JP2020065325A - 振動発電素子 - Google Patents

振動発電素子 Download PDF

Info

Publication number
JP2020065325A
JP2020065325A JP2018194438A JP2018194438A JP2020065325A JP 2020065325 A JP2020065325 A JP 2020065325A JP 2018194438 A JP2018194438 A JP 2018194438A JP 2018194438 A JP2018194438 A JP 2018194438A JP 2020065325 A JP2020065325 A JP 2020065325A
Authority
JP
Japan
Prior art keywords
weight
vibration power
movable electrode
power generation
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018194438A
Other languages
English (en)
Other versions
JP6993951B2 (ja
Inventor
大輔 穴井
Daisuke Anai
大輔 穴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2018194438A priority Critical patent/JP6993951B2/ja
Priority to CN201910960213.1A priority patent/CN111049415B/zh
Priority to US16/599,735 priority patent/US11387749B2/en
Publication of JP2020065325A publication Critical patent/JP2020065325A/ja
Application granted granted Critical
Publication of JP6993951B2 publication Critical patent/JP6993951B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • H02N2/188Vibration harvesters adapted for resonant operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0055Supports for driving or driven bodies; Means for pressing driving body against driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/183Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators using impacting bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

【課題】錘の質量を調整可能として錘の質量を、所定の設定値内に収めることが容易な振動発電素子を提供する。【解決手段】振動発電素子1は、複数の櫛歯電極110を有する固定電極部111と、複数の櫛歯電極120を有する可動電極部12と、可動電極部12に固定される錘10a、10bと、錘の質量を追加調整するための調整用錘105、170実装可能な調整錘実装用構造Mbとを備える。【選択図】図7

