物WX267の合成は、実施例1のWX143の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.25(s,1H),9.60(br s,1H),8.98(br d,J=6.8Hz,1H),8.24(s,1H),8.12(d,J=8.3Hz,1H),8.03−7.96(m,2H),7.92(s,1H),7.85(br d,J=8.2Hz,1H),7.64−7.54(m,2H),7.14(br d,J=1.8Hz,1H),6.58−6.49(m,1H),4.93(br d,J=4.9Hz,2H)。
実施例19:WX270
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX270の合成
化合物WX270の合成は、実施例2におけるステップ4のWX145の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.39(s,1H),8.82(br t,J=5.2Hz,1H),8.09(d,J=8.2Hz,1H),7.89(s,1H),7.82(d,J=9.0Hz,1H),7.74−7.68(m,1H),7.14(d,J=1.8Hz,1H),3.83−3.70(m,2H),3.63−3.54(m,1H),3.31−3.25(m,2H),2.02−1.90(m,1H),1.86−1.74(m,2H),1.69(m,2H),1.48−1.33(m,1H)。
実施例20:WX185
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX185−2の合成
WX185−1(5g,24.51mmol)をジクロロメタン(60mL)に溶解し、トリエチルアミン(5.46g,53.92mmol,7.50mL)、DMAP(299.40mg,2.45mmol)を加え、その後塩化ベンジルスルホニル(4.76g,26.96mmol,3.45mL)を滴下し、反応を30℃で5時間攪拌した。反応液にジクロロメタン(100mL)を加え、2Mの希塩酸(30mL×2)で洗浄し、ジクロロメタン層を無水硫酸ナトリウムで乾燥し、減圧して溶剤を除去した。粗生成物をシリカゲルカラムクロマトグラフィーによりWX185−2を得た。H NMR(400MHz,DMSO−d)δ=8.06(td,J=2.2,4.4Hz,2H),7.79(d,J=7.5Hz,1H),7.72−7.65(m,2H),7.19(d,J=2.0Hz,1H),3.69(s,3H)。
ステップ2:化合物WX185−3の合成
WX185−3(9g,26.15mmol)をDMF(60mL)に溶解し、テトラトリフェニルホスフィンパラジウム(1.51g,1.31mmol)、トリ−tert−ブチルビニルスズ(10.78g,33.99mmol,9.89mL)を加え、窒素で3回置換し、反応を100℃で24時間攪拌した。反応液にフッ化セシウム溶液(8g 50mLの水に溶解した)を加え、6時間攪拌し、その後酢酸エチル(100mL)を加え、水で洗浄し(50mL×2)、酢酸エチル層をろ過(EA層に固体有機物が存在する)し、ろ液を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX185−3を得た。H NMR(400MHz,DMSO−d)δ=8.03−7.98(m,2H),7.94(d,J=1.9Hz,1H),7.76(d,J=7.5Hz,1H),7.68(d,J=8.2Hz,2H),7.37(d,J=1.9Hz,1H),6.66−6.56(m,1H),5.72(dd,J=1.0,17.7Hz,1H),5.21(dd,J=1.1,11.0Hz,1H),3.68(s,3H)。
ステップ3:化合物WX185−4の合成
WX185−3(5.7g,19.57mmol)をメタノール(60mL)に溶解し、ナトリウムメトキシド(1.37g,25.44mmol)を加え、反応を50℃で12時間攪拌した。反応液を減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーによりWX185−4を得た。H NMR(400MHz,DMSO−d)δ=11.88(br s,1H),7.11(dd,J=1.6,2.9Hz,1H),6.94(s,1H),6.53(dd,J=10.9,17.7Hz,1H),5.46(dd,J=1.5,17.7Hz,1H),4.94(dd,J=1.6,10.9Hz,1H),3.75(s,3H)。
ステップ4:化合物WX185−5の合成
0℃で、カリウムtert−ブトキシドのテトラヒドロフラン溶液(1M,29.60mL,2.5eq)にWX185−4(1.79g,11.84mmol)のテトラヒドロフラン(30mL)溶液を滴下し、反応系を30℃で30分間攪拌し、その後反応系の温度を0℃に冷却し、BB−1−2(7.12g,23.68mmol,2eq)のテトラヒドロフラン(30mL)溶液を加え、その後反応を30℃に昇温させ、3時間攪拌した。減圧して溶剤を除去した。粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX185−5を得た。H NMR(400MHz,DMSO−d)δ=8.51(d,J=2.0Hz,1H),8.16(dd,J=1.9,8.7Hz,1H),7.90−7.80(m,2H),7.55(d,J=1.6Hz,1H),6.65(dd,J=11.0,17.7Hz,1H),5.79(br d,J=17.6Hz,1H),5.26(d,J=10.9Hz,1H),3.65(s,3H)。
ステップ5:化合物WX185−6の合成
WX185−5(0.8g,1.93mmol)を酢酸(10mL)に溶解し、鉄粉(430.39mg,7.71mmol)を加え、反応を65℃で2時間攪拌した。反応液をろ過し、ろ液を減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーにより、WX185−6を得た。H NMR(400MHz,DMSO−d)δ=8.09(d,J=1.9Hz,1H),7.62(d,J=8.8Hz,1H),7.36(d,J=1.8Hz,1H),7.08(d,J=1.9Hz,1H),6.89−6.82(m,1H),6.60−6.48(m,1H),6.42(s,2H),5.70(dd,J=1.0,17.7Hz,1H),5.23−5.11(m,1H),3.70(s,3H),1.99(s,1H)。
ステップ6:化合物WX185−7の合成
WX185−6(1.8g,4.67mmol)をDMSO(10mL)に溶解し、カリウムtert−ブトキシド(786.47mg,7.01mmol)を加え、反応を80℃に昇温させ、2時間攪拌した。反応液に酢酸エチル(50mL)を加え、1Mの希塩酸(30mL×2)で洗浄し、水(30mL)で洗浄し、有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX185−7を得た。H NMR(400MHz,DMSO−d)δ=11.20(s,1H),7.92(d,J=8.4Hz,1H),7.69(dd,J=1.7,9.6Hz,2H),7.64(dd,J=1.5,8.6Hz,1H),7.42(d,J=1.8Hz,1H),6.58(dd,J=11.0,17.6Hz,1H),5.79−5.72(m,1H),5.21(d,J=11.2Hz,1H)。
ステップ7:化合物WX185−8の合成
WX185−7(80mg,226.51μmol)、WX173−1(37.78mg,249.16μmol)をDMF(5mL)に溶解し、トリエチルアミン(45.84mg,453.01μmol,63.05μL)、Pd(dppf)Cl(16.57mg,22.65μmol)を加え、反応を一酸化炭素ガスを通過させ、反応を80℃に維持し、50psiで16時間反応させた。減圧して溶剤を除去し、粗生成物をカラムクロマトグラフィーにより精製して、WX185−8を得た。
ステップ8:化合物WX185の合成
WX185−8(40mg,96.28μmol)をメタノール(10mL)に溶解し、Pd/C(40mg,377.36μmol)を加え、水素ガスを通過させ、30℃を維持し、15psiで12時間攪拌した。減圧して溶剤を除去した。粗生成物をHPLCにより精製して、WX185を得た。H NMR(400MHz,DMSO−d)δ=11.17(br s,1H),8.83(br s,1H),8.06(d,J=8.2Hz,1H),7.88(s,1H),7.80(br d,J=8.4Hz,1H),7.38(s,1H),7.06(s,1H),3.83−3.69(m,2H),3.58(br d,J=6.4Hz,1H),2.46−2.40(m,4H),1.96(br d,J=7.3Hz,1H),1.80(br dd,J=7.1,14.1Hz,2H),1.73−1.64(m,2H),1.47−1.36(m,1H),1.12(t,J=7.5Hz,3H)。
実施例21:WX186
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX186−2の合成
化合物WX186−2の合成は、実施例20におけるステップ4の化合物WX185−5の合成を参照した。H NMR(400MHz,DMSO−d)δ=8.53(d,J=2.0Hz,1H),8.18(dd,J=1.9,8.7Hz,1H),7.88−7.80(m,1H),7.53(d,J=1.6Hz,1H),6.62(dd,J=11.0,17.7Hz,1H),3.89(s,3H),2.04(s,3H)。
ステップ2:化合物WX186−3の合成
化合物WX186−3の合成は、実施例20におけるステップ5の化合物WX185−6の合成を参照した。
ステップ3:化合物WX186−4の合成
化合物WX186−4の合成は、実施例20におけるステップ6の化合物WX185−7の合成を参照した。
ステップ4:化合物WX186の合成
化合物WX186の合成は、実施例2におけるステップ4のWX145の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.36(s,1H),8.80(br t,J=5.2Hz,1H),8.07(d,J=8.2Hz,1H),7.87(s,1H),7.80(d,J=9.0Hz,1H),7.72−7.69(m,1H),7.13(d,J=1.8Hz,1H),3.81−3.70(m,2H),3.61−3.53(m,1H),3.30−3.23(m,2H),2.04(s,3H),2.00−1.90(m,1H),1.86−1.74(m,2H),1.69(m,2H),1.48−1.33(m,1H)。
実施例22:WX184
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX184の合成
予め乾燥した親指瓶にBB−2(38.7mg,342.15μmol)、EDCI(98.4mg,513.23μmol)、DIPEA(88.4mg,684.31μmol)及びDMF(1mL)を加え、最後に0℃でそれにWX184−1(100mg,342.15μmol)を加え、反応液を窒素保護し、25℃で12時間攪拌して反応させた。反応液をろ過して、生成物の粗生成物を得た。粗生成物をHPLCにより分離し、精製してWX184を得た。H NMR(400MHz,CHLOROFORM−d)δ 8.94(br s,1H),8.09(d,J=8.16Hz,1H),7.79(br s,1H),7.63(br d,J=7.72Hz,1H),7.45(br s,1H),6.43(t,J=3.20Hz,1H),6.20(br s,1H),3.54−3.49(m,2H),1.87−1.74(m,3H),1.49−1.67(m,5H),1.25(s,1H),1.14(br s,2H)。
実施例23:WX187
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX187の合成
乾燥した一口瓶にBB−2(0.1g,342.15μmol)及びDMF(1mL)を加え、その後HOBt(69.3mg,513.22μmol)、EDCI(98.4mg,513.22μmol)、DIPEA(88.4mg,684.30μmol)及びWX187−1(43.5mg,342.15μmol)を加え、窒素で3回置換し、反応を20℃に置き、12時間攪拌した。反応液を有機相ニードルフィルターでろ過して、粗生成物を得た。粗生成物をHPLCにより分離して、WX187を得た。H NMR(400MHz,DMSO−d6)δ=11.21(s,1H),8.82(t,J=5.6Hz,1H),8.11(d,J=8.2Hz,1H),7.88(s,1H),7.80(d,J=8.2Hz,1H),7.61(dd,J=1.7,3.0Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.35−3.30(m,2H),2.37−2.24(m,2H),1.78−1.70(m,2H)。
実施例24:WX189
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX189の合成
乾燥した一口瓶にBB−2(0.1g,342.15μmol)及びDMF(1mL)を加え、その後HOBt(69.3mg,513.22μmol,)、EDCI(98.4mg,513.22μmol)、DIPEA(88.4mg,684.30μmol,119.19μL,2eq)及びWX189−1(42.8mg,342.15μmol)を加え、窒素で3回置換し、反応を20℃に置き、12時間攪拌した。反応液を有機相ニードルフィルターでろ過して、粗生成物を得た。粗生成物をHPLCにより分離して、WX189を得た。H NMR(400MHz,DMSO−d6)δ=11.21(s,1H),9.33(br t,J=6.0Hz,1H),8.12(d,J=8.2Hz,1H),7.92(s,1H),7.84(d,J=8.2Hz,1H),7.61(dd,J=1.8,3.1Hz,1H),7.35(dd,J=5.6,8.5Hz,2H),7.21−7.10(m,3H),6.54(t,J=3.3Hz,1H),4.46(d,J=5.7Hz,2H)。
実施例25:WX190
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX190−2の合成
乾燥した一口瓶にBB−2(0.2g,684.31μmol)及びDMF(1mL)を加え、その後HOBt(138.7mg,1.03mmol)、EDCI(196.8mg,1.03mmol)、DIPEA(176.9mg,1.37mmol)及びWX190−1(71.99mg,684.31μmol)を加え、窒素で3回置換し、反応を20℃に置き、12時間攪拌した。減圧濃縮して、粗生成物を得た。粗生成物をカラムクロマトグラフィーにより精製して、WX190−2を得た。H NMR(400MHz,DMSO−d6)δ=11.19(br s,1H),8.77(t,J=5.3Hz,1H),8.10(d,J=8.2Hz,1H),7.88(s,1H),7.79(d,J=8.4Hz,1H),7.61(d,J=1.5Hz,1H),7.18−7.13(m,1H),6.54(q,J=3.4Hz,1H),3.38−3.32(m,2H),2.52(br s,2H),2.04(s,3H),1.78(q,J=7.0Hz,2H)。
ステップ2:化合物WX190の合成
乾燥した一口瓶にWX190−2(0.2g,527.07μmol)、飽和炭酸水素ナトリウム溶液(4.32g,51.42mmol,2mL)及びEtOAc(3mL)を加え、その後M−クロロペルオキシ安息香酸(374.52mg,1.84mmol,85%の純度)を加え、窒素で3回置換し、反応を20℃に置き、2時間攪拌した。反応液を有機相ニードルフィルターでろ過して、粗生成物を得た。粗生成物をHPLCにより精製して、WX190を得た。H NMR(400MHz,DMSO−d6)δ=11.22(s,1H),8.85(t,J=5.5Hz,1H),8.12(d,J=8.4Hz,1H),7.89(s,1H),7.81(d,J=8.2Hz,1H),7.61(br s,1H),7.15(dd,J=1.5,3.5Hz,1H),6.54(t,J=3.3Hz,1H),3.39(q,J=6.6Hz,2H),3.22−3.10(m,2H),2.97(s,3H),1.94(q,J=7.3Hz,2H)。
実施例26:WX195
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX195の合成
化合物WX195の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.22(br s,1H),9.30(br d,J=6.9Hz,1H),8.14(d,J=8.3Hz,1H),7.93−7.80(m,2H),7.61(d,J=1.6Hz,1H),7.15(d,J=1.9Hz,1H),6.59−6.49(m,1H),4.64(d,J=6.4Hz,1H),4.12(br s,2H),3.84(br s,2H),1.44−1.34(m,9H)。
実施例27:WX196
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX196の合成
化合物WX196の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.34−11.10(m,1H),8.89(t,J=5.5Hz,1H),8.12(d,J=8.3Hz,1H),7.88(d,J=1.4Hz,1H),7.78(dd,J=1.5,8.3Hz,1H),7.61(dd,J=1.7,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.87(br s,3H),3.58(br s,2H),3.45(br t,J=6.3Hz,2H),1.34(s,9H)。
実施例28:WX197
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX197の合成
化合物WX197の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.22(s,1H),8.76(br s,1H),8.10(d,J=8.3Hz,1H),7.87(s,1H),7.80(s,1H),7.61(br s,1H),7.15(d,J=1.9Hz,1H),6.54(t,J=3.2Hz,1H),4.00−3.80(m,2H),3.30(br d,J=5.6Hz,2H),2.65(m,2H),1.71−1.60(m,2H),1.48−1.43(m,3H),1.38(s,9H),1.05−0.90(m,2H)。
実施例29:WX198
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX198の合成
化合物WX198の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ 11.07−11.36(m,1H),8.81(br t,J=5.77Hz,1H),8.12(br d,J=5.40Hz,1H),7.89(s,1H),7.80(br s,1H),7.62(dd,J=1.76,3.01Hz,1H),7.16(dd,J=1.69,3.58Hz,1H),6.55(t,J=3.39Hz,1H),3.93(m,2H),3.25(br s,3H),1.82(br s,4H),1.40(s,9H)。
実施例30:WX200
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX200の合成
化合物WX200の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ 11.16(s,1H),8.75(br t,J=5.62Hz,1H),8.07(d,J=8.16Hz,1H),7.85(s,1H),7.77(d,J=8.16Hz,1H),7.58(dd,J=1.65,2.98Hz,1H),7.12(dd,J=1.54,3.53Hz,1H),6.51(t,J=3.31Hz,1H),3.89(br d,J=12.35Hz,2H),3.13(br t,J=5.95Hz,2H),2.64(br s,2H),1.56−1.75(m,3H),1.35(s,9H),0.99(dq,J=3.86,12.09Hz,2H)。
実施例31:WX201
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX201−1の合成
予め乾燥した50ミリリットル一口瓶にWX195(400mg,895.90μmol)及び塩化水素の酢酸エチル溶液(15mL)を加え、25℃で2時間攪拌して反応させた。反応液を減圧濃縮して溶剤を除去して、WX201−1を得、直接に次のステップの反応に使用した。
ステップ2:化合物WX201の合成
予め乾燥した50ミリリットルの三口フラスコにWX201−1(200mg,577.43μmol)、DIPEA(149.26mg,1.15mmol,201.16μL)及びジクロロメタン(5mL)を加え、反応液を窒素保護し、0℃に冷却してWX201−2(54.57mg,577.43μmol,44.73μL)にゆっくり滴下し、25℃で3時間攪拌反応させた。反応液に水(10mL)を加えてクエンチし、ジクロロメタン(10mL×3)で抽出し、有機相を無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、生成物を得た。生成物の粗生成物をHPLCにより分離し、精製して、WX201を得た。H NMR(400MHz,DMSO−d)δ=11.24(s,1H),9.35(br d,J=7.2Hz,1H),8.14(br d,J=8.3Hz,1H),7.92−7.88(m,1H),7.88−7.80(m,1H),7.65−7.59(m,1H),7.18−7.12(m,1H),6.54(t,J=3.3Hz,1H),4.81−4.63(m,1H),4.20(br s,2H),3.92(d,J=5.3Hz,1H),3.57(s,3H),1.98−1.74(m,1H)。
実施例32:WX206
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX206の合成
化合物WX206の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.24(s,1H),8.99(br t,J=5.5Hz,1H),8.24(s,1H),8.10(d,J=8.4Hz,1H),7.87(s,1H),7.78(d,J=8.2Hz,1H),7.63−7.56(m,1H),7.14(dd,J=1.5,3.5Hz,1H),6.95(s,1H),6.53(t,J=3.3Hz,1H),3.52(q,J=6.5Hz,2H),2.98−2.90(m,2H)。
実施例33:WX208
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX208の合成
化合物WX208の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.25(s,1H),8.83(s,1H),8.11(d,J=8.3Hz,1H),7.84(d,J=1.4Hz,1H),7.73(dd,J=1.4,8.3Hz,1H),7.61(dd,J=1.7,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.41(br s,1H),3.38−3.31(m,3H),2.56(m,2H),2.16(t,J=8.1Hz,2H),1.95−1.82(m,2H)。
実施例34:WX289及び290
Figure 2020508342
合成経路:























