JP2020194835A - 炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置 - Google Patents

炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置 Download PDF

Info

Publication number
JP2020194835A
JP2020194835A JP2019098412A JP2019098412A JP2020194835A JP 2020194835 A JP2020194835 A JP 2020194835A JP 2019098412 A JP2019098412 A JP 2019098412A JP 2019098412 A JP2019098412 A JP 2019098412A JP 2020194835 A JP2020194835 A JP 2020194835A
Authority
JP
Japan
Prior art keywords
film
silicon carbide
support substrate
susceptor
carbide polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019098412A
Other languages
English (en)
Other versions
JP7247749B2 (ja
Inventor
佐藤 崇志
Takashi Sato
崇志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019098412A priority Critical patent/JP7247749B2/ja
Publication of JP2020194835A publication Critical patent/JP2020194835A/ja
Application granted granted Critical
Publication of JP7247749B2 publication Critical patent/JP7247749B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】従来よりも厚さが均一な炭化ケイ素多結晶膜を得ることができる、炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置を提供する。【解決手段】化学蒸着により支持基板の成膜対象面に炭化ケイ素多結晶膜を成膜する成膜工程を含み、前記成膜工程において、雰囲気温度が、1000℃〜1500℃の範囲内であり、前記成膜対象面の中心部を、前記雰囲気温度よりも50℃〜200℃高くなるように加熱する、炭化ケイ素多結晶膜の成膜方法。【選択図】図1