Description

本発明は、振動発電素子に関する。
近年、MEMS技術を利用した非常に小型の振動発電素子が開発されている。例えば、特許文献1では、櫛歯電極が形成された固定部に対して櫛歯電極が形成された可動部を振動させることで発電を行うようにしている。このような振動発電素子においては、小さな環境振動でも効率良く発電するために可動部の質量をより大きくすることが重要であり、特許文献1に記載の振動発電素子では可動部上に別途形成された錘を装着する構造としている。
特許6338071号公報
上記特許文献1には、錘の質量を調整可能とすることは記載されていない。錘の質量にばらつきがあると振動発電素子の共振周波数が変化し、振動発電素子の発電効率が悪化してしまう。
本発明の一態様による振動発電素子は、複数の櫛歯電極を有する固定電極部と、複数の櫛歯電極を有する可動電極部と、前記可動電極部に固定される錘と、前記錘の質量を追加調整するための調整用錘が実装可能な調整錘実装用構造とを備える。
本発明によれば、錘の質量を、所定の設定値内に収めることが容易である。
図1は、真空パッケージに封入された振動発電素子を示す図である。 図2は、振動発電素子の各部の構成を示す図である。 図3は、振動平面内における重心位置のずれを説明する図である。 図4は、振動平面に垂直な方向の位置ずれを説明する図である。 図5は、可動電極部と錘との接合構造を示すための第1の実施形態であり、図1に示された可動電極部と錘との分解図である。図5において、可動電極部は上方からみた図あり、錘は下方側からみた斜視図である。 図6は、図5に示された錘を上面側からみた斜視図である。 図7は、図6に示す可動電極部と錘との接合構造を示す断面図である。 図8は、振動発電素子のMEMS加工体の形成手順の一例を示す図である。 図9は、MEMS加工体の形成手順の図8に続く工程を示す図である。 図10は、錘の変形例1であり、図10(a)は錘の平面図、図10(b)は図10(a)の中心線L6−L6に沿う断面図、図10(c)は図10(a)の中心線L5−L5に沿う断面図である。 図11は、錘の変形例2であり、図11(a)は錘の平面図、図11(b)は図11(a)の中心線L6−L6に沿う断面図、図11(c)は図11(a)の中心線L5−L5に沿う断面図である。 図12は、錘の変形例3であり、図12(a)は錘の平面図、図12(b)は図12(a)の中心線L6−L6に沿う断面図、図12(c)は図12(a)の中心線L5−L5に沿う断面図である。 図13は、錘の第2の実施形態を示し、図13(a)は錘の平面図、図13(b)は図13(a)の中心線L6−L6に沿う断面図、図13(c)は図13(a)の中心線L5−L5に沿う断面図である。 図14は、錘に調整用錘を実装した状態を示す図13(a)の中心線L6−L6に沿う断面図である。
−第1の実施形態−
以下、図を参照して本発明を実施するための形態について説明する。図1は真空状態のパッケージ2内に封入された振動発電素子1を示す図であり、図1(a)は平面図、図1(b)はA−A断面図である。なお、図1(a)の平面図ではパッケージ2の内部構造が分かるように、パッケージ2の上面側(z軸正方向側)に設けられた上蓋3の図示を省略した。
振動発電素子1は、固定部11と、可動電極部12と、可動電極部12を弾性支持する弾性支持部13と、可動電極部12の表裏両面に固着された一対の錘10a、10bとを備えている。振動発電素子1の固定部11は、ダイボンドによりパッケージ2に固定される。パッケージ2は、例えば、電気絶縁性の材料(例えば、セラミックス)で形成されている。パッケージ2の上端には、パッケージ2内を真空封入するための上蓋3がシーム溶接される。
固定部11上には固定電極部111が形成され、その固定電極部111には、x軸方向に延びる櫛歯電極110がy軸方向に複数形成されている。可動電極部12には、x軸方向に延びる櫛歯電極120がy軸方向に複数形成されている。詳細には、可動電極部12は、x軸方向に延在する中央帯部121(図1(b)参照)と、中央帯部121のx軸方向の中心から、それぞれ、y軸正方向、およびy軸負方向に延在する枝部122を有する。一般に、xy面内における中央帯部121のx軸方向の中心と可動電極部12の重心位置とは一致している。可動電極部12の各枝部122には、y軸方向に所定の間隔をおいて複数の櫛歯電極120が配列されている。x軸方向に延在する複数の櫛歯電極110と各枝部122から延在される櫛歯電極120とは、y軸方向に隙間を介して互いに噛合するように配置されている。固定電極部111には電極パッド112が形成されている。
可動電極部12は、固定部11上に形成された接続部114に弾性支持部13を介して機械的および電気的に接続されている。接続部114には電極パッド113が形成されている。電極パッド112、113は、ワイヤー22によってパッケージ2に設けられた電極21a、21bに接続されている。本実施の形態では可動電極部12はx軸方向に振動するように構成されており、可動電極部12がx軸方向に振動すると、固定電極部111の櫛歯電極110に対する櫛歯電極120の挿入量が変化して発電が行われる。錘10a、10bは、それぞれ、可動電極部12の中央帯部121に接着等により固定されている。錘10a、10bと可動電極部12の中央帯部121の固定部において、錘10a、10bのそれぞれ、もしくは可動電極部12の中央帯部121のいずれかに、接着剤を充填する接着材溜め部を設けて固定するようにしてもよい。中央帯部121のx軸方向の中心を通るz方向の軸を考えたとき、錘10a、10bは、それぞれの重心位置がその軸上となるように固定される。
錘10a、10bそれぞれの可動電極部12側と反対面側には、錘の質量を追加調整するための調整錘実装構造Mbが設けられている。調整錘実装構造Mbについては後述する。
図2は振動発電素子1の各部の構成を示す図である。後述するように、振動発電素子1は、SOI(Silicon On Insulator)基板を用いて一般的なMEMS加工技術により形成される。SOI基板はSiの支持層とSiOのボックス層とSiの活性層とから成る3層構造の基板であり、固定部11は支持層により形成され、固定電極部111、可動電極部12、弾性支持部13および接続部114は活性層により形成される。
図2(a)は、振動発電素子1のMEMS加工体、すなわち錘10a、10bを固着する前の振動発電素子1を示す図である。図2(a)では、固定部11上の固定電極部111と、可動電極部12、弾性支持部13および接続部114とをハッチングを施して示した。可動電極部12は4組の弾性支持部13によって弾性支持されている。各弾性支持部13は、弾性変形可能な3本のビーム13a〜13cを備えている。
接続部114は、可動電極部12のx軸方向振動の範囲を制限する制限部としても機能する。接続部114の可動電極部12に対向する面には、突起114aが形成されている。可動電極部12のx軸方向端面が接続部114の突起114aに衝突することによって、可動電極部12の振動の振幅が制限される。なお、図2(a)では突起を接続部114に形成したが、可動電極部12側に形成しても良い。
図2(b)は、振動発電素子1の固定部11のみを示す図である。図2(b)の固定部11上に示したハッチング領域11Cは、固定電極部111が固定されている領域を示す。ビーム13aの端部は固定部11上に固定される。図2(b)の固定部11上に示したハッチング領域11Aは、ビーム13aの端部が固定されている領域を示す。ビーム13cの端部は、固定部11上に形成された接続部114に接続されている。図2(b)の固定部11上に示したハッチング領域11Bは、接続部114が固定されている領域を示す。
本実施の形態の振動発電素子1では、可動電極部12の質量を増やして発電効率をより向上させるために別体の錘10a、10bを可動電極部12に装着するようにしている。錘10a、10bの材料には、小さな体積でも大きな質量が得らえるようにSOI基板よりも比重の大きな材料が使用される。例えば、タングステン(比重19.25)、快削銅(比重8.94)、ステンレス鋼(比重7.93)や、メタルインジェクション法により形成されるタングステン部材(比重13〜17)等の金属や、タングステン樹脂(比重11〜13)のように樹脂に金属材を混入したものなどが用いられる。
このように、別に形成された錘10a、10bを可動電極部12に装着する構成の場合、可動電極部12に装着した際の錘10a、10bの重心位置のずれが弾性支持部13の寿命に大きな影響を与えることが判った。図3および図4は、錘10a、10bの重心位置のずれの影響を説明する図である。図3は振動平面内(図1のxy平面内)での位置ずれを説明する図で、図4は振動平面に垂直な方向(図1のz軸方向)の位置ずれを説明する図である。
