JP7118354B2 - 三環式化合物の結晶形及びその使用 - Google Patents

三環式化合物の結晶形及びその使用 Download PDF

Info

Publication number
JP7118354B2
JP7118354B2 JP2021510079A JP2021510079A JP7118354B2 JP 7118354 B2 JP7118354 B2 JP 7118354B2 JP 2021510079 A JP2021510079 A JP 2021510079A JP 2021510079 A JP2021510079 A JP 2021510079A JP 7118354 B2 JP7118354 B2 JP 7118354B2
Authority
JP
Japan
Prior art keywords
compound
solution
added
formula
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021510079A
Other languages
English (en)
Other versions
JP2021529824A (ja
Inventor
静 王
志▲カン▼ 江
▲海▼▲鷹▼ ▲賀▼
▲ヤ▼▲シン▼ ▲楊▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Akeylink Biotechnology Co Ltd
Original Assignee
Fujian Akeylink Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Akeylink Biotechnology Co Ltd filed Critical Fujian Akeylink Biotechnology Co Ltd
Publication of JP2021529824A publication Critical patent/JP2021529824A/ja
Application granted granted Critical
Publication of JP7118354B2 publication Critical patent/JP7118354B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/554Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Steroid Compounds (AREA)

Description

本発明は出願日が2018年8月23日である中国特許出願CN2018109690068の優先権を主張する。本出願は当該中国特許出願の全文を引用する。
本発明は式(I)の化合物のA結晶形及びB結晶形、並びにHBV関連疾患を治療する医薬の製造におけるその使用を開示する。
B型肝炎は、B型肝炎ウイルスの侵入によって引き起こされる炎症反応であり、肝痛、肝脾腫大、肝線維症などの一連の問題を引き起こす可能性があり、厳重な場合、肝硬変、乃至は肝がんを引き起こすこともある。統計によると、世界には約3.5~4億のB型肝炎ウイルスキャリアがあり、その3分の1のキャリアが中国にあり、中国では毎年、B型肝炎による死亡者数が50万人を超えている。
今の段階で、全世界の範囲内でB型肝炎を治療する特効薬はまだなく、中国のB型肝炎治療の第一選択薬は主にヌクレオシド薬、インターフェロン及び漢方薬があるが、コストが高く、再発し易いなどの問題があるため、新しいタイプの抗B型肝炎薬を開発することは不可欠である。
国際公開第2008154817A1号はGLS4を開示し、その構造は以下の通りである。
Figure 0007118354000001
(発明の開示)
本発明は粉末X線回折スペクトルが以下の2θ角:5.56±0.2°、15.56±0.2°及び16.17±0.2°において特徴的な回折ピークを有する、式(I)の化合物のA結晶形を提供する。
Figure 0007118354000002
本発明の幾つかの実施の態様において、前記A結晶形の粉末X線回折スペクトルは以下の2θ角:5.56±0.2°、10.84±0.2°、15.56±0.2°、16.17±0.2°、22.14±0.2°、22.70±0.2°、27.76±0.2°及び28.44±0.2°において特徴的な回折ピークを有する。
本発明の幾つかの実施の態様において、前記A結晶形のXRPDスペクトルは図1に示された通りである。
本発明の幾つかの実施の態様において、前記A結晶形のXRPDスペクトル解析データは表1に示された通りである。
Figure 0007118354000003
本発明の幾つかの実施の態様において、前記A結晶形の示差走査熱量曲線は229.95℃において吸熱ピークの開始点を有する。
本発明の幾つかの実施の態様において、前記A結晶形のDSCスペクトルは図2に示された通りである。
本発明の幾つかの実施の態様において、前記A結晶形の熱重量分析曲線は62±3℃の際に重量が0.3382%減少し;230±3℃の際に重量が0.8753減少する。
本発明の幾つかの実施の態様において、前記A結晶形のTGAスペクトルは図3に示された通りである。
本発明は更に、粉末X線回折スペクトルが以下の2θ角:12.70±0.2°、15.64±0.2°及び23.03±0.2°において特徴的な回折ピークを有する、式(I)の化合物のB結晶形を提供する。
本発明の幾つかの実施の態様において、前記B結晶形の粉末X線回折スペクトルが以下の2θ角:9.56±0.2°、12.70±0.2°、14.41±0.2°、15.64±0.2°、19.70±0.2°、23.03±0.2°、23.98±0.2°及び27.65±0.2°において特徴的な回折ピークを有する。
本発明の幾つかの実施の態様において、前記B結晶形のXRPDスペクトルは図4に示された通りである。
本発明の幾つかの実施の態様において、前記B結晶形のXRPDスペクトル解析データは表2に示された通りである。
Figure 0007118354000004
本発明の幾つかの実施の態様において、前記B結晶形の示差走査熱量曲線は233.59℃において吸熱ピークの開始点を有する。
本発明の幾つかの実施の態様において、前記B結晶形のDSCスペクトルは図5に示す通りである。
本発明の幾つかの実施の態様において、前記B結晶形の熱重量分析曲線は120±3℃の際に重量が0.04890%減少する。
本発明の幾つかの実施の態様において、前記B結晶形のTGAスペクトルは図6に示された通りである。
本発明は更に、HBV関連疾患を治療するための医薬の製造における、前記A結晶形及びB結晶形の使用を提供する。
[技術効果]
本発明の式(I)の化合物のA結晶形およびB結晶形は、安定であり、熱および湿度による影響が少なく、良好な生体内投与効果を有し、医薬に調製するための見通しがある。
[定義と説明]
特に説明しない限り、本明細書に用いられる以下の用語と句は下記の意味を含む。一つの特定の句又は用語は、特に定義されていない場合、不確定か不明であると考えられるものではなく、一般的な意味で理解すべきである。本明細書に商品名が現れる場合、その対応する商品又はその活性成分を表すことが意図される。
本発明の中間体化合物は、以下に挙げられる具体的な実施の態様、他の化学合成法と組み合わせた実施の態様、及び当業者に周知である等価の置き換え方式を含む、当業者に周知である複数の合成方法により調製することができ、好ましい実施の態様は、本発明の実施例が挙げられるが、これらに限定されるものではない。
本発明の具体的な実施の態様の化学反応は適当な溶剤において完成されるものであり、前記溶剤は本発明の化学変化及びその必要な試薬及び材料に適しなければならない。本発明の化合物を得るために、当業者は従来の実施の態様に基づき合成ステップ又は反応フローを変形又は選択する必要があることがある。