Description

本発明は、炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置に関する。
炭化ケイ素は、ケイ素と炭素で構成される、化合物半導体材料である。炭化ケイ素は、絶縁破壊電界強度がケイ素の10倍で、バンドギャップがケイ素の3倍であり、半導体材料として優れている。さらに、デバイスの作製に必要なp型、n型の制御が広い範囲で可能であることなどから、ケイ素の限界を超えるパワーデバイス用材料として期待されている。また、炭化ケイ素は、従来の半導体材料より薄い厚さでも高い耐電圧が得られるため、炭化ケイ素を半導体材料とするときに、薄く構成することにより、ON抵抗が小さく、低損失の半導体が得られることが特徴である。
しかしながら、炭化ケイ素半導体は、従来広く普及しているケイ素半導体と比較して、大面積の炭化ケイ素単結晶基板を得ることが難しく、製造工程も複雑である。これらの理由から、炭化ケイ素半導体は、ケイ素半導体と比較して大量生産が難しく、高価であった。
これまでにも、炭化ケイ素半導体のコストを下げるために、様々な工夫が行われてきた。例えば、特許文献1には、炭化ケイ素基板の製造方法であって、少なくとも、マイクロパイプの密度が30個/cm以下の炭化ケイ素単結晶基板(以下、「単結晶基板」と称することがある)と炭化ケイ素多結晶基板(以下、「多結晶基板」と称することがある)を準備し、単結晶基板と多結晶基板とを貼り合わせる工程を行い、その後、単結晶基板を薄膜化する工程を行い、多結晶基板上に単結晶層を形成した基板を製造することが記載されている。
更に、特許文献1には、単結晶基板と多結晶基板とを貼り合わせる工程の前に、単結晶基板に水素イオン注入を行って水素イオン注入層を形成する工程を行い、単結晶基板と多結晶基板とを貼り合わせる工程の後、単結晶基板を薄膜化する工程の前に、350℃以下の温度で熱処理を行い、水素イオン注入層にて機械的に剥離することにより単結晶基板を薄膜化することが記載されている。
このような方法により、1つの炭化ケイ素単結晶インゴットからより多くの炭化ケイ素貼り合わせ基板が得られるようになった。
特開2009−117533号公報
特許文献1に記載された炭化ケイ素基板の製造方法は、水素イオン注入を行って薄いイオン注入層が形成された炭化ケイ素単結晶基板と、炭化ケイ素多結晶基板と、を貼り合わせたのちに加熱して、水素イオン注入層において単結晶基板の一部を剥離して単結晶基板を薄膜化することによって製造されている。このことから、特許文献1に記載された炭化ケイ素基板は、製造された炭化ケイ素基板の厚さの大部分が多結晶基板に由来する。このため、特許文献1の炭化ケイ素基板には、研磨などのハンドリングの際に炭化ケイ素基板が損傷しないようにするため、機械的な強度を有する十分な厚さの多結晶基板を使用する。そのため、半導体として機能するために必要な厚さよりも、大きな厚さを有する多結晶基板を用いる必要があった。
また、炭化ケイ素多結晶基板の抵抗値が高いと、ON抵抗が大きくなり、本来の炭化ケイ素半導体の特徴を充分に発揮されなくなる可能性があった。
すなわち、炭化ケイ素基板の製造工程において炭化ケイ素基板の損傷を防ぐためには、機械的強度を有する程度の多結晶基板の厚さが必要である。また、得られる炭化ケイ素半導体のON抵抗を小さくするためには、多結晶基板の抵抗値が低い必要があった。
従来、炭化ケイ素多結晶基板は、化学蒸着法等の気相成長法において、窒素等のドーパントを加えながら、所定の厚さまで成膜を実施することで得ていた。図4は、従来の炭化ケイ素多結晶基板の製造過程における、支持基板と炭化ケイ素多結晶膜F’の側面断面図であり、図4(A)は、炭化ケイ素多結晶膜F’の成膜後に炭化ケイ素多結晶膜F’を研磨して支持基板200の側面220を露出させた状態を示している。
気相成長法で成膜する場合、材料ガスの流れにより、図4(A)に示すように、支持基板200の外側は成膜されやすく、一方で中心部における成膜レートが低くなりやすいことから、一般的に、支持基板に成膜された炭化ケイ素多結晶膜F’の外周部分が厚くなり、内周部分が薄くなりやすいという問題があった。このため、必要な厚みの炭化ケイ素多結晶基板F’a(図4(C))を得るためには、成膜後に最も薄くなる中心部分が所望の厚さになるまで成膜する必要があり、さらに、平坦な多結晶基板を得るためには、支持基板200を燃焼や溶解により除去した後、図4(B)に示す線Cより上の、厚く成膜された外周部分を研磨により削り落とす必要がある。つまり、削り落とす分を考慮してより厚い膜を成膜し、さらに研磨の難しい硬い炭化ケイ素を研磨しなければならず、また、成膜した炭化ケイ素多結晶膜F’の同一面における膜厚のばらつきが、生産性の低下に大きな影響を与えることがあった。
従って、本発明は、上記のような問題点に着目し、従来よりも厚さが均一な炭化ケイ素多結晶膜を得ることができる、炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置を提供することを目的とする。
本発明の炭化ケイ素多結晶膜の成膜方法は、化学蒸着により支持基板の成膜対象面に炭化ケイ素多結晶膜を成膜する成膜工程を含み、前記成膜工程において、雰囲気温度が、1000℃〜1500℃の範囲内であり、前記成膜対象面の中心部を、前記雰囲気温度よりも50℃〜200℃高くなるように加熱するものである。
本発明のサセプタは、本発明の炭化ケイ素多結晶膜の成膜方法に用いるサセプタであって、当該サセプタに保持される前記支持基板の前記中心部を加熱するヒーターを備えるものである。
また、本発明のサセプタにおいて、前記ヒーターが、前記サセプタの内部に密閉されて設けられていてもよい。
また、本発明のサセプタは、支持基板を保持する第1保持面と、前記第1保持面とは反対側の面であって、支持基板を保持する第2保持面と、を備えていてもよい。
また、本発明の成膜装置は、本発明のサセプタを備えるものである。
