JP2018088777A - 振動発電デバイス - Google Patents

振動発電デバイス Download PDF

Info

Publication number
JP2018088777A
JP2018088777A JP2016231750A JP2016231750A JP2018088777A JP 2018088777 A JP2018088777 A JP 2018088777A JP 2016231750 A JP2016231750 A JP 2016231750A JP 2016231750 A JP2016231750 A JP 2016231750A JP 2018088777 A JP2018088777 A JP 2018088777A
Authority
JP
Japan
Prior art keywords
side portion
vibration
movable side
power generation
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016231750A
Other languages
English (en)
Other versions
JP6338070B2 (ja
Inventor
年吉 洋
Hiroshi Toshiyoshi
洋 年吉
橋口 原
Gen Hashiguchi
原 橋口
裕幸 三屋
Hiroyuki Mitsuya
裕幸 三屋
浩史 今本
Hiroshi Imamoto
浩史 今本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICROMACHINE CENTER
Shizuoka University NUC
University of Tokyo NUC
Saginomiya Seisakusho Inc
Original Assignee
MICROMACHINE CENTER
Shizuoka University NUC
University of Tokyo NUC
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICROMACHINE CENTER, Shizuoka University NUC, University of Tokyo NUC, Saginomiya Seisakusho Inc filed Critical MICROMACHINE CENTER
Priority to JP2016231750A priority Critical patent/JP6338070B2/ja
Priority to CN201780068547.7A priority patent/CN110036560B/zh
Priority to US16/464,367 priority patent/US11374507B2/en
Priority to PCT/JP2017/041174 priority patent/WO2018101046A1/ja
Application granted granted Critical
Publication of JP6338070B2 publication Critical patent/JP6338070B2/ja
Publication of JP2018088777A publication Critical patent/JP2018088777A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)

Abstract

【課題】Q値を低下させることなく、広帯域の周波数応答を可能にする。
【解決手段】外部から印加される機械的な振動エネルギーにより所定の振動方向に振動することが可能であって、振動方向に沿う第1の面を備える可動側部と、可動側部の第1の面と所定の間隔を隔てて対向する第2の面を備え、振動エネルギーに対しても位置固定するように構成されている固定側部とを備える。可動側部の第1の面及び固定側部の第2の面のそれぞれには、振動方向に直交する方向に突出する複数個の突部が振動の方向に櫛歯状に配列されて形成されている。固定側部の少なくとも第1の面、または、可動側部の少なくとも第2の面の少なくとも一方の面にはエレクトレット膜が形成される。可動側部のバネ定数が、可動側部と固定側部との間に働く静電力により、振動方向の位置の関数として変調されているように構成されている。
【選択図】図1

Description

この発明は、エレクトレットを用いた静電誘導作用により機械的な振動エネルギーを電力に変換する静電方式の振動発電デバイスに関する。
近年、歩行による振動、自動車走行による振動、橋梁振動、風力発電時の低周波振動などの環境振動の振動エネルギーを電力に変換することができる振動発電デバイスの実用化に向けての研究開発が進められている。
この種の振動発電デバイスとしては、電磁方式、圧電方式、静電方式等が知られているが、電磁方式に比べて微小小型化が容易、圧電方式に必要なPZT(Piezoelectric Transducer)などの鉛などの有毒物質を含まない、などの理由で静電方式の振動発電デバイスが注目されている。この種の静電方式の振動発電デバイスとしては、例えば特許文献1(WO2011/086830号公報)や特許文献2(特開2011−36089号公報)などに提案されているものが知られている。
特許文献1に記載されている静電誘導型発電装置においては、第1の基板と第2の基板とが所定の間隔を隔てて互いに対向し、その対向する状態を保ったまま相対的に移動可能に構成されている。そして、第1の基板には、複数個の短冊状のエレクトレットが前記相対的な移動方向に配列されるように形成され、第2の基板には、第1の基板のエレクトレットと対向するように、第1の電極と第2の電極とが形成されており、エレクトレットと第1の電極との間の静電容量及びエレクトレットと第2の電極との間の静電容量が、前記相対的な移動により変化することにより、電力が出力されるように構成されている。
また、特許文献2には、基板上に形成されたエレクトレット膜を有する第1の電極と、この第1の電極とエアギャップを隔てて対向し複数の開口部を有する第2の電極とを備え、第2の電極が振動移動することで、第1の電極のエレクトレット膜と第2の電極との静電容量が変化することにより、電力が出力されるように構成されたMEMS(Micro Electro Mechanical System;微小電気機械システム)デバイスが開示されている。
