JP2020077734A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2020077734A
JP2020077734A JP2018209636A JP2018209636A JP2020077734A JP 2020077734 A JP2020077734 A JP 2020077734A JP 2018209636 A JP2018209636 A JP 2018209636A JP 2018209636 A JP2018209636 A JP 2018209636A JP 2020077734 A JP2020077734 A JP 2020077734A
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide film
polysilicon
additional structure
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018209636A
Other languages
English (en)
Other versions
JP7055087B2 (ja
Inventor
真哉 赤尾
Masaya Akao
真哉 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018209636A priority Critical patent/JP7055087B2/ja
Priority to US16/547,628 priority patent/US11094783B2/en
Priority to DE102019216819.1A priority patent/DE102019216819A1/de
Priority to CN201911061706.8A priority patent/CN111162008B/zh
Publication of JP2020077734A publication Critical patent/JP2020077734A/ja
Application granted granted Critical
Publication of JP7055087B2 publication Critical patent/JP7055087B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】ポリシリコン付加構造の端部に導電性膜の残渣を生じさせないことで、製造歩留まりを向上した半導体装置を提供することを目的とする。【解決手段】第1導電型の半導体層と、半導体層の上層部に設けられた第2導電型の拡散層と、拡散層上に、第1のシリコン酸化膜を間に介して設けられ、ポリシリコンで形成されたポリシリコン付加構造と、ポリシリコン付加構造の端面に接するように設けられ、ポリシリコン付加構造の端面から、なだらかな下りの傾斜を有する第2のシリコン酸化膜と、拡散層上に、ポリシリコン付加構造の端面から一定距離離れて設けられ、第1のシリコン酸化膜で覆われる第3のシリコン酸化膜と、を有し、第1のシリコン酸化膜は第3のシリコン酸化膜を覆う部分で隆起し、当該隆起と、なだらかな下りの傾斜を有する第2のシリコン酸化膜とで、なだらかなステップ状の表層を有するシリコン酸化膜を構成する。【選択図】図3

Description

本発明は半導体装置に関し、特に、製造歩留まりを向上した半導体装置に関する。
MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等の電力用半導体装置は、スイッチング動作に伴う装置温度の上昇により異常動作を起こすと、破壊に至ること場合があることが知られている。このため、例えば、特許文献1に開示されるように、温度検出用のダイオードを付加し、温度上昇を検出した場合には、スイッチング動作を停止するなどして異常動作を防止する構成が採られることが多い。
また、電力用半導体装置は、装置表面の電極パッドにワイヤー等をワイヤーボンディングで圧着する際に機械的な衝撃力を受けるので、例えば、特許文献2に開示されるように、電極パッド下に衝撃緩衝構造を付加することで、下地層への衝撃を緩衝する構成が採られることが多い。これらの付加構造は、一般にポリシリコンを母材に形成されることが多い。
特開2010−129707号公報 特開平3−76250号公報 特開2011−82411号公報
電力用半導体装置に、これらのポリシリコン膜を母材とする付加構造(ポリシリコン付加構造)を設ける際、当該ポリシリコン膜上に、一旦、導電性膜を形成した後、当該導電性膜を除去する工程が発生する場合があるが、この場合ポリシリコン膜の端部に導電性膜が除去しきれずに残って、残渣が発生すると、ポリシリコン付加構造と下層のウェル拡散層との絶縁耐量が低下し、不良品となって、製造歩留まりが低下する。
特許文献3には、厚い絶縁膜上に形成したポリシリコン膜を除去する際に、絶縁膜の側面にポリシリコン膜の残渣が発生しないようにするため、一連のパターンニング工程(レジストパターン形成、エッチング、レジスト除去)を繰り返して絶縁膜を階段形状に加工し、高い段差を無くして残渣を発生させない技術が開示されているが、パターンニング工程を繰り返すために、製造工程が複雑になってしまう。
本発明は上記のような問題を解決するためになされたものであり、ポリシリコン付加構造の端部に導電性膜の残渣を生じさせないことで、製造歩留まりを向上した半導体装置を提供することを目的とする。
本発明に係る半導体装置の態様は、第1導電型の半導体層と、前記半導体層の上層部に設けられた第2導電型の拡散層と、前記拡散層上に、第1のシリコン酸化膜を間に介して設けられ、ポリシリコンで形成されたポリシリコン付加構造と、前記ポリシリコン付加構造の端面に接するように設けられ、前記ポリシリコン付加構造の前記端面から、なだらかな下りの傾斜を有する第2のシリコン酸化膜と、前記拡散層上に、前記ポリシリコン付加構造の前記端面から一定距離離れて設けられ、前記第1のシリコン酸化膜で覆われる第3のシリコン酸化膜と、を有し、前記第1のシリコン酸化膜は前記第3のシリコン酸化膜を覆う部分で隆起し、当該隆起と、前記なだらかな下りの傾斜を有する前記第2のシリコン酸化膜とで、なだらかなステップ状の表層を有するシリコン酸化膜を構成する。