本発明の炭化ケイ素多結晶膜の成膜方法であれば、成膜処理中の成膜対象面の中心部を、雰囲気温度よりも50℃〜200℃高くなるように加熱することにより、従来の方法により成膜された炭化ケイ素多結晶膜よりも、厚さが均一な炭化ケイ素多結晶膜を得ることができる。
本発明のサセプタ、及び、成膜装置であれば、支持基板の中心部を加熱するヒーターを備えることにより、成膜処理中の成膜対象面の中心部温度を、雰囲気温度よりも高くなるように加熱することができ、従来の方法により成膜された炭化ケイ素多結晶膜よりも、厚さが均一な炭化ケイ素多結晶膜を得ることができる。
本発明の一実施形態にかかるサセプタに、支持基板が保持された状態を模式的に示す側面断面図である。 本発明の一実施形態にかかる成膜装置を模式的に示す側面断面図である。 本発明の一実施形態かかる炭化ケイ素多結晶膜の成膜方法における、支持基板200と炭化ケイ素多結晶膜Fの側面断面図であり、図3(A)は、支持基板200に成膜した炭化ケイ素多結晶膜Fを示す図であり、図3(B)は、支持基板200の成膜対象面200aに成膜した炭化ケイ素多結晶膜Fを研磨して支持基板200の側面220を露出させた状態を示す側面断面図であり、図3(C)は、支持基板200を除去して得られた炭化ケイ素多結晶基板Faを示す図である。 従来の炭化ケイ素多結晶基板F’aの製造過程における、支持基板200と炭化ケイ素多結晶膜F’の側面断面図であり、図4(A)は、支持基板200に成膜した炭化ケイ素多結晶膜F’を示す図であり、図4(B)は、成膜した炭化ケイ素多結晶膜F’から支持基板200を除去した状態を示す図であり、図4(C)は、炭化ケイ素多結晶膜F’を研磨して得られた平滑な炭化ケイ素多結晶基板F’aを示す図である。
(サセプタ)
本発明の一実施形態にかかるサセプタ100について、図面を参照して説明する。本実施形態のサセプタ100は、例えば、後述する、成膜装置1000、及び、炭化ケイ素多結晶膜の成膜方法に用いることができる。
図1は、本実施形態のサセプタ100に、円形で平行平板状の支持基板200が保持された状態を示す側面断面図である。支持基板200としては、例えば、黒鉛製の支持基板やケイ素製の支持基板を用いることができる。サセプタ100は、支持基板200を保持する、黒鉛製で内部が中空の円板状のサセプタ本体110と、サセプタ本体110の内部に密閉されて設けられている、円板状でカーボン製のヒーター120と、ヒーター120と電源とをつなぐケーブル(不図示)と、温度センサやスイッチ等の温度制御手段(不図示)と、を備える。なお、サセプタ本体110やヒーター120の材質は、上記のものに限定されず、成膜条件、コスト等を考慮して適切なものを選択することができる。
サセプタ本体110は、図1に示すように、内部に、サセプタ本体110の外部とは遮断された空間Sを有する中空状に形成されており、空間Sは、ヒーター120を設置可能な程度の大きさを有している。また、サセプタ本体110の表面には、支持基板200を保持する円形の第1保持面110aと、第1保持面110aとは反対側の面であって、別の支持基板200を保持する、円形の第2保持面110bと、を備える。ここで、第1保持面110a、第2保持面110bは、サセプタ本体110の対向する一対の側面であり、サセプタ本体110の表面と裏面である。
ヒーター120は、サセプタ本体110の内部の空間Sに設けられており、第1保持面110a、第2保持面110bの中心部111を加熱することができる。すなわち、ヒーター120は、第1保持面110a、第2保持面110bの中心部111を加熱することで、第1保持面110a、第2保持面110bに保持された支持基板200の中心部210を加熱することができる。ヒーター120の大きさは、支持基板200の中心部210を加熱することができれば、特に限定されず、例えば、図1に示すように、支持基板200の半径Rに対して、半径1/3R程度の寸法のヒーター120を用いることができる。なお、図1の線Aは、サセプタ本体110、ヒーター120、支持基板200のそれぞれ中心を通る線である。また、本実施形態においては、円板状のヒーター120が用いられているが、ヒーターの形状は特に限定されず、任意の形状のヒーターを用いることができる。サセプタ100には、複数のヒーター120が設けられていてもよい。
第1保持面110a、第2保持面110bに対する支持基板200の保持方法は特に限定されず、例えば、係止爪等の係止機構を第1保持面110a、第2保持面110b設けることで支持基板200を保持したり、ボルト等の固定部材や、カーボン接着剤等の接着剤等で固定したりすることにより、支持基板200を第1保持面110a、第2保持面110bに保持することができる。
なお、支持基板200は、サセプタ100の第1保持面110a、第2保持面110bの両方に保持してもよいし、必要に応じて、第1保持面110a、第2保持面110bのどちらか一方に保持してもよい。
一般的に、化学蒸着による炭化ケイ素多結晶膜の成膜においては、温度の高いところや、成膜対象の端部が成膜されやすい。本実施形態のサセプタ100であれば、支持基板200の中心部210を加熱するヒーター120を備えることにより、中心部210を、雰囲気温度よりも温度が高くなるように加熱することができ、中心部210を雰囲気温度よりも温度が高くなるように加熱できなかった従来の方法により成膜された炭化ケイ素多結晶膜F’(図4(A))よりも、厚さが均一な炭化ケイ素多結晶膜Fを得ることができる。
また、ヒーター120が、サセプタ100の内部に密閉されて設けられていることにより、ヒーター120の設置箇所に原料ガス等のガスが浸入しないことから、化学蒸着による成膜時に、ヒーター120には炭化ケイ素が析出することがなく、ヒーター120の加熱効率の低下を防止することができる。