以下に実施の形態により本発明を詳しく説明するが、これらの実施の形態は本発明を何らか制限するものではない。
本発明に用いられる全ての溶剤は市販されるものであり、さらに精製することなく使用できる。
本発明に用いられる全ての溶剤は市販で入手できる。本発明は下記の略語を用いる:EtOHはエタノールを表し;MeOHはメタノールを表し;TFAはトリフルオロ酢酸を表し;TsOHはp-トルエンスルホン酸を表し;mpは融点を表し;EtSOHはエタンスルホン酸を表し;MeSOHはメタンスルホン酸を表し;THFはテトラヒドロフランを表し;EtOAcは酢酸エチルを表し;THFはテトラヒドロフランを表し;EAは酢酸エチルを表し;DMAPは4-ジメチルアミノピリジンを表し;DCMはジクロロメタンを表し;DIPEAはN,N-ジイソプロピルエチルアミンを表す。
粉末X線回折計(XRPD)
約10~20mgの試料をXRPDの検出に用いる。
詳細なXRPDパラメータは下記の通りである。
X線管:Cu,kα,(λ=1.54056Å)
管電圧:40kV、管電流:40mA
発散スリット:0.60mm
センサスリット:10.50mm
散乱防止スリット:7.10mm
走査範囲:3~40deg又は4~40deg
ステップ角:0.02deg
ステップ幅:0.12秒
試料パン回転速度:15rpm
示差走査熱量計(DSC)
サンプル(0.5~1mg)をDSCアルミニウム製坩堝に量り取って測定を行い、方法は50mL/min Nの条件下で、10℃/minの昇温速度で、サンプルを30℃から300℃まで加熱する。
熱重量分析計(TGA)
サンプル(2~5mg)をTGA白金坩堝に量り取って測定を行い、25mL/min、Nの条件下で、10℃/minの昇温速度で、サンプルを室温から300℃まで、又は重量が20%減少するまで加熱する。
動的水蒸気吸着分析(DVS)
測定条件:約10~15mgの試料をDVSサンプルパンに取って検出する。
詳細なDVSパラメータは以下の通りである。
温度:25℃
平衡:dm/dt=0.01%/分(最短:10分、最長:180分)
乾燥:0%RH下で120分乾燥
RH(%)測定の勾配:10%
RH(%)測定の勾配範囲:0%~90%~0%
Figure 0007118354000005
*25℃/80%RHにおける吸湿性重量増加。
式(I)の化合物のA結晶形のCu-Kα線のXRPDスペクトルである。 式(I)の化合物のA結晶形のDSCスペクトルである。 式(I)の化合物のA結晶形のTGAスペクトルである。 式(I)の化合物のB結晶形のCu-Kα線のXRPDスペクトルである。 式(I)の化合物のB結晶形のDSCスペクトルである。 式(I)の化合物のB結晶形のTGAスペクトルである。 血漿中のB型肝炎ウイルスのDNAレベルであり;破線1はブランク対照を表し、10%のsolutol水溶液を1日1回(QD)で経口投与(PO)する方法で投与することを表し;破線2は、15mg/kgの用量のWX-325を1日2回(BID)、毎回8時間間隔で経口投与(PO)する方法で投与することを表し;破線3は、50mg/kgの用量のWX-325を1日2回(BID)、毎回8時間間隔で経口投与(PO)する方法で投与することを表し;破線5は、150mg/kgの用量のWX-325を1日2回(BID)、毎回8時間間隔で経口投与(PO)する方法で投与することを表し;破線6は、15mg/kgの用量の陽性化合物であるテノホビル(TDF)を1日2回(BID)、毎回8時間間隔で経口投与(PO)する方法で投与することを表し;LLOQは検出下限を表し、注:図7のWX-325は本発明の式(I)の化合物を表す。 28日目の肝臓におけるB型肝炎ウイルスのDNAレベルであり;注:QDは1日1回の投与を表し;BIDは1日2回の投与を表し;MPKはmg/kgを表し;Vehicleはブランク対照群を表し;注:図8のWX-325は本発明の式(I)の化合物を表す。
本発明の内容がよりよく分かるように、以下に具体的な実施の形態を参照しながらさらに説明するが、具体的な実施の態様は本発明の内容を制限するものではない。
実施例1 式(I)の化合物の調製
Figure 0007118354000006
合成スキーム:
Figure 0007118354000007
工程1:化合物1-Aの合成
無水ジクロロメタン(5L)を10Lの乾燥した三ツ口フラスコに添加し、攪拌を開始させ、順次に化合物1-SMA(500.00g)とニトロメタンを三ツ口フラスコに添加し、系をドライアイスエタノールバスに置き、-10℃まで冷却させた。温度を-10℃~0℃に制御し、反応フラスコに三塩化アルミニウム(1.15kg)をゆっくりと添加し、温度を-0℃未満に制御し、α,α-ジクロロジメチルメチルエーテル(495.00g)をゆっくりと反応ケトルに添加し、ゆっくりと室温に昇温させ、18時間攪拌した。TLC(PE:EA3:1)で原料ポイントが消失し、極性の高い新しいポイントが生成したことをモニタリングした。反応溶液を吸引し、ゆっくりと10%の硫酸水素カリウム溶液(3L)に滴下し、20分間攪拌し、砕いた氷を入れて過熱を防止した。混合溶液を25Lの分離漏斗に移し、静置して分層し、分層してジクロロメタン層を得、水相をジクロロメタン(2L×2)で抽出した。有機相を10%の硫酸水素カリウム溶液(5L×2)で洗浄し、有機相を分離し、無水硫酸ナトリウム(1kg)で乾燥させた。有機相を減圧濃縮して、暗緑色の固体化合物1-Aを得た。
H NMR(400MHz、重水素化クロロホルム)δ=9.97(brs、1H)、9.87~9.82(m、1H)、7.58(dd、J=1.5、3.3Hz、1H)、7.36~7.29(m、1H)、4.37(q、J=7.1Hz、2H)、1.38(t、J=7.2Hz、3H)。
工程2:化合物1-Bの合成
化合物1-A(2kg、11.96mol)のTHF(20L)溶液にp-トルエンスルホニルヒドラジド(2.23kg、11.96mol)を添加した。20℃下で約1時間攪拌した。TLCは原料が消失したことを表し、反応系を60℃に昇温させ、次にバッチにシアノ水素化ホウ素ナトリウム(902g,14.36mol)を添加し、添加完了後、反応系を70℃に昇温させ、3時間攪拌した。加熱を停止し、室温に冷却させた後、5Lの水を添加して反応をクエンチングさせ、減圧して大部分のTHFを除去し、残留物を大量のEA(1.5L×3)で抽出した。有機相合わせ、有機相を飽和塩化ナトリウムで洗浄し、無水硫酸ナトリウムで乾燥させた。濾過、減圧して溶媒を除去し、粗生成物をカラムクロマトグラフィーにより、淡黄色の固体化合物1-Bを得た。
工程3:化合物1-Cの合成
メタノール(32L)を50Lのジャケット付きのケトルに添加し、攪拌を開始させ、順次に化合物1-SMB(4000.00g)とジイソプロピルエチルアミン(5.25L)を添加し、内部温度を5~10℃に冷却させ、ゆっくりとベンジルメルカプタン(2490.00g)を滴下し、内部温度を5~15℃に維持させた。滴下完了後、冷却システムを閉じ、自然に昇温させ、続いて2.5時間攪拌した。攪拌を停止し、回転速度を100rpmに調整し、反応溶液を放出し、卓上フィルターで濾過し、濾過してケーキを得た。ケーキを水(5L)で3回洗浄した後、EtOH(3L)を添加して1回洗浄してケーキが粘稠でなくなるまで吸引濾過し、淡黄色の固体化合物1-Cを得た。
工程4:化合物1-Dの合成
ジクロロメタン(7.5L)を50Lのチャンバーに添加し、攪拌を開始させ、化合物1-C(1500g)を添加し、内部温度を0~10℃に冷却させ、HCl溶液(6M、4.12L)を添加した。0~10℃の条件下で、開口して次亜塩素酸ナトリウム溶液(市販の8%の溶液、23.0kg)の添加が完了し、滴下完了後、冷却系を閉じ、開口して続いて約17時間撹拌した。次に、それに亜硫酸水素ナトリウム溶液(1000g、5Lの水溶液)を添加し、ヨウ化カリウムでんぷん紙で水相に酸化剤が残っていないことを検出した。攪拌を停止し、静置して分層し、ジクロロメタン層を収集し、水層をジクロロメタン(2.5L)で抽出し、ジクロロメタン層を合わせた。有機相を無水硫酸ナトリウムで乾燥させ、濾過し、減圧して溶媒を除去して、白色の固体化合物1-Dを得た。