図3において、(a)は位置決めが適切に行われている場合を示し、(b)は位置決めが不適切な場合を示す。図3では錘10a、10bの図示を省略し、錘10a、10bの重心位置のみを符号Gで示した。図3(a)、(b)において、ラインL1は接続部114の突起114aの先端を通り振動方向(x軸方向)に平行な直線である。図3(a)に示す例では、xy平面上における錘10a、10bの重心位置GはラインL1上に位置している。そのため、振動により錘10a、10bの重心に働く力F1の方向は、ラインL1に沿った方向となっている。可動電極部12が接続部114の突起114aに衝突すると突起114aから可動電極部12に対して反作用の力F2が働くが、F1とF2は向きは逆であるが方向はラインL1に沿った方向である。そのため、可動電極部12をxy面内で傾けるようなモーメントは発生しない。
なお、可動電極部12はラインL1に対して線対称にyプラス方向とyマイナス方向に可動櫛歯群が設けられており、質量に関してもラインL1に対して線対称となっている。したがって、ラインL1は可動電極部12の可動電極群が線対称となる基準線と定義することもできる。
一方、図3(b)に示す位置決めが不適切な場合、錘10a、10bの重心位置GはラインL1に対してy軸負方向に位置ずれしている。そのため、可動電極部12が接続部114の突起114aに衝突すると、力F1および力F2を表すベクトルが同一ラインに沿った力ではないため可動電極部12を矢印のように傾けるようなにモーメントが作用し、可動電極部12がxy面内で傾くことになる。その結果、ビーム13bに意図しない変形が生じビーム破損の原因となる。
振動平面に垂直な方向の位置ずれを説明する図4は、図3(a)のラインL1に沿ったxz断面を示したものである。図4は衝突時の状態を示す図であって、図4(a)は錘10a、10bの合計質量の重心位置GがラインL1上にある場合を示し、図4(b)は重心位置GがラインL1よりも図示下側(z軸負方向側)にある場合を示す。
錘10a、10bが同一材料かつ同一形状である場合には、それぞれの重心位置G1、G2の可動電極部12からの高さ寸法は同一となる。そのため、xy平面上における重心位置G1、G2の位置ずれがあった場合でも、錘10a、10bの合計質量の重心位置GはラインL1を含むxy平面上に位置することになり、可動電極部12が接続部114の突起114aに衝突した際にモーメントは発生しない。
ただし、錘10a、10bの形状が互いに異なる等の理由で、図4(b)に示すように合計質量の重心位置GがラインL1に対してz軸方向に位置ずれしていた場合、可動電極部12に対する錘10a、10bのxy方向の位置決めが適正であっても、可動電極部12が接続部114の突起114aに衝突した際に可動電極部12を矢印のように傾けるようなモーメントが発生して、ビーム13bに意図しない変形が生じることになる。
図5は、可動電極部と錘との接合構造を示すための第1の実施形態であり、図1に示された可動電極部と錘との分解図である。図5において、可動電極部は上方からみた図であり、錘は下方側からみた斜視図である。また、図6は、図5に示された錘を上方からみた斜視図であり、図7は、図6に示す可動電極部と錘との接合構造を示す断面図である。
錘10aと錘10bとは同一の形状をしており、以下では、代表として、錘10aについて説明する。
錘10aは、可動電極部12の中央帯部121に沿ってx軸方向に延在される帯状形状を有する。錘10aの可動電極部12の中央帯部121側には、y軸方向の長さ(幅)の小さい幅狭部115が形成されている。幅狭部115の可動電極部12に対面する一面115aには、一対の位置決め突起102が形成されている。図5では、位置決め突起102は、円柱形状として例示するが、角柱形状としてもよい。あるいは、円錐形状や角錐形状とすることもできる。
図6に示すように、錘10aの上面側(z軸正方向側)には、調整錘実装用構造Mbが設けられている。調整錘実装用構造Mbは、錘10aの一面115aとは反対側の他面115bから下方(z軸負方向側)に横断面形状が長方形の窪んだ凹部として形成されている。図7に示すように、調整錘実装用構造Mb内には調整用錘105が収容されている。錘10aは、一面115aが可動電極部12の上面である錘固定面Fm(図7参照)上に載置されて固定される。
図5の符号L2を付した直線は可動電極部12の重心を通りy軸に平行な中心線であり、錘10aは、錘10aのx軸方向に関する中央を通る中心線L3が中心線L2を含むyz平面に含まれるように、可動電極部12に固定される。また、錘10aは、錘10aのy軸方向に関する中央を通る中心線L4が図5のラインL1を含むxz平面に含まれるように、可動電極部12に固定される。錘10aの重心位置は、中心線L3と中心線L4の交点を通りz軸に平行な軸の上に位置している。可動電極部12の重心位置は、ラインL1と中心線L2との交点に位置している。従って、錘10aの重心位置は、可動電極部12の重心位置を通りz軸に平行な軸の上に位置している。調整錘実装用構造Mbは、中心線L3および中心線L4に対して線対称に形成されている。調整錘実装用構造Mb(すなわち、凹部)の底面は、錘10aが固定される可動電極部12の上面である錘固定面Fmと平行に設けられている。一対の位置決め突起102は、同一形状を有し、各位置決め突起102のxy面と平行な面における中心位置は、中心線L3と中心線L4との交点に配置されている。従って、調整錘実装用構造Mbのxy面に平行な面における中心位置は、錘10aおよび可動電極部12それぞれのxy面における重心位置と同軸である。
このことは、錘10bに関しても同様である。すなわち、調整錘実装用構造Mbのxy面に平行な面における中心位置は、錘10a、10bおよび可動電極部12のxy面における重心位置と同軸である。換言すれば、調整錘実装用構造Mbの錘固定面Fmと平行な面における中心位置は、錘10a、10bおよび可動電極部12それぞれの錘固定面Fmと平行な面における重心位置と同軸である。
図5に示すように、可動電極部12の中央帯部121の上面または下面である錘固定面Fmには、それぞれ、位置決め突起102が嵌合する位置決め用貫通孔123が形成されている。錘10a、10bは、それぞれ、一対の位置決め突起102を可動電極部12の中央帯部121の位置決め用貫通孔123に嵌合させた状態で、可動電極部12の中央帯部121の錘固定面Fmに接着等により接合される。
調整錘実装用構造Mb内に収容される調整用錘105としては、微小体が混入された樹脂が用いられる。微小体としては、可動電極部12を構成する材料の比重より大きい比重を有する材料であることが好ましい。一例として、上述した錘10a、10bを構成する材料と同様な材料を用いることができる。
錘10a、10bは、金型による成型加工時や、切削等の機械加工時の公差、周囲環境や設定基準位置等のロット毎の変動によりばらつきが生じるため、質量もばらつく。錘10a、10bの質量のばらつきにより、可動電極部12の質量がばらつくと、共振周波数が変動してしまう。
本実施形態では、錘10aまたは錘10bを作製した後、ディスペンサー等を用いて、錘10a、10bに形成された調整錘実装用構造Mb内に調整用錘105を注入して錘10a、10bの質量を微調整することができる。
錘10a、10bの錘固定面Fmを水平に配置しておけば、樹脂により形成された調整用錘105は、調整錘実装用構造Mbである凹部内に均一な厚さに塗布される。上述した通り、調整錘実装用構造Mbのxy面に平行な面における中心位置は、錘10a、10bおよび可動電極部12それぞれのxy面における重心位置と同軸である。また、調整錘実装用構造Mbは、x軸方向の中心線L3およびy軸方向の中心線L4に対して線対称に形成されている。
従って、本実施形態によれば、錘10a、10bの重心位置に変化を与えることなく、錘10a、10bの質量を所定の設定値内に設定することが容易である。
図8および図9は、振動発電素子1のMEMS加工体の形成手順の一例を示す図である。MEMS加工技術によりSOI基板から振動発電素子を形成する方法は周知の技術であり(例えば、特開2017−070163号公報等参照)、ここでは形成手順の概略を説明する。なお、図8よび図9では、図2(a)の一点鎖線C−Cに沿った断面を模式的に示した。
図8(a)は、MEMS加工が行われる基板であるSOI基板の断面を示す図である。前述したように、SOI基板は、Siの支持層301とSiOのボックス層302とSiの活性層303とから成る。図8(b)に示す第1のステップでは、活性層303の表面に窒化膜(SiN膜)304を成膜する。図8(c)に示す第2のステップでは、窒化膜304をパターニングして、電極パッド112、113を形成する箇所を保護するための窒化膜パターン304aを形成する。