ポリシリコン付加構造の端面から、なだらかな下りの傾斜を有する第2のシリコン酸化膜を備えることで、ポリシリコン付加構造上に、一旦、導電性膜を形成した後、当該導電性膜を除去する工程が実施された場合でも、ポリシリコン付加構造の端部に導電性膜の残渣を生じさせず、製造歩留まりを向上した半導体装置を得ることができる。
本発明に係る実施の形態1のトレンチゲート型IGBT全体の上面構成を模式的に示す平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の構成を示す平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態1の変形例のトレンチゲート型IGBTのポリシリコン付加構造の構成を示す平面図である。 本発明に係る実施の形態1の変形例のトレンチゲート型IGBTの部分断面図である。 本発明に係る実施の形態1の変形例のトレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態1の変形例のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態2のトレンチゲート型IGBTのポリシリコン付加構造の構成を示す平面図である。 本発明に係る実施の形態2のトレンチゲート型IGBTの部分断面図である。 本発明に係る実施の形態2のレンチゲート型IGBTのポリシリコン付加構造の製造工程を説明する平面図である。 本発明に係る実施の形態2のトレンチゲート型IGBTの製造工程を説明する部分断面図である。 本発明に係る実施の形態2の変形例のトレンチゲート型IGBTのポリシリコン付加構造の構成を示す平面図である。 本発明に係る実施の形態2の変形例のトレンチゲート型IGBTの部分断面図である。 本発明に適用されるポリシリコン付加構造の他の例を示す平面図である。 本発明に適用されるポリシリコン付加構造の他の例を示す平面図である。
<はじめに>
以下、添付の図面を参照しながら本発明に係る実施の形態について説明する。なお、図面は模式的に示されたものであり、異なる図面にそれぞれ示されている画像のサイズおよび位置の相互関係は、必ずしも正確に記載されたものではなく、適宜変更され得る。また、以下の説明では、同様の構成要素には同じ符号を付して図示し、それらの名称および機能も同様のものとする。よって、それらについての詳細な説明を省略する場合がある。
また、以下の説明では、「上」、「下」、「側」、「底」、「表」および「裏」などの特定の位置および方向を意味する用語が用いられる場合があるが、これらの用語は、実施の形態の内容を理解することを容易にするため便宜上用いられているものであり、実際に実施される際の方向とは関係しない。また、以下において、「外側」とは半導体装置の外周に向かう方向であり、「内側」とは「外側」に対して反対の方向とする。
また、以下の記載では、不純物の導電型に関して、n型を「第1導電型」、p型を「第2導電型」として一般的に定義するが、その逆の定義でも構わない。
<実施の形態1>
<装置構成>
図1は、本発明に係る実施の形態1のトレンチゲート型IGBT100全体の上面構成を模式的に示す平面図である。図1に示すトレンチゲート型IGBT100は、四角形状の外形を有し、その大部分は、「ユニットセル」と呼称されるIGBTの最小単位構造(IGBTセル)が複数配置された活性領域ARが設けられ、活性領域ARの外側は終端領域TRで囲まれている。活性領域ARには複数のゲートトレンチ(図示せず)が互いに間隔を開けて並列に設けられている。なお、複数のゲートトレンチは、活性領域AR内に設けられたゲート配線に接続され、ゲート配線はゲートパッドに接続されるが、これらは実施の形態との関係が薄いので図示および説明は省略する。
また、図1においては本実施の形態に関連する構成として、半導体層10上に設けられたポリシリコン付加構造31と、その下層に設けられたウェル拡散層41のみを示しており、その他のゲート電極、エミッタ電極、電極パッド等は便宜的に図示を省略している。
図1に示すようにトレンチゲート型IGBT100においては、活性領域ARの中央部分にポリシリコン付加構造31が設けられ、ポリシリコン付加構造31の下層および、終端領域TRにはウェル拡散層41が設けられている。ウェル拡散層41は、終端領域TRにおいては活性領域ARを囲むように設けられ、ポリシリコン付加構造31の下層のウェル拡散層41は、終端領域TRのウェル拡散層41に接続されるように活性領域ARの中央から端まで延在するように設けられている。なお、図1示すポリシリコン付加構造31は、温度検出用のダイオードであり、p型不純物を含むアノード領域と、n型不純物を含むカソード領域を有するpn接合ダイオードで構成されている。
図1に示す領域“X”の拡大平面図を図2に示す。なお、以下においては、当該領域“X”に示される特徴的な構成を本発明に係る実施の形態として説明し、図1は、各実施の形態において共通とする。
図2は、本発明に係る実施の形態1のトレンチゲート型IGBT100のポリシリコン付加構造31の構成を示す平面図である。図2に示されるように、ポリシリコン付加構造31は、四角形状の外形を有し、その周囲にシリコン酸化膜23(第2のシリコン酸化膜)を有し、ポリシリコン付加構造31の端面から外側に距離C(一定距離)だけ離れた位置に、ポリシリコン付加構造31を囲む幅W(第1の幅)のループ状のシリコン酸化膜21a(第3のシリコン酸化膜)を有している。なお、以下においては、ループ状のシリコン酸化膜21aをループ状膜と呼称する場合もある。
ループ状のシリコン酸化膜21aの直下においては、周囲のウェル拡散層41よりも不純物濃度が低いウェル拡散層41a(低濃度拡散層)が形成されている。シリコン酸化膜23およびシリコン酸化膜21aが、本実施の形態の特徴部となる。
図2におけるA−A線での断面図を付加構造部の断面とし、図1におけるB−B線での断面図をセル部の断面として、図3に並べて示す。これは、付加構造部とセル部とで、製造工程の関連性を判りやすく示すためである。