H NMR(400MHz、重水素化クロロホルム)δ=8.50~8.43(m、2H)、8.34(d、J=8.2Hz、1H)、4.04(s、3H)。
工程5:化合物1-Eの合成
テトラヒドロフラン(10L)を50Lの乾燥したジャケット付きのケトルに添加し、攪拌を開始させ、化合物1-B(2000g)を添加し、内部温度を0~10℃に冷却させた。1.5時間内に温度を0~15℃に維持させ、カリウムtert-ブトキシド(1MのTHF溶液、15.67L)を添加し、完了後、温度を約20℃に昇温させ、続いて1時間撹拌した。温度を0~10℃に冷却させ、ゆっくりと化合物1-D(4380g)のテトラヒドロフラン(10L)溶液を添加した。添加完了後、温度をゆっくりと15℃に昇温させ、続いて約16時間攪拌した。酢酸エチル(10L)を添加して抽出し、有機相を飽和塩化ナトリウム溶液(10L)で2回洗浄し、水相を合わせ、EA(5L)で抽出し、有機相を合わせた。有機相を減圧して溶媒を除去し、淡黄色の固体化合物1-Eを得た。
H NMR(400MHz、DMSO-d6)δ=8.55(d、J=1.4Hz、1H)、8.37(dd、J=1.5、8.3Hz、1H)、7.91(d、J=8.3Hz、1H)、7.60(s、1H)、7.13(d、J=1.8Hz、1H)、4.02(q、J=7.0Hz、2H)、3.93(s、3H)、2.10(s、3H)、1.08(t、J=7.1Hz、3H)。
工程6:化合物1-SM1の合成
化合物1-E(1000.0g)を10Lの乾燥した三ツ口フラスコに添加し、攪拌を開始させ、氷酢酸(5L)を添加し、反応の内部温度を25~30℃に制御した。ゆっくりと鉄粉(1eq、140.9g)を添加し、30分間攪拌してから、ゆっくりと第2バッチの鉄粉(0.5eq、70.44g)を添加し、続いて30分間攪拌した後第3バッチの鉄粉(0.5eq、70.44g)を添加し、また30分間攪拌した後、第4バッチの鉄粉(0.5eq、70.44g)を添加し、続いて原料が消失し、極性の高い新しいポイントが形成されるまで攪拌した。攪拌を停止し、反応溶液を25Lに移して分離し、10Lの酢酸エチルを添加し、飽和硫酸水素ナトリウム水溶液5L×2で洗浄し、分層し、水相を5Lの酢酸エチルで逆抽出した。有機相を合わせ、pH>8になるまで有機相を10%のNaOH水溶液で洗浄し、有機相を分離して収集した。有機相を減圧濃縮して、白色固体化合物1-SM1を得た。
HNMR(400MHz、DMSO-d6)δ=7.79~7.71(m、2H)、7.50(d、J=1.8Hz、1H)、7.14(dd、J=1.7、8.5Hz、1H)、6.96(d、J=2.0Hz、1H)、6.42(s、2H)、4.11(q、J=7.2Hz、2H)、3.84(s、3H)、2.04(s、3H)、1.16(t、J=7.1Hz、3H)。
工程7:化合物1-Fの合成
トルエン(12L)を50Lの乾燥したジャケット付きのケトルに添加し、攪拌を開始させ、2-ブロモエタノール(9930g)を添加し、その後、三フッ化ホウ素エーテル(268g)を添加し、反応を30~35℃に昇温させた。ゆっくりと化合物1-SMC(3500g)を滴下し、約1.5時間で滴下を完了させ、この時、反応の内部温度は約55~65℃に上昇し、ヒーターの温度を60℃に調整して内部温度を55~65℃で1時間維持させた。系の内部温度を約10℃に冷却させ、反応系にゆっくりと約20℃の水酸化ナトリウム水溶液(3783g、水17.5L)を添加し、内部温度を10~20℃に維持させた。NaOH溶液の添加が完了した後、温度制御を閉じ、反応を続いて約16時間撹拌した。攪拌を停止し、静置し、分層し、水層を2-メチルテトラヒドロフラン(10L)で抽出し、有機相を合わせ、水(10L)で洗浄し、静置し、分層し、有機相を収集した。有機相を減圧濃縮して、無色のオイル状化合物1-Fを得た。
H NMR(400MHz、重水素化クロロホルム)δ=3.87~3.71(m、4H)、3.66~3.59(m、3H)、3.42(dd、J=6.0、11.7Hz、1H)、3.20~3.13(m、1H)、2.79(t、J=4.6Hz、1H)、2.65~2.59(m、1H)。
工程8:化合物1-Gの合成
水酸化ナトリウム(3240g、水15L)水溶液を50Lの乾燥したジャケット付きのケトルに添加し、化合物1-F(4430g)を添加し、加熱を開始させ、反応を90℃に昇温させた後、続いて1時間撹拌した。冷却を開始させて約15℃に冷却させ、p-トルエンスルホニルクロリドテトラヒドロフラン溶液(6180g、テトラヒドロフラン15L)を添加し、温度制御を閉じ、続いて反応を約15℃で約16時間撹拌した。攪拌を停止し、静置し、分層し、水相を2-メチルテトラヒドロフラン(10L)で抽出し、2-メチルテトラヒドロフラン相(白色の不溶性物質が存在し、水で洗浄した後消失した)を水(5L)で洗浄し、有機相を合わせた。有機相にDMAP(500g)、トリエチルアミン(2.5L)を添加し、30分間撹拌し、飽和塩化ナトリウム溶液(10L)を添加して洗浄し、静置して分層し、水相を捨てた。有機相を硫酸水素カリウム溶液(3800g、水15L)、飽和塩化ナトリウム溶液(5L×2回)で洗浄し、静置して分層し、有機相を収集した。有機相を減圧濃縮して溶媒を除去し、粗生成物化合物1-Gを得た。
H NMR(400MHz、重水素化クロロホルム)δ=7.77(d、J=8.3Hz、2H)、7.34(d、J=8.2Hz、2H)、4.03~3.91(m、2H)、3.80~3.49(m、8H)、3.33(dd、J=9.9、11.4Hz、1H)、2.43(s、3H)。
工程9:化合物1-Hの合成
アセトン(30L)をきれいな50Lのジャケット付きのケトルに添加し、攪拌を開始させ、化合物1-G(4500g)を添加し、次にヨウ化ナトリウム(6190g)を添加し、加熱を開始させ、反応を75℃に昇温させた後、続いて16時間撹拌した。室温まで冷却させた後、濾過し、濾液を50℃で減圧濃縮した。濃縮した後の粗生成物に酢酸エチル(15L)、水(10L)を添加し、攪拌し、静置して分層し、有機相を0.5Mのチオ硫酸ナトリウム(10L)で洗浄した。水相とチオ硫酸ナトリウム溶液を合わせた後、EtOAc(5L)で抽出した。有機相を合わせ、飽和塩化ナトリウム溶液(10L)で洗浄し、静止し、分層し、有機相を収集した。有機相を減圧濃縮して溶媒を除去し、粗生成物化合物1-Hを得た。
HNMR(400MHz、重水素化クロロホルム)δ=3.90~3.83(m、2H)、3.81~3.75(m、2H)、3.74~3.65(m、5H)、3.63~3.49(m、7H)、3.31~3.18(m、3H)、3.06~3.04(m、2H)。
工程10:化合物1-Iの合成
DMSO(20L)をきれいな50Lのジャケット付きのケトルに添加し、攪拌を開始させ、化合物1-H(4700g)を添加し、温度を35℃に昇温させ、次にシアン化ナトリウム(1010g)を添加し、反応温度を20分以内に約60℃に昇温させた。次に徐々に温度を35℃まで冷却させ、続いて約16時間撹拌した。反応系に炭酸水素ナトリウム溶液(炭酸水素ナトリウム2000g、水10L)を添加し、続いて約5分間撹拌し、EtOAc:MeOH(20L、2L)を添加し、続いて2分間撹拌し、約1時間静置した。分層し、下層の溶液を約30L分離して出し、EtOAc:MeOHで2回(1回目は15L:1.5L、2回目は5L:0.5L)抽出した。抽出した後の上層の有機相と残りの反応溶液の上層を合わせ、飽和塩化ナトリウム溶液(各10L)で3回洗浄し、静止し、分層し、水相を捨て、有機相を収集した。減圧して有機相から溶媒を除去し、粗生成物をカラムクロマトグラフィーにより無色のオイル状化合物1-Iを得た。