図8(d)に示す第3のステップでは、可動電極部12、固定電極部111、弾性支持部13および接続部114を形成するためのマスクパターンを形成し、活性層303をエッチングする。エッチング加工は、DRIE(Deep Reactive Ion Etching)等によりボックス層302に達するまで行われる。図8(d)において、符号B1で示す部分は固定電極部111に対応する部分で、符号B2で示す部分は可動電極部12に対応する部分で、符号B3で示す部分は接続部114に対応する部分である。
図9(a)に示す第4のステップでは、固定部11を形成するためのマスクパターンを支持層301の表面に形成し、支持層301をDRIE加工する。図9(b)に示す第5のステップでは、支持層301の側および活性層303の側に露出するSiOのBOX層を強フッ酸により除去する。図9(c)に示す第6のステップでは、熱酸化法によりSi層の表面にシリコン酸化膜305を形成する。図9(d)に示す第6のステップでは、窒化膜パターン304aを除去し、除去した領域にアルミ電極を成膜して電極パッド112、113を形成する。なお、電極パッド113については図9(d)の範囲外に形成されるので、図9(d)には表示されていない。
上述の加工手順により、エレクトレット未形成の振動発電素子1のMEMS加工体が形成される。その後、周知のエレクトレット形成方法(例えば、特許5627130号公報等参照)により、櫛歯電極110、120の少なくとも一方にエレクトレットを形成する。
振動発電素子1はMEMS技術により加工され非常に微小な構造体であり、図1に示したパッケージ2の縦横寸法は数cmで高さ寸法は数mm程度である。
上記実施形態によれば、下記の効果を奏する。
(1)振動発電素子1は、複数の櫛歯電極110を有する固定電極部111と、複数の櫛歯電極120を有する可動電極部12と、可動電極部12に固定される錘10a、10bと、錘の質量を追加調整するための調整用錘105が実装可能な調整錘実装用構造Mbとを備える。このため、錘10aまたは錘10bを作製した後、錘10a、10bに形成された調整錘実装用構造Mb内に調整用錘105を注入して錘10a、10bの質量を微調整し、錘10a、10bの質量を所定の設定値内に収めることが容易である。
(2)調整用錘105は、微小体が混入された樹脂で形成されている。このため、重心位置に変化を与えることなく、錘10a、10bの質量を所定の設定値内に設定することが可能である。
(3)調整用錘105には、金属等の比重の大きい微小体が混入している。このため、錘10a、10bの作製時における質量が小さい場合でも、質量の微調整を行うことができる。
(4)錘10a、10bは、可動電極部12を構成する材料より大きい比重の材料により形成されている。このため、錘10a、10bをより小さくすることができ、振動発電素子1の小型化を図ることができる。
上記第1の実施形態では、錘10a、10bを、可動電極部12の中央帯部121の形状に対応した帯状形状として例示した。しかし、錘10a、10bは、以下に示すような態様とすることができる。
[錘の変形例1]
図10は、錘の変形例1であり、図10(a)は錘の平面図、図10(b)は図10(a)の中心線L6−L6に沿う断面図、図10(c)は図10(a)の中心線L5−L5に沿う断面図である。
図10に示す錘10cは、帯状部161と平板状部162とが一体成型された構造を有する。帯状部161は、第1の実施形態における錘10a、10bに相当する形状を有し、可動電極部12の中央帯部121に接合される。平板状部162は、平面視で矩形形状を有し、帯状部161より大きい面積を有する。平板状部162は、固定電極部111の櫛歯電極110および可動電極部12の櫛歯電極120の全体もしくは一部を覆う大きさを有する。
平板状部162のx軸方向の中央を通る中心線は、xy面において帯状部161のx軸方向の中央を通る中心線と一致している。つまり、帯状部161および平板状部162のx軸方向の中央を通る中心線は、錘10cのx軸方向の中心線L5となっている。また、平板状部162のy軸方向の中央を通る中心線は、xy面において帯状部161のy軸方向の中央を通る中心線と一致している。つまり、帯状部161および平板状部162のx軸方向の中央を通る中心線は、錘10cのy軸方向の軸方向の中央を通る中心線L6と一致している。錘10cのy軸方向の中央を通る中心線L6は、と、接続部114の突起114aを通り振動方向(x軸方向)に平行な直線であるラインL1とが、xy面において同一位置となるように可動電極部12に固定される。
錘10cの帯状部161に、一対の位置決め突起102が形成され、錘10cの平板状部162に調整錘用実装用構造Mbが形成されている。一対の位置決め突起102の中心および調整錘用実装用構造Mbの中心は、中心線L6上に配置されている。一対の位置決め突起102は、錘10cのx中心線L5に対して対称位置に配置されている。調整錘用実装用構造Mbの形状は、錘10cの中心線L5および錘10cの中心線L6のそれぞれに対して線対称に形成されている。従って、調整錘実装用構造Mbのxy面に平行な面における中心位置は、錘10cおよび可動電極部12それぞれのxy面における重心位置と同軸である。
錘10cの平板状部162は、図10では、平面視で矩形形状として例示されている。しかし、錘10cは、中心線L5および中心線L6のそれぞれに対し対称形状であれば、他の多角形状としてもよい。
[錘の変形例2]
図11は、錘の変形例2であり、図11(a)は錘の平面図、図11(b)は図11(a)の中心線L6−L6に沿う断面図、図11(c)は図11(a)の中心線L5−L5に沿う断面図である。
図11に示す錘10dは、帯状部161aと平板状部162aとが一体成型された構造を有する。帯状部161aは、第1の実施形態における錘10a、10bに相当する形状を有し、可動電極部12の中央帯部121に接合される。平板状部162aは、平面視で円形状を有し、帯状部161aより大きい面積を有する。平板状部162aは、固定電極部111の櫛歯電極110および可動電極部12の櫛歯電極120の全体もしくは一部を覆う大きさを有する。
xy面において、平板状部162aの中心は、帯状部161aの中心と一致している。つまり、帯状部161aおよび平板状部162aの中心は、錘10dの中心となっている。錘10dのy軸方向の中央を通る中心線L6は、接続部114の突起114aを通り振動方向(x軸方向)に平行な直線であるラインL1と、xy面において同一位置となっている。なお、中心線L5は、錘10dの中心を通りx軸に平行な直線である。
錘10dの帯状部161aには、一対の位置決め突起102が形成され、錘10dの平板状部162aには調整錘用実装用構造Mbが形成されている。一対の位置決め突起102および調整錘用実装用構造Mbの中心は、中心線L6上に配置されている。一対の位置決め突起102は、錘10dの中心線L5に対して対称位置に配置されている。また、調整錘用実装用構造Mbの形状は、錘10dの中心線L5および中心線L6のそれぞれに対して線対称に設けられている。従って、調整錘実装用構造Mbのxy面に平行な面における中心位置は、錘10dおよび可動電極部12それぞれのxy面における重心位置と同軸である。
[錘の変形例3]
図12は、錘の変形例3であり、図12(a)は錘の平面図、図12(b)は図12(a)の中心線L6−L6に沿う断面図、図12(c)は図12(a)の中心線L5−L5に沿う断面図である。
図12に示す錘10eは、帯状部161bと平板状部162bとが一体成型された構造を有する。帯状部161bは、第1の実施形態における錘10a、10bに相当する形状を有し、可動電極部12の中央帯部121に接合される。平板状部162bは、平面視で矩形の枠形状を有し、帯状部161bより大きい面積を有する。平板状部162bは、固定電極部111の櫛歯電極110および可動電極部12の櫛歯電極120の一部を覆う大きさを有する。
平板状部162bのx軸方向の中央を通る中心線は、xy面において帯状部161bのx軸方向の中央を通る中心線と一致している。つまり、帯状部161bおよび平板状部162bのx軸方向の中央を通る中心線は、錘10eのx軸方向の中央を通る中心線L5となっている。また、平板状部162bのy軸方向の中央を通る中心線は、xy面において帯状部161bのy軸方向の中央を通る中心線と一致している。つまり、帯状部161bおよび平板状部162bのx軸方向の中央を通る中心線は、錘10eのy軸方向の中央を通る中心線L6となっている。中心線L6は、接続部114の突起114aを通り振動方向(x軸方向)に平行な直線であるラインL1と、xy面において同一位置となっている。