Figure 2020508342
ステップ1:化合物WX289和WX290の合成
化合物WX289和WX290の合成は、実施例24におけるステップ1のWX189の合成を参照した。
化合物WX289:H NMR(400MHz,DMSO−d)δ=11.19(br s,1H),8.70(br t,J=5.51Hz,1H),8.09(d,J=8.16Hz,1H),7.85(s,1H),7.77(d,J=8.38Hz,1H),7.60(d,J=1.76Hz,1H),7.14(dd,J=1.43,3.42Hz,1H),6.53(t,J=3.31Hz,1H),3.85(br d,J=10.14Hz,1H),3.22−3.29(m,4H),1.74(br s,1H),1.61(q,J=6.98Hz,3H),1.43(br s,3H),1.13−1.23(m,1H);
化合物WX289: H NMR(400MHz,DMSO−d)δ 11.17(s,1H),8.68(br t,J=5.18Hz,1H),8.07(d,J=8.38Hz,1H),7.83(s,1H),7.75(d,J=8.38Hz,1H),7.58(dd,J=1.76,2.87Hz,1H),7.12(dd,J=1.54,3.53Hz,1H),6.51(t,J=3.31Hz,1H),3.83(br d,J=10.36Hz,1H),3.30−3.37(m,1H),3.19−3.28(m,3H),1.71(br s,1H),1.49−1.62(m,3H),1.40(br s,3H),1.13−1.22(m,1H)。
キラル分離条件:キラルカラム:AD(250mm×30mm,5μm);移動相:[Neu−MeOH];B%:45%−45%,20min)。
化合物WX290対応保持時間:11.13分(ピーク2)。化合物WX289対応保持時間:8.88分(ピーク1)。
実施例35:WX211
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX211−3の合成
予め乾燥した100mlの一口瓶にWX211−2(3.13g,13.99mmol)、KOH(660.76mg,11.78mmol)及びEtOH(10mL)を加え、またそれにWX211−1(1g,10.52mmol,1eq)を加え、窒素雰囲気下で、80℃で5時間攪拌して還流した。反応液を直接に減圧スピンドライして、粗生成物を得た。粗生成物をカラムクロマトグラフィーにより、化合物WX211−3を得た。
ステップ2:化合物WX211−4の合成
予め乾燥した一口瓶にWX211−3(200mg,839.34μmol)及びEtOAc(2mL)を加え、窒素雰囲気下で、塩化水素の酢酸エチル溶液(4M,3mL)を加え、当該反応液を25℃で0.5時間攪拌した。反応液を直接にスピンドライして、粗生成物直接に次のステップの反応に使用した。
ステップ3:化合物WX211の合成
化合物WX211の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.23(s,1H),8.88(br t,J=5.63Hz,1H),8.09(d,J=8.25Hz,1H),7.82(s,1H),7.71(dd,J=1.50,8.34Hz,1H),7.59(dd,J=1.67,3.03Hz,1H),7.49(dd,J=2.03,6.73Hz,1H),7.36(ddd,J=2.02,6.74,8.98Hz,1H),7.13(dd,J=1.70,3.57Hz,1H),6.52(t,J=3.31Hz,1H),6.35(d,J=9.04Hz,1H),6.12(t,J=6.17Hz,1H),4.03(br t,J=5.73Hz,2H),3.56(q,J=5.73Hz,2H)。
実施例36:WX215
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX215の合成
化合物WX215の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.21(s,1H),8.70(t,J=5.5Hz,1H),8.10(d,J=8.3Hz,1H),7.86(s,1H),7.78(dd,J=1.4,8.3Hz,1H),7.61(dd,J=1.7,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.31−3.24(m,2H),1.75−1.56(m,6H),1.41(q,J=7.0Hz,2H),1.23−1.12(m,3H),0.94−0.85(m,2H)。
実施例37:WX216
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX216の合成
化合物WX216の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.23(s,1H),8.84(br t,J=5.4Hz,1H),8.10(d,J=8.3Hz,1H),7.89−7.82(m,1H),7.75(dd,J=1.4,8.3Hz,1H),7.61(dd,J=1.8,3.0Hz,1H),7.26(dd,J=5.7,8.3Hz,2H),7.18−7.06(m,3H),6.54(t,J=3.4Hz,1H),3.52−3.44(m,2H),2.83(br t,J=7.2Hz,2H)。
実施例38:WX217
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX217の合成
化合物WX217の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.23(s,1H),8.83(t,J=5.5Hz,1H),8.11(d,J=8.3Hz,1H),7.86(d,J=1.4Hz,1H),7.76(dd,J=1.5,8.3Hz,1H),7.61(dd,J=1.8,3.0Hz,1H),7.17−7.11(m,3H),6.85(d,J=8.7Hz,2H),6.54(t,J=3.4Hz,1H),3.71(s,3H),3.48−3.40(m,2H),2.76(br t,J=7.3Hz,2H)。
実施例39:WX218
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX218の合成
化合物WX218の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.24(s,1H),8.87(br t,J=5.4Hz,1H),8.11(d,J=8.3Hz,1H),7.86(d,J=1.4Hz,1H),7.76(dd,J=1.5,8.3Hz,1H),7.61(dd,J=1.8,3.1Hz,1H),7.33−7.19(m,5H),7.15(dd,J=1.8,3.6Hz,1H),6.54(t,J=3.4Hz,1H),3.55−3.45(m,2H),2.84(t,J=7.3Hz,2H)。
実施例40:WX219
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX219の合成
化合物WX219の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.23(s,1H),8.90(br t,J=5.5Hz,1H),8.12(d,J=8.3Hz,1H),7.88(d,J=1.3Hz,1H),7.79(dd,J=1.5,8.3Hz,1H),7.61(dd,J=1.7,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.46(q,J=6.4Hz,2H),2.65(t,J=7.0Hz,2H),2.09(s,3H)。
実施例41:WX220
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX220の合成
化合物WX220の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.26(s,1H),9.65(br t,J=5.8Hz,1H),8.88(s,1H),8.80(d,J=5.1Hz,1H),8.46(br d,J=8.0Hz,1H),8.14(d,J=8.3Hz,1H),8.00−7.89(m,3H),7.62(dd,J=1.8,3.0Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),4.66(d,J=5.6Hz,2H)。
実施例42:WX223
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX223−2の合成
乾燥した100mLの三口フラスコにEtOH(50mL)を加え、窒素で3回置換し、反応系を氷メタノールバスで−10℃に冷却し、その後SOCl(50mL)を加え−10℃で30分間攪拌し、WX223−1(10g,112.24mmol)のEtOH(50mL)溶液を前記反応系に滴下した。滴下終了後、反応を80℃に置き、2時間還流した。反応系を室温に冷却し、100mlメチルtert−ブチルエーテルを加え、20分間攪拌し、減圧して浸出し、フィルターケーキを収集して減圧乾燥し、化合物WX223−2を得た。H NMR(400MHz,DMSO−d6)δ=7.95(br s,2H),4.10(q,J=7.3Hz,2H),3.07−2.93(m,2H),2.74−2.61(m,2H),1.20(t,J=7.2Hz,3H)。
ステップ2:化合物WX223−3の合成
乾燥した一口瓶にWX223−2(16g,104.16mmol)を加え、MeCN(200mL)に溶解させ、その後KCO(35.99g,260.40mmol)及びBnBr(35.63g,208.32mmol,24.74mL)を加え、窒素で3回置換し、反応を40℃に置き、16時間攪拌した。反応に200mLの水クエンチを加え、酢酸エチル(400mL×3)で抽出し、有機相を併せて、飽和食塩水(200mL×3)で洗浄し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮して、粗生成物を得た。粗生成物カラムクロマトグラフィーにより精製して、WX223−3を得た。H NMR(400MHz,CHLOROFORM−d)δ=7.27(s,7H),7.25−7.18(m,2H),4.07(q,J=7.2Hz,2H),3.57(s,4H),3.62−3.53(m,1H),3.62−3.53(m,1H),2.80(t,J=7.2Hz,2H),2.48(t,J=7.2Hz,2H),1.19(t,J=7.2Hz,3H)。
ステップ3:化合物WX223−4の合成
乾燥した三口フラスコにWX223−3(5.5g,18.49mmol)及びEtO(50mL)を加え、その後テトライソプロポキシチタン(525.63mg,1.85mmol,545.83μL)を加え、反応系を0℃に冷却し、最後に反応系にブロモエチルグリニャール試薬(3M,18.49mL)を滴下し、反応系の温度を0〜4℃も維持し、滴下終了後、反応を20℃に置き、12時間攪拌した。50mLの飽和塩化アンモニウム溶液を加え、15分間攪拌し、飽和炭酸水素ナトリウム溶液を加えてpH=9に調節し、酢酸エチル(100mL×3)で抽出し、有機相を併せて、飽和食塩水(50mL×2)で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮して、粗生成物を得た。粗生成物をカラムクロマトグラフィーにより分離して、WX223−4を得た。H NMR(400MHz,CHLOROFORM−d)δ=7.31−7.27(m,5H),7.26−7.19(m,5H),3.56(s,4H),2.74−2.70(m,2H),2.07−1.93(m,1H),1.72−1.67(m,2H),0.49−0.45(m,2H),0.16−0.12(m,2H)。
ステップ4:化合物WX223−5の合成
予め乾燥した三つ口フラスコにWX223−4(1.3g,4.62mmol)を加え、THF(5mL)に加え、窒素ガスで3回換気し、その後当該反応器をアイスバスに置き、0℃に冷却した。その後、窒素保護下で、NaH(369.59mg,9.24mmol,60%)を加え、反応系温度を0〜5℃に制御し、添加終了後、0℃を維持して30分攪拌し、その後反応系にヨウ化メチル(721.32mg,5.08mmol,316.37μL)をゆっくり滴下し、滴下終了後、20℃で3時間攪拌し続けた。反応系を0℃に冷却し、30mLの水をゆっくり加え、当該反応をクエンチし、水相を酢酸エチル50mL×3で抽出し、有機相を併せて、飽和食塩水(50mL×2)で洗浄し、有機相を無水硫酸ナトリウムで乾燥し、ろ過を減圧濃縮して、粗生成物を得た。粗生成物をカラムクロマトグラフィーにより、WX223−5を得た。H NMR(400MHz,CHLOROFORM−d)δ=7.42−7.36(m,4H),7.32(t,J=7.4Hz,4H),7.26−7.21(m,2H),3.61(s,4H),3.13(s,3H),2.71−2.62(m,2H),1.81−1.72(m,2H),0.71−0.65(m,2H),0.36−0.30(m,2H)。
ステップ5:化合物WX223−6の合成
予め乾燥した水素化瓶に原料WX223−5(300mg,1.02mmol)を加え、その後溶剤EtOH(5mL)、水(0.5mL)、Pd(OH)2(28.52mg,101.55μmol,50%の純度)を加え、Hを置換し、当該混合物を20℃、40psiで12時間反応させた。珪藻土でろ過し、ろ液を減圧濃縮して、粗生成物を得た。粗生成物直接に次のステップの反応に使用した。
ステップ6:化合物WX223の合成
化合物WX223の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.24(s,1H),8.78(t,J=5.3Hz,1H),8.11(d,J=8.3Hz,1H),7.86(d,J=1.3Hz,1H),7.78(dd,J=1.4,8.3Hz,1H),7.61(dd,J=1.7,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.41−3.36(m,2H),3.18(s,3H),1.81−1.76(m,2H),0.69−0.64(m,2H),0.44−0.39(m,2H)。
実施例43:WX225
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX225の合成
化合物WX225の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.23(br s,1H),8.75(br s,1H),8.10(d,J=8.3Hz,1H),7.86(s,1H),7.78(br d,J=8.3Hz,1H),7.61(dd,J=1.7,2.9Hz,1H),7.15(dd,J=1.6,3.5Hz,1H),6.54(t,J=3.4Hz,1H),3.29(br d,J=6.3Hz,2H),1.98(br d,J=7.3Hz,2H),1.82−1.65(m,4H),1.47(br d,J=6.1Hz,3H),1.15(br d,J=10.5Hz,2H)。