H NMR(400MHz、重水素化クロロホルム)δ=3.84~3.65(m、6H)、3.61~3.53(m、2H)、3.35(t、J=10.5Hz、1H)、2.49~2.44(m、2H)。
工程11:化合物1-Jの合成
アルゴンガスの保護下で、乾燥した水素化ボトルにラネーニッケル(10.00g、116.73mmol)とEtOH(150mL)を添加し、次に系に1-I(20g、157.31mmol)、NH.HO(13.65g、97.36mmol、15.00mL、純度:25%)を添加し、その後置換し、反応を50psi、50℃で3.5時間撹拌した。反応溶液を硅藻土で濾過し、濾液を減圧濃縮して、黄色のオイル状化合物1-Jを得た。
H NMR(400MHz、重水素化クロロホルム)δ=3.82~3.57(m、6H)、3.34-3.18(m、1H)、2.86~2.72(m、2H)、1.60~1.38(m、2H)。
工程12:化合物1-SM2の合成
1-J(800.00g)を5Lの三ツ口フラスコに添加し、攪拌を開始させ、約0.5時間以内に酢酸エチル(800mL)を添加し、系がpH<5になるまで、4MのHCl/EtOAc(1.6L)をゆっくりと滴下し、内部温度を5~15℃に維持させた。冷却システムを閉じ、室温まで昇温させ、続いて1時間攪拌した。攪拌を停止し、卓上フィルターで濾過し、濾過してケーキを得た。ケーキを減圧濃縮(40~45℃)して、粗生成物を得た。前記生成物にアセトニトリル(2mL/g)を添加し、1時間スラリー化した。濾過し、ケーキを別々に収集し、減圧して有機溶液を除去し、白色の固体化合物1-SM2を得た。
H NMR(399MHz、METHANOL-d4)δ=3.88~3.72(m、5H)、3.67~3.59(m、1H)、3.36~3.31(m、1H)、3.14(t、J=6.7Hz、2H)、1.87~1.67(m、2H)。
工程13:化合物1-1-A及び化合物1-1-Bの合成
トルエン(20L)を50Lの乾燥したジャケット付きのケトルに添加し、攪拌を開始させ、化合物1-SM1(2500g)を添加し、内部温度を30~35℃に昇温させた。窒素ガスのパージにより、ケトル内の不活性ガス雰囲気を維持し、トリメチルアルミニウム(3.0L、Al(CHの添加によりケトル内の温度はゆっくりと上昇した)を滴下し、完了後、窒素ガスを閉じ、温度を80~85℃に昇温させ、続いて16時間攪拌した。冷却を開始させ、反応温度を20~30℃に冷却させ、約12Lである反応溶液の半分を移し、EtOAc(10L)を添加して均一に混合した。撹拌しながら、混合溶液を10%のKHSO溶液(10L)に添加し、2分間撹拌し、静止し、分層し、有機層を再び10%のKHSO溶液(10L)で洗浄し、水相を合わせ、DCM(各7.5L)で2回抽出した。残り半分の反応溶液を約12L移し、処理方法は上記と同じで、有機相を合わせ、有機相を減圧濃縮して粗生成物を得、2倍の容積のn-ヘプタンを添加して1時間スラリー化した。濾過し、真空で>12時間乾燥させ、温度は40℃で、P≦-0.1Mpaであった。得られた白色固体は、化合物1-1-Aと化合物1-1-Bの混合物であった。
工程14:化合物1-2の合成
テトラヒドロフラン(3840mL)を10Lの三ツ口フラスコに添加し、攪拌を開始させ、化合物1-1-Aと化合物1-1-Bの混合物(480.00g)を添加し、ゆっくりとLiOH.HO(118.84g)のHO(960mL)溶液を滴下した。滴下完了後、60℃に昇温させ、1時間撹拌し、反応溶液に濃HClを添加し、系のpHを2に調整し、撹拌を停止した。静置し、分離した。水相をTHF(600mL)で2回抽出し、有機相を合わせた。有機相を減圧濃縮(40~45℃)し、固体を純水(2mL/g)で0.5時間スラリー化し、濾過し、ケーキを真空で>12時間乾燥させ、温度は40℃で、P≦-0.1Mpaで、淡黄色の固体化合物1-2を得た。
H NMR(399MHz、DMSO-d6)δ=11.19(s、1H)、8.09(d、J=8.2Hz、1H)、8.00(d、J=1.6Hz、1H)、7.88(dd、J=1.5、8.3Hz、1H)、7.39(dd、J=1.2、2.0Hz、1H)、7.01(d、J=2.0Hz、1H)、2.05(s、3H)。
工程15:式(I)化合物の合成
DMF(2.25L)を5Lの三ツ口フラスコに添加し、攪拌を開始させ、順次に化合物1-2(400.00g)およびHATU(744.83g)を添加し、30分間撹拌し、次に化合物1-SM2(229.86g)が添加した。1時間以内に室温でDIPEA(568.68mL)をゆっくりと滴下し、滴下完了後、室温で攪拌し、16時間攪拌した。反応溶液を分液漏斗に移し、酢酸エチル(2L)と純水(1L)を添加し、2分間撹拌した。静置し、水相を分離した。次に、純水(1L)を添加して洗浄し、攪拌し、静置し、分層した。水相を合わせてEtOAc(500mL)で3回抽出し、有機相を合わせた。有機相を順次に炭酸ナトリウム溶液(1.5L)で2回洗浄し、硫酸水素カリウム溶液(1L)で2回洗浄し、純水(1L)で2回洗浄した。有機相を減圧濃縮(40~45℃)して、粗生成物を得た。粗生成物に酢酸エチル(2mL/g)を添加し、1時間スラリー化した。濾過し、ケーキを収集して式(I)化合物を得た。
H NMR(400MHz、DMSO-d6)δ=11.13(brs、1H)、8.73(brt、J=5.5Hz、1H)、8.05(d、J=8.2Hz、1H)、7.83(d、J=1.3Hz、1H)、7.74(dd、J=1.5、8.4Hz、1H)、7.36(s、1H)、6.98(d、J=2.0Hz、1H)、3.71~3.48(m、5H)、3.45~3.31(m、1H)、3.45~3.30(m、1H)、3.27~3.21(m、1H)、3.14(dd、J=9.9、11.2Hz、1H)、2.03(s、3H)、1.53(q、J=7.0Hz、2H)。
実施例2.式(I)化合物のA結晶形の調製
35mgの式(I)の化合物1.5mLを液相バイアルに量り取り、400μLのtert-ブチルメチルエーテルを添加し、超音波で混合または溶解させた。懸濁液サンプルを恒温シェーカー(40℃)に置き、3日間攪拌(光を避ける)した。次に、サンプル溶液を迅速に遠心分離し、遠心分離後の固体を30℃の真空乾燥箱に入れて5時間乾燥させ、得られた乾燥サンプルをXRPDで検出して、式(I)の化合物のA結晶形を得た。
実施例3.式(I)の化合物のB結晶形の調製
式(I)化合物35mgを1.5mLの液相バイアルに量り取り、400μLのアセトンを添加し、超音波で混合または溶解させた。懸濁液サンプルを恒温シェーカー(40℃)に置き、3日間攪拌(光を避ける)した。次に、サンプル溶液を迅速に遠心分離し、遠心分離後の固体を30℃の真空乾燥箱に入れて5時間乾燥させ、得られた乾燥サンプルをXRPDで検出して、式(I)の化合物のB結晶形を得た。
実施例4.式(I)の化合物のB結晶形の予備安定性試験
Figure 0007118354000008
注:
Xは試験項目を表し、XRPD、含有量及び関連物質を含み、0日目のサンプルは-20℃に保存し;
ICHは指導サンプルを放置した光照射条件を表し、即ち(光照射(総照度≧1.2×10Lux・hr/近紫外線≧200w・hr/m、開口)を表した。
実験ステップ:
10mgの式(I)の化合物のB結晶形を秤量して40mLのガラス瓶の底部に置き、薄層に広げ、アルミホイルで管口をよく縛り(光照射サンプルは除外)、刺して小さな穴を開け、サンプルが周囲の空気と十分に接触できるようにした。光照射サンプルは40mLのガラス瓶の底に置き、開口し、垂直にライトボックスに置き;遮光対照品は、開口し、垂直に置き、ガラス瓶の外はスズホイルで包んだ。各条件の時点で2部を並行して秤量し、他に適量のサンプル(秤量しない)をXRPD検出のために使用し、準備済みのサンプルは以下の表に示す条件に放置し、それぞれ時間点に達した後サンプルを取り、HPLCで分析し、分析方法をは表4に示す通りであり、実験結果は表5に示す通りであった。
HPLC分析:
1.1.希釈剤と移動相の調製
希釈剤:アセトニトリル:水(2:1)
例:1000mLのアセトニトリルと500mLの水を取り、均一に混合し、超音波で脱気し、室温まで冷却させた。
移動相A:0.1%のトリフルオロ酢酸水溶液
例:2.0mLのトリフルオロ酢酸を2Lの水に取、均一に混合し、超音波で脱気し、室温まで冷却させた。
移動相B:100%アセトニトリル
1.2.対照サンプルとサンプル溶液の調製
式(I)の化合物のB結晶形を対照品とし、5mgの式(I)の化合物のB結晶形を秤量してガラス瓶に置き、濃度が1mg/mLになるまで5mLの希釈剤を添加し、超音波でよく混合し、再び5倍に希釈し、対照品サンプル溶液STD1を得た。STD1を1、2、4、20、200倍に希釈して1%の対象品サンプル溶液とした。
1.3.試験サンプル溶液の調製
各試験サンプルに濃度が10mLになるまでに希釈剤を添加し、超音波で溶解させ、室温まで冷却させた後HPLC試験を行った。
同時に、サンプル溶液を5倍に希釈し、よく混合した後、HPLC試験を行い、分析方法は表4に示す通りであった。
Figure 0007118354000009
Figure 0007118354000010
注:“-”は検出されていないことを表し;
TRSは、メインピーク以外の残りの不純物の合計を表し;
Assayはサンプルの含有量を表す。
実験結論:式(I)の化合物のB結晶形は、高温および高湿度条件下で安定であった。
実施例5.HBVの体外試験定量qPCR試験
1.実験目的:
リアルタイムの定量qPCR試験(real time-qPCR)を利用してHepG2.2.15細胞内のHBV DNA含有量を検出し、化合物のEC50値を指標として使用してHBVに対する化合物の阻害効果を評価する。
2.実験材料:
2.1.細胞系:HepG2.2.15細胞
HepG2.2.15細胞培地(DMEM/F12、Invitrogen-11330057;10%の血清、Invitrogen-10099141;100units/mLのペニシリン及び10μg/mLのストレプトマイシン、Invitrogen-15140122;1%の非必須アミノ酸、Invitrogen-11140076;2mMのL-グルタミン、Invitrogen-25030081;300μg/mlのジェネティシン、Invitrogen-10131027。
2.2.試薬:
パンクレアチン(Invitrogen-25300062)
DPBS(Hyclone-SH30028.01B)
DMSO(Sigma-D2650-100ML)
ハイスループットDNA精製キット(QIAamp 96 DNA Blood Kit、Qiagen-51162)
ファストスタートユニバーサルプローブマスター(FastStart Universal Probe Master、Roche-04914058001)
2.3.消耗品および機器:
96ウェル細胞培養プレート(Corning-3599)
COインキュベーター(HERA-CELL-240)
光学シールフィルム(ABI-4311971)
定量PCR96ウェルプレート(Applied Biosystems-4306737)
蛍光定量PCR装置(Applied Biosystems-7500 real time PCR system)
3.実験のステップと方法:
3.1.HepG2.2.15細胞(4x10セル/ウェル)を96ウェルプレートに植え、37℃、5%のCOで一晩インキュベーションした。
3.2.2日目に、化合物を希釈し、合計8つの濃度、3倍に勾配希釈した。異なる濃度の化合物を培養ウェルに添加し、2反複ウェルを設定した。培地のDMSOの最終濃度は1%であった。1μMのGLS4を100%阻害対照とし、1%のDMSOは0%阻害対照とした。
3.3.5日目に、化合物を含む新しい培地に変更した。
3.4.8日目に、培養ウェルの培養液を回収し、ハイスループットDNA精製キット(Qiagen-51162)を使用してDNAを抽出し、具体的な手順は製品のマニュアルを参照した。
3.5.PCR反応溶液の調製は表6に示す通りであった。
Figure 0007118354000011
上流のプライマー配列:GTGTCTGCGGCGTTTTATCA(配列番号1)
下流のプライマー配列:GACAAACGGGCAACATACCTT(配列番号2)
プローブ配列:5´+FAM+CCTCTKCATCCTGCTGCTATGCCTCATC(配列番号3)+TAMRA-3´
3.6.96ウェルPCRプレートの各ウェルに15μLの反応混合物を添加し、次に各ウェルに10μLのサンプルDNAまたはHBV DNAの標準品を添加した。
3.7.PCRの反応条件は:95℃で10分間加熱し;次に95℃で15秒間変性させ、60℃で1分間伸長させ、合計40サイクルを行った。
3.8.データ分析:
3.8.1.阻害率の計算:%Inh.=[1-(サンプル中のDNAコピーの数-1μMのGLS4中のDNAコピーの数)/(DMSO対照群中のDNAコピーの数-1μMのGLS4中のDNAコピーの数)]×100。
3.8.2.EC50の計算:GraphPad Prismソフトウェアを使用して、HBVに対する化合物の50%阻害濃度(EC50)を計算した。
4.実験結果は表7に示す通しであった。
Figure 0007118354000012
結論:式(I)の化合物は、HBVに対して有意な阻害効果を有した。
実施例6.シトクロムP450アイソザイムの阻害性研究
実験目的:ヒト肝臓ミクロソームシトクロームP450アイソザイム(CYP1A2、CYP2C9、CYP2C19、CYP2D6及びCYP3A4)の活性に対する試験化合物の阻害効果を検出する。
実験操作:先ずは、試験化合物(10mM)を勾配希釈して、作業溶液(100×最終濃度)を調製し、作業溶液の濃度はそれぞれ:5、1.5、0.5、0.15、0.05、0.015、0.005mMで、同時に、P450アイソザイム(CYP1A2、CYP2C9、CYP2C19、CYP2D6及びCYP3A4)の各陽性阻害剤とそれらの特定の基質混合物(5 in 1)の作業溶液を準備し;-80℃の冷蔵庫で凍結したヒト肝臓ミクロソームを氷上で解凍し、ヒト肝臓ミクロソームが完全に溶解した後、PBで希釈して所定濃度(0.253mg/mL)の作業溶液を調製し;20uLの基質混合溶液を反応プレート(Blankウェルに20μlのPBを添加)に添加し、同時に158μLのヒト肝臓ミクロソーム作業溶液を反応プレートに添加し、反応プレートを氷上に置き、使用のために準備し;このとき、2μLの各濃度の試験化合物(N=1)と特異的阻害剤(N=2)を対応するウェルに添加し、阻害剤のない(試験化合物または陽性阻害剤)群には対応する有機溶媒を添加して対照群サンプル(試験化合物対照サンプルは1:1のDMSO:MeOHで、陽性対照サンプルは1:9のDMSO:MeOHであった)とし;37℃のウォーターバスで10分間プレインキュベートした後、20μLのコエンザイムファクター(NADPH)溶液を反応プレートに添加し、37℃のウォーターバスで10分間インキュベートし;400μLの冷アセトニトリル溶液(内部標準は200ng/mLのTolbutamideとLabetalolであった)を添加して反応を停止させ;反応プレートをシェーカーに置き、10分間振とうし;4,000rpmで20分間遠心分離し;200μLの上澄みを取って100μLの水に添加してサンプルを希釈し;最後にプレートを密封し、振とうし、均一に振とうし、LC/MS/MSで検出した。実験結果は表8に示す通りであった。
Figure 0007118354000013
実験結論:式(I)の化合物はCYP1A2、CYP2C9、CYP2C19、CYP2D6及びCYP3A4の全部に対して有意な阻害効果はなかった。
実施例7.血漿タンパク結合率の研究
実験目的:ヒトおよびCD-1マウス血漿中の試験化合物のタンパク質結合率を測定する。