錘10eの帯状部161bには、一対の位置決め突起102が形成され、錘10eの平板状部162bには調整錘用実装用構造Mbが形成されている。一対の位置決め突起102の中心および調整錘用実装用構造Mbの中心は、中心線L6上に配置されている。一対の位置決め突起102は、錘10eのx軸方向の中央を通る中心線L5に対して対称位置に配置されている。また、調整錘用実装用構造Mbの形状は、錘10eのx軸方向の中央を通る中心線L5およびy軸方向の中央を通る中心線L6のそれぞれ対して線対称に設けられている。従って、調整錘実装用構造Mbのxy面に平行な面における中心位置は、錘10eおよび可動電極部12それぞれのxy面における重心位置と同軸である。
上記錘10a、10bの変形例1〜3として例示する錘10c〜10eは、第1の実施形態に示すMEMS加工体の可動電極部12上に実装される。従って、錘10c〜10eのいずれかを備える振動発電素子1は、第1の実施形態の効果(1)〜(4)を奏する。
また、上記錘10a、10bの変形例1〜3として例示する錘10c〜10eは、帯状部161、161a、161bに平板状部162、162a、162bを一体的に設けた構造とされている。このため、錘10c〜10eの質量を錘10a、10bより大きくすることができ、振動発電素子1の発電効率をより向上することができる。
−第2の実施形態−
図13は、錘の第2の実施形態を示し、図13(a)は錘の平面図、図13(b)は図13(a)の中心線L6−L6に沿う断面図、図13(c)は図13(a)の中心線L5−L5に沿う断面図である。また、図14は、錘に調整用錘を実装した状態を示す図13(a)の中心線L6−L6に沿う断面図である。
第2の実施形態の錘10fは、帯状部161cと平板状部162cとが一体成型された構造を有する。帯状部161cは第1の実施形態における錘10a、10bに相当する形状を有し、可動電極部12の中央帯部121に接合される。平板状部162cは、平面視で矩形形状を有し、帯状部161cより大きい面積を有する。平板状部162cは、固定電極部111の櫛歯電極110および可動電極部12の櫛歯電極120の一部を覆う大きさを有する。
平板状部162cのx軸方向の中央を通る中心線は、xy面において帯状部161cのx軸方向の中央を通る中心線と一致している。つまり、帯状部161cおよび平板状部162cのx軸方向の中央を通る中心線は、錘10fのx軸方向の中央を通る中心線L5となっている。また、平板状部162cのy軸方向の中央を通る中心線は、xy面において帯状部161cのy軸方向の中央を通る中心線と一致している。つまり、帯状部161cおよび平板状部162cのy軸方向の中央を通る中心線は、錘10fのx軸方向の中央を通る中心線L6となっている。錘10fのy軸方向の中央を通る中心線L6は、接続部114の突起114aを通り振動方向(x軸方向)に平行な直線であるラインL1と、xy面において同一位置となっている。
錘10fの帯状部161cには、一対の位置決め突起102が形成されている。錘10fの平板状部162cには、調整錘実装用構造Mbが形成されている。第2の実施形態における調整錘実装用構造Mbは、複数の凹部171から構成される。すなわち、調整錘実装用構造Mbは、複数の分割調整錘実装用構造から構成される。図13では、調整錘実装用構造Mbは、中心線L6上に等間隔に配列された凹部171xy、171x1〜171x4と、中心線L5上に等間隔に配列された凹部171xy、171y1〜171y4とから構成されている。凹部171xyは、中心線L5と中心線L6との交点に設けられており、図13に例示された調整錘実装用構造Mbは、9つの凹部171から構成されている。なお、凹部171x1〜171x4、171xy、171y1〜171yを総称して凹部171という。後述するように、各凹部171内には、調整用錘170(図14参照)が収容される。調整用錘170としては、例えば、球状の金属等の小片等を用いることができる。
中心線L6上に配列された凹部171x1と凹部171x2、および凹部171x3と凹部171x4とは、それぞれ、中心線L5に対して線対称に配列されている。つまり、複数の分割調整錘実装用構造である凹部171x1〜171x4は、可動電極部12の錘10fが固定される錘固定面Fm(図5参照)と平行な面において、錘10fの重心を通り、可動電極12の櫛歯電極120が振動する方向と直交する方向の直線、換言すれば、中心線L5に対し線対称に配置されている。また、中心線L5上に配列された凹部171y1と凹部171y2、および凹部171y3と凹部171y4とは、それぞれ、中心線L6に対して線対称に配列されている。つまり複数の分割調整錘実装用構造である凹部171y1〜171y4は、可動電極部12の錘10fが固定される錘固定面Fmと平行な面において、錘10fの重心を通り、可動電極12の櫛歯電極120が振動する方向と平行な方向の直線、換言すれば、中心線L6に対し線対称に配置されている。各凹部171の形状および大きさは同一である。
中心線L5と中心線L6との交点が、錘10fのxy面における重心位置であり、可動電極部12のxy面における重心位置と同軸である。
従って、調整錘実装用構造Mbの錘固定面Fmと平行な面における中心位置は、錘10fおよび可動電極部12それぞれの錘固定面Fmにおける重心位置と同軸である。
錘10fの質量を調整する手順を、図14を参照して説明する。
錘10fの質量が不足している場合は、先ず、凹部171xy内に調整用錘170を収容する。凹部171xy内に調整用錘170を収容してもまだ錘10fの質量が不足している場合は、凹部171x1内と凹部171x2内に調整用錘170を収容する。凹部171x1内と凹部171x2内に収容する調整用錘170の質量は同一である。これにより、錘10fのxy面における重心位置を変えることなく、錘10fの質量を大きくすることができる。凹部171x1内と凹部171x2内に調整用錘170を収容してもまだ錘10fの質量が不足している場合は、凹部171x3内と凹部171x4内に調整用錘170を収容する。凹部171x3内と凹部171x4内に収容する調整用錘170の質量は同一である。このようにして、錘10fのxy面における重心位置を変えることなく、錘10fの質量を大きくすることができる。
x軸方向の中心線L5上に配列された凹部171y1〜171y4内に調整用錘170を収容する場合も、y軸方向の中心線L6上に配列された凹部171x1〜171x4内に調整用錘170を収容する場合と同様に行う。すなわち、凹部171xy内に調整用錘170を収容してもまだ錘10fの質量が不足している場合は、凹部171y1内と凹部171y2内に調整用錘170を収容する。それでもまだ錘10fの質量が不足している場合は、凹部171y3内と凹部171y4内に調整用錘170を収容する。
凹部171y1〜171y4内への調整用錘170の収容は、すべての凹部171x1〜171x4内に調整用錘170を収容した後に行ってもよいし、中心線L6上に配列された凹部171x1〜171x4内への調整用錘170の収容と、中心線L5上に配列された凹部171y1〜171y4内への調整用錘170の収容とを交互に行ってもよい。
各凹部171内に収容する錘170の質量は、すべて同一でもよいし、異なる質量であってもよい。各凹部171内に収容する調整用錘170の質量を異なるものとする場合、錘10fの質量の不足が大きい場合には、質量の大きい調整用錘170を用い、錘10fの質量の不足が小さくなってきたら質量の小さい調整用錘170を用いるようにすることができる。このようにすることにより、錘10fの質量の調整を効率的に行うことが可能となる。
各凹部171内に収容する調整用錘170の質量を異なるものとする場合でも、線対称の位置の凹部171内に収容する調整用錘170の質量は同一とする。つまり、凹部171x1と凹部171x2、凹部171x3と凹部171x4、凹部171y1と凹部171y2、凹部171y3と凹部171y4に収容される調整用錘170の質量は、それぞれ、同一とする。これにより、錘10fのxy面における重心位置を変えることなく錘10fの質量を大きくすることができる。
調整用錘170として金属等の小片に替えて、樹脂を用いてもよい。樹脂としては、第1の実施形態と同様、金属に微小体が混入された樹脂が好ましい。また、金属等の小片と樹脂との両方を用いてもよい。例えば、錘10fの質量の不足が大きい場合には、金属等の小片を用い、錘10fの質量の不足が小さい場合には、樹脂を注入する。