また、サセプタ100が第1保持面110aと、第2保持面110bを備えることにより、1つのサセプタ100に対して2枚の支持基板200を保持することができ、生産効率を向上させることができる。なお、片面のみに支持基板200を保持可能なサセプタも本発明に含まれる。
(成膜装置)
次に、本発明の一実施形態にかかる成膜装置を、図面を参照して説明する。図2に示す、本実施形態の成膜装置1000は、例えば前述したサセプタ100を用いて、支持基板200に炭化ケイ素多結晶膜Fを成膜させることができるものである。本実施形態では、成膜装置1000に前述したサセプタ100を用いる場合について説明する。
成膜装置1000は、化学蒸着により、支持基板200に炭化ケイ素多結晶膜Fを成膜させることができる。図2に示すように、成膜装置1000は、成膜装置1000の外装となる筐体1010と、支持基板200に炭化ケイ素多結晶膜Fを成膜させる成膜室1020と、成膜室1020より排出された原料ガスやキャリアガスを後述のガス排出口1040へ導入する排出ガス導入室1050と、排出ガス導入室1050を覆うボックス1060と、ボックス1060の外部より成膜室1020内を加温する、カーボン製のヒーター1070と、成膜室1020の下部に設けられ、成膜室1020に原料ガスやキャリアガスを導入するガス導入口1030と、成膜装置1000の外部に原料ガスやキャリアガスを排出するガス排出口1040と、支持基板200を2枚ずつ保持することができる2つのサセプタ100と、を有する。成膜装置1000において、原料ガス等のガスは、成膜室1020の下部から供給され、成膜室1020の上部から排出ガス導入室1050に排出される。また、成膜装置1000において、サセプタ100の第1保持面110a、第2保持面110bは、鉛直方向に延在している。すなわち、支持基板200は、成膜装置1000において、成膜対象面200aが鉛直方向に延在するように保持される。成膜対象面200aが鉛直方向に延在するように支持基板200を保持することにより、成膜の反応場において、原料ガスやキャリアガスの流れる方向と支持基板200の成膜対象面200aとが平行になり、複数の支持基板200間での成膜のばらつきが小さくなる。また、水平方向における、支持基板200同士の距離と、成膜室1020と支持基板200との距離もほぼ同一にすることが好ましい。これにより、支持基板200の成膜対象面200aに対して原料ガスやキャリアガスが均一に流れるようになり、成膜の反応がより均一におこり、複数の支持基板200間での成膜のばらつきがより小さくなる。
本実施形態の成膜装置1000であれば、サセプタ100が支持基板200の中心部210を加熱するヒーター120を備えることにより、中心部210を、雰囲気温度よりも温度が高くなるように加熱することができ、支持基板200の中心部210を雰囲気温度よりも温度が高くなるように加熱できなかった従来の方法により成膜された炭化ケイ素多結晶膜F’(図4(A))よりも、厚さが均一な炭化ケイ素多結晶膜Fを得ることができる。
(炭化ケイ素多結晶膜の成膜方法)
次に、本発明の一実施形態にかかる炭化ケイ素多結晶膜の成膜方法を、図面を参照して説明する。本実施形態では、前述のサセプタ100、及び、成膜装置1000を用いて支持基板200に炭化ケイ素多結晶膜Fを成膜する、炭化ケイ素多結晶膜の成膜方法を説明する。以下の説明は炭化ケイ素多結晶膜の成膜方法の一例であり、問題のない範囲で温度、圧力、ガス雰囲気等の各条件や、手順等を変更してもよい。本実施形態の炭化ケイ素多結晶膜の成膜方法は、特に、厚さ50μm〜500μmの炭化ケイ素多結晶膜を成膜する場合に適用することができる。
本実施形態の成膜方法は、化学蒸着により支持基板200の成膜対象面200aに炭化ケイ素多結晶膜Fを成膜する成膜工程を含み、成膜工程において、雰囲気温度が、1000℃〜1500℃の範囲内であり、成膜対象面200aの中心部210を、雰囲気温度よりも50℃〜200℃高くなるように加熱するものである。
成膜工程の手順について説明する。まず、図2に示すように、支持基板200をサセプタ100の第1保持面110a、第2保持面110bに保持した状態で、減圧状態にして、Ar等の不活性ガス雰囲気下で、ヒーター1070により成膜の反応温度まで、成膜室1020の雰囲気温度を高めて、支持基板200を加熱する。また、サセプタ100のヒーター120を用いて、支持基板200の中心部210及びその周辺を加熱する。成膜室1020内の雰囲気温度及び支持基板200の中心部210の温度が所定の温度に達したら、不活性ガスの供給を止めて、成膜室1020内に炭化ケイ素多結晶膜Fの成分を含む原料ガスやキャリアガスを供給する。これにより、支持基板200の成膜対象面200aや気相での化学反応により、図3(A)に示すように、加熱した支持基板200の成膜対象面200aに炭化ケイ素多結晶膜Fを成膜させることができる。
本実施形態においては、成膜室1020内の雰囲気温度を1000℃〜1500℃とする。雰囲気温度が1000℃より低い場合は、炭化ケイ素多結晶膜Fの成膜の反応速度が低下することから、炭化ケイ素多結晶膜Fの生産性の観点から好ましくない。また、雰囲気温度が1500℃より高い場合は、炭化ケイ素多結晶膜Fの成膜の反応速度は大きくなるものの、サセプタ100のヒーター120を併用する本実施形態の方法において、炭化ケイ素多結晶膜Fの膜厚の制御が難しくなることがあり、また、炭化ケイ素多結晶膜Fの膜厚のばらつきが大きくなることがあるため、好ましくない。
また、ケイ素製の支持基板を用いる場合には、高熱による支持基板の変形を防止するため、ヒーター120を併用することを考慮して、雰囲気温度を1350℃程度より低い温度にすることが好ましい。