実験操作:ヒトおよびCD-1マウスから796μLのブランク血漿を採取し、4μLの試験化合物の作業溶液(400μM)またはワルファリン作業溶液(400μM)を添加して、血漿サンプル中の試験化合物とワルファリンの最終濃度を2μMにした。サンプルを十分に混合した。有機相中のDMSOの最終濃度は0.5%であり;50μLの試験化合物とワルファリン血漿サンプルをサンプル受容プレート(同じく3つ)に入れ、すぐに対応する容積のブランク血漿または緩衝液を添加して、各サンプルウェルの最終の容積を100μLにし、血漿:透析緩衝液の容積比は1:1であり、次に、これらのサンプルに400μLの停止液を添加し、当該サンプルを、T0サンプルとし、回収率と安定性の検出に使用した。T0サンプルを2~8℃で保管し、他の透析済みのサンプルと一緒に後処理を行い;150μLの試験化合物とワルファリン血漿サンプルを各透析ウェルの投与端に添加し、透析ウェルに対応する受容端に150μLのブランク透析緩衝液を添加した。次に、透析プレートをガス透過性膜で密封し、湿潤な5%のCOインキュベーターに置いて、37℃下で約100rpmで振とうしながら4時間インキュベーションした。透析終了後、50μLの透析後の緩衝液サンプルと透析後の血漿サンプルを新しいサンプル受け取りプレートに移した。各サンプルウェルの最終容積が100μLになり、血漿:透析バッファーの容積比が1:1になるように、対応する容積のブランク血漿または緩衝液をサンプルに添加した。全部のサンプルはタンパク質沈殿後にLC/MS/MS分析を行い、公式:%Unbound(非結合率)=100×FC/TC、%Bound(結合率)=100-%Unbound、%Recovery(回收率)=100×(FC+TC)/T0を利用してタンパク質結合率及び回収率を計算した。実験結果は表9に示す通りであった。
Figure 0007118354000014
実験結論:式(I)の化合物はヒト及びCD-1マウス血漿でいずれも低いタンパク質結合率を示した。
実施例8.生体内薬物動態研究
1.経口投与および静脈内注射によるBalb/cマウスにおける式(I)の化合物の薬物動態研究
式(I)の化合物と5%のDMSO/55%のポリエチレングリコール400/40%の水溶液を混合し、ボルテックスおよび超音波処理して1mg/mLのほぼ透明な溶液を調製し、使用のために微孔性膜で濾過した。7~10週齢のBalb/cメスマウスを選択し、候補化合物溶液を1mg/kgの用量で静脈内注射した。式(I)の化合物と10%のsolutol(ポリエチレングリコール-15ヒドロキシステアレート)水溶液を混合し、ボルテックスおよび超音波処理して1mg/mLのほぼ透明な溶液を得、使用のために微孔性膜で濾過した。7~10週齢のBalb/cメスマウスを選択し、候補化合物溶液を10mg/kgの用量で経口投与した。
一定時間の全血を収集し、調製して血漿を得、LC-MS/MS法で薬物濃度を分析し、Phoenix Win Nonlinソフトウェア(米国Pharsight社)を使用して薬物動態パラメーターを計算した。
2.経口投与および静脈内注射によるSDラットにおける式(I)の化合物の薬物動態研究
式(I)の化合物と5%のDMSO/55%のポリエチレングリコール400/40%の水溶液を混合し、ボルテックスおよび超音波処理して1mg/mLのほぼ透明な溶液を調製し、使用のために微孔性膜で濾過した。7~10週齢のSDオスラットを選択し、候補化合物溶液を1mg/kgの用量で静脈内注射した。
式(I)の化合物と10%のsolutol水溶液を混合し、ボルテックスおよび超音波処理して1mg/mLのほぼ透明な溶液を調製し、使用のために微孔性膜で濾過した。7~10週齢のSDオスラットを選択し、候補化合物溶液を10mg/kgの用量で経口投与した。
所定時間の全血を収集し、調製して血漿を得、LC-MS/MS法で薬物濃度を分析し、Phoenix WinNonlinソフトウェア(米国Pharsight社)を使用して薬物動態パラメーターを計算した。
3.経口投与および静脈内注射によるビーグル犬における式(I)の化合物の薬物動態研究
式(I)の化合物と5%のDMSO/55%のポリエチレングリコール400/40%の水溶液を混合し、ボルテックスおよび超音波処理して1mg/mLのほぼ透明な溶液を調製し、使用のために微孔性膜で濾過した。約10kgのオスビーグル犬を選択し、候補化合物溶液を1mg/kgの用量で静脈内注射した。
式(I)の化合物と10%のsolutol水溶液を混合し、ボルテックスおよび超音波処理して2mg/mLのほぼ透明な溶液を調製し、使用のために微孔性膜で濾過した。約10kgのオスビーグル犬を選択し、候補化合物溶液を10mg/kgの用量で経口投与した。
所定時間の全血を採取し、調製して血漿を得、LC-MS/MS法で薬物濃度を分析し、Phoenix WinNonlinソフトウェア(美国Pharsight公司)を使用して薬物動態パラメーターを計算した。
実験結果は表10に示す通りであった:
Figure 0007118354000015
注:T1/2は半減期を表し;Vdssは見かけの分布容積を表し;Clはクライアンスを表し;AUC0-lastは薬物-時間曲線下面積を表し;Tmaxはピークに達する時間を表し;Cmaxはピークに達する濃度を表し;F%は経口バイオアベイラビリティを表し;ivは静脈内注射を表し;POは経口投与を表し;mpkはmg/kgを表す。
実験結論:式(I)の化合物は、良好なイヌ薬物動態の単一または部分的指標を有した。
実施例9.生体内有効性研究
AAV/HBVモデル
実験目的:AAV/HBVマウスモデルを使用して、マウス体内における化合物の抗B型肝炎ウイルス効果を検出する。
実験操作:最初の投与日を0日目、投与前1日を-1日目、投与後1日を1日目というように設定した。投与の28日前に、全部の動物に1*1011v.g.rAAV8-1.3HBVウイルスを尾静脈に注射し、動物あたり200μLを注射した。投与の14日前および投与の7日前に、rAAV8-1.3HBVウイルスを注射したすべてのマウスを顎下静脈から血液を採取して血清を収集した。収集した血液サンプルを37℃で約30分間置き、4℃、13,200gで3分間遠心分離し、上清を採取した。血清は、HBV DNA、HBeAg及びHBsAgの含有量を検出するために使用した。HBV DNA、HBsAg、HBeAgのレベルが低いマウス、及び体重が軽いマウスは、この実験から除外される可能性があった。選択した25匹のマウスを各群に均等に分け、各化合物処理群のマウスのウイルス注射後21日目のHBV DNA、HBsAg、HBeAgレベルおよび体重は、溶媒群と比較して統計的に差がない(P>0.05)ことを確保した。式(I)の化合物(WX-325)と10%のsolutol水溶液を混合し、ボルテックス及び超音波処理して均一な懸濁液に調製し、使用のために微孔性膜で濾過した。陽性化合物としてのテノホビルを生理食塩水に溶解させ、超音波で溶解するまで攪拌して、0.1mg/mLの親溶液に調製し、生理食塩水で0.01mg/mLに希釈し、使用するまで4℃で保存した。式(I)の化合物(WX-325)は1日2回(BID)で、8時間の間隔で、経口投与(PO)した。参照化合物テノホビルは、1日2回経口の胃内投与した。二つの薬物とも28日間投与し、そのうち投与後3、7、10、28日目の血液サンプルを採取し、qPCR法によって血漿中のHBVDNAのレベルを測定した。28日目に、マウスをCO吸入により安楽死させ、肝臓を収集し、qPCR法によってマウスの肝臓中のHBVDNAレベルを検出した。実験結果は図7、図8に示す通りであった。
実験結論:本発明の化合物は、良好な生体内有効性および用量依存的効果を示した。
以上では本発明の具体的な実施形態を説明したが、当業者は、これらが単なる例であり、本発明の原理および本質から逸脱することなく、これらの実施形態に様々な変更または修正を加えることができることを理解すべきである。したがって、本発明の保護範囲は、添付の特許請求の範囲によって定義される。