これらの特許文献1,特許文献2に開示されている振動発電デバイスは、いずれもデバイス自身に特有の特定の周波数における共振の鋭さの値であるQ値(クォリティファクタ)が高い構造となっている。従来の振動発電デバイスの共振周波数のおける半値幅の周波数範囲は、例えば5Hz以下となるような高いQ値を有するものとされている。すなわち、これらの特許文献1,特許文献2に開示されている振動発電デバイスは、Q値が高い特定周波数での振動を効率良く電力に変換することができる構造に設定されているので、外部の振動エネルギーによる励振周波数が、その特定周波数に一致しているときには、無駄なく振動発電することができる。
WO2011/086830号公報 特開2011−36089号公報
ところで、上述したような環境振動は、一般的に、周波数スペクトルとしては、一つの周波数でピークを有するものではなく、広い周波数範囲において分布している。しかし、上述した特許文献1や特許文献2に開示されているような振動発電デバイスでは、周波数応答は、共振周波数に限られるため、環境振動の内の限られた振動周波数成分のみしか発電に利用することができず、振動周波数の利用効率が悪いという問題がある。
広い周波数範囲に亘って周波数応答して振動するように構成するには、振動発電デバイスのQ値を下げて、共振周波数における半値幅の周波数範囲を広くするという手法も採用されている。しかし、振動発電デバイスのQ値を下げるのは、共振感度を下げて、外部からの振動エネルギーに対する損失を大きくすることになる。この種の環境振動を用いて発電を行う振動発電デバイスは、元来、共振感度が低いものであり、更に感度を下げて外部からの振動エネルギーに対する損失を大きくすることは、好ましくない。
この発明は、以上の問題点を解決することができるようにした振動発電デバイスを提供することを目的とする。
上記の課題を解決するために、請求項1の発明は、
外部から印加される振動エネルギーにより所定の振動方向に振動することが可能なように構成されており、前記振動方向に沿う第1の面を備える可動側部と、
前記可動側部が前記振動方向に振動することが可能なように、前記可動側部の前記第1の面と所定の間隔を隔てて対向する第2の面を備え、前記振動エネルギーに対しても位置固定するように構成されている固定側部と、
を備え、
前記可動側部の前記第1の面及び前記固定側部の前記第2の面のそれぞれには、前記振動方向に直交する方向に突出する複数個の突部が前記振動方向に櫛歯状に配列されて形成されていると共に、
前記固定側部の少なくとも前記第1の面、または、前記可動側部の少なくとも前記第2の面の少なくとも一方の面には、所定のエレクトレット電位とされたエレクトレット膜が形成され、
前記可動部側のバネ定数が、前記可動側部と前記固定側部との間に働く静電力により、前記振動方向の位置の関数として変調されているように構成されている
ことを特徴とする振動発電デバイスを提供する。
また、請求項2の発明は、請求項1の発明において、
前記エレクトレット電位の値と、前記固定側部の前記複数個の突部及び前記可動側部の前記複数個の突部の配列周期と、前記可動側部の振動移動により前記固定側部と前記可動側部との間に生じる静電容量の最大値と最小値との差の値とが、前記可動側部の自由振動時のバネ定数に対して、前記可動側部と前記固定側部との間で生じる静電力による前記可動側部自身が備えるバネ定数の低下効果を有するように選定されている
ことを特徴とする振動発電デバイスを提供する。
さらに、請求項3の発明は、請求項1または請求項2の発明において、
前記固定側部と前記可動側部とが半導体基板から形成されたMEMSデバイスである
ことを特徴とする振動発電デバイスを提供する。
上述の構成の請求項1の発明による振動発電デバイスにおいては、エレクトレット電位により可動側部の突部と固定側部の突部との間に働く静電力は、振動に応じて、可動側部の固定側部に対する位置が変化するために変化する。この静電力が、可動側部の自由振動(静電力が存在せずに、可動側部が自由に振動)の際のバネ定数(弾性定数)に影響を及ぼすような値になるように構成することにより、請求項1の発明の振動発電デバイスは、可動部側のバネ定数が、可動側部と前記固定側部との間に働く静電力により、振動方向の位置の関数として変調されているように構成されていることになる。
ところで、振動デバイスの振動周波数fは、振動デバイスの可動側部の質量をmと、可動側部のバネ定数をkとしたとき、周知のように、
f∝k/m ・・・ (式1)
である。
特許文献1や特許文献2などの振動発電デバイスでは、可動側部の自由振動のバネ定数に対して静電力による影響は無視できる程度であるので、可動側部のバネ定数kは、当該可動側部の自由振動のバネ定数にほぼ等しくなり、当該振動発電デバイスの共振周波数は、当該可動側部の自由振動のバネ定数に等しいバネ定数kで定まる特定周波数となっている。
これに対して、この発明の振動発電デバイスにおいては、可動部側のバネ定数kが、可動側部と固定側部との間に働く静電力により、振動方向の位置の関数として変調されている。すなわち、(式1)におけるバネ定数kが、振動方向の位置に応じて変化することになり、この発明の振動発電デバイスの振動周波数fは、そのバネ定数の変化に応じた広い周波数となる。
この場合に、この発明による振動発電デバイスにおいては、そのQ値を低下させることはないので、外部の振動エネルギーに対する損失を大きくすることなく、応答する振動周波数の帯域を広帯域にすることができる。
請求項2の発明においては、エレクトレット電位の値と、固定側部の複数個の突部及び可動側部の複数個の突部の配列周期と、可動側部の振動移動により固定側部と可動側部との間に生じる静電容量の最大値と最小値との差の値とが選定されて、隣り合う突部同士の振動移動においては、可動側部と固定側部との間で生じる静電力によって、可動側部の自由振動時のバネ定数の低下効果(ソフトスプリング効果と称する)を有するようにされている。
すなわち、請求項2のように、エレクトレット電位の値と、固定側部の複数個の突部及び可動側部の複数個の突部の配列周期と、可動側部の振動移動により固定側部と可動側部との間に生じる静電容量の最大値と最小値との差の値とを選定しておくことにより、可動側部の自由振動時のバネ定数の低下効果が得られるので、振動発電デバイスの周波数の広帯域化を有効に図ることができると共に、可動側部を振動し易くことができるという効果がある。
請求項3の発明においては、振動発電デバイスが、MEMSデバイスとされている。したがって、微小小型という環境発電素子として、有益なデバイスを提供することが可能となる。