図3に示すように、ポリシリコン付加構造31は、n型(第1導電型)の半導体層10の一方の主面側の上層部に設けたp型(第2導電型)のウェル拡散層41上に、シリコン酸化膜22(第1のシリコン酸化膜)を間に介して形成されている。半導体層10は、シリコン(Si)層でも、炭化珪素(SiC)層でも、窒化ガリウム(GaN)層でも、その他のワイドバンドギャップ半導体層であっても良い。
ポリシリコン付加構造31の端面に接するようにシリコン酸化膜23が設けられており、シリコン酸化膜23は、ポリシリコン付加構造31の端面から、なだらかな下りの傾斜を有するように設けられている。ポリシリコン付加構造31の端面に、シリコン酸化膜23が設けられることで、ポリシリコン付加構造31の端面に導電性膜の残渣は生じていない。
また、ウェル拡散層41上には、ポリシリコン付加構造31の端面から外側に距離Cだけ離れた位置に、幅Wのシリコン酸化膜21aが設けられており、シリコン酸化膜21aは、シリコン酸化膜22で覆われているが、シリコン酸化膜22は、シリコン酸化膜21aより外側に向かうにつれて厚さが薄くなる下りの傾斜を有している。
また、ポリシリコン付加構造31の上面および端面を覆うようにシリコン酸化膜24(絶縁膜)が設けられているが、シリコン酸化膜24は、セル部においてはゲート絶縁膜として機能する。
すなわち、セル部においては、半導体層10の一方の主面側の上層部にはp型の拡散層42が設けられ、拡散層42上にはn型の拡散層43が設けられている。そして、拡散層43および42を貫通して半導体層10内に達するようにゲートトレンチ61が設けられている。
ゲートトレンチ61の内面を覆うと共に、ゲートトレンチ61近傍の拡散層43上を覆うようにシリコン酸化膜24が設けられ、ゲート絶縁膜として機能する。シリコン酸化膜24で覆われたゲートトレンチ61内には不純物を含むポリシリコンのゲート電極62が埋め込まれている。
なお、この他に、ゲート電極62上にはゲート配線が設けられ、ゲート配線を覆うように層間絶縁膜が設けられ、ゲートトレンチ61間の拡散層43に達するように層間絶縁膜を貫通するエミッタ電極が設けられるが、これらについては本実施の形態との関係が薄いので図示は省略する。
また、半導体層10の他方の主面側には、p型の拡散層が設けられ、当該拡散層に接するようにコレクタ電極が設けられてIGBTを構成するが、これらについては本実施の形態との関係が薄いので図示は省略する。
なお、上記に示した半導体層10はSi基板、SiC基板、GaN基板などの半導体基板であっても良く、また、Si基板、SiC基板、GaN基板など半導体基板上にエピタキシャル層を形成した後、半導体基板を機械的または化学的またはその他の方法によって除去し、エピタキシャル層のみによって構成される基板であっても良い。
<製造方法>
次に、ポリシリコン付加構造31の端面に導電性膜の残渣が生じない理由について、製造工程を示す図4〜図29を用いて説明する。なお、以下においては、図4、6、8、10、12、14、16、18、20、22、24、26、28および30が、図2に対応する平面図であり、図5、7、9、11、13、15、17、19、21、23、25、27、29および31が、図3に対応する断面図である。
まず、図4および図5に示すように、n型の半導体層10の一方の主面上にシリコン酸化膜21を形成する。形成方法は、熱酸化法または化学気相成長(CVD::Chemical Vapor Deposition)法等を用いることができる。
次に、図6および図7に示す工程において、シリコン酸化膜21上にレジスト材を塗布し、付加構造部においてはシリコン酸化膜21aの形成領域のみにレジスト材が残るように写真製版を行いレジストマスク51を形成する。レジストマスク51の平面視形状は、シリコン酸化膜21aと同様の幅Wのループ状である。なお、セル部においてはレジスト材が全体を覆ってレジストマスク51として残る。
そして、レジストマスク51をエッチングマスクとして、シリコン酸化膜21をドライエッチングしてループ状にパターンニングすることにより、付加構造部において、幅Wのループ状のシリコン酸化膜21a(ループ状膜)が形成される。なお、セル部においてはシリコン酸化膜21がパターニングされずに残る。
レジストマスク51を除去した後、図8および図9に示す工程において、半導体層10上からのp型不純物のイオン注入により、半導体層10の上層部にウェル拡散層41を形成する。このときシリコン酸化膜21aの直下にはイオンが注入されず、注入イオン(ドーパント)の横方向拡散によってのみウェル拡散層41aが形成されるので、ウェル拡散層41aの不純物濃度は周囲のウェル拡散層41より濃度が低くなる。
なお、図8および図9を用いて説明したシリコン酸化膜21aの幅Wを広くし過ぎると、ドーパントの横方向拡散だけではシリコン酸化膜21aの直下にウェル拡散層41が形成されない領域が発生する。そのため、シリコン酸化膜21aの幅Wは、ドーパントの横方向拡散距離の2.0倍よりも小さい値、または、ドーパントの縦方向拡散距離の1.2倍よりも小さい値とする。
このように設定することで、ウェル拡散層41はシリコン酸化膜21aの直下で濃度が低下したウェル拡散層41aとなるものの、シリコン酸化膜21aの直下にウェル拡散層41が形成されない領域が発生することはない。
次に、図10および図11に示す工程において、ポリシリコン付加構造31の下地層となるシリコン酸化膜22を形成する。シリコン酸化膜22は、付加構造部においてはウェル拡散層41上およびシリコン酸化膜21a上を覆い、セル部においてはシリコン酸化膜21を覆う。なお、付加構造部においてはシリコン酸化膜21a上を覆う部分が周囲よりも高くなり、隆起した表層を持つことになる。
次に、図12および図13に示す工程において、セル部のシリコン酸化膜22および21を除去した後、セル部の半導体層10の上層部にp型不純物をイオン注入して、拡散層42を形成する。なお、付加構造部にはシリコン酸化膜22を残すことで、p型不純物は注入されない。