実施例44:WX226
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX226の合成
化合物WX226の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.25(s,1H),8.84(br t,J=5.4Hz,1H),8.12(d,J=8.3Hz,1H),7.87(d,J=1.4Hz,1H),7.79(dd,J=1.5,8.3Hz,1H),7.62(dd,J=1.8,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.44(q,J=6.3Hz,2H),3.27(t,J=6.7Hz,2H),3.15(t,J=7.6Hz,2H),3.09(t,J=6.3Hz,2H),2.26−2.15(m,2H)。
実施例45:WX227
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX227の合成
化合物WX227の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.24(s,1H),9.41(br s,1H),8.13(br d,J=8.3Hz,1H),7.92(s,1H),7.85(br d,J=8.2Hz,1H),7.62(br s,1H),7.52−7.43(m,1H),7.40−7.21(m,3H),7.15(br s,1H),6.54(br s,1H),4.53(br d,J=6.0Hz,2H)。
実施例46:WX228
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX228の合成
化合物WX228の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.29(s,1H),9.77(br t,J=5.7Hz,1H),8.84(d,J=6.7Hz,2H),8.17(d,J=8.2Hz,1H),7.98−7.91(m,4H),7.63(dd,J=1.7,3.1Hz,1H),7.16(dd,J=1.7,3.6Hz,1H),6.55(t,J=3.4Hz,1H),4.75(br d,J=5.5Hz,2H)。
実施例47:WX229
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX229の合成
化合物WX229の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.25(s,1H),9.03(br t,J=5.5Hz,1H),8.79(br d,J=4.8Hz,1H),8.42(br t,J=7.8Hz,1H),8.09(d,J=8.3Hz,1H),7.91−7.84(m,2H),7.81(d,J=1.4Hz,1H),7.75(dd,J=1.4,8.3Hz,1H),7.61(dd,J=1.7,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.4Hz,1H),3.72(q,J=6.1Hz,2H),3.28(br t,J=6.3Hz,2H)。
実施例48:WX230
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX230の合成
化合物WX230の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.26(br s,1H),9.01(br t,J=5.5Hz,1H),8.14(d,J=8.3Hz,1H),7.88(d,J=1.3Hz,1H),7.78(dd,J=1.4,8.3Hz,1H),7.62(dd,J=1.7,3.1Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.56−3.45(m,2H),2.60−2.53(m,2H)。
実施例49:WX231
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX231の合成
化合物WX231の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.22(s,1H),9.46(br t,J=5.5Hz,1H),9.10(s,1H),8.79(s,2H),8.12(d,J=8.2Hz,1H),7.92(s,1H),7.85(d,J=8.4Hz,1H),7.61(dd,J=1.8,2.9Hz,1H),7.15(dd,J=1.5,3.5Hz,1H),6.54(t,J=3.3Hz,1H),4.52(d,J=5.5Hz,2H)。
実施例50:WX232
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX232の合成
予め乾燥した親指瓶にWX201−1(120mg,346.46μmol)、トリエチルアミン(70.12mg,692.92μmol,96.45μL)及びジクロロメタン(3mL)を加え、反応液を窒素保護し、最後にそれに塩化メタンスルホニル(39.69mg,346.46μmol,26.82μL)を加え、反応液を25℃で5時間攪拌して反応させた。反応液に水(5mL)を加えてクエンチし、ジクロロメタン(10mL×3)で抽出し、有機相を無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、粗生成物を得た。粗生成物をHPLCにより分離して、WX232を得た。H NMR(400MHz,DMSO−d)δ=11.26(s,1H),9.36(br d,J=6.8Hz,1H),8.15(d,J=8.3Hz,1H),7.91−7.81(m,2H),7.63(dd,J=1.6,3.0Hz,1H),7.16(dd,J=1.6,3.5Hz,1H),6.55(t,J=3.4Hz,1H),4.69(sxt,J=7.0Hz,1H),4.13(t,J=8.2Hz,2H),4.01−3.84(m,2H),3.04(s,3H)。
実施例51:WX233
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX233の合成
化合物WX233の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.28(s,1H),9.67(br t,J=5.4Hz,1H),8.13(d,J=8.3Hz,1H),7.93(s,1H),7.85(dd,J=1.4,8.3Hz,1H),7.62(dd,J=1.7,3.1Hz,1H),7.42(s,1H),7.16(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),4.46(br d,J=5.4Hz,2H),3.17(s,6H)。
実施例52:WX235
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX235の合成
化合物WX235の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.25(s,1H),9.52−9.37(m,1H),8.14(br d,J=8.2Hz,1H),7.93(s,1H),7.87(br d,J=8.4Hz,1H),7.70(br d,J=7.9Hz,2H),7.62(br s,1H),7.53(br d,J=7.9Hz,2H),7.15(br s,1H),6.54(br s,1H),4.56(br d,J=5.4Hz,2H)。
実施例53:WX237
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX237の合成
化合物WX237の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.23(s,1H),8.90−8.79(m,1H),8.10(d,J=8.2Hz,1H),7.85(s,1H),7.79−7.71(m,1H),7.62−7.57(m,1H),7.37−7.26(m,1H),7.18−7.11(m,1H),7.11−7.05(m,2H),7.01(br t,J=8.6Hz,1H),6.58−6.51(m,1H),3.57−3.46(m,2H),2.87(s,2H)。
実施例54:WX239
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX239の合成
化合物WX239の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.24(s,1H),9.39(br t,J=5.6Hz,1H),8.13(d,J=8.3Hz,1H),7.93(d,J=1.1Hz,1H),7.86(dd,J=1.3,8.3Hz,1H),7.62(dd,J=1.7,2.9Hz,1H),7.45−7.30(m,1H),7.22−6.99(m,4H),6.54(t,J=3.3Hz,1H),4.49(br d,J=5.8Hz,2H)。
実施例55:WX271
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX271−2の合成
WX271−1(1g,5.71mmol)をDCM(20mL)に溶解し、EEDQ(1.41g,5.71mmol)を加え、30分間攪拌し、その後アセチルヒドラジン(520.15mg,7.02mmol)を加え、反応を30℃で12時間攪拌した。反応液をろ過して、化合物WX271−2を得た。H NMR(400MHz,CHLOROFORM−d)δ=8.82(br s,1H),8.27−8.18(m,1H),5.23(br s,1H),3.91(br d,J=6.0Hz,2H),2.07(s,3H),1.47(s,9H)。
ステップ2:化合物WX271−3の合成
WX271−2(300mg,1.30mmol)をTHF(25mL)に溶解し、LAWESSON’S試薬(629.66mg,1.56mmol)を加え、反応を70℃で3時間反応させ、その後30℃に冷却し、12時間反応させた。減圧濃縮し、粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX271−3を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.73−4.59(m,2H),3.90−3.83(m,1H),2.74(br s,3H),1.45(s,9H)。
ステップ3:化合物WX271−4の合成
WX271−3(0.25g,1.09mmol)をHCl/EtOAc(10mL)に溶解し、反応を15℃で12時間攪拌した。反応液をろ過し、フィルターケーキを収集して、WX271−4を得た。H NMR(400MHz,DMSO−d)δ=8.89(br s,3H),4.49(br d,J=5.5Hz,2H),2.74(s,3H)。
ステップ4:化合物WX271の合成
化合物WX271の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.27(s,1H),9.77(s,1H),8.14(d,J=8.3Hz,1H),7.93(d,J=1.3Hz,1H),7.87−7.79(m,1H),7.62(dd,J=1.8,3.0Hz,1H),7.16(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.4Hz,1H),4.81(d,J=5.8Hz,2H),2.67(s,3H)。
実施例56:WX272
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX272の合成
化合物WX272の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.22(s,1H),9.14(br s,1H),8.09(d,J=8.3Hz,1H),7.89(d,J=1.4Hz,1H),7.80(dd,J=1.3,8.3Hz,1H),7.64−7.58(m,2H),7.36(s,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),4.29(d,J=5.5Hz,2H),3.78(s,3H)。
実施例57:WX275
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX275−2の合成
乾燥した一口瓶にWX275−1(7.9g,54.44mmol)及びDMF(80mL)を加え、その後CsCO(35.48g,108.88mmol)、CHI(9.27g,65.33mmol,4.07mL)を加え、窒素で3回置換し、反応を21℃に置き、3時間攪拌した。反応系に100mLの酢酸エチルを加え、反応系から大量の固体を析出し、珪藻土を通してろ過し、フィルターケーキを100mLの酢酸エチルで洗浄し、ろ液を収集し、減圧濃縮してWX275−2を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.88(dd,J=5.5,9.7Hz,1H),3.84−3.76(m,4H),3.61(dd,J=5.5,9.0Hz,1H),2.86(s,3H)。
ステップ2:化合物WX275−3の合成
予め乾燥した三口フラスコにWX275−2(9g,56.55mmol)及びMeOH(60mL)、DCM(30mL)を加え、窒素ガスで3回換気した後、当該反応を0℃に冷却した。その後窒素保護下で、NaBH(2.78g,73.52mmol,1.3eq)をバッチで加え、反応系の温度を0〜5℃に制御した。30分後、添加終了後、混合物を0℃で0.5時間攪拌し続けた。50mLの飽和塩化アンモニウムを加えクエンチ反応させ、反応液を減圧濃縮して、粗生成物を得た。100mLのジクロロメタンを加え、10分間攪拌し、不溶物をろ過し、ろ液を減圧濃縮して、WX275−3を得た。H NMR(400MHz,DMSO−d6)δ=4.43(br s,1H),3.49(br dd,J=7.5,17.4Hz,2H),3.39−3.22(m,2H),2.95(br s,1H),2.72(br s,3H)。
ステップ3:化合物WX275−4の合成
乾燥した三口フラスコにWX275−3(0.5g,3.81mmol)及びDCM(5mL)を加え、窒素ガスで3回換気し、反応系を0℃に冷却し、その後TEA(463.01mg,4.58mmol,636.87μL)及びTosCl(872.33mg,4.58mmol)を加え、反応温度を0〜5℃に維持し、滴下終了後、反応を0℃で1時間攪拌した。10mLの水を加えてクエンチ反応させ、酢酸エチルで抽出(10mL×3)した。有機相を併せて、飽和食塩水で洗浄し(10mL×2),無水硫酸ナトリウムで乾燥し、減圧濃縮して、残余物を得た。粗生成物をカラムクロマトグラフィーによりWX275−4を得た。H NMR(400MHz,CHLOROFORM−d)δ=7.79(d,J=8.2Hz,2H),7.38(d,J=8.2Hz,2H),4.66(qd,J=4.8,9.6Hz,1H),4.23−4.07(m,2H),3.64(t,J=8.9Hz,1H),3.42(dd,J=6.2,8.8Hz,1H),2.86(s,3H),2.47(s,3H)。
ステップ4:化合物WX275−5の合成
乾燥した一口瓶にWX275−4(0.4g,1.40mmol)及びDMF(5mL)を加え、その後NaN(546.85mg,8.41mmol)を加え、窒素で3回置換し、反応を65℃に置き、16時間攪拌した。反応液に10mLの水を加えてクエンチ反応させ、酢酸エチル(10mL×5)で抽出し、有機相を併せて、無水硫酸ナトリウムで乾燥した。5mLになるまで減圧濃縮し、10mLのエタノールを加え、3回繰り返して、5mLのエタノール溶液を残す。反応液を直接に次のステップの反応に使用し、精製は行わなかった。
ステップ5:化合物WX275−6の合成
化合物WX275−5(218mg,1.40mmol)をEtOH(5mL)に溶解し、Pd/C(0.1g,5%の純度)を加えた。Hで3回置換した後、15psiに加圧に、反応液を40℃に加熱し、24時間攪拌した。珪藻土でろ過し、ろ液を減圧濃縮して、WX275−6を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.53(br s,1H),3.57(br t,J=8.7Hz,1H),3.31(br t,J=7.6Hz,1H),2.97−2.93(m,3H),2.38(br s,2H)。
ステップ6:化合物WX275の合成
化合物WX275の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.23(s,1H),9.06(br t,J=5.6Hz,1H),8.13(d,J=8.2Hz,1H),7.89(s,1H),7.81(d,J=8.4Hz,1H),7.61(dd,J=1.7,3.0Hz,1H),7.15(dd,J=1.8,3.5Hz,1H),6.54(t,J=3.3Hz,1H),4.69−4.57(m,1H),3.62(t,J=8.7Hz,1H),3.53(t,J=5.6Hz,2H),3.30−3.26(m,1H),2.73(s,3H)。
実施例58:WX278
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX278の合成
化合物WX278の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.25(s,1H),8.98(br t,J=5.6Hz,1H),8.87(s,1H),8.77(br d,J=5.4Hz,1H),8.45(br d,J=7.9Hz,1H),8.09(d,J=8.3Hz,1H),7.96(dd,J=5.9,7.8Hz,1H),7.82(s,1H),7.75(br d,J=8.3Hz,1H),7.62(br d,J=1.6Hz,1H),7.18−7.12(m,1H),6.54(t,J=3.3Hz,1H),3.62(br d,J=5.9Hz,2H),3.07(br t,J=6.3Hz,2H)。
実施例59:WX280
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX280−2の合成
予め乾燥した三口フラスコにWX280−1(2g,19.58mmol,1.89mL)及びDCM(10mL)を加え、窒素ガスで3回換気した後、当該反応器をアイスバスに置き、0℃でそれに塩化p−トルエンスルホニル(5.60g,29.37mmol)及びピリジン(10mL)を加え、添加終了後、反応液を25℃で2時間攪拌して反応し続けた。反応液に水(20mL)を加えて希釈し、水相をジクロロメタンで抽出し(3×50mL),有機相を無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、溶剤を除去して、WX280−2を得た。
ステップ2:化合物WX280−4の合成
乾燥した50mLの三口フラスコに原料WX280−2(1g,3.90mmol)及びDMF(10mL)を加え、WX280−3(1.16g,6.24mmol)を反応液に加え、当該反応系を100℃で12時間攪拌した。反応液に水(10mL)を加えてクエンチさせ、水相をジクロロメタンで抽出し(3×20mL)、有機相を無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、溶剤を除去して、生成物の粗生成物を得た。粗生成物をカラムクロマトグラフィーにより精製して、WX280−4を得た。
ステップ3:化合物WX280−5の合成
予め乾燥した親指瓶にWX280−4(400mg,1.71mmol)及び溶剤EtOH(5mL)を加え、均一に混合した後ヒドラジン(140.15mg,2.74mmol,136.07μL)を加え、70℃で0.5時間攪拌し、反応液は、白色から黒色に変わり、その後白色のペースト状物質に凝縮した。反応系を室温に冷却し、その後100mLの一口フラスコに移し、30mlのエタノールを加え、常温で0.5時間攪拌し、ろ過し、フィルターケーキを捨て、ろ液をスピンドライして、WX280−5を得た。
ステップ4:化合物WX280の合成
化合物WX280の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ 11.20(s,1H),8.85(br t,J=5.40Hz,1H),8.10(d,J=8.16Hz,1H),7.87(s,1H),7.79(d,J=8.16Hz,1H),7.60(dd,J=1.76,2.87Hz,1H),7.14(dd,J=1.54,3.53Hz,1H),6.53(t,J=3.31Hz,1H),3.56−3.77(m,3H),3.45(dd,J=5.29,8.60Hz,1H),3.20−3.28(m,2H),2.40−2.47(m,1H),1.87−1.98(m,1H),1.53−1.63(m,1H)。
実施例60:WX288
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX288の合成
化合物WX288の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ 11.19(s,1H),8.80(br t,J=5.84Hz,1H),8.10(d,J=8.38Hz,1H),7.87(s,1H),7.79(d,J=8.16Hz,1H),7.60(br s,1H),7.14(dd,J=1.43,3.42Hz,1H),6.53(t,J=3.31Hz,1H),3.17(t,J=6.17Hz,2H),2.00(br d,J=6.84Hz,2H),1.61−1.86(m,5H),1.12−1.28(m,2H)。
実施例61:WX292
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX292の合成
化合物WX292の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.22(s,1H),8.82−8.75(m,1H),8.11(d,J=8.2Hz,1H),7.87(s,1H),7.79(d,J=8.2Hz,1H),7.61(dd,J=1.8,3.1Hz,1H),7.15(dd,J=1.5,3.5Hz,1H),6.54(t,J=3.4Hz,1H),3.93−3.85(m,1H),3.45(d,J=5.3Hz,2H),3.38(br d,J=5.7Hz,2H),1.69−1.51(m,6H),1.49−1.41(m,2H)。
実施例62:WX293
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX293の合成