この発明の振動発電デバイスによれば、可動部側のバネ定数kが、可動側部と固定側部との間に働く静電力により、振動方向の位置の関数として変調されているので、(式1)におけるバネ定数kが、振動方向の位置に応じて変化することになり、可動側部の振動周波数fは、そのバネ定数の変化に応じた広い周波数となる。
そして、この発明による振動発電デバイスにおいては、そのQ値を低下させることはないので、外部の振動エネルギーに対する損失を大きくすることなく、振動周波数の帯域を広帯域にすることができる。
この発明による振動発電デバイスの第1の実施形態の構成例を説明するための全体斜視図である。 この発明による振動発電デバイスの第1の実施形態の構成例の要部を説明するための図である。 この発明による振動発電デバイスの第1の実施形態の構成例の要部を説明するための図である。 この発明による振動発電デバイスの第1の実施形態の半導体製造プロセスを説明するための図である。 この発明による振動発電デバイスの第1の実施形態の半導体製造プロセスを説明するための図である。 この発明による振動発電デバイスの第1の実施形態の半導体製造プロセスを説明するための図である。 この発明による振動発電デバイスの第1の実施形態の半導体製造プロセスを説明するための図である。 この発明による振動発電デバイスの第1の実施形態を用いた充電回路の一例を示す図である。 この発明による振動発電デバイスの第2の実施形態の構成例を説明するための図である。 この発明による振動発電デバイスの第2の実施形態の構成例の要部を説明するための図である。 この発明による振動発電デバイスの第2の実施形態における周波数特性を説明するための図である。 この発明による振動発電デバイスの実施形態を説明するために用いる数式を示す図である。 この発明による振動発電デバイスの第2の実施形態における周波数特性を説明するための図である。
以下、この発明による振動発電デバイスの実施形態を、図を参照しながら説明する。
[第1の実施形態]
先ず、この発明による振動発電デバイスの原理的な構成例を、第1の実施形態として示す。以下に示す実施形態の振動発電デバイスは、半導体製造プロセスにより製造されるMEMESデバイスとして構成される場合の例である。
図1は、この第1の実施形態の振動発電デバイス10の全体の構成例を説明するための斜視図を示すものである。この第1の実施形態の振動発電デバイス10は、半導体基板1に対して、後述するような半導体製造プロセスが実行されることにより形成される可動側部2と、固定側部3A,3Bと、可動側部2を支持する支持梁部4L,4Rとからなる。
可動側部2は、断面が矩形の細長状に形成されており、図1において矢印ARで示すように、当該可動側部2の長手方向を振動方向として振動可能なように構成されている。すなわち、この可動側部2の振動方向である長手方向の両端は、半導体基板1から半導体製造プロセスにより形成された支持梁部4L及び支持梁部4Rにより、可動側部2が振動可能となるように支持されている。なお、この例では、この可動側部2の振動方向は、図1において、半導体基板1の基板面に直交する方向(図1で矢印Bで示す方向)とは直交する方向、つまり、半導体基板1の基板面に沿う方向とされている。
支持梁部4L及び支持梁部4Rのそれぞれは、振動方向に直交する方向に設けられている2枚の薄板状部41,42及び薄板状部43,44からなる支持梁の構成とされている。支持梁部4L及び支持梁部4Rのそれぞれは、半導体基板1において、可動側部2の振動方向の両側に形成されている空間5L及び空間5Rの周囲を取り囲むように半導体基板1に形成されている支持梁保持部6L及び支持梁保持部6Rに取り付けられている。
可動側部2の長手方向の両端部2a及び2bは、2枚の薄板状部41,42及び薄板状部43,44の中央部分で支持梁部4L及び支持梁部4Rと結合されて、振動方向に移動可能とされている。
支持梁部4L及び支持梁部4Rのそれぞれは、1枚の薄板状部で構成することもできるが、複数枚、この例では2枚の薄板状部41,42及び薄板状部43,44で構成することにより、可動側部2の振動方向が偏向しづらくなるようにすると共に、可動側部2が対向する固定側部3A,3Bと接触せずに、安定して矢印ARの方向に振動することができるようにしている。
固定側部3A,3Bは、この例では、可動側部2の振動方向に直交する方向に、可動側部2を挟むような位置に設けられている。この場合に、固定側部3A,3Bのそれぞれは、図1において矢印Bで示す基板面に直交する方向に沿う方向であって、可動側部2の振動方向に沿う方向の面31A及び面31Bを有するように構成されている。そして、固定側部3Aの面31Aは、可動側部2の基板面に直交する方向に沿う方向であって、可動側部2の振動方向に沿う方向の面21と所定の間隔を隔てて対向する状態となるようにされている。また、固定側部3Bの面31Bは、可動側部2の基板面に直交する方向に沿う方向であって、可動側部2の振動方向に沿う方向の面22と所定の間隔を隔てて対向する状態となるようにされている。なお、面21、面22、面31A、面31Bは、以下の説明においては、対向面21、対向面22、対向面31A、対向面31Bと称する。
そして、可動側部2の対向面21及び対向面22には、振動方向に直交する方向に突出する複数個の突部23及び突部24が、振動方向に沿う方向に櫛歯状に配列されて形成されていると共に、固定側部3Aの対向面31A及び固定側部3Bの対向面31Bにも、振動方向に直交する方向に突出する複数個の突部32A及び突部32Bが、振動方向に沿う方向に櫛歯状に配列されて形成されている。この例の場合、突部23,24,32A及び32Bは、同様の構成を備えるようにされており、この例では、断面が矩形の突条が矢印B方向に延伸するように形成されている。
図2は、固定側部3Aと可動側部2との対向部分の一部を、図1の矢印Bの方向に、可動側部2の振動方向に直交する上方から見た図である。この図2に示すように、この例では、可動側部2の対向面21に形成されている複数個の突部23と、固定側部3Aの対向面31Aに形成されている複数個の突部32Aとは、全て同様の寸法に形成されていると共に、振動方向に沿う方向の配列ピッチも同様に形成されている。
この例の場合、図2に示すように、可動側部2の突部23及び固定側部3Aの突部32Aの振動方向に沿う方向の幅は、共に同じ幅Wtとされていると共に、突部23及び突部32Aの振動方向に直交する方向の長さ(突部23及び突部32Aの高さ)は、共に同じ長さHとされている。そして、可動側部2の突部23及び固定側部3Aの突部32Aの振動方向に沿う方向の配列周期は、所定の長さLとされている。したがって、隣接する突部23及び突部32Aの間は、Wb=L−Wtだけ隔てられている。