次に、図14および図15に示す工程において、ポリシリコン付加構造31の母材となるポリシリコン膜311を、例えばCVD法により形成する。なお、ポリシリコン付加構造31を温度検出用のダイオードとする場合には、ポリシリコン膜311には、p型不純物を含むアノード領域と、n型不純物を含むカソード領域を形成するため、イオン注入により、p型不純物およびn型不純物の少なくとも一方を導入し、pn接合を形成する。なお、pn接合部がポリシリコン付加構造31の形成領域に形成されるように、イオン注入領域を設定する。
次に、図16および図17に示す工程において、ポリシリコン膜311上にレジスト材を塗布し、付加構造部においてはポリシリコン付加構造31の形成領域のみにレジスト材が残るように写真製版を行いレジストマスク52を形成する。レジストマスク52の平面視形状は、ポリシリコン付加構造31と同様の四角形状である。
そして、レジストマスク52をエッチングマスクとして、ポリシリコン膜311をドライエッチングして四角形状にパターンニングすることにより、付加構造部においてポリシリコン付加構造31が形成される。なお、セル部においてはレジスト材が除去されるのでポリシリコン膜311は除去される。
なお、ポリシリコン付加構造31は、ループ状のシリコン酸化膜21aの内側の端面から距離Cだけ離れた位置がポリシリコン付加構造31の端面となるようにレジストマスク52を形成する。
レジストマスク52を除去した後、図18および図19に示す工程において、セル部の拡散層42の上層部にn型不純物をイオン注入して、拡散層43を形成する。なお、ポリシリコン付加構造31を温度検出用のダイオードとする場合には、この段階でレジスト開口領域にn型不純物を注入して、pn接合を形成しても良い。
次に、図20および図21に示す工程において、セル部にトレンチゲートを形成する際のエッチングマスクとなるシリコン酸化膜23を形成する。シリコン酸化膜23は付加構造部においても形成されるが、ポリシリコン付加構造31の端縁部では、シリコン酸化膜21aに起因した隆起により、シリコン酸化膜23は、なだらかなステップ状の表層を有することとなる。
ここで、シリコン酸化膜23がポリシリコン付加構造31の端縁部で、なだらかなステップ状の表層を有するためには、ポリシリコン付加構造31の端面とループ状のシリコン酸化膜21aとの距離Cを、シリコン酸化膜23の膜厚Tox3の2倍よりも小さい値とする。
次に、図22および図23に示す工程において、シリコン酸化膜23をパターンニングしてゲートトレンチ61の形成領域に対応する部分に開口部を設けてエッチングマスクとし、当該エッチングマスクを用いてドライエッチングを行い、セル部の拡散層43および42を貫通して半導体層10中に達するゲートトレンチ61を形成する。この処理によって、シリコン酸化膜23の膜厚がある程度減少する。
その後、セル部のゲートトレンチ16の内壁表層のエッチングダメージ層を除去するため、酸化とウエットエッチングおよびケミカルドライエッチング(Chemical Dry Etching:CDE)などの等方性エッチングを複数回繰り返す。この処理よって、図24および図25に示す工程において、ゲートトレンチ16の内壁は滑らかとなり、セル部のシリコン酸化膜23は完全に除去される。しかし、付加構造部においては、シリコン酸化膜21aによるシリコン酸化膜22の表層の隆起とポリシリコン付加構造31との間の部分では、シリコン酸化膜23の垂直方向の膜厚が厚くなっているので、シリコン酸化膜23は完全には除去されず、ポリシリコン付加構造31の端面からなだらかな下りの傾斜を有するようにシリコン酸化膜23が残る。換言すれば、ポリシリコン付加構造31の端面からシリコン酸化膜21aにかけて、なだらかなステップ状の表層を有するシリコン酸化膜で覆われることになる。
次に、図26および図27に示す工程において、シリコン酸化膜24を全面的に形成し、セル部においてはゲートトレンチ61の内面を覆い、付加構造部においてはポリシリコン付加構造31を覆う。なお、付加構造部のシリコン酸化膜23上およびシリコン酸化膜22上にはシリコン酸化膜24を示していないが、これは同じシリコン酸化膜どうしであるので、区別がつかないものとして省略図示を省略しているためである。
シリコン酸化膜24の形成後、例えばCVD法によりポリシリコン膜32を全面的に形成し、セル部においてはゲートトレンチ61をポリシリコン膜32で埋め込む。ここで、付加構造部においては、ポリシリコン付加構造31の端面にはシリコン酸化膜23が残っているため、ポリシリコン付加構造31の端部近傍ではポリシリコン膜32がなだらかなステップ状の表層を有することとなり、ポリシリコン膜32の垂直方向の膜厚は薄くなっている。
次に、ポリシリコン膜32をエッチングして、ゲートトレンチ61の内部にのみ残してゲート電極62とする。このとき、付加構造部においては、ポリシリコン付加構造31の端部近傍ではポリシリコン膜32の垂直方向の膜厚は薄くなっているので、図2および図3に示されるようにポリシリコン付加構造31の端面にポリシリコン膜32の残渣が生じない。
以上説明したように、本実施の形態1のトレンチゲート型IGBT100においては、ポリシリコン付加構造31を囲むようにループ状のシリコン酸化膜21aを設けることで、ポリシリコン付加構造31の端部近傍においては、ポリシリコン付加構造31の端面からシリコン酸化膜21aにかけて、なだらかなステップ状の表層を有するシリコン酸化膜で覆われ、かつ、シリコン酸化膜21aの直下に形成されるウェル拡散層41aは、不純物濃度が周囲よりも低濃度になっている。このような構成を採ることで、ポリシリコン付加構造31の端面に導電性膜の残渣が発生せず、ポリシリコン付加構造31とウェル拡散層41との間に高電圧が印加されても、電気的な絶縁が維持されるので不良品とならず、製造歩留まりを高めることができる。また、上記効果を得るために加える工程は、シリコン酸化膜21aを設ける工程だけなので、製造工程が複雑になることもない。
<変形例>
以上説明した実施の形態1のトレンチゲート型IGBT100においては、図8および図9を用いて説明したように、シリコン酸化膜21aの幅Wをドーパントの横方向拡散距離の2.0倍よりも小さい値、または、ドーパントの縦方向拡散距離の1.2倍よりも小さい値とした。
しかし、本変形例においては、図28および図29に示すように、シリコン酸化膜21aの幅Wをドーパントの横方向拡散距離の2.0倍以上の値、または、ドーパントの縦方向拡散距離の1.2倍以上の値とする。