化合物WX293の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.22(s,1H),8.82(s,1H),8.10(d,J=8.4Hz,1H),7.84(s,1H),7.74(d,J=8.4Hz,1H),7.61(dd,J=1.7,2.8Hz,1H),7.36−7.27(m,2H),7.15(dd,J=1.7,3.4Hz,1H),7.09−7.03(m,1H),6.56−6.52(m,1H),3.50(br d,J=6.0Hz,2H),2.84(br t,J=6.8Hz,2H)。
実施例63:WX295
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX295の合成
化合物WX295の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.24(s,1H),9.14(br t,J=5.4Hz,1H),8.66(d,J=2.6Hz,1H),8.47(d,J=5.1Hz,1H),8.14−8.05(m,2H),7.94−7.80(m,3H),7.59(dd,J=1.5,2.9Hz,1H),7.13(dd,J=1.5,3.5Hz,1H),6.52(t,J=3.3Hz,1H),4.37(br t,J=5.4Hz,2H),3.68(q,J=5.3Hz,2H)。
実施例64:WX297
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX297−2の合成
WX297−1(2g,13.46mmol)をDCM(20mL)に溶解し、その後、それにトリエチルアミン(4.09g,40.37mmol,5.62mL)、(Boc)O(3.52g,16.15mmol,3.71mL)を加え、反応を30℃で12時間攪拌した。反応液に水(10mL)を加えてクエンチさせ、水相をジクロロメタンで抽出し(3×20mL)、有機相を無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、溶剤を除去して、生成物の粗生成物を得た。粗生成物をカラムクロマトグラフィーにより分離して、WX297−2を得た。
ステップ2:化合物WX297−4の合成
予め乾燥した50mlの一口瓶にWX297−2(836.83mg,3.36mmol)及びジオキサン(dioxane)(5mL)、水(1.5mL)を加え、その後反応系にKCO(1.16g,8.41mmol)及びWX297−3(834.81mg,3.36mmol)を加え、最後に、窒素雰囲気下で、テトラトリフェニルホスフィンパラジウム(388.78mg,336.44μmol)を加え、当該反応系を100℃で12時間攪拌して反応させた。反応液に水(5mL)を加えてクエンチさせ、水相を酢酸エチルで抽出し(3×10mL)、有機相を無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、溶剤を除去して、生成物の粗生成物を得た。粗生成物をカラムクロマトグラフィーにより、WX297−4を得た。
ステップ3:化合物WX297−5の合成
予め乾燥した親指瓶にWX297−4(900mg,2.69mmol)及びEtOAc(10mL)を加え、窒素雰囲気下で、HCl/EtOAc(4M,20mL)を加え、当該反応液を25℃で0.5時間攪拌した。反応液を直接にスピンドライして、WX297−5を得た。
ステップ4:化合物WX297の合成
予め乾燥した親指瓶にBB−2(80.17mg,342.15μmol)、EDCI(98.39mg,513.22μmol)、DIPEA(88.44mg,684.30μmol,119.19μL)、HOBt(69.35mg,513.22μmol)及びDMF(2mL)を加え、最後に0℃でそれにWX297−5(100mg,342.15μmol)を加え、反応液を窒素保護し、25℃で12時間攪拌して反応させた。反応液をろ過して、生成物の粗生成物を得た。粗生成物をHPLCにより分離して、WX297を得た。H NMR(400MHz,DMSO−d)δ 11.22(s,1H),9.60(br t,J=5.73Hz,1H),8.41(d,J=1.98Hz,1H),8.22(br d,J=8.82Hz,1H),8.11(d,J=8.38Hz,1H),7.92(s,1H),7.78−7.86(m,2H),7.56−7.62(m,1H),7.13(dd,J=1.54,3.53Hz,2H),6.52(t,J=3.31Hz,1H),4.68(br d,J=5.51Hz,2H),3.22(s,6H)。
実施例65:WX298
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX298−2の合成
予め乾燥した50mlの一口瓶にWX297−2(850.83mg,3.42mmol)及び水(1.5mL)、DME(5mL)を加え、その後反応系にKCO(1.18g,8.55mmol)及びWX298−1(502.63mg,3.42mmol)を加え、最後に窒素雰囲気下で、Pd(dppf)Cl(250.30mg,342.07μmol)を加え、当該反応系を100℃で12時間攪拌して反応させた。反応液に水(5mL)を加えてクエンチした後、水相を酢酸エチル抽出し(3×10mL)、有機相を無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、溶剤を除去して、生成物の粗生成物を得た。粗生成物をカラムクロマトグラフィーによりWX298−2(0.8g,2.54mmol)を得た。
ステップ2:化合物WX298−3の合成
化合物WX298−3の合成は、実施例64におけるステップ3のWX297−5の合成を参照した。
ステップ3:化合物WX298の合成
化合物WX298の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ 11.21(s,1H),9.55(br t,J=5.62Hz,1H),8.11(d,J=8.38Hz,1H),8.06(d,J=8.38Hz,2H),7.90−7.94(m,4H),7.81(d,J=8.38Hz,1H),7.59(dd,J=1.65,2.98Hz,1H),7.13(dd,J=1.54,3.53Hz,1H),6.52(t,J=3.31Hz,1H),4.72(d,J=5.73Hz,2H)。
実施例66:WX299
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX299の合成
化合物WX299の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.22(s,1H),8.78(br t,J=5.3Hz,1H),8.10(d,J=8.3Hz,1H),7.88(d,J=1.1Hz,1H),7.79(dd,J=1.4,8.4Hz,1H),7.61(dd,J=1.7,3.1Hz,1H),7.25(dd,J=5.7,8.5Hz,2H),7.15(dd,J=1.7,3.6Hz,1H),7.13−7.06(m,2H),6.54(t,J=3.4Hz,1H),3.29−3.23(m,2H),2.61(br t,J=7.7Hz,2H),1.80(q,J=7.3Hz,2H)。
実施例67:WX300
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX300の合成
化合物WX300の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.22(s,1H),8.85(br t,J=5.4Hz,1H),8.10(d,J=8.2Hz,1H),7.85(s,1H),7.75(d,J=8.4Hz,1H),7.61(dd,J=1.7,2.8Hz,1H),7.34−7.28(m,2H),7.27−7.23(m,1H),7.19(d,J=7.3Hz,1H),7.15(dd,J=1.5,3.5Hz,1H),6.54(t,J=3.3Hz,1H),3.55−3.46(m,2H),2.85(t,J=7.2Hz,2H)。
実施例68:WX301
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX301の合成
化合物WX301の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.23(s,1H),8.83(br t,J=5.3Hz,1H),8.10(d,J=8.2Hz,1H),7.84(s,1H),7.74(d,J=8.4Hz,1H),7.61(br d,J=1.1Hz,1H),7.36−7.30(m,2H),7.29−7.23(m,2H),7.17−7.12(m,1H),6.54(t,J=3.3Hz,1H),3.49(q,J=6.6Hz,2H),2.83(br t,J=7.1Hz,2H)。
実施例69:WX305
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX305の合成
化合物WX305の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.12(s,1H),8.79(t,J=5.4Hz,1H),8.04(d,J=8.4Hz,1H),7.80(s,1H),7.71(d,J=8.4Hz,1H),7.36(s,1H),7.23(dd,J=5.7,8.6Hz,2H),7.07(t,J=8.9Hz,2H),6.97(d,J=1.3Hz,1H),3.45(q,J=6.8Hz,2H),2.80(t,J=7.2Hz,2H),2.02(s,3H)。
実施例70:WX306
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX306の合成
化合物WX306の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.16(s,1H),9.38(t,J=5.8Hz,1H),8.56(d,J=1.8Hz,1H),8.47(dd,J=1.5,4.8Hz,1H),8.10(d,J=8.3Hz,1H),7.91(d,J=1.4Hz,1H),7.83(dd,J=1.6,8.3Hz,1H),7.72(d,J=7.3Hz,1H),7.43−7.34(m,2H),7.01(d,J=1.8Hz,1H),4.51(d,J=5.8Hz,2H),2.5(s,3H)。
実施例71:WX308
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX308の合成
化合物WX308の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ 11.15(s,1H),9.56(s,1H),8.14−8.03(m,3H),7.97−7.90(m,4H),7.81(d,J=7.3Hz,1H),7.39(s,1H),7.01(s,1H),4.73(d,J=5.5Hz,2H),2.05(s,3H)。
実施例72:WX309
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX309の合成
化合物WX309の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.14(s,1H),8.72(s,1H),8.07(d,J=8.3Hz,1H),7.85(s,1H),7.77(d,J=8.0Hz,1H),7.39(s,1H),7.00(s,1H),3.86(d,J=10.3Hz,1H),3.32−3.22(m,4H),2.05(s,3H),1.74(s,1H),1.66−1.53(m,3H),1.43(s,3H),1.24−1.13(m,1H)。
実施例73:WX311
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX311−2の合成
化合物WX311−2の合成は、参照フラグメント6におけるステップ1のBB−6−2の合成を参照した。H NMR(400MHz,CHLOROFORM−d)δ=8.49(s,1H),8.44(s,2H),7.70(d,J=1.8Hz,1H),7.11(d,J=1.8Hz,1H),4.03(s,3H),3.75(s,3H)。
ステップ2:化合物WX311−3の合成
化合物WX311−3の合成は、参照フラグメント6におけるステップ1のBB−6−3の合成を参照した。H NMR(400MHz,DMSO−d)δ=8.28(d,J=2.0Hz,1H),7.85(d,J=8.5Hz,1H),7.50(d,J=1.3Hz,1H),7.19−7.18(m,1H),7.16(dd,J=1.5,8.5Hz,1H),6.55(br s,2H),3.83(s,3H),3.67(s,3H)。
ステップ3:化合物WX311−4の合成
化合物WX311−4の合成は、参照フラグメント6におけるステップ1のBB−6−4の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.44(s,1H),8.16(d,J=8.3Hz,1H),8.04(d,J=1.3Hz,1H),7.94(dd,J=1.5,8.3Hz,1H),7.88(d,J=2.0Hz,1H),7.25(d,J=1.8Hz,1H),3.91(s,3H)
ステップ4:化合物WX311−5の合成
WX311−4(300mg,778.84μmol,1eq)をジオキサン(5.0mL)に溶解し、また6Mの希塩酸(5.0mL)を加え、反応を50℃で48時間攪拌した。減圧濃縮し、抽出し、有機相を収集して無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮した。粗生成物をカラムクロマトグラフィーにより、WX311−5を得た。H NMR(400MHz,DMSO−d)δ=11.47(s,1H),8.33−8.07(m,2H),8.06−7.98(m,2H),7.85(s,1H),7.22(s,1H)。
ステップ5:化合物WX311の合成
化合物WX311の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.34(s,1H),8.76(t,J=5.5Hz,1H),8.07(d,J=8.2Hz,1H),7.83(dd,J=1.7,6.5Hz,2H),7.77(dd,J=1.5,8.4Hz,1H),7.19(d,J=1.8Hz,1H),3.78−3.68(m,2H),3.55(dt,J=6.4,7.9Hz,1H),3.29−3.23(m,2H),1.97−1.88(m,1H),1.82−1.73(m,2H),1.66(q,J=7.1Hz,2H),1.45−1.30(m,1H)。
実施例74:WX312
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX312の合成
化合物WX312の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.38(s,1H),8.75(br t,J=5.5Hz,1H),8.11(d,J=8.3Hz,1H),7.87(dd,J=1.6,4.0Hz,2H),7.81(dd,J=1.4,8.3Hz,1H),7.23(d,J=1.9Hz,1H),3.90−3.83(m,1H),3.33−3.23(m,4H),1.75(br d,J=3.6Hz,1H),1.66−1.56(m,3H),1.47−1.46(m,1H),1.44(br s,2H),1.24−1.13(m,1H)。
実施例75:WX221及びWX222
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX221及びWX222の合成
乾燥した水素化瓶に化合物BB−5(100mg,289.73μmol)、化合物WX143−1(65.90mg,434.60μmol)、Pd(dppf)Cl(21.20mg,28.97μmol)、EtN(73.29mg,724.33μmol,100.82μL)及びDMF(5mL)を加え、COで3回置換し、50psiに加圧し、80℃のオイルバスで16時間攪拌した。400mgのパラジウム抜きシリカゲルを加えて、25℃で12時間攪拌し、ろ過し、ろ液を減圧濃縮した。前記濃縮した後のろ液をPrep−HPLCにより精製して、ラセミを得た。ラセミをSFCにより分離して、WX221及びWX222。化合物WX221:H NMR(400MHz,DMSO−d)δ=8.83−8.76(m,1H),8.10(d,J=8.3Hz,1H),7.88(s,1H),7.81(d,J=8.3Hz,1H),7.73(br s,1H),7.15(d,J=1.9Hz,1H),3.83−3.70(m,2H),3.66−3.54(m,1H),3.32−3.25(m,2H),2.03−1.91(m,1H),1.80(dd,J=6.9,14.2Hz,2H),1.69(m,2H),1.47−1.35(m,1H);
化合物WX222:H NMR(400MHz,DMSO−d)δ=8.79(t,J=5.4Hz,1H),8.10(d,J=8.3Hz,1H),7.88(d,J=1.4Hz,1H),7.81(dd,J=1.5,8.3Hz,1H),7.73(dd,J=2.1,3.4Hz,1H),7.15(d,J=2.0Hz,1H),3.82−3.71(m,2H),3.63−3.55(m,1H),3.32−3.26(m,2H),2.01−1.91(m,1H),1.86−1.76(m,2H),1.69(m,2H),1.47−1.36(m,1H)。
キラル分離条件:キラルカラム:AD(250mm×30mm,5μm);移動相:[Neu−MeOH];B%:48%−48%。
化合物222対応保持時間:6.62分(ピーク2)。化合物221対応保持時間:5.70分(ピーク1)。
実施例76:WX279
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX279−1の合成
WX200(1g,2.05mmol)をHCl/EtOAc(50mL)に加え、反応を20℃で2時間攪拌した。反応液をろ過し、フィルターケーキを収集して、WX279−1を得た。H NMR(400MHz,DMSO−d)δ=11.21(s,1H),8.90(br s,2H),8.66−8.53(m,1H),8.10(d,J=8.2Hz,1H),7.89(s,1H),7.82(br d,J=8.2Hz,1H),7.60(dd,J=1.8,2.9Hz,1H),7.14(dd,J=1.8,3.5Hz,1H),6.53(t,J=3.3Hz,1H),3.17(br t,J=6.0Hz,2H),2.84−2.78(m,2H),1.79(br d,J=12.1Hz,5H),1.36(br d,J=12.1Hz,3H)。
ステップ2:化合物WX279の合成
乾燥した一口瓶にWX279−1(100mg,235.35μmol)、塩化ピバロイル(31.22mg,258.89μmol,31.85μL)及びDCM(2mL)を加え、その後TEA(47.63mg,470.70μmol,65.52μL)を加え、窒素で3回置換し、反応を20℃に置き、12時間攪拌した。反応液をろ過して、粗生成物を得て、粗生成物をHPLCにより分離してWX279を得た。H NMR(400MHz,DMSO−d6)δ=11.21(s,1H),8.81(br t,J=5.5Hz,1H),8.10(d,J=8.3Hz,1H),7.87(s,1H),7.79(d,J=8.3Hz,1H),7.62(dd,J=1.8,3.0Hz,1H),7.15(dd,J=1.6,3.5Hz,1H),6.54(t,J=3.4Hz,1H),4.25(br d,J=12.8Hz,2H),3.16(br t,J=6.2Hz,2H),2.74(br t,J=12.4Hz,2H),1.81(br s,1H),1.69(br d,J=12.9Hz,2H),1.17(s,9H),1.10−0.94(m,2H)。
実施例77:WX285
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX285の合成
予め乾燥した親指瓶にWX279−1(90mg,211.81μmol)及びDMF(1mL)を加え、またEtN(32.15mg,317.72μmol,44.22μL)を加えて30分攪拌した後、反応系を0℃に冷却し、WX285−1(25.96mg,211.81μmol,29.40μL)を加え、反応液を窒素保護し、25℃に昇温させ、10時間攪拌して反応させた。反応液をろ過して、生成物の粗生成物を得、生成物の粗生成物をHPLCにより分離して、WX285を得た。H NMR(400MHz,DMSO−d)δ=11.21(s,1H),8.80(br t,J=5.5Hz,1H),8.10(d,J=8.3Hz,1H),7.87(s,1H),7.83−7.75(m,1H),7.62(dd,J=1.7,2.9Hz,1H),7.15(dd,J=1.6,3.5Hz,1H),6.54(t,J=3.3Hz,1H),4.74(dt,J=6.3,12.5Hz,1H),3.95(d,J=11.4Hz,2H),3.15(t,J=6.1Hz,2H),2.69(d,J=17.7Hz,2H),1.78−1.62(m,3H),1.16(d,J=6.3Hz,6H),1.10−1.09(m,1H),1.10−0.98(m,1H)。
実施例78:WX286
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX286の合成
化合物WX286の合成は、実施例77におけるステップ1のWX285の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.21(s,1H),8.82(s,1H),8.11(d,J=8.4Hz,1H),7.89(s,1H),7.82(d,J=8.2Hz,1H),7.62(br s,1H),7.41−7.34(m,2H),7.20(s,1H),7.15(dd,J=1.7,3.4Hz,1H),7.10(d,J=7.7Hz,2H),6.54(t,J=3.3Hz,1H),4.20−3.97(m,2H),3.21(br t,J=6.0Hz,2H),3.06−2.78(m,2H),1.87−1.70(m,3H),1.21(br d,J=16.3Hz,2H)。
実施例79:WX287
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX287の合成