図13では、凹部171が、中心線L5上および中心線L6上に配列された調整錘実装用構造Mbとして例示した。しかし、凹部171が、中心線L5上または中心線L6上のいずれか一方に配列された調整錘実装用構造Mbとしてもよい。図13では、中心線L5と中心線L6との交点に凹部171xyを設けた構造として例示した。しかし、中心線L5と中心線L6との交点に凹部171xyを設けない構成としてもよい。この場合、中心線L5上に配列される凹部171は、それぞれ、中心線L6に対して線対称に配置される。また、中心線L6上に配列される凹部171は、それぞれ、中心線L5に対して線対称に配置される。
中心線L5上および中心線L6上に配列される凹部171は等間隔でなくてもよい。但し、中心線L5または中心線L6に対して線対称の位置に配置される一対の凹部171の位置を、対称軸から等しい距離とすればよい。つまり、凹部171x1と凹部171x2、凹部171x3と凹部171x4、をそれぞれ、中心線L5から等しい距離に配置する。また、凹部171y1と凹部171y2、凹部171y3と凹部171y4をそれぞれ、中心線L6から等しい距離に配置する。
中心線L5上および中心線L6上それぞれに配列される凹部171の数は、図13に例示された5つに限られるものではなく、それ以上、または以下としてもよい。また、中心線L5上と、中心線L6上に配列される凹部171の数を異なる数としてもよい。
なお、上述した実施の形態では、SOI基板により振動発電素子1を形成したが、シリコン基板を用いても良い。シリコン基板を用いる場合、例えば、導電率の小さな真性のシリコン基板の表面から所定厚さの領域にドーピングによりP型またはN型の導電層を形成し、導電層の下部の真性なシリコン層に固定部11を形成し、導電層に固定電極部111、可動電極部12、弾性支持部13を形成すれば良い。
また、上述した振動発電素子1では、可動電極部12が櫛歯電極110、120の伸延方向(図1のx軸方向)に振動するような構成であったが、例えば、特許6338071号公報に記載の振動発電素子のように複数の櫛歯電極110が並置されている方向(図1のy軸方向)に振動するような構成であっても本発明は適用が可能である。
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。上述した種々の実施の形態および変形例を組み合わせたり、適宜、変更を加えたりしてもよく、本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1 振動発電素子
10a〜10f 錘
12 可動電極部
13 弾性支持部
102 位置決め突起
105 調整用錘
110 櫛歯電極
111 固定電極部
114 接続部
114a 突起
120 櫛歯電極
121 中央帯部
123 位置決め用貫通孔
161、161a〜161c 帯状部
162、162〜162c 平板状部
170 調整用錘
171、171xy、171x1〜171x4、171y1〜171y4 凹部
Fm 錘固定面
L1 ライン
L2、L3、L4 中心線
Mb 調整錘実装用構造
G、G1、G2 重心位置
図9(a)に示す第4のステップでは、固定部11を形成するためのマスクパターンを支持層301の表面に形成し、支持層301をDRIE加工する。図9(b)に示す第5のステップでは、支持層301の側および活性層303の側に露出するSiOのBOX層を強フッ酸により除去する。図9(c)に示す第6のステップでは、熱酸化法によりSi層の表面にシリコン酸化膜305を形成する。図9(d)に示す第のステップでは、窒化膜パターン304aを除去し、除去した領域にアルミ電極を成膜して電極パッド112、113を形成する。なお、電極パッド113については図9(d)の範囲外に形成されるので、図9(d)には表示されていない。
平板状部162のx軸方向の中央を通る中心線は、xy面において帯状部161のx軸方向の中央を通る中心線と一致している。つまり、帯状部161および平板状部162のx軸方向の中央を通る中心線は、錘10cのx軸方向の中心線L5となっている。また、平板状部162のy軸方向の中央を通る中心線は、xy面において帯状部161のy軸方向の中央を通る中心線と一致している。つまり、帯状部161および平板状部162の軸方向の中央を通る中心線は、錘10cのy軸方向の軸方向の中央を通る中心線L6と一致している。錘10cは、錘10cのy軸方向の中央を通る中心線L6と、接続部114の突起114aを通り振動方向(x軸方向)に平行な直線であるラインL1とが、xy面において同一位置となるように可動電極部12に固定される。
錘10cの帯状部161に、一対の位置決め突起102が形成され、錘10cの平板状部162に調整錘用実装用構造Mbが形成されている。一対の位置決め突起102の中心および調整錘用実装用構造Mbの中心は、中心線L6上に配置されている。一対の位置決め突起102は、錘10cの中心線L5に対して対称位置に配置されている。調整錘用実装用構造Mbの形状は、錘10cの中心線L5および錘10cの中心線L6のそれぞれに対して線対称に形成されている。従って、調整錘実装用構造Mbのxy面に平行な面における中心位置は、錘10cおよび可動電極部12それぞれのxy面における重心位置と同軸である。
xy面において、平板状部162aの中心は、帯状部161aの中心と一致している。つまり、帯状部161aおよび平板状部162aの中心は、錘10dの中心となっている。錘10dのy軸方向の中央を通る中心線L6は、接続部114の突起114aを通り振動方向(x軸方向)に平行な直線であるラインL1と、xy面において同一位置となっている。なお、中心線L5は、錘10dの中心を通り軸に平行な直線である。
平板状部162bのx軸方向の中央を通る中心線は、xy面において帯状部161bのx軸方向の中央を通る中心線と一致している。つまり、帯状部161bおよび平板状部162bのx軸方向の中央を通る中心線は、錘10eのx軸方向の中央を通る中心線L5となっている。また、平板状部162bのy軸方向の中央を通る中心線は、xy面において帯状部161bのy軸方向の中央を通る中心線と一致している。つまり、帯状部161bおよび平板状部162bの軸方向の中央を通る中心線は、錘10eのy軸方向の中央を通る中心線L6となっている。中心線L6は、接続部114の突起114aを通り振動方向(x軸方向)に平行な直線であるラインL1と、xy面において同一位置となっている。
平板状部162cのx軸方向の中央を通る中心線は、xy面において帯状部161cのx軸方向の中央を通る中心線と一致している。つまり、帯状部161cおよび平板状部162cのx軸方向の中央を通る中心線は、錘10fのx軸方向の中央を通る中心線L5となっている。また、平板状部162cのy軸方向の中央を通る中心線は、xy面において帯状部161cのy軸方向の中央を通る中心線と一致している。つまり、帯状部161cおよび平板状部162cのy軸方向の中央を通る中心線は、錘10fの軸方向の中央を通る中心線L6となっている。錘10fのy軸方向の中央を通る中心線L6は、接続部114の突起114aを通り振動方向(x軸方向)に平行な直線であるラインL1と、xy面において同一位置となっている。
錘10fの帯状部161cには、一対の位置決め突起102が形成されている。錘10fの平板状部162cには、調整錘実装用構造Mbが形成されている。第2の実施形態における調整錘実装用構造Mbは、複数の凹部171から構成される。すなわち、調整錘実装用構造Mbは、複数の分割調整錘実装用構造から構成される。図13では、調整錘実装用構造Mbは、中心線L6上に等間隔に配列された凹部171xy、171x1〜171x4と、中心線L5上に等間隔に配列された凹部171xy、171y1〜171y4とから構成されている。凹部171xyは、中心線L5と中心線L6との交点に設けられており、図13に例示された調整錘実装用構造Mbは、9つの凹部171から構成されている。なお、凹部171x1〜171x4、171xy、171y1〜171y4を総称して凹部171という。後述するように、各凹部171内には、調整用錘170(図14参照)が収容される。調整用錘170としては、例えば、球状の金属等の小片等を用いることができる。
1 振動発電素子
10a〜10f 錘
12 可動電極部
13 弾性支持部
102 位置決め突起
105 調整用錘
110 櫛歯電極
111 固定電極部
114 接続部
114a 突起
120 櫛歯電極
121 中央帯部
123 位置決め用貫通孔
161、161a〜161c 帯状部
162、162〜162c 平板状部
170 調整用錘
171、171xy、171x1〜171x4、171y1〜171y4 凹部
Fm 錘固定面
L1 ライン
L2、L3、L4 中心線
Mb 調整錘実装用構造
G、G1、G2 重心位置