Claims (9)

  1. 粉末X線回折XRPDスペクトルが以下の2θ角:5.56±0.2°、15.56±0.2°及び16.17±0.2°において特徴的な回折ピークを有する、式(I)の化合物のA結晶。
    Figure 0007118354000016
  2. 粉末X線回折スペクトルが以下の2θ角:5.56±0.2°、10.84±0.2°、15.56±0.2°、16.17±0.2°、22.14±0.2°、22.70±0.2°、27.76±0.2°及び28.44±0.2°において特徴的な回折ピークを有する、請求項1に記載のA結晶。
  3. 示差走査熱量曲線DSCが229.95℃において吸熱ピークの開始点を有する、請求項1又は2に記載のA結晶。
  4. 熱重量分析曲線TGAが62±3℃の際に重量が0.3382%減少し;230±3℃の際に重量が0.8753減少する、請求項1又は2に記載のA結
  5. 粉末X線回折スペクトルが以下の2θ角:12.70±0.2°、15.64±0.2°及び23.03±0.2°において特徴的な回折ピークを有する、式(I)の化合物のB結晶。
    Figure 0007118354000017
  6. 粉末X線回折スペクトルが以下の2θ角:9.56±0.2°、12.70±0.2°、14.41±0.2°、15.64±0.2°、19.70±0.2°、23.03±0.2°、23.98±0.2°及び27.65±0.2°において特徴的な回折ピークを有する、請求項5に記載のB結晶。
  7. 示差走査熱量曲線が233.59℃において吸熱ピークの開始点を有する、請求項5又は6に記載のB結晶。
  8. 熱重量分析曲線は120±3℃の際に重量が0.04890%減少する、請求項5又は6に記載のB結晶。
  9. HBV関連疾患の治療において使用するための、請求項1~4のいずれか1項に記載のA結晶、又は、請求項5~8のいずれか1項に記載のB結
JP2021510079A 2018-08-23 2019-08-23 三環式化合物の結晶形及びその使用 Active JP7118354B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810969006.8 2018-08-23
CN201810969006 2018-08-23
PCT/CN2019/102183 WO2020038456A1 (zh) 2018-08-23 2019-08-23 三并环类化合物的晶型及其应用