さらに、可動側部2の突部23の振動方向に直交する方向の端面と、固定側部3Aの突部32Aの振動方向に直交する方向の端面とは、所定の空隙gを隔てているように構成されている。なお、可動側部2の突部23が形成されている対向面21(突部23の付け根位置)と、固定側部3Aの突部32Aが形成されている対向面31A(突部32Aの付け根位置)との間は、距離Dだけ隔てられている。
この例では、Wt=20μm、Wb=40μm、L=60μm、H=42.5μm、g=5μm、D=90μmとされている。そして、振動発電デバイスとしては、可動側部2の振動方向の長さが、例えば12mm、振動方向に直交する方向の長さが、例えば8mmとされている。
なお、振動発電デバイス10の可動側部2の突部23,24の個数と、固定側部3A,3Bの突部32A,32Bの個数は、図1及び図2では、作図の便宜上、5〜6個程度となっているが、その個数は、実際的には、より多数である。
なお、図示は省略するが、固定側部3Bの対向面31Bに形成されている複数個の突部32Bと、可動側部2の対向面22に形成されている複数個の突部24との関係も、図2と同様に構成されている。この場合に、この例では、可動側部2の対向面21に形成されている突部23と固定側部3Aの対向面31Aに形成されている突部32Aとの位置関係(対向位相関係)が図2に示すような状態のときには、可動側部2の対向面22に形成されている突部24と固定側部3Bの対向面31Bに形成されている突部32Bとの位置関係(対向位相関係)も同様の状態となるようにされている。すなわち、可動側部2の突部23と固定側部3Aの突部32Aとの対向位相関係と、可動側部2の突部24と固定側部3Bの突部32Bとの対向位相関係は同相となるようにされている。
以上のように可動側部2の突部23,24と、固定側部3A,3Bの突部32A,32Bとは、その先端面が対向する状態でも、空隙gが存在するように構成されているので、可動側部2は、固定側部3A,3Bに対して、前記空隙gの間隔を保って、図1の矢印ARで示す振動方向に振動移動することが可能とされている。
そして、後述するように、この実施形態では、固定側部3A,3Bまたは可動側部2の一方には、エレクトレット膜が形成され、そのエレクトレット膜が形成されている固定側部3A,3Bまたは可動側部2の一方は、所定のエレクトレット電位Eとされる。この例では固定側部3A,3Bにエレクトレット膜が形成されて、固定側部3A,3Bは、例えば−400ボルトのエレクトレット電位Eとされる。なお、固定側部3A,3Bと可動側部2とは、後述するように、半導体基板の絶縁層により、互いに電気的に絶縁されている。
そして、図1に示すように、可動側部2には、その振動方向の両端部において電極25及び電極26が形成されると共に、固定側部3A及び固定側部3Bには、可動側部2の振動方向に直交する方向の端部において電極33A及び電極33Bが形成される。これら電極25及び電極26、電極33A及び電極33Bは、振動発電デバイス10を充電回路と接続する際の接続端子電極となる。
以上のように構成されているので、固定側部3A及び固定側部3Bと可動側部2との間には、可動側部2の振動に応じて変化する静電容量が得られる。図3(A),(B),(C)は、可動側部2が振動するときにおける対向面21の突部23と、固定側部3Aの対向面31Aの突部32Aとの対向位相関係と、その時の静電容量との関係を説明するための図である。なお、可動側部2が振動するときにおける対向面22の突部24と、固定側部3Bの対向面31Bの突部32Bとの対向位相関係と、その時の静電容量との関係も同様であるので、ここでは説明は省略する。
すなわち、図3(A)は、可動側部2の突部23が固定側部3Aの隣り合う突部32Aの中央に位置する場合であり、突部23と突部32Aとの先端の端面は、振動方向に直交する方向において全く対向しない状態である。この図3(A)の状態では、可動側部2の突部23の先端の端面は、距離Dだけ隔てた固定側部3Aの対向面31Aに対向する状態となっており、可動側部2と固定側部3Aとの間の静電容量は最小値Cminになる。
また、図3(C)は、可動側部2の突部23の先端の端面と固定側部3Aの突部32Aの先端の端面とが、振動方向に直交する方向において全体的に対向する状態である。この図3(C)の状態では、可動側部2の突部23の先端の端面と固定側部3Aの対向面31Aの先端の端面とが狭い空隙gを介して対向する状態となっており、可動側部2と固定側部3Aとの間の静電容量は最大値Cmaxになる。
また、図3(B)は、可動側部2の突部23の先端の端面と固定側部3Aの突部32Aの先端の端面とが、振動方向に直交する方向において部分的に対向する状態である。この図3(B)の状態は、図3(A)の状態と、図3(C)の状態との中間の状態であり、可動側部2と固定側部3Aとの間の静電容量は、最小値Cminと最大値Cmaxとの間の中間値Cmidになる。
この例においては、可動側部2の対向面21と、固定側部3Aの対向面31Aとの距離Dに対して、可動側部2の突部23の先端の端面と固定側部3Aの突部32Aの先端の端面とが対向するときの空隙gは非常に狭いので、静電容量の最小値Cminと最大値Cmaxとの差Cdefは、大きい値となる。そして、さらに、可動側部2の突部23と、固定側部3Aの突部32Aとのそれぞれの幅Wtと、高さHとは、差Cdefが最大となるように選定されている。すなわち、幅Wtが定められたときに、差Cdefが最大となる高さHは定まり、その高さHよりも高くしても差Cdefを、それより大きくすることができないものである。
以上のように構成されるこの実施形態の振動発電デバイス10において、可動側部2に加わる力Fを、可動側部2と、固定側部3A及び固定側部3Bとの間に働く静電力を考慮したモデル式として示すと、図12に示す(式2)のようになる。
この(式2)のモデル式において、vは、可動側部2の振動速度、kは、支持梁部4L,4Rにより支持された可動側部2が静電力に関係なく自由振動するときのバネ定数(弾性定数)、xは、突部23,24,32A,32Bの振動方向に沿う方向の配列周期Lの1周期内における可動側部2の位置、つまり、可動側部2の振動方向の位置、をそれぞれ示している。