Claims (13)

  1. 複数の櫛歯電極を有する固定電極部と、
    複数の櫛歯電極を有する可動電極部と、
    前記可動電極部に固定される錘と、
    前記錘の質量を追加調整するための調整用錘が実装可能な調整錘実装用構造とを備える振動発電素子。
  2. 請求項1に記載の振動発電素子において、
    前記調整錘実装用構造は、前記錘に設けられている振動発電素子。
  3. 請求項1に記載の振動発電素子において、
    前記調整錘実装用構造は、前記錘の前記可動電極部に固定される面側と反対面側に設けられた凹部である、振動発電素子。
  4. 請求項1に記載の振動発電素子において、
    前記錘は、前記可動電極部の錘固定面に固定されており、
    前記調整錘実装用構造の前記錘固定面と平行な面における中心位置は、前記錘および前記可動電極部それぞれの前記錘固定面と平行な面における重心位置と同軸である振動発電素子。
  5. 請求項1に記載の振動発電素子において、
    前記調整錘実装用構造に調整用錘が収容されている振動発電素子。
  6. 請求項5に記載の振動発電素子において、
    前記調整用錘は、前記可動電極部を構成する材料の比重より大きい比重を有する材料により形成されている振動発電素子。
  7. 請求項5に記載の振動発電素子において、
    前記調整用錘は、微小体が混入された樹脂で形成されている振動発電素子。
  8. 請求項7に記載された振動発電素子において、
    前記微小体は、前記可動電極部を構成する材料の比重より大きい比重を有する材料により形成されている振動発電素子。
  9. 請求項1から8までのいずれか一項に記載の振動発電素子において、
    前記可動電極部は、前記可動電極部の前記櫛歯電極の配列方向の中心部に、前記櫛歯電極の配列方向と直交する方向に延在された中央帯部を有し、前記錘は、前記中央帯部に沿って延在された帯状部と、前記帯状部に一体的に設けられ、少なくとも前記固定電極部の前記櫛歯電極および固定電極部の前記櫛歯電極の一部を覆う平板状部とを有する振動発電素子。
  10. 請求項1に記載の振動発電素子において、
    前記調整錘実装用構造は、複数の分割調整錘実装用構造から構成される振動発電素子。
  11. 請求項10に記載の振動発電素子において、
    前記分割調整錘実装用構造内に前記調整用錘としての小片が収容される振動発電素子。
  12. 請求項10に記載の振動発電素子において、
    前記複数の分割調整錘実装用構造は、前記可動電極部の前記錘が固定される錘固定面と平行な面において、前記錘の重心を通り、前記可動電極部の前記櫛歯電極が振動する方向と直交する方向の直線に対し線対称に配置されている振動発電素子。
  13. 請求項12に記載の振動発電素子において、
    前記複数の分割調整錘実装用構造は、前記可動電極部の前記櫛歯電極の配列方向および前記可動電極部の前記櫛歯電極の配列方向と直交する方向それぞれに、複数、配列されている振動発電素子。