また、本実施形態においては、支持基板200の中心部210の温度を、雰囲気温度よりも50℃〜200℃高くなるように加熱する。これにより、中心部210での炭化ケイ素多結晶膜Fの成膜の反応速度が大きくなり、中心部210を加熱しない場合に比べて、中心部210において炭化ケイ素多結晶膜Fが成膜されやすくなる。これにより、従来よりも厚さが均一な炭化ケイ素多結晶膜Fを得ることができる。雰囲気温度よりも支持基板200の中心部210の温度が高く、中心部210の温度と雰囲気温度との差が50℃よりも小さい場合には、炭化ケイ素多結晶膜Fの中心部と円周端部との膜厚差が大きくなり、後工程の研削処理の負担が大きくなるおそれがある。また、雰囲気温度よりも支持基板200の中心部210の温度が高く、中心部210の温度と雰囲気温度との差が200℃よりも大きい場合には、中心部210において、炭化ケイ素多結晶膜Fの成膜の反応速度が大きくなりすぎて、炭化ケイ素多結晶膜Fが成長しすぎる場合があり、炭化ケイ素多結晶膜Fの中心部と円周端部との膜厚差が大きくなり、炭化ケイ素多結晶膜Fの中心部の研削処理の負担が大きくなるおそれがある。
また、原料ガスとしては、炭化ケイ素多結晶膜Fを成膜させることができれば、特に限定されず、一般的に炭化ケイ素多結晶膜の成膜に使用されるSi系原料ガス、C系原料ガスを用いることができる。例えば、Si系原料ガスとしては、シラン(SiH)を用いることができるほか、モノクロロシラン(SiHCl)、ジクロロシラン(SiHCl)、トリクロロシラン(SiHCl)、テトラクロロシラン(SiCl)などのエッチング作用があるClを含む塩素系Si原料含有ガス(クロライド系原料)を用いることができる。C系原料ガスとしては、例えば、メタン(CH)、プロパン(C)、アセチレン(C)等の炭化水素を用いることができる。上記のほか、トリクロロメチルシラン(CHClSi)、トリクロロフェニルシラン(CClSi)、ジクロロメチルシラン(CHClSi)、ジクロロジメチルシラン((CHSiCl)、クロロトリメチルシラン((CHSiCl)等のSiとCとを両方含むガスも、原料ガスとして用いることができる。
また、キャリアガスとしては、炭化ケイ素多結晶膜Fの成膜を阻害することなく、原料ガスを支持基板200へ展開することができれば、一般的に使用されるキャリアガスを用いることができる。例えば、熱伝導率に優れ、炭化ケイ素に対してエッチング作用があるHガスをキャリアガスとして用いることができる。また、これら原料ガスおよびキャリアガスと同時に、第3のガスとして、不純物ドーピングガスを同時に供給することもできる。例えば、炭化ケイ素多結晶膜Fを支持基板200から分離することで得られる炭化ケイ素多結晶基板の導電型をn型とする場合には窒素(N)、p型とする場合にはトリメチルアルミニウム(TMA)を用いることができる。
炭化ケイ素多結晶膜Fを成膜させる際には、上記のガスを適宜混合して供給する。また、所望の炭化ケイ素多結晶膜Fの性状に応じて、成膜工程の途中でガスの混合割合、供給量等の条件を変更してもよい。
なお、上記の成膜工程後、支持基板200を除去するために、炭化ケイ素多結晶膜Fを研磨する切削工程を行って図3(B)のように支持基板200の側面220を露出させて、さらに、支持基板200を除去する除去工程を行ってもよい。切削工程は、成膜工程において炭化ケイ素多結晶膜Fが成膜した支持基板200を端面加工装置等に供して炭化ケイ素多結晶膜Fを研磨して、支持基板200を露出させる工程である。また、除去工程は、支持基板200の材質により、処理方法が異なる。例えば、黒鉛製の支持基板200を用いた場合には、Oや空気等の酸化性ガス雰囲気下で数百度に加熱して、支持基板200のみを燃焼させることにより、支持基板200を除去することができる。また、例えば、ケイ素製の支持基板200を用いた場合には、硝フッ酸(硝酸とフッ化水素酸の混合酸)に浸漬して、支持基板200のみを溶解することで、支持基板200を除去することができる。また、後工程として、支持基板200を除去して得られた炭化ケイ素多結晶膜Fの表面を平滑とするべく、適宜、研削処理することにより、図3(C)に示すような表面の平滑な炭化ケイ素多結晶基板Faが得られる。
一般的に、炭化ケイ素多結晶膜の成膜において、成膜の温度を高くすることにより成膜の反応速度が大きくなることから、原料ガスの流れにより成膜レートが低くなりやすい中心部210付近において、雰囲気温度よりも支持基板200の中心部210の温度を高くすることにより、中心部付近における成膜レートを高くすることができる。よって、本実施形態の炭化ケイ素多結晶膜Fの成膜方法であれば、成膜対象面200aの中心部210を、雰囲気温度よりも50℃〜200℃高くなるように加熱することにより、図3に示すように、中心部210を雰囲気温度よりも50℃〜200℃高くなるように加熱できなかった従来の方法により成膜された炭化ケイ素多結晶膜F’(図4(A))よりも、厚さが均一な炭化ケイ素多結晶膜Fを得ることができる。
なお、本発明は、前述した実施形態に限定されるものではなく、本発明の目的が達成できる他の工程等を含み、以下に示すような変形等も本発明に含まれる。
前述した実施形態の成膜装置1000においては、サセプタ100の第1保持面110a、第2保持面110bは、鉛直方向に延在しており、支持基板200は、成膜対象面200aが鉛直方向に延在するように保持されていたが、サセプタ100の第1保持面110a、第2保持面110bが水平方向に延在するようにサセプタ100を設けて、支持基板200の成膜対象面200aが水平方向に延在するように、支持基板200が保持されてもよい。すなわち、特に、支持基板200をサセプタ100の片面に保持する場合には、
成膜の反応場において、原料ガスやキャリアガスの流れる方向と支持基板200の成膜対象面200aとが垂直になるように、支持基板200を保持してもよい。
その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に説明されているが、本発明の技術的思想及び目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