この(式2)の第3項は、可動側部2と固定側部3A及び固定側部3Bとの間で働く静電力を考慮したときの、支持梁部4L,4Rにより支持された可動側部2のバネ定数に関する値を意味しており、この第1の実施形態の振動発電デバイス10においては、支持梁部4L,4Rにより支持された可動側部2が静電力に関係なく自由振動するときのバネ定数kと、静電力に関係する成分との差に応じたものとなっている。そして、この(式2)の第3項における静電力に関係する成分は、位置xの関数となっている。
したがって、この(式2)の第3項から明らかなように、上述した構成の第1の実施形態の振動発電デバイス10においては、支持梁部4L,4Rにより支持された可動側部2のバネ定数は、可動側部2と固定側部3A及び固定側部3Bとの間で働く静電力に応じて、位置xの関数として変調されていることが分かる。
前述の(式1)で示したように、振動発電デバイスの振動の周波数は、バネ定数kに比例する周波数となる。そして、この実施形態の振動発電デバイス10の場合、支持梁部4L,4Rにより支持された可動側部2のバネ定数は、可動側部2と固定側部3A及び固定側部3Bとの間で働く静電力に応じて、位置xの関数として変調されているから、当該バネ定数は一定ではなく、位置xに応じて変化するものとなる。したがって、(式1)で表される、この第1の実施形態の振動発電デバイス10の共振周波数fは、kが一定である場合のような特定の周波数ではなく、位置xに応じて変化するので、広帯域の周波数となる。
そして、(式2)の第3項においては、cos(2π/L)xが正の値であるときには、可動側部2と固定側部3A及び固定側部3Bとの間で働く静電力に関係する成分により、支持梁部4L,4Rにより支持された可動側部2のバネ定数は、当該可動側部2が静電力に関係なく自由振動するときのバネ定数kよりも低減される。つまり、可動側部2は、より容易に振動し易くなる。これはソフトスプリング効果と呼ばれる現象であり、例えば公知文献(JOURNAL OF MICROELECTROMECHANICAL SYSTEM. VOL.20.NO.6.DECEMBER 2011)に開示されている。この公知文献に開示されているように、このソフトスプリング効果は、振動発電デバイスの周波数の広帯域化に寄与する。
この場合に、より有効にソフトスプリング効果を得るには、(式2)の第3項において、バネ定数kから減算する項の値を、バネ定数kに対して無視できない値にする方が良い。そこで、この第1の実施形態の振動発電デバイス10では、エレクトレット膜のエレクトレット電位Eの値と、可動側部2の突部23及び固定側部3Aの突部32Aの振動方向に沿う方向の配列周期Lと、可動側部2と固定側部3A、3Bとの間の静電容量の最小値Cminと最大値Cmaxとの差Cdefの値とは、(式2)の第3項において、バネ定数kから減算する項の値が、当該バネ定数kに対して無視できない値になるように選定されている。可動側部2と固定側部3A、3Bとの間の静電容量の最小値Cminと最大値Cmaxとの差Cdefは、主として、前記空隙g、前記幅Wtや前記距離Dの値に基づいて定まるものであり、空隙gが小さいほど値が大きくなるものである。
この場合に、「(式2)の第3項において、バネ定数kから減算する項の値が、当該バネ定数kに対して無視できない値」とは、バネ定数kと同等の桁数あるいは違いが1桁程度を言い、バネ定数kと2桁以上異なる値は含まない意味である。
上述した例のエレクトレット電位Eの値、配列周期L、また、空隙gや距離Dの値は、上記のソフトスプリング効果を良好に得るために、「(式2)の第3項において、バネ定数kから減算する項の値が、当該バネ定数kに対して無視できない値」となるように選定された値である。ちなみに、この第1の実施形態の振動発電デバイスの場合、例えばバネ定数kが790N/mに対して、上述の実施形態の振動発電デバイス10の場合の前記(式2)の第3項におけるcosの係数である2πCdef/Lの値は、830N/mとなる。
以上のことから、この実施形態の振動発電デバイス10では、前記(式2)の第3項におけるcosの値が正である微小振動範囲では、ソフトスプリング効果により、広い範囲に存在する微弱な環境振動エネルギーに応答して、振動して、効率良く、振動発電することができる。
なお、この実施形態の振動発電デバイス10では、前記(式2)の第3項におけるcosの値が正である微小振動範囲でのみ振動するのではなく、外部からの振動エネルギーが大きければ、より大きな振幅の振動をすることができるように構成されており、その場合にも、可動側部2と固定側部との間の静電容量の変化に応じた発電出力が得られるのは、通常の静電容量方式の振動発電デバイスと同様である。
なお、図1において、7は錘であり、この錘7は、半導体基板1から作成されるのではなく、別途に作成されて、この第1の実施形態の振動発電デバイス10の可動側部2の上に装着されるものである。この錘7を可動側部2の上に載せることで、可動側部2の質量mを大きくして、振動発電デバイス10の振動発電による出力P(後述の(式3)参照)を大きくすることができる。
以上のように、上述の実施形態の振動発電デバイス10は、上述のように、可動側部2と固定側部3の、可動側部2の振動方向に沿う方向の対向面21、22と固定側部3A,22と,3Bとの対向面31A,31Bとに、前記振動方向に沿う方向に櫛歯状に突部23,24及び突部32A,32Bを配列する構成を備えることにより、(式2)のモデル式に示すように、可動側部2のばね定数が、振動方向の位置xの関数として変調される構成となるようにしたので、広帯域の振動周波数を有する振動発電デバイスとなる。
そして、この第1の実施形態の振動発電デバイス10では、エレクトレット膜のエレクトレット電位Eの値と、可動側部2の突部23及び固定側部3Aの突部32Aの振動方向に沿う方向の配列周期Lと、可動側部2と固定側部3A、3Bとの間の静電容量の最小値Cminと最大値Cmaxとの差Cdefの値とを(式2)の第3項において、バネ定数kから減算する項の値が、バネ定数kに対して無視できない値になるように選定されている。そのため、ソフトスプリング効果を有効に働かせることができ、振動発電デバイス10の周波数の広帯域化を、より実際的に実現することができる。
なお、前記の公知文献においても、広帯域を図った振動発電デバイスが開示されている。しかし、前記公知文献の振動発電デバイスにおいては、櫛歯状の突部は、互いに噛み合うようにされると共に、その噛み合っている突部の高さ方向に可動側部を振動させるようにしている。つまり、可動側部は固定側部に対して近づいたり、遠ざかったりするように振動する。このため、公知文献の振動発電デバイスの場合、静電力によりプルイン現象(引き込み現象)が生じてしまい、振動が継続できない恐れがある。すなわち、所定の空隙を隔てて対向する2面間に静電力が働いているときに、可動側部が、固定側部に対して、対向する2面間の空隙の長さの1/3以上近づくと、プルイン現象が生じて、振動が停止してしまうからである。