化合物WX287の合成は、実施例76におけるステップ2のWX279の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.21(s,1H),8.80(br t,J=5.6Hz,1H),8.10(d,J=8.2Hz,1H),7.87(d,J=1.1Hz,1H),7.79(dd,J=1.4,8.3Hz,1H),7.61(dd,J=1.8,3.0Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.4Hz,1H),4.38(br d,J=12.3Hz,1H),3.91−3.82(m,1H),3.22−3.08(m,2H),2.94(br t,J=11.7Hz,1H),2.20−2.11(m,2H),1.95(dt,J=6.7,13.4Hz,1H),1.83−1.62(m,3H),1.10−0.91(m,2H),0.91−0.83(m,7H)。
実施例80:WX321
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX321−3の合成
エチレングリコール(10g,161.11mmol,9.01mL)、WX321−1(36.77g,322.23mmol)をDCM(350mL)に溶解し、0℃の条件下で、BF.EtO(345.29mg,2.43mmol,300.25μL)をゆっくり滴下し、反応を0℃で2時間攪拌し、その後25℃にゆっくり昇温させ、36時間攪拌した。減圧濃縮して、粗生成物WX321−3を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.24−4.18(m,4H),4.16(s,4H),3.78(s,4H),1.28(t,J=7.2Hz,6H)。
ステップ2:化合物WX321−4の合成
t−BuOLi(23.92g,298.83mmol,26.94mL)、WX321−3(35g,149.42mmol)をDMF(350mL)に溶解し、反応を90℃で12時間攪拌した。減圧濃縮し、粗生成物にEA(200mL)を加え、2MのHCl(100mL×2)で洗浄し、水で(50mL)洗浄し、EA層を無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮して、粗生成物WX321−4を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.39−4.08(m,7H),3.92−3.85(m,1H),3.79−3.75(m,1H),1.34−1.28(m,3H)。
ステップ3:化合物WX321−5の合成
WX321−4(19g,100.97mmol)をHCl(120mL)に加え、反応を100℃で4時間攪拌した。反応液にEA(50mL×2)を加えて抽出し、EA層を併せ、無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮して、粗生成物WX321−5を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.23(s,4H),3.96(s,4H)。
ステップ4:化合物WX321−7の合成
WX321−5(0.2g,1.72mmol)、WX321−6(570.90mg,1.89mmol)をDCM(5mL)に溶解し、反応を25℃で12時間攪拌した。減圧濃縮して、粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX321−7を得た。H NMR(400MHz,クロロホルム(CHLOROFORM−d)δ=5.29(tt,J=1.2,2.0Hz,1H),4.68−4.65(m,2H),4.36(d,J=0.7Hz,2H),3.86−3.79(m,4H)。
ステップ5:化合物WX321−8の合成
WX321−7(0.25g,1.80mmol)をMeOH(10mL)に溶解し、NH.HO(227.50mg,1.82mmol,0.25mL,28%の純度)、Raney−Ni(0.25g)を加え、反応を水素ガスで3回置換し、その後圧力を50psiに上げ、50℃で3時間反応させた。ろ過し、ろ液を減圧濃縮して。粗生成物WX321−8を直接に次のステップの反応に使用した。H NMR(400MHz,CHLOROFORM−d)δ=3.87(ddd,J=2.6,5.2,12.2Hz,2H),3.80−3.75(m,1H),3.82−3.66(m,4H),3.55(ddd,J=1.2,7.1,12.3Hz,2H),2.74−2.69(m,1H),2.63−2.57(m,1H),2.20−2.07(m,1H),1.69(br s,2H),1.48−1.35(m,2H)。
ステップ6:化合物WX321の合成
化合物WX321の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.19(s,1H),8.73(t,J=5.5Hz,1H),8.07(d,J=8.2Hz,1H),7.83(d,J=1.3Hz,1H),7.75(dd,J=1.5,8.2Hz,1H),7.58(dd,J=1.8,3.1Hz,1H),7.12(dd,J=1.8,3.5Hz,1H),6.51(t,J=3.3Hz,1H),3.75(dd,J=5.0,12.2Hz,2H),3.65−3.53(m,4H),3.43(dd,J=6.8,12.3Hz,2H),3.26−3.20(m,2H),2.02−1.92(m,1H),1.43(q,J=7.1Hz,2H)。
実施例81:WX322
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX322−2の合成
WX322−1(0.2g,868.42μmol)をDCM(5mL)に溶解し、TEA(131.81mg,1.30mmol,181.31μL)を加え、0℃の条件下で、塩化アセチル(74.99mg,955.26μmol,68.17μL)をゆっくり滴下し、反応を0℃で1.5時間攪拌した。反応系にDCM(30mL)を加え、水で洗浄(20mL×2)し、DCM層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧濃縮して、WX322−2を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.84(br s,1H),4.41(br dd,J=2.1,13.1Hz,1H),3.96−3.89(m,1H),3.69−3.38(m,3H),3.35−3.17(m,3H),3.04−2.90(m,1H),2.76(br s,1H),2.47(dd,J=10.6,13.2Hz,1H),2.10(s,3H),1.74−1.57(m,2H),1.45(s,9H),1.32(s,1H)。
ステップ2:化合物WX322−3の合成
WX322−2(0.2g,734.37μmol)をHCl/EtOAc(10mL)に溶解し、反応を25℃で12時間攪拌した。減圧濃縮して、WX322−3を得た。H NMR(400MHz,DMSO−d)δ=8.08(br d,J=19.2Hz,3H),4.20−4.09(m,1H),3.81(dd,J=2.6,11.5Hz,1H),3.75−3.61(m,1H),3.44(br dd,J=2.3,11.8Hz,2H),3.18−2.99(m,1H),2.92−2.79(m,3H),2.00(d,J=4.2Hz,3H),1.70(br dd,J=8.3,14.7Hz,2H)。
ステップ3:化合物WX322の合成
化合物WX322の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.21(d,J=3.5Hz,1H),8.78(br d,J=18.5Hz,1H),8.10(dd,J=3.6,8.3Hz,1H),7.87(s,1H),7.79(d,J=8.4Hz,1H),7.61(dd,J=1.8,3.1Hz,1H),7.15(dd,J=1.8,3.5Hz,1H),6.54(t,J=3.4Hz,1H),4.23−4.09(m,1H),3.83(dd,J=2.5,11.4Hz,1H),3.79−3.60(m,1H),3.38−3.27(m,3H),3.13(br s,1H),2.89−2.82(m,1H),2.68−2.61(m,1H),2.43−2.43(m,1H),2.44−2.31(m,1H),1.99(d,J=4.2Hz,3H),1.74−1.58(m,2H)。
実施例82:WX323
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX323−1の合成
WX322−1(0.2g,868.42μmol)をDCM(5mL)に溶解し、TEA(131.81mg,1.30mmol,181.31μL)を加え、0℃で、クロロギ酸メチル(90.27mg,955.26μmol,73.99μL)をゆっくり滴下し、反応を0℃で1.5時間攪拌した。反応系にDCM(30mL)を加え、水で洗浄(20mL×2)し、DCM層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧濃縮して、WX323−1を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.86(br s,1H),3.88(br d,J=9.7Hz,3H),3.71(s,3H),3.51(br s,2H),3.30(br d,J=6.6Hz,1H),3.26−3.17(m,1H),2.97(br s,1H),2.67(br s,1H),1.66−1.55(m,2H),1.44(s,9H)。
ステップ2:化合物WX323−2の合成
化合物WX323−2の合成は、実施例81におけるステップ2のWX22−2の合成を参照した。
ステップ3:化合物WX323の合成
化合物WX323の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.21(s,1H),8.75(t,J=5.4Hz,1H),8.10(d,J=8.2Hz,1H),7.86(d,J=1.5Hz,1H),7.78(dd,J=1.5,8.4Hz,1H),7.61(dd,J=1.8,3.1Hz,1H),7.15(dd,J=1.8,3.5Hz,1H),6.54(t,J=3.4Hz,1H),3.85−3.68(m,3H),3.59(s,3H),3.37(br dd,J=2.9,11.9Hz,5H),2.90(br s,1H),1.72−1.58(m,2H)。
実施例83:WX313及び315
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX313及びWX315の合成
化合物WX313及びWX315の合成は、実施例24におけるステップ1のWX189の合成を参照した。
化合物WX313:H NMR(400MHz,DMSO−d)δ=8.77(br d,J=5.1Hz,1H),8.06(d,J=8.4Hz,1H),7.85(s,1H),7.77(d,J=8.2Hz,1H),7.39(s,1H),7.00(d,J=1.3Hz,1H),3.80−3.71(m,2H),3.65−3.50(m,2H),3.28−3.24(m,1H),2.05(s,3H),1.99−1.92(m,1H),1.85−1.76(m,2H),1.69(q,J=7.1Hz,2H),1.40(s,1H)。
化合物WX315:H NMR(400MHz,DMSO−d)δ=11.17(br s,1H),8.78(br t,J=5.5Hz,1H),8.06(d,J=8.4Hz,1H),7.85(s,1H),7.78(d,J=8.4Hz,1H),7.39(s,1H),7.00(d,J=1.8Hz,1H),3.81−3.71(m,2H),3.61−3.54(m,1H),3.31−3.25(m,2H),2.05(s,3H),1.99−1.91(m,1H),1.85−1.76(m,2H),1.69(q,J=7.1Hz,2H),1.46−1.37(m,1H)。
キラル分離条件:キラルカラム:OJ(250mm×50mm,10μm);移動相:0.1%NHO MeOH;流速:200mL/min;カラム温度:40℃。
化合物315対応保持時間:4.825分(ピーク2)。化合物313対応保持時間:4.495分(ピーク1)。
実施例84:WX318
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX318−3の合成
予め乾燥した20ミリリットルのマイクロ波反応管にWX318−1(1g,8.76mmol)、WX318−2(4.69g,13.47mmol)を加え、その後溶剤クロロベンゼン(10mL)を加えた。当該混合物を180℃で6時間マイクロで反応させた。減圧濃縮して、粗生成物を得た。粗生成物を自動カラムクロマトグラフィーにより、WX318−3を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.87(s,1H),4.30−4.25(m,2H),4.11(q,J=7.1Hz,2H),2.46−2.36(m,2H),1.91−1.77(m,6H),1.25(t,J=7.2Hz,3H)。
ステップ2:化合物WX318−4の合成
WX318−3(2.5g,13.57mmol)をEtOAc(10mL)に溶解し、Pd/C(0.3g,5%の純度)を加えた。水素ガスで3回置換した後、40psiに加圧し、反応を25℃で16時間攪拌した。珪藻土を通してろ過し、ろ液を減圧濃縮して、粗生成物を得た。粗生成物を自動カラムクロマトグラフィーにより、WX318−4を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.15(q,J=7.2Hz,2H),4.02−3.92(m,1H),3.88−3.77(m,1H),3.58(d,J=4.3,7.4,12.1Hz,1H),2.57−2.29(m,2H),1.87−1.50(m,8H),1.26(t,J=7.2Hz,3H)。
ステップ3:化合物WX318−5の合成
乾燥した一口瓶に化合物WX318−4(700mg,3.76mmol,1eq)及びTHF(8mL)を加え、窒素で3回置換し、0℃に冷却し、LiAlH4(213.97mg,5.64mmol)を加え、その後0℃で2時間攪拌した。反応液に順次に水(0.21mL)、10%水酸化ナトリウム水溶液(0.63mL)をゆっくり加えて、水(0.21mL)でクエンチ反応させ、その後10mLの酢酸エチルを加え、10分間攪拌し、珪藻土を詰めた5穴漏斗でろ過し、ろ液を減圧濃縮して、WX318−5を得た。H NMR(400MHz,CHLOROFORM−d)δ=3.95−3.84(m,1H),3.82−3.67(m,3H),3.62−3.49(m,1H),2.92(br s,1H),1.84−1.48(m,10H)。
ステップ4:化合物WX318−6の合成
乾燥した親指瓶に化合物WX318−5(480mg,3.33mmol)及びDCM(8mL)を加え、反応系の温度を0℃に冷却し、またMsCl(457.53mg,3.99mmol,309.14μL)及びEtN(673.61mg,6.66mmol,926.57μL)を加え、20℃で1時間攪拌した。反応系に10mLの飽和炭酸水素ナトリウム水溶液及び10mLジクロロメタンを加え、液体を分離し、有機相を水で洗浄(5mL)し、その後無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、WX318−6を得た。H NMR(400MHz,CHLOROFORM−d)δ=4.44−4.35(m,1H),4.34−4.26(m,1H),3.90−3.80(m,1H),3.67−3.50(m,2H),3.01(s,3H),1.86−1.49(m,10H)。
ステップ5:化合物WX318−7の合成
乾燥した親指瓶に順次に化合物WX318−6(866mg,3.90mmol)、DMF(8mL)を加え、0℃に冷却し、その後NaN3(379.88mg,5.84mmol)を加え、20℃に昇温させ、16時間攪拌した。反応系に10ミリリットルの水を加え、酢酸エチルで抽出(15mL×2)し,有機相を併せて、飽和食塩水で洗浄(10mL×3)し、その後無水硫酸ナトリウムで乾燥し、ろ過し、ろ液を減圧濃縮して、WX318−7を得た。H NMR(400MHz,CHLOROFORM−d)δ=3.93−3.82(m,1H),3.60−3.52(m,2H),3.44−3.35(m,2H),1.76−1.49(m,10H)。
ステップ6:化合物WX318−8の合成
親指瓶に化合物WX318−7(150mg,886.40μmol)及びTHF(2mL)、HO(0.4mL)を加え、反応系を0℃に冷却し、PPh(348.74mg,1.33mmol)を加え、25℃に昇温させ、16時間攪拌した。反応液を直接に減圧濃縮して、白色の固体の粗生成物WX318−8を得、直接に次のステップの反応に使用した。
ステップ7:化合物WX318の合成
化合物WX318の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d6)δ=11.22(s,1H),8.71(br t,J=5.5Hz,1H),8.10(d,J=8.3Hz,1H),7.86(d,J=1.4Hz,1H),7.78(dd,J=1.5,8.3Hz,1H),7.64−7.59(m,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.3Hz,1H),3.80−3.68(m,1H),3.53−3.40(m,2H),3.32−3.27(m,2H),1.78−1.68(m,1H),1.67−1.54(m,6H),1.52−1.34(m,3H)。
実施例85:WX326
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX326の合成
化合物WX326の合成は、実施例24におけるステップ1のWX189の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.24(s,1H),8.88(t,J=5.4Hz,1H),8.12(d,J=8.3Hz,1H),7.88(s,1H),7.81(d,J=8.3Hz,1H),7.62(dd,J=1.6,3.0Hz,1H),7.15(dd,J=1.7,3.6Hz,1H),6.54(t,J=3.4Hz,1H),4.02(dd,J=3.0,12.8Hz,1H),3.80−3.64(m,2H),3.33(s,1H),2.98(d,J=12.8Hz,1H),2.90−2.71(m,4H),1.79−1.55(m,2H)。
実施例86:WX319及び320
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX319及びWX320の合成
化合物WX319及びWX320の合成は、実施例24におけるステップ1のWX189の合成を参照した。
化合物WX320:H NMR(400MHz,DMSO−d)δ=11.21(br s,1H),8.81−8.70(m,1H),8.09(d,J=8.2Hz,1H),7.85(d,J=1.3Hz,1H),7.77(s,1H),7.60(dd,J=1.6,3.0Hz,1H),7.12(dd,J=1.6,3.5Hz,1H),6.53(t,J=3.3Hz,1H),3.74−3.36(m,7H),3.29(br s,1H),3.16(s,1H),1.55(br d,J=7.0Hz,2H);
化合物WX319:H NMR(400MHz,ACETONITRILE−d)δ=9.00(br s,1H),8.08(d,J=8.4Hz,1H),7.77(d,J=1.5Hz,1H),7.67(dd,J=1.5,8.4Hz,1H),7.46(dd,J=1.8,3.1Hz,1H),7.29(br s,1H),7.14(dd,J=1.8,3.7Hz,1H),6.47(t,J=3.3Hz,1H),3.73(d,J=2.9Hz,1H),3.70−3.60(m,4H),3.54−3.47(m,1H),3.44(d,J=6.0Hz,2H),3.24(dd,J=9.9,11.2Hz,1H),1.65−1.57(m,1H),1.61(s,1H)。
キラル分離条件:キラルカラム:OJ(250mm×50mm,10μm);移動相:0.1%NHO MeOH;流速:200mL/min;カラム温度:40℃。
化合物319対応保持時間:3.874分(ピーク2)。化合物320対応保持時間:3.475分(ピーク1)。
実施例87:WX328
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX328の合成
化合物WX328の合成は、実施例24におけるステップ1のWX189の合成を参照した。δ=11.23(br s,1H),8.83−8.76(m,1H),8.09(d,J=8.2Hz,1H),7.85(d,J=1.3Hz,1H),7.77(s,1H),7.60(dd,J=1.6,3.0Hz,1H),7.12(dd,J=1.6,3.5Hz,1H),3.74−3.36(m,7H),3.29(br s,1H),3.16(s,1H),2.97(s,2H),1.55(br d,J=7.0Hz,2H)。
実施例88:WX325及び329
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX325及びWX329の合成
BB−6(500mg,1.63mmol)、WX319−1(278.37mg,2.12mmol)、HBTU(928.62mg,2.45mmol)、TEA(495.55mg,4.90mmol,681.64μL)をDMF(5mL)に溶解し、反応を30℃で12時間攪拌した。減圧濃縮して,カラムクロマトグラフィーにより分離し、減圧濃縮し、SFCにより分離して、WX325及びWX329を得た。
化合物329:H NMR(400MHz,DMSO−d)δ=11.11(br s,1H),8.73(br t,J=5.5Hz,1H),8.05(d,J=8.2Hz,1H),7.83(d,J=1.3Hz,1H),7.74(dd,J=1.5,8.4Hz,1H),7.36(s,1H),6.98(d,J=2.0Hz,1H),3.71−3.48(m,5H),3.45−3.31(m,1H),3.45−3.30(m,1H),3.27−3.21(m,1H),3.14(dd,J=9.9,11.2Hz,1H),2.03(s,3H),1.53(q,J=7.0Hz,2H);
化合物325:H NMR(400MHz,DMSO−d)δ=11.13(br s,1H),8.73(br t,J=5.5Hz,1H),8.05(d,J=8.2Hz,1H),7.83(d,J=1.3Hz,1H),7.74(dd,J=1.5,8.4Hz,1H),7.36(s,1H),6.98(d,J=2.0Hz,1H),3.71−3.48(m,5H),3.45−3.31(m,1H),3.45−3.30(m,1H),3.27−3.21(m,1H),3.14(dd,J=9.9,11.2Hz,1H),2.03(s,3H),1.53(q,J=7.0Hz,2H)。