この結果、シリコン酸化膜21aの外側端縁部の直下に濃度が低下したウェル拡散層41al(第2の低濃度拡散層)が形成され、シリコン酸化膜21aの内側の端縁部の直下に濃度が低下したウェル拡散層41ar(第1の低濃度拡散層)が形成され、ウェル拡散層41alと41arとの間は、ウェル拡散層41が形成されず、n型の領域となっている。
ウェル拡散層41および半導体層10は、シリコン酸化膜22を間に介してポリシリコン付加構造31と電気的に絶縁されていれば問題ないので、このようにウェル拡散層41が部分的に形成されない領域が存在していても問題はない。
一方、シリコン酸化膜21aの幅Wを広くすることで、図24および図25を用いて説明したセル部のゲートトレンチ16に酸化とウエットエッチングを複数回繰り返す工程において、ポリシリコン付加構造31の端面からシリコン酸化膜23が除去されてしまうことを防ぐことができる。
すなわち、シリコン酸化膜21aの幅Wを広くすることで、ポリシリコン付加構造31の端面とループ状のシリコン酸化膜21aとの距離Cと幅Wとの合計が大きくなり、その分だけポリシリコン付加構造31の端面からシリコン酸化膜21aを超えて外側に延在するシリコン酸化膜23の長さ(図23に示すL)が長くなる。この結果、ウエットエッチングまたはCDEのようなサイドエッチが大きいエッチングを用いる場合でも、ポリシリコン付加構造31の端面からシリコン酸化膜23が除去されてしまうことを防ぐことができる。
図30および図31は、シリコン酸化膜21上にレジスト材を塗布し、付加構造部においてはシリコン酸化膜21aの形成領域のみにレジスト材が残るように写真製版を行いレジストマスク51を形成する工程を示しており、図6および図7を用いて説明した工程に対応している。
図30および図31に示すように、レジストマスク51の幅Wを、図6および図7に示したレジストマスク51の幅Wよりも大きくすることで、幅Wが広いシリコン酸化膜21aを形成することができる。
<実施の形態2>
図32および図33は、本発明に係る実施の形態2のトレンチゲート型IGBT200の特徴部の構成を示す平面図および断面図であり、図2および図3に示したトレンチゲート型IGBT100の特徴部の構成を示す平面図および断面図に対応し、図2および図3と同一の構成については同一の符号を付し、重複する説明は省略する。
実施の形態1のトレンチゲート型IGBT100との相違点は、ポリシリコン付加構造31の周囲をループ状のシリコン酸化膜21aとループ状のシリコン酸化膜21b(第4のシリコン酸化膜)が2重に取り囲んでいる点である。
すなわち、ポリシリコン付加構造31の端面から外側に距離Cだけ離れた位置に、ポリシリコン付加構造31を囲む幅Waのループ状のシリコン酸化膜21aが設けられる点では実施の形態1と同じであるが、シリコン酸化膜21aのさらに外側に、シリコン酸化膜21aを囲む幅Wbのループ状のシリコン酸化膜21bが設けられている。なお、以下においては、ループ状のシリコン酸化膜21bを他のループ状膜と呼称する場合もある。
幅WaおよびWbは、シリコン酸化膜21aおよび21bのそれぞれの直下に周囲のウェル拡散層41よりも不純物濃度が低いウェル拡散層41aおよび41bを形成する場合は、ドーパントの横方向拡散距離の2.0倍よりも小さい値、または、ドーパントの縦方向拡散距離の1.2倍よりも小さい値とする。
このようにシリコン酸化膜21aおよび21bを設けると、ポリシリコン付加構造31の端面にシリコン酸化膜23が残ると共に、シリコン酸化膜21aと21bとの間にもシリコン酸化膜23が残る。
このように、シリコン酸化膜21aおよび21bを設けることで、シリコン酸化膜21aの幅Wを広くすることと同じ効果が得られる。すなわち、シリコン酸化膜21aおよび21bを設けることで、ポリシリコン付加構造31の端面とループ状のシリコン酸化膜21aとの距離Cおよびシリコン酸化膜21aの内側端面からシリコン酸化膜21bの外側端面までの距離Dとの合計の分だけポリシリコン付加構造31の端面からシリコン酸化膜21aおよび21bを超えて外側に延在するシリコン酸化膜23の長さが長くなる。この結果、ウエットエッチングまたはCDEのようなサイドエッチが大きいエッチングを用いる場合でも、ポリシリコン付加構造31の端面からシリコン酸化膜23が除去されてしまうことを防ぐことができる。
図34および図35は、シリコン酸化膜21上にレジスト材を塗布し、付加構造部においてはシリコン酸化膜21aおよび21bの形成領域のみにレジスト材が残るように写真製版を行いレジストマスク51を形成する工程を示しており、図6および図7を用いて説明した工程に対応している。
シリコン酸化膜21aおよび21bを設けることで、それぞれの幅は大きくする必要がなくなるので、それぞれの幅を大きくした場合に、それぞれの直下に、ウェル拡散層41が形成されない領域が生じることがなく、ウェル拡散層41が分断されることがない。そのため、ウェル拡散層41が分断されることが望ましくない場合に対応することができる。
なお、シリコン酸化膜21aおよび21bのそれぞれの直下に、ウェル拡散層41が形成されず、n型の領域となって、ウェル拡散層41が分断されても構わない場合は、シリコン酸化膜21aの幅Waおよびシリコン酸化膜21bの幅Wbをドーパントの横方向拡散距離の2.0倍以上の値、または、ドーパントの縦方向拡散距離の1.2倍以上の値とすれば良い。
また、上記ではポリシリコン付加構造31の周囲をループ状のシリコン酸化膜21aおよび21bが2重に取り囲んでいる例を示したが、3重以上に取り囲むようにしても良い。この場合も、一番内側のループ状のシリコン酸化膜の端面から内側に距離Cだけ離れた位置にポリシリコン付加構造31の端面が位置するようにポリシリコン付加構造31を配置する。
<変形例>
以上説明した実施の形態2のトレンチゲート型IGBT200においては、図32および図33を用いて説明したように、ポリシリコン付加構造31の端面が、一番内側のシリコン酸化膜21aの内側端面から距離Cだけ離した場所に位置するようにポリシリコン付加構造31を設けたが、図36および図37に示すように、ポリシリコン付加構造31の端面がシリコン酸化膜21aと21bとの間に位置するようにポリシリコン付加構造31を設けても良い。