これに対して、この実施形態の振動発電デバイス10においては、上述したように、可動側部2の対向面21,22に形成した櫛歯状配列の突部23,24と、固定側部3Aの対向面31Aに形成した櫛歯状配列の突部32A及び固定側部3Bの対向面31Bに形成した櫛歯状配列の突部32Bとの間には、空隙gが設けられており、可動側部2は、対向面21,22,31A,31Bの面に沿う方向に振動移動する構成である。したがって、この実施形態の振動発電デバイス10は、可動側部2は、固定側部3A,3Bとの間に、最低限として空隙gの距離を保って、当該空隙gの方向とは直交する方向に振動移動するので、プルイン現象は生じない。したがって、この実施形態の振動発電デバイス10においては、原理的には可動側部2の振動の振幅に制限を設ける必要はないというメリットがある。
[第1の実施形態の振動発電デバイスの製法]
この第1の実施形態の振動発電デバイス10は、前述したように、半導体基板1に対して施される半導体プロセスにより形成されるMEMSデバイスである。半導体基板の例としては、単結晶のシリコン基板、多結晶のシリコン基板、SOI(Silicon on Insulator)基板、セラミック基板、金属基板、ガラス基板、ポリマー基板等を用いることができる。以下に説明するこの実施形態の振動発電デバイス10についての半導体製造プロセスの例においては、半導体基板としてSOI基板を用いている。
図4〜図7は、この実施形態の振動発電デバイス10についての半導体製造プロセスの例を示す図である。
半導体プロセスの実行に先立ち、SOI基板からなる半導体基板1を用意する。最終的には、半導体基板1からエッチングにより振動発電デバイス10を分離する。以下の説明では、便宜上、その分離された1つの振動発電デバイス10についてプロセスを説明することとする。図4(A)は、1つの振動発電デバイス10についての半導体基板1を示すもので、横方向の長さXが、例えば12mm、縦方向の長さYが、例えば8mmとされている。この半導体基板1を、その基板面1aに直交する方向に破断したときの断面図を図4(B)に示す。この図4(B)は、図4(A)のA−A線断面図である。
図4(B)に示すように、半導体基板1は、基板面1aに直交する方向に複数層が積層されており、この例では、基板面1aを形成するSOI層101と、埋め込み酸化膜層102と、ハンドル層103とならなる。SOI層101は、この例では、厚さが300μmで、比抵抗が例えば0.1ΩcmのP型シリコン層からなる。埋め込み酸化膜層102は、厚さが2μmの酸化膜からなる絶縁層である。また、ハンドル層103は、厚さが500μmで、比抵抗が例えば0.1ΩcmのP型シリコン層からなる。
この半導体基板1に対して、先ず、図4(C)の断面図(図4(B)の断面図と同じ位置の断面図)に示すように、SOI層101の表面(基板面1a)上に、LPCVD(Low Pressure Chemical Vapor Deposition)法により、窒化シリコン(Si3N4)膜104を成膜する。この窒化シリコン膜104は、後において、図1に示した電極25,26,33A,33Bを形成する位置を確保するためのものである。
窒化シリコン膜104は、パターニング処理されて、図4(D)及び図4(E)に示すように、電極25,26,33A,33Bを形成する位置部分104a,104b,104c,104dのみを残して除去される。なお、図4(E)は、図4(A)と同様に、半導体基板1を、その基板面1a側から見た図であり、図4(D)は、図4(E)におけるB−B線断面図である。
次に、図5(A)においてハッチングを付して示すように、半導体基板1の基板面1a上にレジスト膜105を塗布し、かつ、その塗布したレジスト膜105について、可動側部2と、固定側部3A及び固定側部3Bと、支持梁部4L及び支持梁部4Rとを形成する部分に対応する部分を残して、それらの部分をマスクするようにパターニング処理する。なお、図5(A)は、図4(A)と同様に、半導体基板1を、その基板面1a側から見た図であり、図5(B)は、図5(A)におけるC−C線断面図である。
なお、振動発電デバイス10の可動側部2の突部23,24の個数と、固定側部3A,3Bの突部32A,32Bの個数は、図5〜図7の半導体製造プロセスの図においては、作図の便宜上、5〜6個となっているが、前述したように、その個数は、実際的には、より多数である。
次に、図5(C)の断面図(図5(B)の断面図と同じ位置の断面図)に示すように、ICP(Inductively Coupled Plasma;誘導結合プラズマ)−RIE(Reactive Ion Etching;反応性イオンエッチング)による深掘りエッチング処理を施して、SOI層101の内の、レジスト膜105によりマスクされていない部分を、埋め込み酸化膜層102のところまで、エッチング除去する。
次に、レジスト膜105を除去する処理して、図5(D)及び(E)に示すように、SOI層101を露呈させるようにする。なお、図5(E)は、半導体基板1を、その基板面1a側から見た図であり、図5(D)は、図5(E)におけるB−B線断面図である。
次に、半導体基板1の基板面1aとは反対側の裏面1b(ハンドル層103の露呈面)上に、図6(A)においてハッチングを付して示すように、可動側部2と支持梁部4L及び支持梁部4R以外の部分をマスクするようにパターニングしたレジスト膜106を形成する。すなわち、半導体基板1に対して裏面レジストパターニング処理する。なお、図6(A)は、半導体基板1を、その裏面1b側から見た図であり、図6(B)は、図6(A)におけるE−E線断面図である。
次に、図6(C)の断面図(図6(B)の断面図と同じ位置の断面図)に示すように、ICP−RIEによる深掘りエッチング処理を施して、ハンドル層103の内の、レジスト膜106によりマスクされていない部分を、埋め込み酸化膜層102のところまで、エッチング除去する。
次に、レジスト膜106を除去する処理して、図6(D)及び(E)に示すように、ハンドル層103を裏面1b側に露呈させるようにする。なお、図6(E)は、半導体基板1を、その裏面1b側から見た図であり、図6(D)は、図6(E)におけるF−F線断面図である。
次に、バッファー弗酸溶液により、埋め込み酸化膜層102の露呈している部分をエッチング除去する処理を施して、図7(A)の断面図(図6(D)の断面図と同じ位置の断面図)に示すように、可動側部2と支持梁部4L及び支持梁部4Rの部分が可動可能となるようにする。