以下、本発明の実施例および比較例によって、本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されることはない。
本実施例においては、前述した実施形態のサセプタ100を備える成膜装置1000を用いて、炭化ケイ素多結晶膜の成膜方法により炭化ケイ素多結晶膜Fを成膜させた。
(実施例1)
支持基板200として、直径150mm、厚さ50μmの平行平板状の黒鉛製基板を用いた。また、サセプタ本体110は、直径160mm、厚さ100mmの黒鉛製で内部が中空の円板状のものを用い、ヒーター120は、直径50mm、厚さ25μmの円板状でカーボン製のものを用いた。また、支持基板200の中心部210の温度を計測する温度センサとして、白金ロジウム合金(ロジウム30%)、白金ロジウム合金(ロジウム6%)の電極を有する熱電対を用いた。支持基板200をサセプタ100の第1保持面110aに保持して、黒鉛製のボルトと黒鉛製のナットを用いて固定した。このとき、サセプタ本体110、ヒーター120、支持基板200の中心は一直線上に位置していた。
次に、成膜工程を行った。成膜室1020内を不図示の排気ポンプにより真空引きをした後、1350℃まで加熱した。また、サセプタ100のヒーター120を用いて、支持基板200の中心部210を1500℃に加熱した。原料ガスとして、SiCl、CHを用い、キャリアガスとしてHを用い、不純物ドーピングガスとしてNを用いた。炭化ケイ素多結晶膜の成膜は、SiCl:CH:H:N=1:1:10:10の比率で上記ガスを混合して成膜室1020内に供給し、600分の成膜を実施し、炭化ケイ素多結晶膜Fを成膜した。このときの炉内圧力は30kPaであった。以上により成膜工程が終了した。成膜工程終了後、成膜装置1000内を徐冷して、成膜装置1000から炭化ケイ素多結晶膜Fが成膜された支持基板200を取り出した。さらに、支持基板200の周縁端部まで炭化ケイ素多結晶膜Fの側面を研磨して支持基板200を露出させた後、炭化ケイ素多結晶膜Fが成膜した支持基板200を酸素雰囲気下で800℃に加熱して、支持基板200を燃焼除去した。
支持基板200を除去して得られた炭化ケイ素多結晶基板について、炭化ケイ素多結晶基板の表面の中心線上を斜入射型光学測定器により測定した。測定は2点とし、中心部と、
中心線状であって円周端部から内側に0.5mmの部分(本実施例においては、この部分を「円周端部」とする)について測定した。結果を表1に示した。
(実施例2〜実施例5、従来例、比較例1〜比較例3)
実施例2〜実施例5、比較例1〜比較例4として、雰囲気温度と支持基板200の中心部210の温度(以下、「中心部温度」と記載することがある)を種々変更したこと以外は、実施例1と同様にして、炭化ケイ素多結晶膜Fを成膜した。実施例2〜実施例5、従来例、比較例1〜比較例3の、成膜工程における温度条件と、膜厚の測定結果を表1に示した。
なお、表1の「温度差」の項目は、「中心部温度(℃)−雰囲気温度(℃)」の値を示しており、中心部温度が雰囲気温度よりもどの程度高くなるように加熱したかを示している。また、表1の「膜厚差」の項目は、「円周端部膜厚(μm)−中心部膜厚(μm)」の値を示しており、この値が正の場合は円周端部膜厚の方が中心部膜厚よりも大きいことを示し、この値が負の場合は中心部膜厚の方が円周端部膜厚よりも大きいことを示している。
Figure 2020194835
(結果)
雰囲気温度と中心部温度を同じにした従来例においては、図4に示すように、中心部よりも円周端部の方が厚膜となり、円周端部膜厚と中心部膜厚の差が170μmであった。従来例の結果を考慮して、円周端部と中心部との膜厚差が60μmよりも小さいときに、炭化ケイ素多結晶膜の膜厚差が小さいと判断した。これに対して、中心部温度を雰囲気温度よりも50℃〜200℃高くした実施例1〜実施例5においては、膜厚差が0μm〜40μmとなり、いずれの条件においても、雰囲気温度と中心部温度を同じにした従来例よりも厚さが均一な炭化ケイ素多結晶膜Fが得られた。また、実施例において得られた炭化ケイ素多結晶膜Fは、後工程の研削工程において問題はなく、従来例に比べて厚さが均一であったことから、研削処理の負担が小さかった。
また、比較例1は、中心部温度を雰囲気温度よりも150℃高くし、雰囲気温度を900℃としたものであったが、膜厚差は50μmで従来例よりも小さくなったものの、円周端部膜厚が150μm、中心部膜厚が100μmであり、雰囲気温度が低く、成膜するための反応が十分に進行しなかったので、成膜の反応速度が小さくなったことが分かった。そして、さらに成膜処理を進めれば膜厚は十分となるが、膜厚差が大きくなって、研削処理の負担が大きくなることが予想された。また、比較例2は、中心部温度を雰囲気温度よりも40℃高くしたものであり、膜厚差が170μmであり、雰囲気温度と中心部温度を同じにした従来例と同じ膜厚差で、外周端部が厚くなって、膜厚差が大きくなる傾向が認められた。また、比較例3は、中心部温度を雰囲気温度よりも300℃高くしたものであり、中心部膜厚が円周端部膜厚よりも90μm大きくなった。このことから、比較例3においては、中心部210において、炭化ケイ素多結晶膜Fの成膜の反応速度が大きくなり、円周端部よりも炭化ケイ素多結晶膜Fが成長したことが示され、後工程における研削処理の負担が大きくなることが明らかであった。
本発明の例示的態様である実施例1〜実施例5の炭化ケイ素多結晶膜の成膜方法において、成膜対象面200aの中心部210を、雰囲気温度よりも50℃〜200℃高くなるように加熱することにより、中心部210を雰囲気温度よりも50℃〜200℃高くなるように加熱しない方法よりも、厚さが均一な炭化ケイ素多結晶膜Fを得ることができることが示された。
100 サセプタ
110 サセプタ本体
110a 第1保持面
110b 第2保持面
120 ヒーター
200 支持基板
200a 成膜対象面
1000 成膜装置
F、F’ 炭化ケイ素多結晶膜