キラル分離条件:キラルカラム:OJ−3 150×4.6mm;移動相:A:二酸化炭素,B:メタノール(0.1%アンモニア水);勾配:B%=33%;流速:60mL/min;カラム温度:40℃。
化合物325対応保持時間:4.919分(ピーク2)。化合物329対応保持時間:4.563分(ピーク1)。
実施例89:WX339及び350
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX339及びWX350の合成
BB−6(0.16g,522.37μmol,1eq)、WX339−1(102.98mg,574.61μmol)をDMF(1mL)に溶解し、HATU(297.93mg,783.56μmol)、DIEA(202.54mg,1.57mmol,272.96μL)を加え、反応を30℃で12時間攪拌した。反応液を水(20mL)に注ぎ、ろ過し、フィルターケーキを酢酸エチル(20mL)に溶解し、酢酸エチル層を無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、混合スピンした生成物を得、SFCにより分離して、WX339及びWX350を得た。化合物350:H NMR(400MHz,DMSO−d)δ=11.15(s,1H),8.88(t,J=5.5Hz,1H),8.08(d,J=8.4Hz,1H),7.87(d,J=1.3Hz,1H),7.79(dd,J=1.3,8.4Hz,1H),7.39(s,1H),7.00(d,J=1.8Hz,1H),6.90−6.75(m,4H),4.32(dd,J=2.1,11.4Hz,1H),4.28−4.20(m,1H),3.91(dd,J=7.5,11.2Hz,1H),3.56−3.40(m,2H),2.05(s,3H),1.89−1.81(m,2H);
化合物339:H NMR(400MHz,DMSO−d)δ=11.13(s,1H),8.86(t,J=5.5Hz,1H),8.08(d,J=8.4Hz,1H),7.87(d,J=1.3Hz,1H),7.79(dd,J=1.3,8.4Hz,1H),7.39(s,1H),7.00(d,J=1.8Hz,1H),6.90−6.75(m,4H),4.32(dd,J=2.1,11.4Hz,1H),4.28−4.20(m,1H),3.91(dd,J=7.5,11.2Hz,1H),3.56−3.40(m,2H),2.05(s,3H),1.89−1.81(m,2H)。
キラル分離条件:キラルカラム:AS(250mm×30mm,5μm);移動相:A:二酸化炭素,B:メタノール;勾配:B%=45%;流速:80mL/min;カラム温度:40℃。
化合物339対応保持時間:4.078分(ピーク2),化合物350対応保持時間:3.952分(ピーク1)。
実施例90:WX352及び353
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX353−3の合成
WX353−1(20g,98.03mmol)をジクロロメタン(200mL)に溶解し、トリエチルアミン(14.88g,147.04mmol,20.47mL)、DMAP(1.20g,9.80mmol)を加え、その後塩化フェニルスルホニル(19.05g,107.83mmol,13.80mL)を滴下し、反応を30℃で5時間攪拌した。反応液にDCM(100mL)を加え、2MのHCl(30mL×2)で洗浄し、有機相層を無水硫酸ナトリウムで乾燥し、減圧して溶剤を除去して、WX353−2を得た。H NMR(400MHz,DMSO−d)δ=8.08−8.02(m,3H),7.83−7.76(m,1H),7.72−7.66(m,2H),7.19(d,J=2.0Hz,1H),3.68(s,3H)。
ステップ2:化合物WX353−4の合成
WX353−2(10g,29.05mmol)をDMF(80mL)に溶解し、Pd(PPh(1.68g,1.45mmol)、WX353−3(11.98g,37.77mmol,10.99mL)を加え、窒素で3回置換し、反応を100℃で24時間攪拌した。反応液にEA(100mL)、10gのフッ化セシウムの50mLHO溶液を加え、6時間攪拌し、ろ過し、ろ液を水で洗浄(50mL×3)し、EA層を無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX353−4を得た。H NMR(400MHz,DMSO−d)δ=8.04−7.94(m,3H),7.80−7.75(m,1H),7.71−7.63(m,2H),7.37(d,J=1.5Hz,1H),6.60(dd,J=11.0,17.6Hz,1H),5.72(d,J=17.6Hz,1H),5.21(d,J=11.2Hz,1H),3.67(s,3H)。
ステップ3:化合物WX353−5の合成
WX353−4(7.6g,26.09mmol)をMeOH(80mL)に溶解し、CHONa(2.82g,52.18mmol)を加え、反応を50℃で12時間攪拌した。反応液を減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX353−5を得た。H NMR(400MHz,CHLOROFORM−d)δ=9.02(br s,1H),7.05−6.94(m,2H),6.57(dd,J=10.9,17.5Hz,1H),5.48(dd,J=1.1,17.6Hz,1H),5.06(dd,J=1.2,10.9Hz,1H),3.87(s,3H)。
ステップ4:化合物WX353−7の合成
0℃条件下で、WX353−5(3.6g,23.82mmol)のTHF(36mL)溶液にt−BuOK(1M,28.58mL)を滴下し、反応系の温度を30℃に昇温させ、30分間攪拌し、その後反応系の温度を0℃に冷却し、WX353−6(7.99g,28.58mmol)のTHF(36mL)溶液を加え、その後反応を30℃にゆっくり昇温させ、12時間攪拌した。減圧して溶剤を除去し、粗生成物にEA(100mL)を加え、飽和NHCl(50mL)を加えて洗浄し、水で洗浄(50mL×2)し、EA層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX353−7を得た。H NMR(400MHz,CHLOROFORM−d)δ=8.45(s,1H),8.41−8.38(m,2H),7.62(d,J=2.0Hz,1H),7.27(d,J=2.2Hz,1H),6.56(dd,J=10.9,17.5Hz,1H),5.59(d,J=17.6Hz,1H),5.27(d,J=11.5Hz,1H),4.01(s,3H),3.73(s,3H)。
ステップ5:化合物WX353−8の合成
WX353−7(3g,7.61mmol)をEtOAc(60mL)及びMeOH(60mL)に溶解し、Raney−Ni(1.5g)を加え、水素ガスで3回置換し、圧力を30psiに上げ、30℃で6時間攪拌した。反応液をろ過し、ろ液を減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、WX353−8を得た。H NMR(400MHz,CHLOROFORM−d)δ=7.63(d,J=8.4Hz,1H),7.49(s,1H),7.40(d,J=0.9Hz,1H),7.33(d,J=8.6Hz,1H),6.98(d,J=2.0Hz,1H),5.28(br s,2H),3.91(s,3H),3.73(s,3H),2.49(q,J=7.6Hz,2H),1.25−1.19(m,1H),1.22(t,J=7.5Hz,2H)。
ステップ6:化合物WX353−9の合成
WX353−8(1g,2.73mmol)をDMSO(10mL)に加え、t−BuOK(459.39mg,4.09mmol)を加え、反応を30℃で0.5時間攪拌した。反応液にEA(100mL)を加え、飽和NHCl(30mL×2)で洗浄し、水で洗浄(30mL),EA層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧濃縮して、WX353−9を得た。H NMR(400MHz,CHLOROFORM−d)δ=9.36(s,1H),8.12(d,J=8.4Hz,1H),8.04(d,J=1.1Hz,1H),8.00−7.95(m,1H),7.27−7.25(m,1H),7.19(d,J=1.8Hz,1H),3.99(s,3H),2.52(q,J=7.5Hz,2H),1.22(t,J=7.5Hz,3H)。
ステップ7:化合物WX353−10の合成
WX353−8(0.35g,1.05mmol)をTHF(9mL)に溶解し、LiOH.HO(43.93mg,1.05mmol)のH2O(3mL)溶液を加え、反応を30℃で12時間攪拌した。反応液にEA(100mL)を加え、水(50mL×2)で洗浄し、EA層を捨て、水層にEA(100mL)を加え、攪拌しながら、2MのHClをゆっくり加えて水相のpHを3〜4に調節し、液体を分離し、EA相を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧濃縮して、WX353−9を得た。H NMR(400MHz,DMSO−d)δ=13.70(br s,1H),11.22(s,1H),8.10(d,J=8.4Hz,1H),8.01(d,J=1.3Hz,1H),7.89(dd,J=1.4,8.3Hz,1H),7.40(d,J=0.9Hz,1H),7.08(d,J=1.8Hz,1H),2.45(d,J=7.7Hz,2H),1.13(t,J=7.5Hz,3H)。
ステップ8:化合物WX353及びWX352の合成
化合物WX352及びWX353の合成は、実施例89におけるステップ1の化合物WX339及びWX350の合成を参照した。
化合物WX352:H NMR(400MHz,DMSO−d)δ=11.18(s,1H),8.79(t,J=5.6Hz,1H),8.08(d,J=8.4Hz,1H),7.85(d,J=1.5Hz,1H),7.77(dd,J=1.5,8.2Hz,1H),7.43−7.36(m,1H),7.07(d,J=2.0Hz,1H),3.73−3.66(m,2H),3.62(dd,J=2.1,11.1Hz,1H),3.58−3.49(m,2H),3.45(dd,J=2.6,11.0Hz,1H),3.33−3.23(m,2H),3.16(dd,J=10.0,11.4Hz,1H),2.44(d,J=7.5Hz,2H),1.60−1.50(m,2H),1.12(t,J=7.5Hz,3H);
化合物WX353:H NMR(400MHz,DMSO−d)δ=11.18(s,1H),8.79(t,J=5.4Hz,1H),8.08(d,J=8.4Hz,1H),7.85(d,J=1.1Hz,1H),7.77(dd,J=1.3,8.4Hz,1H),7.39(d,J=0.7Hz,1H),7.07(d,J=1.8Hz,1H),3.74−3.66(m,2H),3.60(s,1H),3.59−3.48(m,2H),3.44(dd,J=2.4,11.0Hz,1H),3.33−3.24(m,2H),3.20−3.12(m,1H),2.44(d,J=7.7Hz,2H),1.59−1.51(m,2H),1.12(t,J=7.5Hz,3H)。
キラル分離条件:キラルカラム:OJ−H 250×30mm i.d. 5μm;移動相:A:二酸化炭素,B:メタノール;勾配:B%=30%;流速:70mL/min;カラム温度:40℃。
化合物WX352対応保持時間:0.86分(ピーク1)。化合物WX353対応保持時間:0.98分(ピーク2)。
実施例91:WX355及び356
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX356−2の合成
予め乾燥した100mLの三口フラスコにNaH(1.66g,41.62mmol,60%の純度)及びDMF(50mL)を加え、その後真空にし、窒素で3回置換し、0℃に冷却した後、WX356−1(5g,37.83mmol)のDMF(5mL)溶液を滴下し、温度を0〜5度に制御し、30分間攪拌し、溶液は白色の懸濁液に変わった。0℃に冷却し、ブロモプロペン(4.12g,34.05mmol)のDMF(5mL)溶液をゆっくり滴下し、温度を5℃を超えないように制御し、溶液の色は黄色の液体に変わった。滴下終了後、25℃に昇温指せ、12時間攪拌し、溶液の色は黄色に変わった。反応液を50mLのHOに注ぎ、クエンチ反応させ、50mLのEtOAcを加え、液体を分離し、2×50mLのEtOAcで水相を抽出し、有機相を併せて、20mLの飽和食塩水で併せた有機相を洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、有機相を濃縮して、WX356−2を得た。
ステップ2:化合物WX356−3の合成
予め乾燥した250mLの一口瓶に原料WX356−2(4.5g,26.13mmol)及び溶剤THF(60mL)を加え、その後LiBH4(1.14g,52.26mmol)をゆっくり滴下し、添加終了後、25℃で16時間攪拌した。反応液を倒入50mLのH2Oに注ぎ、クエンチ反応させ、50mLのEtOAcを加え、液体を分離し、2×50mLのEtOAcで水相を抽出し、有機相を併せて、20mLの飽和食塩水で併せた有機相を洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、水ポンプで有機相を濃縮して、WX356−3を得た。
ステップ3:化合物WX356−4の合成
予め乾燥した250ミリリットルのフラスコにWX356−3(3g,23.04mmol)及び溶剤MeCN(200mL)を加え、その後NaHCO(5.81g,69.13mmol,2.69mL)及びI2(17.55g,69.13mmol,13.93mL)を加えた。当該反応を25℃で16時間攪拌した。反応液を100mLの水に注ぎ、クエンチ反応させ、200mLのEtOAcを加え、液体を分離し、2×200mLのEtOAcで水相を抽出し、有機相を併せて、100mLの飽和食塩水で併せた有機相を洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、水ポンプで有機相を濃縮して、WX356−4を得た。
ステップ4:化合物WX356−5の合成
乾燥した一口瓶にWX356−4(500mg,1.95mmol)及びDMSO(5mL)を加え、その後KCN(508.56mg,7.81mmol,334.58μL)及びNaI(585.34mg,3.91mmol)を加え、窒素で3回置換し、反応を100℃に置き、2時間攪拌した。20mL(水:酢酸エチル=1:1)を加え、4MのNaOH溶液で反応系のpHを12以上に調節し、酢酸エチル(5mL×3)で抽出し、有機相を飽和食塩水(5mL×2)で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮して、WX356−5を得た。H NMR(400MHz,CHLOROFORM−d)δ=3.79−3.72(m,1H),3.71−3.52(m,4H),2.52(dt,J=0.9,5.1Hz,2H),1.34(s,3H),1.14(s,3H)。
ステップ5:化合物WX356−6の合成
乾燥した一口瓶にWX356−5(300mg,1.93mmol)及びTHF(1mL)を加え、その後BH.THF(1M,3.87mL)を加え、窒素で3回置換し、反応を70℃に置き、5時間攪拌した。10mLの水を加え、2Mの塩酸で反応系をpH=2に調節し、酢酸エチル(5mL×2)で水相を洗浄し、液体を分離し、水相をオイルポンプ減圧濃縮して、WX356−6を得た。H NMR(400MHz,METHANOL−d)δ=3.61−3.55(m,5H),3.12−3.06(m,2H),1.78−1.68(m,2H),1.31(s,3H),1.09(s,3H)。
ステップ6:化合物WX356及びWX355の合成
乾燥した一口瓶にBB−6(521.74mg,1.70mmol)及びDMF(2mL)を加え、その後HATU(971.53mg,2.56mmol)及びDIPEA(550.37mg,4.26mmol,741.74μL)を加え、最後にWX356−6(400mg,2.04mmol,HCl)を加え、窒素で3回置換し、反応を28℃に置き、12時間攪拌した。反応液を有機相ニードルフィルターでろ過して、粗生成物を得た。粗生成物をラムクロマトグラフィーにより分離して、ラセミ生成物を得た。またSFCにより分離して、WX355及びWX356を得た。化合物355:H NMR(400MHz,DMSO−d6)δ=11.17(s,1H),8.79(t,J=5.5Hz,1H),8.08(d,J=8.4Hz,1H),7.85(d,J=1.3Hz,1H),7.77(dd,J=1.5,8.4Hz,1H),7.81−7.72(m,1H),7.40(dd,J=1.1,1.8Hz,1H),7.01(d,J=1.8Hz,1H),3.52−3.37(m,5H),3.31−3.21(m,2H),2.05(s,3H),1.65−1.52(m,2H),1.21(s,3H);化合物356:H NMR(400MHz,DMSO−d6)(ピーク(Peak)2)δ=11.17(br s,1H),8.79(br t,J=5.3Hz,1H),8.08(d,J=8.2Hz,1H),7.85(s,1H),7.77(d,J=8.2Hz,1H),7.40(s,1H),7.01(d,J=1.3Hz,1H),3.53−3.38(m,5H),3.30−3.20(m,2H),2.05(s,3H),1.58(br d,J=5.3Hz,2H),1.21(s,3H),1.01(s,3H)。
キラル分離条件:キラルカラム:AD(250mm×30mm,5μm);移動相:A:水(10mMの重炭酸アンモニウム)、B:イソプロパノール;勾配:B from.4%から.4% 20分間;流速:75mL/min;カラム温度:35℃。
化合物355対応保持時間:2.5分(ピーク1)。化合物356対応保持時間:2.7分(ピーク2)。
実施例92:WX338
Figure 2020508342
合成経路:
Figure 2020508342
ステップ1:化合物WX338の合成
化合物WX338の合成は、実施例89におけるステップ1の化合物WX339及びWX350の合成を参照した。H NMR(400MHz,DMSO−d)δ=11.17(s,1H),8.76(t,J=5.4Hz,1H),8.08(d,J=8.4Hz,1H),7.86(d,J=1.3Hz,1H),7.77(dd,J=1.5,8.2Hz,1H),7.37−7.34(m,1H),7.12(d,J=2.0Hz,1H),3.74−3.35(m,7H),3.16(dd,J=10.1,11.2Hz,1H),2.80(td,J=6.9,13.7Hz,1H),1.60−1.50(m,2H),1.15(d,J=6.8Hz,6H)。
HBV体外テスト定量qPCR試験
1.実験の目的
リアルタイム定量qPCR試験(real time−qPCR)によりHepG2.2.15細胞内のHBV DNA含有量を検出し、化合物のEC50値を指標として、HBVに対する化合物の阻害作用を評価した。
2.実験材料
2.1.細胞株:HepG2.2.15細胞
HepG2.2.15細胞培養培地(DMEM/F12,Invitrogen−11330057;10%血清,Invitrogen−10099141;100units/mlのペニシリン及び10μg/mlのストレプトマイシン,Invitrogen−15140122;1%の非必須アミノ酸,Invitrogen−11140076;2mMのL−グルタミン,Invitrogen−25030081;300μg/mlのジェネティシン,Invitrogen−10131027
2.2.試薬:
トリプシン(Invitrogen−25300062)
DPBS(Hyclone−SH30028.01B)
DMSO(Sigma−D2650−100ML)
ハイスループットDNA精製キット(QIAamp 96 DNA Blood Kit,Qiagen−51162)
定量的クイックスタートユニバーサルプローブ試薬(FastStart Universal Probe Master,Roche−04914058001)
2.3.消耗品及び器具:
96ウェル細胞培養プレート(Corning−3599)
COインキュベーター(HERA−CELL−240)
光学シールフィルム(ABI−4311971)
定量PCR 96ウェルプレート(Applied Biosystems−4306737)
リアルタイムPCRシステム(Applied Biosystems−7500 real time PCR system)
3.実験ステップ及び方法:
3.1.HepG2.2.15細胞(4×10細胞/ウェル)96ウェルプレートに接種し、37℃、5%のCOで一晩インキュベートした。
3.2.2日目、化合物を希釈し、合計8濃度、3倍勾配に希釈した。異なる濃度の化合物を培養ウェルに加え、二重複製ウェルとした。培養液におけるDMSOの最終濃度は、1%である。1μMのGLS4を100%阻害対照として使用し;1%のDMSOを0%阻害対照として使用した。
3.3.5日目、化合物を含む新鮮な培養液を交換した。
3.4.8日目、培養ウェル中の培養液を回収し、ハイスループットDNA精製キット(Qiagen−51162)を用いてDNAを抽出し、具体的なステップは、当該製品の仕様書を参照した。
3.5.PCR反応液の調節は、表1に示した通りである。
Figure 2020508342
上流プライマー配列:GTGTCTGCGGCGTTTTATCA
下流プライマー配列:GACAAACGGGCAACATACCTT
プローブ配列:5’+FAM+CCTCTKCATCCTGCTGCTATGCCTCATC+TAMRA−3’
3.6.96ウェルPCRプレイの各ウェルに15μlの反応混合液を加え、その後各ウェルに10μlのサンプルDNAまたはHBV DNAのスタンダードを加えた。
3.7.PCRの反応条件:95℃で10分間加熱し;その後95℃で15秒変性し、60℃で1分間延伸し、合計40サイクル。
3.8.データ分析:
3.8.1.阻害率の計算:% Inh.=[1−(サンプルにおけるDNAコピー数−1μM GLS4におけるDNAコピー数)/(DMSO対象におけるDNAコピー数−1μM GLS4におけるDNAコピー数)]×100。
3.8.2.EC50の計算:GraphPad Prismソフトウェアを使用して、HBVに対する化合物の50%阻害濃度(EC50)値を計算した。
実験結果は、表2に示した通りである。
Figure 2020508342