この場合、ポリシリコン付加構造31の端面から外側に距離Cだけ離れた位置に、ポリシリコン付加構造31を囲む幅Waのループ状のシリコン酸化膜21aが設けられる点では実施の形態2と同じであるが、シリコン酸化膜21aの内側に、ポリシリコン付加構造31を囲む幅Wbのループ状のシリコン酸化膜21bが設けられている。
この場合も、ポリシリコン付加構造31の端面にシリコン酸化膜23を残すことができる。この構成を採る場合、ポリシリコン付加構造31はシリコン酸化膜21bの存在により凹凸部となった部分の上に乗り上げるように形成されるため、ポリシリコン付加構造31と下地のシリコン酸化膜22との付着面積が増加し、外部からの衝撃および応力が加わった場合でも、シリコン酸化膜22との剥離を抑制する効果が高くなる。
また、上記ではポリシリコン付加構造31の周囲をループ状のシリコン酸化膜21bおよび21aが2重に取り囲んでいる例を示したが、3重以上に取り囲むようにしても良い。この場合も、複数のループ状のシリコン酸化膜の何れかの間にポリシリコン付加構造31の端面が位置し、当該端面とループ状のシリコン酸化膜の内側の端面が距離Cだけ離れるようにポリシリコン付加構造31を配置する。
<ポリシリコン付加構造の他の例>
以上説明した実施の形態1および2のトレンチゲート型IGBT100および200では、活性領域ARの中央部分にポリシリコン付加構造31に温度検出用ダイオードとしてのポリシリコン付加構造31を設けた例を説明したが、温度検出用ダイオードは活性領域ARの端縁部に設けても良い。
図38は、温度検出用ダイオードとしてのポリシリコン付加構造31fを活性領域ARを囲むウェル拡散層41の一部上部に設けた構成を示しており、図1に対応する図である。
また、図1に示したように活性領域ARの中央部分に温度検出用ダイオードとしてのポリシリコン付加構造31を設けた構成を併せて用いても良い。
また、ポリシリコン付加構造を装置表面の電極パッドにワイヤーをワイヤーボンディングで圧着する際の衝撃緩衝構造として設けても良い。電極パッドは、活性領域ARの端縁部に設けられる場合が多いので、例えば、図39に示すように、衝撃緩衝構造としてのポリシリコン付加構造31gは、活性領域ARを囲むウェル拡散層41の一部上部に設ける。
なお、ポリシリコン付加構造31fも31gもポリシリコン付加構造31と同様に、図3に示したように、端面に接するようにシリコン酸化膜23が設けられており、ポリシリコン付加構造31fおよび31gの端面に導電性膜の残渣は生じない。
また、ウェル拡散層41上には、図3に示したように、ポリシリコン付加構造31fおよび31gの端面から外側に距離Cだけ離れた位置に、幅Wのシリコン酸化膜21aが設けられている。
また、上記以外にも、ウェル拡散層上にシリコン酸化膜を間に介してp型のポリシリコン膜とn型のポリシリコン膜とのpn接合構造を設け、pn接合構造の接合耐圧で隣接するセル部の電気的な絶縁を保つような場合にもポリシリコン付加構造は適用され、そのようなpn接合構造の形成においても、上述した残渣防止の構成は有効である。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
10 半導体層、21,21a,21b,22,23 シリコン酸化膜、31 ポリシリコン付加構造、32 第2のポリシリコン膜、41,41a,41ar,41al ウェル拡散層、311 第1のポリシリコン膜。

Claims (11)

  1. 第1導電型の半導体層と、
    前記半導体層の上層部に設けられた第2導電型の拡散層と、
    前記拡散層上に、第1のシリコン酸化膜を間に介して設けられ、ポリシリコンで形成されたポリシリコン付加構造と、
    前記ポリシリコン付加構造の端面に接するように設けられ、前記ポリシリコン付加構造の前記端面から、なだらかな下りの傾斜を有する第2のシリコン酸化膜と、
    前記拡散層上に、前記ポリシリコン付加構造の前記端面から一定距離離れて設けられ、前記第1のシリコン酸化膜で覆われる第3のシリコン酸化膜と、を有し、
    前記第1のシリコン酸化膜は前記第3のシリコン酸化膜を覆う部分で隆起し、当該隆起と、前記なだらかな下りの傾斜を有する前記第2のシリコン酸化膜とで、なだらかなステップ状の表層を有するシリコン酸化膜を構成する、半導体装置。
  2. 前記拡散層は、
    前記第3のシリコン酸化膜の直下の部分に、周囲よりも不純物濃度が低い低濃度拡散層を少なくとも有する、請求項1記載の半導体装置。
  3. 前記拡散層は、
    前記第3のシリコン酸化膜の前記ポリシリコン付加構造側の端縁部直下と、その反対側の端縁部直下の部分に、それぞれ周囲よりも不純物濃度が低い第1および第2の低濃度拡散層を有し、前記第1および第2の低濃度拡散層の間の部分に前記半導体層を有する、請求項2記載の半導体装置。
  4. 前記拡散層上に、前記第3のシリコン酸化膜から前記ポリシリコン付加構造とは反対側に一定距離離れて設けられた第4のシリコン酸化膜を有し、
    前記第1のシリコン酸化膜は、前記第3および第4のシリコン酸化膜を覆う部分で隆起する、請求項1記載の半導体装置。
  5. 前記拡散層上に、前記第3のシリコン酸化膜から前記ポリシリコン付加構造側に一定距離離れて設けられた第4のシリコン酸化膜を有し、
    前記第1のシリコン酸化膜は、前記第3および第4のシリコン酸化膜を覆う部分で隆起し、
    前記ポリシリコン付加構造は、
    前記第1のシリコン酸化膜が前記第4のシリコン酸化膜を覆う部分に乗り上げるように形成される、請求項1記載の半導体装置。
  6. (a)第1導電型の半導体層上に第3のシリコン酸化膜を形成する工程と、
    (b)前記第3のシリコン酸化膜をパターニングして、第1の幅を有するループ状膜とする工程と、
    (c)前記工程(b)の後、前記ループ状膜上から第2導電型の不純物をイオン注入して、前記半導体層の上層部に第2導電型の拡散層を形成する工程と、
    (d)前記工程(c)の後、前記半導体層上に第1のシリコン酸化膜を形成して、前記ループ状膜を覆う工程と、
    (e)前記第1のシリコン酸化膜上に第1のポリシリコン膜を形成する工程と、