Publications (2)

Publication Number Publication Date
JP2021529824A JP2021529824A (ja) 2021-11-04
JP7118354B2 true JP7118354B2 (ja) 2022-08-16

Family

ID=69592875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021510079A Active JP7118354B2 (ja) 2018-08-23 2019-08-23 三環式化合物の結晶形及びその使用

Country Status (12)

Country Link
US (1) US11952388B2 (ja)
EP (1) EP3854797B1 (ja)
JP (1) JP7118354B2 (ja)
KR (1) KR102397741B1 (ja)
CN (1) CN112566913B (ja)
AU (1) AU2019325112B2 (ja)
BR (1) BR112021003041A2 (ja)
CA (1) CA3109746C (ja)
ES (1) ES2943488T3 (ja)
TW (1) TWI742419B (ja)
WO (1) WO2020038456A1 (ja)
ZA (1) ZA202101589B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115515596A (zh) * 2020-05-15 2022-12-23 福建广生中霖生物科技有限公司 包含三并环类化合物的组合及其在制备治疗hbv药物中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508342A (ja) 2017-02-23 2020-03-19 フーチェン・コサンター・ファーマスーティカル・カンパニー・リミテッドFujian Cosunter Pharmaceutical Co., Ltd. 三環式化合物及びその応用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361879B2 (ja) 2007-06-18 2013-12-04 スンシネ ルアケ プハルマ カンパニー リミテッド ブロモフェニル置換チアゾリルジヒドロピリミジン
RU2513636C2 (ru) 2008-01-04 2014-04-20 Интелликайн ЭлЭлСи Некоторые химические структуры, композиции и способы
EP3974426A1 (en) 2014-03-13 2022-03-30 Indiana University Research and Technology Corporation Hepatitis b core protein allosteric modulators
EP3366684B1 (en) * 2015-10-23 2020-09-02 Takeda Pharmaceutical Company Limited Heterocyclic compound
WO2019206268A1 (zh) * 2018-04-26 2019-10-31 福建广生堂药业股份有限公司 一种c-MET抑制剂的晶型及其盐型和制备方法
CN115515596A (zh) * 2020-05-15 2022-12-23 福建广生中霖生物科技有限公司 包含三并环类化合物的组合及其在制备治疗hbv药物中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508342A (ja) 2017-02-23 2020-03-19 フーチェン・コサンター・ファーマスーティカル・カンパニー・リミテッドFujian Cosunter Pharmaceutical Co., Ltd. 三環式化合物及びその応用
JP6764039B2 (ja) 2017-02-23 2020-09-30 フーチェン・コサンター・ファーマスーティカル・カンパニー・リミテッドFujian Cosunter Pharmaceutical Co., Ltd. 三環式化合物及びその応用

Also Published As

Publication number Publication date
KR20210049130A (ko) 2021-05-04
AU2019325112A1 (en) 2021-04-08
ES2943488T3 (es) 2023-06-13
CA3109746C (en) 2023-07-11
CN112566913B (zh) 2022-05-27
TWI742419B (zh) 2021-10-11
BR112021003041A2 (pt) 2021-05-11
AU2019325112B2 (en) 2023-10-12
TW202021972A (zh) 2020-06-16
US11952388B2 (en) 2024-04-09
EP3854797A4 (en) 2021-12-29
CA3109746A1 (en) 2020-02-27
EP3854797B1 (en) 2023-03-15
JP2021529824A (ja) 2021-11-04
EP3854797A1 (en) 2021-07-28
ZA202101589B (en) 2022-07-27
KR102397741B1 (ko) 2022-05-12
CN112566913A (zh) 2021-03-26
WO2020038456A1 (zh) 2020-02-27
US20210230188A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
CA2832685C (en) Pyrimidine derivatives for the treatment of viral infections
TW420663B (en) Indole compounds for cyclic nucleotide-PDEs inhibitors
AU2020286332A1 (en) Inhibitors of Bruton's tyrosine kinase
CN114286818B (zh) 作为bet抑制剂的杂环化合物
US20100093792A1 (en) Crystalline forms of a potent hcv inhibitor
CA3109195A1 (en) Transglutaminase 2 (tg2) inhibitors
BR112017019779B1 (pt) Composto, e, composição farmacêutica
TW200911839A (en) New cyclic peptide compounds
DE69715010T2 (de) Ausgewählte k-252a derivate
EP4455133A1 (en) Multi-protein degradation agent having imide skeleton
CA3054324A1 (en) Tri-cycle compound and applications thereof
JP2024540080A (ja) Irak4分解剤およびその合成
JP7118354B2 (ja) 三環式化合物の結晶形及びその使用
US20070149524A1 (en) Substituted diketopiperazines and their use as oxytocin antagonists
EP3481823B1 (de) 7-substituierte 1-pyridyl-naphthyridin-3-carbonsäureamide und ihre verwendung
WO2023193563A1 (zh) 一种噻吩并吡啶化合物的晶型a、制备方法及其药物组合物
RU2775753C1 (ru) Кристаллическая форма трициклического соединения и ее применение
EP3696166B1 (en) Amorphous pyrrolidine derivative as ppar agonist and preparation method thereof
TWI856340B (zh) 作為pd-l1相互作用的免疫調節劑的雜環化合物
CN113825758B (zh) 抗HBV的四氢异噁唑并[4,3-c]吡啶类化合物的晶型
WO2023077977A1 (zh) 秋水仙碱衍生物的制备方法及其用途
CN117343069B (zh) 一种新型化合物及其药物组合物和用途
CN113512035B (zh) 二氢嘧啶-泊马度胺缀合物及其制备方法与应用
WO2021110135A1 (zh) 作为acc1和acc2抑制剂的晶型及其制备方法和应用
WO2021110138A1 (zh) 噻吩并[2,3-c]哒嗪-4(1H)-酮类化合物的晶型及其制备方法和应用

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220714

R150 Certificate of patent or registration of utility model

Ref document number: 7118354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150