Figure 2020508342









Figure 2020508342
備考:A:EC50≦100nM;
B:100nM<EC50≦500nM;
C:500nM<EC50≦1000nM;
D:1000nM<EC50≦10000nM;
結論:本発明の化合物は、HBVに対して有意な阻害作用を有する。
チトクロームP450アイソザイム阻害性研究
実験の目的:ヒト肝ミクロソームチトクロームP450アイソザイム(CYP1A2、CYP2C9、CYP2C19、CYP2D6及びCYP3A4)の活性に対する試験化合物の阻害作用を測定した。
実験操作:まず、試験化合物(10mM)を勾配し、作業溶液(100×最終濃度)を製造し、作業溶液の濃度は,それぞれ5、1.5、0.5、0.15、0.05、0.015、0.005mMであり、同時にP450アイソザイム(CYP1A2、CYP2C9、CYP2C19、CYP2D6及びCYP3A4)各陽性阻害剤及びその特異的基質混合物(5 in 1)の作業溶液を用意した。−80℃の冷蔵庫に冷凍したヒト肝ミクロソームを氷上で解凍し、ヒト肝ミクロソームが全部解凍し、PBで希釈し、一定の濃度の作業溶液(0.253mg/ml)を製造した。20ul基質混合物を反応プレート(Blankウェルに20μlのPBを加え)に加え、同時に158μlのヒト肝ミクロソーム作業溶液を反応プレートに加え、反応プレートを氷に置き、使い待ちとした。この時、2μlの各濃度の試験化合物(N=1)及び特異的阻害剤(N=2)を対応するウェルに加え、阻害剤(試験化合物または陽性阻害剤)のない群に対応する有機溶剤を加え、対照群サンプルとして(試験化合物対象サンプルは、1:1 DMSO:MeOHであり、陽性サンプルは、1:9 DMSO:MeOHである)である。37℃で水浴で10分間プレインキュベートした後、20μlの補酵素因子(NADPH)溶液を反応プレートに加え、37℃で水浴で10分間プレインキュベートし、400μLの冷アセトニトリル溶液(内部標準は、200ng/mL Tolbutamide及びLabetalolである)を加えて反応を終結させた。反応プレートを振とう機上に置き、10分間振盪し、4,000rpmで20分間遠心分離し、200μLの上清を100μLの水に加え、サンプル希釈した。最後にプレートを密封し、振盪し、均一に振り、LC/MS/MS検出した。実験結果は、表3に示した通りである。
Figure 2020508342
実験結論:試験化合物は、CYP1A2、CYP2C9、CYP2C19、CYP2D6及びCYP3A4に対して有意な阻害作用を持たない。
血漿タンパク質結合率の研究
実験の目的:ヒト及びCD−1マウス血漿中の試験化合物のタンパク質結合率の測定
実験操作:ヒト及びCD−1マウスのブランク血漿796μLを採取し、4μLの試験化合物作業溶液(400μM)またはワルファリン作業溶液(400μM)を加え、血漿サンプル中に試験化合物及びワルファリン最終濃度がすべて2μMであるようにした。サンプルを十分し混合した。有機相DMSOの最終濃度は0.5%であり、移取50μLの試験化合物及びワルファリン血漿サンプルをサンプル受けプレート(3つ平行)に移し、すぐに対応する体積のブランク血漿または緩冲液を加えて、それぞれのサンプルウェルの最終体積が100μLになるようにした。血漿:透析緩衝液の体積割合は、1:1であり、その後これらのサンプルに400μLの停止溶液を加え、このサンプルは、回収率と安定性の測定のためのT0サンプルとして使用される。T0サンプルを2〜8℃で保存し、他の透析完了したサンプルと一緒に後続処理を待った。150μLの試験化合物及びワルファリン血漿サンプルをそれぞれの透析ウェルの投与端に加え、透析ウェルに対応する受け端に150μLのブランク透析緩衝液を加えた。その後透析プレートをガス透過性膜で密封し、湿潤した5%COのインキュベーターに入れ、37℃で、約100rpmで4時間振とうしながら4時間インキュベートした。透析終了後、50μLの透析緩衝液サンプル及び透析血漿サンプルを新しいサンプル受けプレートに移した。サンプルに対応する体積のブランク血漿または緩衝液を加えて、それぞれのサンプルウェルの最終体積が100μLになるようにした。そして血漿:透析緩衝液容量比が1:1となるように試料に添加した。すべてのサンプルをタンパク質沈殿して、LC/MS/MS分析を行い、式:%Unbound(未結合率)=100×FC/TC,%Bound(結合率)=100−%Unbound,%Recovery(回収率)=100×(FC+TC)/T0でタンパク質結合率及び回収率を計算した。実験結果は、表4に示した通りである。
Figure 2020508342
実験結論:試験化合物は、ヒト及びCD−1マウス血漿において比較的に低いタンパク質結合率を示した。
生体内薬物動態研究
Balb/cマウスにおける経口及び静脈注射WX325の薬物動態学的研究
WX325を5%DMSO/55%ポリエチレングリコール400/40%水溶液と混合し、ボルテックスして超音波処理して、1mg/mLのおおよその透明な溶液を製造し、微多孔膜を濾過して使用した。7〜10週齢のBalb/c雌マウスを選択し、候補化合物溶液を1mg/kgの用量で静脈注射した。WX325を10%ソルトール(solutol)(ポリエチレングリコール−15−ヒドロキシステアレート)水溶液と混合し、ボルテックスして超音波処理して、1mg/mLのおおよその透明な溶液を製造し、微多孔膜を濾過して使用した。7〜10週齢のBalb/c雌マウスを選択し、候補化合物溶液を10mg/kgの用量で経口投与した。
全血を一定期間採取し、血漿を製造し、薬物濃度をLC−MS/MS法により分析し、そして薬物動態学的パラメーターをPhoenix WinNonlinソフトウェア(Pharsight社、USA)を用いて計算した。
SDラットにおける経口及び静脈注射したWX325の薬物動態学的研究
WX325を5%DMSO/55%ポリエチレングリコール400/40%水溶液と混合し、ボルテックスして超音波処理して、1mg/mLのおおよその透明な溶液を製造し、微多孔膜を濾過して使用した。7〜10週齢のSD雄性ラットを選択し、1mg/kgの用量で候補化合物溶液を静脈注射した。
WX325を10%のソルトール水溶液と混合し、ボルテックスし、そして超音波処理して、1mg/mLのおおよその透明な溶液を製造し、微多孔膜を濾過して使用した。7〜10週齢のSD雄性ラットを選択し、候補化合物溶液を10mg/kgの用量で経口投与した。
全血を一定期間採取し、血漿を製造し、薬物濃度をLC−MS/MS法により分析し、そして薬物動態学的パラメーターをPhoenix WinNonlinソフトウェア(Pharsight社、USA)を用いて計算した。
ビーグルイヌにおける経口及び静脈注射したWX325の薬物動態学的研究
WX325を5%DMSO/55%ポリエチレングリコール400/40%水溶液と混合し、ボルテックスして超音波処理して、1mg/mLのおおよその透明な溶液を製造し、微多孔膜を濾過して使用した。約10kgの雄ビーグルイヌを選択し、候補化合物溶液を1mg/kgの用量で静脈内投与した。
WX325を10%のソルトール水溶液と混合し、ボルテックスして超音波処理して2mg/mLの均一な懸濁液を製造し、微多孔膜を濾過して使用した。約10kgの雄ビーグルイヌを選択し、候補化合物溶液を10mg/kgの用量で経口投与した。
全血を一定期間採取し、血漿を製造し、そして薬物濃度をLC−MS/MS法により分析し、そして薬物動態学的パラメーターをPhoenix WinNonlinソフトウェア(Pharsight社、USA)を用いて計算した。
実験結果は、表5に示したとおりである。
Figure 2020508342
備考:T1/2は半減期を示し、Vdssは見かけの容量を示し、C1はクリアランスを示し、AUC0−lastは曲線下面積を示し、Tmaxはピーク時間を示し、Cmaxはピーク濃度を示し、F%は経口バイオアベイラビリティを示し、ivは静脈内注射を示し、POは経口投与を示し、mpkはmg/kgを示す。
実験結論:本発明の化合物は、イヌ薬物動態の良好な単一または部分的指数を有する。
インビボ薬力学的効果研究
AAV/HBVモデル
実験の目的:マウスにおける化合物の抗B型肝炎ウイルス効果をAAV/HBVマウスモデルによって検出した。
実験操作:最初の投与日を0日目、投与前日を−1日目、投与後日を1日目とし、このように類推する。投与前28日目に、全ての動物に尾静脈を介して1×1011v.g.のrAAV8−1.3HBVウイルスを注射し、そして各動物に200μLを注射した。rAAV8−1.3HBVウイルスを注射した全てのマウスを、投与の14日前および7日前に採血のために顎下静脈から血清を採取した。採取した血液サンプルを37℃で約30分間置き、4℃で13,200gで3分間遠心し、上清を採取した。血清を用いてHBV DNA、HBeAg及びHBsAg含有量を検出した。HBV DNA、HBsAg、HBeAgのより低いレベル、及びより軽い体重を有するマウスはおそらく実験から除外される可能性もある。選択した25匹のマウスを各群に均等に分配し、ウイルス注射後21日目の各化合物処置群におけるマウスのHBV DNA、HBsAg、HBeAgレベル及び体重に統計的差異がないことを確認した(P>0.05)。試験化合物WX325を10%のソルトール水溶液と混合し、ボルテックスして超音波処理して、均一な懸濁液を製造し、微多孔膜を濾過して使用した。陽性化合物としてのテノホビルを生理食塩水に溶解し、超音波処理しそして溶解するまで撹拌し、0.1mg/mlの母液に調合し、生理食塩水で0.01mg/mlに希釈し、そして使用するまで4℃で貯蔵した。試験化合物WX325を経口投与(PO)により各回8時間の間隔で1日2回(BID)投与した。参照化合物テノホビルを経口投与により1日2回投与した。両方の薬剤を28日間投与し、その間投与後3、7、10、及び28日目に血液サンプルを採取し、血漿中のHBV DNAレベルをqPCRによって測定した。28日目に、マウスをCO吸入によって安楽死させ、肝臓を収集し、マウスの肝臓中のHBV DNAレベルをqPCRによって検出した。実験結果は、図1及び図2に示した通りである。
実験的結論:本発明の化合物は良好なインビボ効力を示しそして用量依存的である。