    (f)前記ポリシリコン膜をパターニングして、ポリシリコン付加構造を形成する工程と、
    (g)前記半導体層上に第2のシリコン酸化膜を形成して前記ポリシリコン付加構造を覆う工程と、
    (h)前記工程(g)の後、前記第2のシリコン酸化膜を除去して、前記ポリシリコン付加構造の端面のみに、前記端面から、なだらかな下りの傾斜を有するように前記第2のシリコン酸化膜を残す工程と、
    (i)前記第1および第2のシリコン酸化膜と前記ポリシリコン付加構造を覆うように絶縁膜および第2のポリシリコン膜を積層する工程と、
    (j)前記第2のポリシリコン膜を部分的に除去する工程と、を備え、
    前記工程(f)は、
    前記ループ状膜の内側の端面から、前記ポリシリコン付加構造の前記端面までが一定距離離れるように前記ポリシリコン付加構造を形成する工程を含む、半導体装置の製造方法。
  7. 前記工程(b)は、
    前記ループ状膜の前記第1の幅を、前記拡散層のドーパントの横方向拡散距離の2.0倍よりも小さい値、または、前記ドーパントの縦方向拡散距離の1.2倍よりも小さい値とする工程を含む、請求項6記載の半導体装置の製造方法。
  8. 前記工程(b)は、
    前記ループ状膜の前記第1の幅を、前記拡散層のドーパントの横方向拡散距離の2.0倍以上の値、または、前記ドーパントの縦方向拡散距離の1.2倍以上の値とする工程を含む、請求項6記載の半導体装置の製造方法。
  9. 前記一定距離は、
    前記第2のシリコン酸化膜の膜厚の2倍よりも小さい値に設定される、請求項6記載の半導体装置の製造方法。
  10. 前記工程(b)は、
    前記ループ状膜の外側に、少なくとも1つの他のループ状膜をパターニングする工程を有し、
    前記工程(d)は、
    前記ループ状膜および前記少なくとも1つの他のループ状膜を覆うように前記第1のシリコン酸化膜を形成する工程を含む、請求項6記載の半導体装置の製造方法。
  11. 前記工程(b)は、
    前記ループ状膜の内側に、少なくとも1つの他のループ状膜をパターニングする工程を有し、
    前記工程(d)は、
    前記ループ状膜および前記少なくとも1つの他のループ状膜を覆うように前記第1のシリコン酸化膜を形成する工程を含み、
    前記工程(f)は、
    前記第1のシリコン酸化膜が前記少なくとも1つの他のループ状膜を覆う部分に乗り上げるように前記ポリシリコン付加構造を形成する工程を含む、請求項6記載の半導体装置の製造方法。
JP2018209636A 2018-11-07 2018-11-07 半導体装置およびその製造方法 Active JP7055087B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018209636A JP7055087B2 (ja) 2018-11-07 2018-11-07 半導体装置およびその製造方法
US16/547,628 US11094783B2 (en) 2018-11-07 2019-08-22 Semiconductor device having a silicon oxide film with a gradual downward inclination and method of manufacturing semiconductor device
DE102019216819.1A DE102019216819A1 (de) 2018-11-07 2019-10-31 Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
CN201911061706.8A CN111162008B (zh) 2018-11-07 2019-11-01 半导体装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018209636A JP7055087B2 (ja) 2018-11-07 2018-11-07 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2020077734A true JP2020077734A (ja) 2020-05-21
JP7055087B2 JP7055087B2 (ja) 2022-04-15

Family

ID=70458986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209636A Active JP7055087B2 (ja) 2018-11-07 2018-11-07 半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US11094783B2 (ja)
JP (1) JP7055087B2 (ja)
CN (1) CN111162008B (ja)
DE (1) DE102019216819A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936929A (ja) * 1982-08-25 1984-02-29 Mitsubishi Electric Corp 半導体装置の製造方法
JPS63229757A (ja) * 1987-03-19 1988-09-26 Nippon Denso Co Ltd 半導体装置
JPH03263328A (ja) * 1990-03-13 1991-11-22 Mitsubishi Electric Corp 半導体装置
US20050156267A1 (en) * 2004-01-13 2005-07-21 Shogo Mori Semiconductor device provided with temperature detection function
WO2013015014A1 (ja) * 2011-07-22 2013-01-31 富士電機株式会社 超接合半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817203B2 (ja) 1989-08-18 1996-02-21 三菱電機株式会社 半導体装置およびその製造方法