Claims (5)

  1. 化学蒸着により支持基板の成膜対象面に炭化ケイ素多結晶膜を成膜する成膜工程を含み、
    前記成膜工程において、
    雰囲気温度が、1000℃〜1500℃の範囲内であり、
    前記成膜対象面の中心部を、前記雰囲気温度よりも50℃〜200℃高くなるように加熱する、炭化ケイ素多結晶膜の成膜方法。
  2. 請求項1に記載の炭化ケイ素多結晶膜の成膜方法に用いるサセプタであって、
    当該サセプタに保持される前記支持基板の前記中心部を加熱するヒーターを備える、サセプタ。
  3. 前記ヒーターが、前記サセプタの内部に密閉されて設けられている、請求項2に記載のサセプタ。
  4. 支持基板を保持する第1保持面と、
    前記第1保持面とは反対側の面であって、支持基板を保持する第2保持面と、を備える、請求項2または3に記載のサセプタ。
  5. 請求項2〜4のいずれか1項に記載のサセプタを備える成膜装置。
JP2019098412A 2019-05-27 2019-05-27 炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置 Active JP7247749B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019098412A JP7247749B2 (ja) 2019-05-27 2019-05-27 炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019098412A JP7247749B2 (ja) 2019-05-27 2019-05-27 炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置