次に、KOH(水酸化カリウム)溶液によるバブリング酸化処理を行って、図7(B)の断面図(図7(A)の断面図と同じ位置の断面図)に示すように、カリウム含有酸化膜107を形成する。カリウム含有酸化膜107は、後述するエレクトレット膜を生成するエレクトレット化の処理のためのものであり、例えば厚さが1μmとされる。なお、このKOH(水酸化カリウム)溶液によるバブリング酸化処理については、例えば特開2016−82836号公報の図2、図3及びその説明部分に記載の技術を用いることができる。ここではその詳細は省略する。
次に、窒化ケイ素膜104a,104b,104c,104dを、図7(C)の断面図に示すようにエッチング除去する処理をして、当該エッチング除去した部分を、前述した電極25,26,33A,33Bとして形成する。
以上のようにして、半導体基板1から、この実施形態の振動発電デバイスの構成部分が、図7(D)に示すように作成することができる。そして、この図7(D)に示す振動発電デバイスの可動側部2または固定側部3A及び3Bのいずれか一方にエレクトレット膜を生成するエレクトレット化処理をする。この例では、固定側部3A及び3Bに、負に帯電させたエレクトレット膜を生成する。このエレクトレット化の処理は、例えば特開2013−13256号公報に記載のBias−Temperature法を用いて行うことができる。ここではその詳細な説明は省略する。
以上のように構成された振動発電デバイス10は、発電出力電力の最大値Pmaxとして、図12の(式3)に示すような値を得ることができる。この(式3)において、mは、錘7を含めた可動側部2の質量であり、aは加速度、vは振動速度、Qは可動側部2の共振時における尖鋭度(いわゆるQ値(Quality factor))であり、外部励振振動の振幅に対する可動側部2の振動振幅の比である。この(式3)から明らかなように、この第1の実施形態の振動発電デバイス10においては、錘7を可動側部2の上に取り付けたことで、発電出力電力を大きくすることができる。
図8は、この実施形態の振動発電デバイス10を用いた充電回路の回路構成例を示す図である。図8に示すように、この実施形態の振動発電デバイス10は、可動側部2の電極25と、固定側部3Aの電極33Aとの間に生成される静電容量C1と、可動側部2の電極26と、固定側部3Bの電極33Bとの間に生成される静電容量C2とが、この例では並列に接続されたものとされる。したがって、この例では、振動発電デバイス10で生成される静電容量Cは、C=C1+C2となる。
そして、図8の例においては、この振動発電デバイス10の静電容量Cに得られる発電出力が、この例では、ダイオードD1及びダイオードD2からなる整流回路8により整流されて、その整流出力により、蓄電用キャパシタ9が充電されて、蓄電される。
[上述の第1の実施形態の変形例]
なお、上述の第1の実施形態の振動発電デバイス10では、可動側部2の振動方向に直交する方向の両側の振動方向に沿う方向の面21,22のそれぞれに突部23,24を櫛歯状に配設すると共に、面21,22に対向する面31A,31Bを有する2個の固定側部3A,3Bを設け、面21,22のそれぞれに突部32A,32Bを櫛歯状に配設する構成とした。しかし、可動側部2の振動方向に直交する方向の両側を利用せずに、その片側の可動側部2と固定側部3Aとの組み合わせ、あるいは、可動側部2と固定側部3Bとの組み合わせの構成とするようにしてもよい。
また、上述の第1の実施形態の振動発電デバイス10では、固定側部3A及び3Bにエレクトレット膜を生成するようにしたが、可動側部2にエレクトレット膜を生成するようにしてもよい。
また、上述の第1の実施形態の振動発電デバイス10では、固定側部3A及び3Bの全体に亘ってエレクトレット膜を生成するようにしたが、エレクトレット膜は、全体に生成する必要はなく、少なくとも、固定側部3A及び3Bの対向面31A及び31Bにエレクトレット膜を生成すればよい。
なお、振動発電デバイスの可動側部2または固定側部3A及び3Bのいずれか一方にエレクトレット膜を生成するエレクトレット化処理をするようにしたが、一方に負のエレクトレット電位、他方に正のエレクトレット電位を与えるように、可動側部2及び固定側部3A及び3Bの両方にエレクトレット膜を生成するようにしてもよい。
なお、上述の図4〜図7に示した、第1の実施形態の振動発電デバイス10についての半導体製造プロセスは、一例であり、半導体製造プロセスは、上述の例に限られないことは言うまでもない。
[第2の実施形態]
上述の実施形態の振動発電デバイス10では、可動側部と固定側部とで、櫛歯状に配列された突部が対向する組み合わせは1対としたが、複数対設けることにより、より高出力の振動発電デバイスを提供することができる。以下に説明する第2の実施形態の振動発電デバイスは、そのように構成した場合の一例である。
図9は、この第2の実施形態の振動発電デバイス10Mを、半導体基板1Mの基板面に直交する方向に当該基板面側から見た図である。この第2の実施形態の振動発電デバイス10Mも、半導体基板1Mに対して、第1の実施形態の振動発電デバイス10と同様の半導体製造プロセスを施すことで製造されるものである。すなわち、可動側部と固定側部とを形成する際のレジスト膜によるエッチングのマスクパターンが異なるのみで、その他はほぼ同様となる。なお、この例の振動発電デバイス10Mの大きさは、振動方向の長さは、例えば24mmとされ、振動方向に直交する方向の長さは、例えば15mmとされている。厚さ方向の大きさは、第1の実施形態と同様である。
図9に示すように、この第2の実施形態においても第1の実施形態の振動発電デバイス10と同様に、可動側部2Mに対して、当該可動側部2Mの振動方向に直交する方向の両側に固定側部3AMと固定側部3BMとが配設される構成である。
そして、可動側部2Mは、第1の実施形態の振動発電デバイス10の可動側部2と同様に、支持梁部4LM及び4RMで振動方向の両端が支持されて、図9中の矢印ARで示す方向に振動するように構成されている。
この第2の実施形態の振動発電デバイス10Mの可動側部2Mは、細長形状の可動主軸部201と、この可動主軸部201の長手方向のほぼ中央位置の両側から振動方向に直交する方向に伸びるアーム部202Uとアーム部202Dと、これらのアーム部202U及びアーム部202Dのそれぞれの左側と右側の両側から矢印ARで示す振動方向に延伸する複数の可動枝部203UL及び203URと可動枝部203DL及び203DRとを備える。