JP2018194438A 2018-10-15 2018-10-15 振動発電素子 Active JP6993951B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018194438A JP6993951B2 (ja) 2018-10-15 2018-10-15 振動発電素子
CN201910960213.1A CN111049415B (zh) 2018-10-15 2019-10-10 振动发电元件
US16/599,735 US11387749B2 (en) 2018-10-15 2019-10-11 Vibration energy harvester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018194438A JP6993951B2 (ja) 2018-10-15 2018-10-15 振動発電素子

Publications (2)

Publication Number Publication Date
JP2020065325A true JP2020065325A (ja) 2020-04-23
JP6993951B2 JP6993951B2 (ja) 2022-01-14

Family

ID=70160803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194438A Active JP6993951B2 (ja) 2018-10-15 2018-10-15 振動発電素子

Country Status (3)

Country Link
US (1) US11387749B2 (ja)
JP (1) JP6993951B2 (ja)
CN (1) CN111049415B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365996B2 (ja) * 2020-12-17 2023-10-20 株式会社鷺宮製作所 振動発電素子およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036675A (ja) * 2002-07-01 2004-02-05 Nidec Copal Corp バランスウエイト
JP2005159619A (ja) * 2003-11-25 2005-06-16 Seiko Epson Corp マイクロレゾネータ及びその製造方法並びに電子機器
JP2015130794A (ja) * 2015-02-04 2015-07-16 株式会社トライフォース・マネジメント 発電素子
JP2018088777A (ja) * 2016-11-29 2018-06-07 国立大学法人 東京大学 振動発電デバイス

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430998B2 (en) * 1999-12-03 2002-08-13 Murata Manufacturing Co., Ltd. Resonant element
KR100486716B1 (ko) * 2002-10-18 2005-05-03 삼성전자주식회사 2-d 액튜에이터 및 그 제조방법
JP4777806B2 (ja) 2006-03-24 2011-09-21 京セラキンセキ株式会社 水晶振動子及び角速度センサ
JP4609558B2 (ja) 2008-09-02 2011-01-12 株式会社デンソー 角速度センサ
JP5627130B2 (ja) 2012-08-30 2014-11-19 アオイ電子株式会社 正イオンを含有したエレクトレットの形成方法
JP6372450B2 (ja) * 2015-08-21 2018-08-15 株式会社デンソー 複合センサ
JP6682106B2 (ja) 2015-10-02 2020-04-15 株式会社鷺宮製作所 振動発電素子
JP6338071B2 (ja) 2016-11-29 2018-06-06 国立大学法人 東京大学 振動発電デバイス
JP6985702B2 (ja) * 2018-05-31 2021-12-22 国立大学法人 東京大学 振動発電装置および振動発電素子
JP2020137337A (ja) * 2019-02-22 2020-08-31 株式会社鷺宮製作所 振動発電素子および振動発電素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036675A (ja) * 2002-07-01 2004-02-05 Nidec Copal Corp バランスウエイト
JP2005159619A (ja) * 2003-11-25 2005-06-16 Seiko Epson Corp マイクロレゾネータ及びその製造方法並びに電子機器
JP2015130794A (ja) * 2015-02-04 2015-07-16 株式会社トライフォース・マネジメント 発電素子
JP2018088777A (ja) * 2016-11-29 2018-06-07 国立大学法人 東京大学 振動発電デバイス

Also Published As

Publication number Publication date
US20200119662A1 (en) 2020-04-16
CN111049415B (zh) 2023-03-14
JP6993951B2 (ja) 2022-01-14
US11387749B2 (en) 2022-07-12
CN111049415A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
US10581344B2 (en) Miniature kinetic energy harvester for generating electrical energy from mechanical vibrations
JP6628212B2 (ja) 共振装置及びその製造方法
US20120187803A1 (en) Flexural vibration element and electronic component
JP5237705B2 (ja) 発電デバイス
CN109075767B (zh) 谐振子以及谐振装置
JP6993951B2 (ja) 振動発電素子
US10778182B2 (en) Resonator
JP7034048B2 (ja) 振動発電素子および振動発電装置
JPH11271064A (ja) 角速度センサ
JP6934850B2 (ja) 振動発電素子
JP2020144065A (ja) センサ
JP5674241B2 (ja) 圧電振動片、圧電振動子、電子デバイス
JP2021158818A (ja) 発電素子
JP2019033631A (ja) Mems振動素子、mems振動素子の製造方法および振動発電素子
JP2016105581A (ja) 圧電振動片および圧電振動子
JP2020065322A (ja) 振動発電素子および振動発電装置
JP7015770B2 (ja) 振動発電素子および振動発電装置
KR101067019B1 (ko) 에너지 하베스터 단위 모듈, 이를 결합하여 만들어지는 다축 에너지 하베스터 조립체 및 이를 결합하여 만들어지는 다축 에너지 하베스터 다중 조립체
JP7466568B2 (ja) 水晶素子の製造方法
US20230402994A1 (en) Peizoelectric element and piezoelectric device
JP2012156591A (ja) 圧電振動片、圧電振動子、電子デバイス
JP2008228195A (ja) 輪郭滑り振動片、輪郭滑り振動デバイスおよび輪郭滑り振動片の製造方法
TW202437690A (zh) 晶體振動片、晶體振子、晶體振蕩器及晶體振動片用的中間物晶圓
CN117730482A (zh) 谐振子以及谐振装置
CN114514190A (zh) Mems元件以及振动发电器件

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211210

R150 Certificate of patent or registration of utility model

Ref document number: 6993951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150