Publications (2)

Publication Number Publication Date
JP2020194835A true JP2020194835A (ja) 2020-12-03
JP7247749B2 JP7247749B2 (ja) 2023-03-29

Family

ID=73547640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019098412A Active JP7247749B2 (ja) 2019-05-27 2019-05-27 炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置

Country Status (1)

Country Link
JP (1) JP7247749B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188468A (ja) * 1994-12-29 1996-07-23 Toyo Tanso Kk 化学蒸着法による炭化ケイ素成形体及びその製造方法
JP2002343779A (ja) * 2001-05-18 2002-11-29 Tokyo Electron Ltd 熱処理装置
JP2003502878A (ja) * 1999-06-24 2003-01-21 ナーハ ガジル、プラサード 原子層化学気相成長装置
JP2005294508A (ja) * 2004-03-31 2005-10-20 Toyo Tanso Kk サセプタ
JP2007250644A (ja) * 2006-03-14 2007-09-27 Ngk Insulators Ltd 加熱部材、及びこれを用いた基板加熱装置
JP2017103356A (ja) * 2015-12-02 2017-06-08 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
JP2018101721A (ja) * 2016-12-21 2018-06-28 株式会社ニューフレアテクノロジー 気相成長方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188468A (ja) * 1994-12-29 1996-07-23 Toyo Tanso Kk 化学蒸着法による炭化ケイ素成形体及びその製造方法
JP2003502878A (ja) * 1999-06-24 2003-01-21 ナーハ ガジル、プラサード 原子層化学気相成長装置
JP2002343779A (ja) * 2001-05-18 2002-11-29 Tokyo Electron Ltd 熱処理装置
JP2005294508A (ja) * 2004-03-31 2005-10-20 Toyo Tanso Kk サセプタ
JP2007250644A (ja) * 2006-03-14 2007-09-27 Ngk Insulators Ltd 加熱部材、及びこれを用いた基板加熱装置
JP2017103356A (ja) * 2015-12-02 2017-06-08 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
JP2018101721A (ja) * 2016-12-21 2018-06-28 株式会社ニューフレアテクノロジー 気相成長方法

Also Published As

Publication number Publication date
JP7247749B2 (ja) 2023-03-29

Similar Documents

Publication Publication Date Title
JP5955463B2 (ja) SiCエピタキシャル膜を有するSiC基板
JP2017022320A (ja) ウェハ支持台、ウェハ支持体、化学気相成長装置
JP7163756B2 (ja) 積層体、積層体の製造方法および炭化珪素多結晶基板の製造方法
JP2015198213A (ja) エピタキシャル炭化珪素ウェハの製造方法及びそれに用いる炭化珪素単結晶基板のホルダー
JP7255473B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7247749B2 (ja) 炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置
JP7400337B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7294021B2 (ja) 黒鉛製支持基板の表面処理方法、炭化珪素多結晶膜の成膜方法および炭化珪素多結晶基板の製造方法
JP7220845B2 (ja) サセプタ、サセプタの再生方法、及び、成膜方法
JP7273267B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7220844B2 (ja) SiC多結晶基板の製造方法
JP7143638B2 (ja) 炭化珪素エピタキシャル基板の製造方法
JP7338193B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7322371B2 (ja) 炭化珪素多結晶基板の製造方法
JP7247819B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7279465B2 (ja) 支持基板、支持基板の保持方法、及び、成膜方法
JP7367497B2 (ja) 炭化ケイ素多結晶膜の成膜方法、および、炭化ケイ素多結晶基板の製造方法
JP2021102796A (ja) 多結晶基板の製造方法
JP2021103720A (ja) エピタキシャル膜成長用ウエハ、エピタキシャル膜成長方法、除去方法、および、エピタキシャルウエハの製造方法
JP7322408B2 (ja) 炭化珪素多結晶基板、炭化珪素多結晶膜の製造方法および炭化珪素多結晶基板の製造方法
WO2023067876A1 (ja) 多結晶炭化珪素基板の製造方法
JP2022067842A (ja) 炭化珪素多結晶膜の成膜方法および炭化珪素多結晶基板の製造方法
JP2021070609A (ja) 炭化ケイ素多結晶基板の製造方法
CN118056038A (zh) 多晶碳化硅基板的制造方法
JP2022067844A (ja) 炭化珪素多結晶膜の成膜方法および炭化珪素多結晶基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7247749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150