Claims (18)

  1. 式(I)で表される化合物、その異性体またはその薬学的に許容される塩。
    Figure 2020508342
    [ここで、
    は、単結合及び−C1−6アルキル基(alkyl group)−から選択され、
    は、H、Cl、F、Br、Iから選択され、あるいは選択的に1、2または3個のRで置換されたC1−3アルキル基から選択され、
    は、選択的に1、2または3個のRで置換されたC1−3ヘテロアルキル基(heteroalkyl group)、4〜8員のヘテロシクロアルキル基(heterocycloalkyl group)、5〜10員のヘテロアリール基(heteroaryl group)、4〜8員の部分不飽和ヘテロシクリル基(heterocyclyl group)、フェニル基(phenyl group)、C1−3アルキル基、C3−8シクロアルキル基(cycloalkyl group)、4〜8員のヘテロシクロアルキル基−O−及び5〜10員のヘテロアリール基−O−から選択され、
    は、H及びC1−3アルキル基から選択され、
    Rは、それぞれ独立してH、Cl、F、Br、I、NH、OH、CNから選択され、あるいは選択的に1、2または3個のR’で置換されたC1−6アルキル基、C1−6ヘテロアルキル基、フェニル基、フェニル基−O−C(=O)−及び5〜6員のヘテロアリール基から選択され、
    R’は、それぞれ独立してCl、F、Br、I、NH、CH、CN及び−N(CHから選択され、
    前記C1−3ヘテロアルキル基、4〜8員のヘテロシクロアルキル基、5〜10員のヘテロアリール基、C1−6ヘテロアルキル基、5〜6員のヘテロアリール基、4〜8員の部分不飽和ヘテロシクリル基の「ヘテロ」は、それぞれ独立して−S−、−O−、−NH−、N、−C(=O)−、−O−C(=O)−、−S(=O)−、−S(=O)−、−NH−C(=O)−、−NH−C(=O)−O−から選択され、
    以上のいずれの場合において、ヘテロ原子またはヘテロ原子団の数は、それぞれ独立して1、2、3または4から選択される。]
  2. Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、あるいは選択的に1、2または3個のR’で置換されたC1−3アルキル基、C1−6アルキル基−O−C(=O)−、C1−6アルキル基−C(=O)−、C1−3アルキル基−S(=O)−、C1−3アルキル基−S(=O)−、C1−3アルキルアミノ基(alkylamino group)、フェニル基、フェニル基−O−C(=O)−及びピリジル基(pyridyl group)から選択される請求項1に記載の化合物、その異性体またはその薬学的に許容される塩。
  3. Rは、H、Cl、F、Br、I、NH、OH、CNから選択され、あるいは選択的に1、2または3個のR’で置換された
    Figure 2020508342
    から選択される請求項2に記載の化合物、その異性体またはその薬学的に許容される塩。
  4. Rは、
    Figure 2020508342
    から選択される請求項3に記載の化合物、その異性体またはその薬学的に許容される塩。
  5. は、
    Figure 2020508342
    から選択される請求項1乃至請求項4のいずれか一項に記載の化合物、その異性体またはその薬学的に許容される塩。
  6. は、選択的に1、2または3個のRで置換されたC1−3アルコキシ基(alkoxy group)、テトラヒドロフラニル基(tetrahydrofuranyl group)、チアゾリル基(thiazolyl group)、3−アザビシクロ[3.1.0]ヘキサン基(3−azabicyclo[3.1.0]hexane group)、ピリジル基、ベンズイミダゾリル基(benzimidazolyl group)、チエニル基(hienyl group)、ピラゾリル基(pyrazolyl group)、ベンゾチアゾリル基(benzothiazolyl group)、イミダゾ[1,2−a]ピリジル(imidazo[1,2−a]pyridyl)、メチル基、C1−3アルキルチオ基(alkylthio group)、C1−3アルキル基−S(=O)−、シクロペンチル基(cyclopentyl group)、フェニル基、アゼチジン基(azetidine group)、ピペリジニル基(piperidinyl group)、ピロリジニル基(pyrrolidinyl group)、オキサゾリル基(oxazolyl group)、ピロリジン−2−オン基(pyrrolidin−2−one group)、ピリジン−2(1H)−オン基(yridine−2(1H)−one group)、シクロヘキサン基(cyclohexane group)、シクロプロパン基(cyclopropane group)、イソチアゾリジン−1,1−ジオキシド基(isothiazolidine−1,1−dioxide group)、ピリミジニル基(pyrimidinyl group)、1,3,4−チアジアゾリル基(1,3,4−thiadiazolyl group)、オキサゾリジン−2−オン基(oxazolidin−2−one group)、テトラヒドロピラニル基(tetrahydropyranyl group)、シクロペンチル基−O−、ピリジル基−O−、シクロヘキサンオキシド基、1,4−ジオキサニル基(1,4−dioxanyl group)、1,4−ジオキソヘプチル基(1,4−dioxoheptyl group)、モルホリニル基(morpholinyl group)及び2,3−ジヒドロベンゾ[b][1,4]ジオキシン基(2,3−dihydrobenzo[b][1,4]dioxine)から選択される請求項1乃至請求項4のいずれか一項に記載の化合物、その異性体またはその薬学的に許容される塩。
  7. は、選択的に1、2または3個のRで置換された
    Figure 2020508342
    から選択される請求項6に記載の化合物、その異性体またはその薬学的に許容される塩。
  8. は、
    Figure 2020508342
    から選択される請求項7に記載の化合物、その異性体またはその薬学的に許容される塩。
  9. は、
    Figure 2020508342
    から選択される請求項1乃至請求項4のいずれか一項に記載の化合物、その異性体またはその薬学的に許容される塩。
  10. は、H、CH及び−CHCHから選択される請求項1乃至請求項4のいずれか一項に記載の化合物、その異性体またはその薬学的に許容される塩。
  11. 構造単位
    Figure 2020508342
    は、
    Figure 2020508342
    から選択される請求項1乃至請求項4のいずれか一項に記載の化合物、その異性体またはその薬学的に許容される塩。
  12. Figure 2020508342
    から選択される請求項1乃至請求項5または請求項9乃至請求項10のいずれか一項に記載の化合物、その異性体またはその薬学的に許容される塩。
    [ここで、
    mは、1、2または3から選択され、
    nは、1または2から選択され、
    rは、0または1から選択され、
    は、NまたはCHから選択され、
    Rは、請求項1〜4のいずれか一項に定義の通りであり、
    は、請求項1または9に定義の通りであり、
    は、請求項1または5に定義の通りであり、
    は、請求項1または10に定義の通りである。]
  13. Figure 2020508342
    から選択される請求項12に記載の化合物、その異性体またはその薬学的に許容される塩。
    [ここで、
    Rは、請求項1〜4のいずれか一項に定義の通りであり、
    は、請求項1または9に定義の通りであり、
    は、請求項1または5に定義の通りであり、
    は、請求項1または10に定義の通りであり、
    nは、請求項12に定義の通りである。]
  14. 以下の式の化合物、その異性体またはその薬学的に許容される塩。
    Figure 2020508342

    Figure 2020508342

    Figure 2020508342

    Figure 2020508342

    Figure 2020508342
  15. Figure 2020508342
    から選択される請求項14に記載の化合物、その異性体またはその薬学的に許容される塩。
  16. 活性成分として治療有効量の請求項1乃至請求項15のいずれか一項に記載の化合物、その異性体またはその薬学的に許容される塩及び薬学的に許容される担体を含む薬学的組成物。
  17. HBVに関連する疾患を治療するための薬物の製造における、請求項1乃至請求項15のいずれか一項に記載の化合物、その異性体またはその薬学的に許容される塩の応用。
  18. HBVに関連する疾患を治療するための薬物の製造における、請求項16に記載の化合物薬学的組成物の応用。
JP2019557752A 2017-02-23 2018-02-09 三環式化合物及びその応用 Active JP6764039B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN201710100309.1 2017-02-23
CN201710100309 2017-02-23
CN201710648155 2017-08-01
CN201710648155.X 2017-08-01
CN201810008592 2018-01-04
CN201810008592.X 2018-01-04
PCT/CN2018/075995 WO2018153285A1 (zh) 2017-02-23 2018-02-09 三并环类化合物及其应用

Publications (2)

Publication Number Publication Date
JP2020508342A true JP2020508342A (ja) 2020-03-19
JP6764039B2 JP6764039B2 (ja) 2020-09-30

Family

ID=63253508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019557752A Active JP6764039B2 (ja) 2017-02-23 2018-02-09 三環式化合物及びその応用

Country Status (23)

Country Link
US (1) US11053260B2 (ja)
EP (1) EP3587420B1 (ja)
JP (1) JP6764039B2 (ja)
KR (1) KR102085497B1 (ja)
CN (1) CN109071544B (ja)
AU (1) AU2018223435B2 (ja)
BR (1) BR112019017603A2 (ja)
CA (1) CA3054324C (ja)
DK (1) DK3587420T3 (ja)
ES (1) ES2874656T3 (ja)
HU (1) HUE054822T2 (ja)
IL (1) IL268827A (ja)
LT (1) LT3587420T (ja)
MX (1) MX2019010042A (ja)
MY (1) MY175445A (ja)
PH (1) PH12019501955A1 (ja)
PL (1) PL3587420T3 (ja)
PT (1) PT3587420T (ja)
RS (1) RS61913B1 (ja)
SG (1) SG11201907725SA (ja)
SI (1) SI3587420T1 (ja)
WO (1) WO2018153285A1 (ja)
ZA (1) ZA201906135B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529824A (ja) * 2018-08-23 2021-11-04 フーチェン コサンテール ファーマスーティカル カンパニー リミテッド 三環式化合物の結晶形及びその使用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210052603A1 (en) * 2018-05-03 2021-02-25 Emory University Modulators of orphan nuclear receptors for nash and other metabolic disorders
CN110172068A (zh) * 2019-06-05 2019-08-27 河南龙湖生物技术有限公司 具有抗肿瘤活性的苯并噻唑类化合物及其制备方法和应用
WO2021027566A1 (zh) * 2019-08-15 2021-02-18 福建广生堂药业股份有限公司 氧氮杂卓类化合物的制备方法
CN115702152A (zh) * 2020-04-22 2023-02-14 南京明德新药研发有限公司 内磺酰胺衍生物及其应用
EP4151221A4 (en) * 2020-05-15 2023-11-15 Fujian Akeylink Biotechnology Co., Ltd. COMBINATION COMPRISING A TRICYCLIC COMPOUND AND ITS USE IN THE PREPARATION OF A DRUG FOR THE TREATMENT OF HBV
CN114456099A (zh) * 2022-02-21 2022-05-10 八叶草健康产业研究院(厦门)有限公司 一种4-氯吡咯-2-羧酸的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060786A (zh) * 2011-01-20 2011-05-18 天津大学 4-(取代-1,3-二炔基)-4-(三氟甲基)-3,4-二氢取代喹唑啉-2-酮类化合物及其制备方法和应用
JP2016515598A (ja) * 2013-04-03 2016-05-30 ヤンセン・サイエンシズ・アイルランド・ユーシー N−フェニル−カルボキサミド誘導体およびb型肝炎を治療するための医薬品としてのその使用
JP2016537368A (ja) * 2013-11-14 2016-12-01 ノヴィラ・セラピューティクス・インコーポレイテッド アゼパン誘導体及びb型肝炎感染の治療方法
CN106459032A (zh) * 2014-05-13 2017-02-22 豪夫迈·罗氏有限公司 治疗和预防乙型肝炎病毒感染的新的二氢喹嗪酮类

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2159224T3 (pl) 2007-06-18 2012-12-31 Ruyuan Wei Xiang Tech Co Ltd Tiazolilohydropirymidyny podstawione bromofenylem
RS59430B1 (sr) * 2014-03-13 2019-11-29 Univ Indiana Res & Tech Corp Alosterni modulatori proteina jezgra hepatitisa b
TW201720802A (zh) * 2015-09-15 2017-06-16 艾森伯利生物科學公司 B型肝炎核心蛋白質調節劑
EP3366684B1 (en) 2015-10-23 2020-09-02 Takeda Pharmaceutical Company Limited Heterocyclic compound
AU2017326356A1 (en) * 2016-09-15 2019-04-11 Assembly Biosciences, Inc. Hepatitis B core protein modulators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060786A (zh) * 2011-01-20 2011-05-18 天津大学 4-(取代-1,3-二炔基)-4-(三氟甲基)-3,4-二氢取代喹唑啉-2-酮类化合物及其制备方法和应用
JP2016515598A (ja) * 2013-04-03 2016-05-30 ヤンセン・サイエンシズ・アイルランド・ユーシー N−フェニル−カルボキサミド誘導体およびb型肝炎を治療するための医薬品としてのその使用
JP2016537368A (ja) * 2013-11-14 2016-12-01 ノヴィラ・セラピューティクス・インコーポレイテッド アゼパン誘導体及びb型肝炎感染の治療方法
CN106459032A (zh) * 2014-05-13 2017-02-22 豪夫迈·罗氏有限公司 治疗和预防乙型肝炎病毒感染的新的二氢喹嗪酮类

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529824A (ja) * 2018-08-23 2021-11-04 フーチェン コサンテール ファーマスーティカル カンパニー リミテッド 三環式化合物の結晶形及びその使用
JP7118354B2 (ja) 2018-08-23 2022-08-16 福建▲広▼生中霖生物科技有限公司 三環式化合物の結晶形及びその使用

Also Published As

Publication number Publication date
HUE054822T2 (hu) 2021-10-28
CN109071544A (zh) 2018-12-21
CA3054324A1 (en) 2018-08-30
PH12019501955A1 (en) 2020-07-06
KR20190120300A (ko) 2019-10-23
MY175445A (en) 2020-06-29
MX2019010042A (es) 2020-01-13
SI3587420T1 (sl) 2021-09-30
JP6764039B2 (ja) 2020-09-30
EP3587420B1 (en) 2021-03-31
IL268827A (en) 2019-11-03
EP3587420A4 (en) 2020-02-19
PL3587420T3 (pl) 2021-10-11
LT3587420T (lt) 2021-07-12
ES2874656T3 (es) 2021-11-05
ZA201906135B (en) 2021-04-28
RS61913B1 (sr) 2021-06-30
WO2018153285A1 (zh) 2018-08-30
PT3587420T (pt) 2021-06-04
AU2018223435B2 (en) 2020-12-24
DK3587420T3 (da) 2021-06-07
KR102085497B1 (ko) 2020-03-05
BR112019017603A2 (pt) 2020-03-24
CN109071544B (zh) 2020-03-17
EP3587420A1 (en) 2020-01-01
SG11201907725SA (en) 2019-09-27
AU2018223435A1 (en) 2019-10-10
US20200247819A1 (en) 2020-08-06
CA3054324C (en) 2020-12-01
US11053260B2 (en) 2021-07-06

Similar Documents

Publication Publication Date Title
JP2020508342A (ja) 三環式化合物及びその応用
CN107531711B (zh) Janus激酶抑制剂
EP3290418B1 (en) Janus kinase (jak) inhibitors
US10513514B2 (en) Piperidine compounds as PCSK9 inhibitors
CN110325517B (zh) 螺环类化合物及其应用
JP2019519606A (ja) チオフェン化合物、その合成方法及び医療における応用
KR20200027925A (ko) B형 간염 바이러스의 표면항원 억제제
JP7237010B2 (ja) Hdac6選択的阻害剤およびその製造方法と使用
CN109563051B (zh) 作为pde4抑制剂的并环类化合物
CN110461855B (zh) 氮杂环丁烷衍生物
TWI706950B (zh) 二氮雜-苯並熒蒽類化合物
EP3738961B1 (en) Heterocyclic compound as csf-1r inhibitor and use thereof
CN110914243B (zh) 作为at2r受体拮抗剂的羧酸衍生物
CN109952290B (zh) Fgfr4抑制剂及其制备方法和应用
EA038176B1 (ru) Производные пирроло-[1,2,5]бензотиадиазепина и их применение для лечения заболевания, вызванного вирусом гепатита в
WO2024114814A1 (en) Jak inhibitors, pharmaceutical compositions, and therapeutic applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191023

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200910

R150 Certificate of patent or registration of utility model

Ref document number: 6764039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250