JPH07245397A (ja) * 1994-03-07 1995-09-19 Oki Electric Ind Co Ltd 半導体装置の製造方法
JPH11251426A (ja) * 1998-03-05 1999-09-17 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP3955404B2 (ja) * 1998-12-28 2007-08-08 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
JP3076250U (ja) 2000-09-11 2001-03-30 株式会社 アルファプログレス 緊急車輌情報確認装置
JP4342429B2 (ja) * 2004-02-09 2009-10-14 株式会社東芝 半導体装置の製造方法
JP4271210B2 (ja) * 2006-06-30 2009-06-03 株式会社東芝 電界効果トランジスタ、集積回路素子、及びそれらの製造方法
JP2009043866A (ja) * 2007-08-08 2009-02-26 Nec Electronics Corp 半導体装置およびその製造方法
JP5487601B2 (ja) 2008-11-27 2014-05-07 富士電機株式会社 半導体装置およびその製造方法
JP2011082411A (ja) 2009-10-09 2011-04-21 Mitsubishi Electric Corp 半導体素子の製造方法
JP6170812B2 (ja) * 2013-03-19 2017-07-26 株式会社東芝 半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936929A (ja) * 1982-08-25 1984-02-29 Mitsubishi Electric Corp 半導体装置の製造方法
JPS63229757A (ja) * 1987-03-19 1988-09-26 Nippon Denso Co Ltd 半導体装置
JPH03263328A (ja) * 1990-03-13 1991-11-22 Mitsubishi Electric Corp 半導体装置
US20050156267A1 (en) * 2004-01-13 2005-07-21 Shogo Mori Semiconductor device provided with temperature detection function
JP2005203446A (ja) * 2004-01-13 2005-07-28 Toyota Industries Corp 温度検出機能付き半導体装置
WO2013015014A1 (ja) * 2011-07-22 2013-01-31 富士電機株式会社 超接合半導体装置

Also Published As

Publication number Publication date
JP7055087B2 (ja) 2022-04-15
CN111162008A (zh) 2020-05-15
CN111162008B (zh) 2023-04-28
US20200144363A1 (en) 2020-05-07
US11094783B2 (en) 2021-08-17
DE102019216819A1 (de) 2020-05-07

Similar Documents

Publication Publication Date Title
US10374047B2 (en) Semiconductor device and manufacturing method thereof
JP6666671B2 (ja) 半導体装置
WO2012077617A1 (ja) 半導体装置およびその製造方法
JP2017162909A (ja) 半導体装置
US20110062514A1 (en) Semiconductor device and method of manufacturing the same
JP5767857B2 (ja) トレンチ型mosfet及びその製造方法
US9450087B2 (en) Semiconductor device, and manufacturing method for same
JP2009076738A (ja) 半導体装置およびその製造方法
JP2013182935A (ja) 半導体装置およびその製造方法
JP5498107B2 (ja) 半導体装置およびその製造方法
TW201838192A (zh) 半導體裝置及其製造方法
JP5739826B2 (ja) 半導体装置
JP2019046834A (ja) 半導体装置の製造方法
JP5556863B2 (ja) ワイドバンドギャップ半導体縦型mosfet
JP2011176027A (ja) 半導体素子および半導体素子の製造方法
CN111384162A (zh) 半导体器件及其制造方法
US7564107B2 (en) Power semiconductor device including a terminal structure
JP2011040431A (ja) 半導体装置およびその製造方法
JP2012216577A (ja) 絶縁ゲート型半導体装置
JP2005294872A (ja) 半導体装置及びその製造方法
JP5378925B2 (ja) 半導体装置およびその製造方法
CN111834448A (zh) 碳化硅半导体装置
JP7055087B2 (ja) 半導体装置およびその製造方法
JP5851717B2 (ja) 半導体装置及びその製造方法
JP2006196545A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220405

R150 Certificate of patent or registration of utility model

Ref document number: 7055087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150