この例の場合、アーム部202Uは、可動側部2Mの可動主軸部201から、固定側部3AMの方向に張り出すように構成されている。また、アーム部202Dは、可動側部2Mの可動主軸部201から、固定側部3BM側の方向に張り出すように構成されている。
そして、可動枝部203UL及び可動枝部203URは、可動側部2Mの振動方向に、アーム部202Uの左側と右側の両側から、振動方向に直交する方向に互いに所定の間隔を空けて、図9の例では3本ずつが延伸するように形成されている。また、可動枝部203DL及び可動枝部203DRは、可動側部2Mの振動方向に、アーム部202Dの左側と右側の両側から、図9の例では3本ずつが延伸するように形成されている。
一方、固定側部3AMは、この第2の実施形態においては、可動側部2Mの可動主軸部201と平行に設けられる固定主軸部301Aと、その長手方向の両端から可動主軸部201の方向に延伸されるアーム部302AL及びアーム部302ARを備える。そして、これらのアーム部302AL及びアーム部302ARは、可動側部2Mのアーム部202Uに対向する面から、矢印ARで示す振動方向に延伸する複数の固定枝部303AL及び固定枝部303ARを備える。
この例の場合には、固定枝部303AL及び固定枝部303ARは、可動枝部203UL及び可動枝部203URの本数に合わせた3本ずつとされており、図9に示すように、可動枝部203UL及び可動枝部203URと、固定枝部303AL及び固定枝部303ARとが交互に噛み合うように構成されている。
また、固定側部3BMは、この第2の実施形態においては、可動側部2Mの可動主軸部201と平行に設けられる固定主軸部301Bと、その長手方向の両端から可動主軸部201の方向に延伸されるアーム部302BL及び302BRとを備える。そして、これらのアーム部302BL及びアーム部302BRは、可動側部2Mのアーム部202Dに対向する面から、矢印ARで示す振動方向に延伸する複数の固定枝部303BL及び固定枝部303BRを備える。
この例の場合には、固定枝部303BL及び固定枝部303BRは、可動枝部203DL及び可動枝部203DRの本数に合わせて3本ずつとされており、図9に示すように、可動枝部203DL及び203DRと、固定枝部303BL及び303BRとが交互に噛み合うように構成されている。
なお、可動枝部及び固定枝部の数は、3本ずつではなく、1本または2本でもよいし、3本よりも多数とすることも可能であることは言うまでもない。
図10(A)に、固定側部3AMの左側のアーム部302ALに形成されている固定枝部303ALと、可動側部2Mのアーム部202Uの左側に形成されている可動枝部203ULとの噛み合い状態を説明するための一部拡大図を示す。また、図10(B)には、固定側部3AMの右側のアーム部302ARに形成されている固定枝部303ARと、可動側部2Mのアーム部202Uの右側に形成されている可動枝部203URとの噛み合い状態を説明するための一部拡大図を示す。
なお、固定側部3BMの左側のアーム部302BLに形成されている固定枝部303BLと、可動側部2Mのアーム部202Dの左側に形成されている可動枝部203DLとの噛み合い状態、また、固定側部3BMの右側のアーム部302BRに形成されている固定枝部303BRと、可動側部2Mのアーム部202Dの右側に形成されている可動枝部203DRとの噛み合い状態は、図10(A)及び図10(B)と同様になる。そこで、ここでは、可動枝部203UL及び可動枝部203URと、固定枝部303AL及び固定枝部303ARとの関係の説明のみを行い、可動枝部203DL及び可動枝部203DRと、固定枝部303BL及び固定枝部303BRとの関係については、その説明は省略する。
図10(A)に示すように、可動枝部203ULの、固定枝部303ALと対向し、振動方向に沿う方向の面それぞれには、第1の実施形態の可動側部2の突部23及び突部24と同様にして、突部204UL及び突部205ULが形成されている。一方、固定枝部303ALの可動枝部203ULに対向する面には、第1の実施形態の固定側部3Aの突部32Aに対応する突部304AL及び突部305ALが形成されている。
そして、この例においても、可動側部2Mの可動枝部203ULに形成されている突部204UL及び突部205ULと、固定枝部303ALに形成されている突部304AL及び突部305ALとは、第1の実施形態において、図2を用いて説明したのと同様の寸法関係で構成されている。すなわち、突部204UL及び突部205UL、突部304AL及び突部305ALの幅Wtは20μm、配列ピッチLは60μm、高さHは42.5μmとされ、突部204UL及び突部205ULの先端面と、突部304AL及び突部305ALの先端面との間の空隙gは、5μmとされている。
また、図10(B)に示すように、可動枝部203URの、固定枝部303ARと対向し、振動方向に沿う方向の面それぞれには、同様にして、突部204UR及び突部205URが形成されていると共に、固定枝部303ARの可動枝部203URに対向する面には、突部304AR及び突部305ARが形成されている。そして、可動側部2Mの可動枝部203URに形成されている突部204UR及び205URと、固定枝部303ARに形成されている突部304AR及び305ARとは、可動側部2Mの可動枝部203ULに形成されている突部204UL及び205ULと、固定枝部303ALに形成されている突部304L及び305Lとの関係と同様に構成されている。
なお、この場合に、固定側部3AMの固定主軸部301にも、固定枝部303ALの突部305AL及び突部305AL、また、固定枝部303ARの突部305AR及び突部305AR、と同様の突部305Mが形成されている。また、可動側部2Mの可動主軸部201にも、可動枝部203UL及び可動枝部203URの突部203UL及び203URと同様の突部が形成されている。
ところで、前述したように、可動側部2Mの振動による位置xが、前述の(式2)の第3項のcosが正の値を取る範囲のときには、振動発電デバイス10Mのバネ定数が、バネ定数kよりも小さくなって、静電力によるソフトスプリング効果により、可動側部2Mは、より動きやすい状態になる。しかし、可動側部2Mの振動による位置xが、前述の(式2)の第3項のcosが負の値を取るような範囲になると、振動発電デバイス10Mのバネ定数が、バネ定数kよりも大きくなって、振動しにくくなるような状態になる。すなわち、この種の静電型の振動発電デバイスの場合、支持梁部4LM及び4RMの復元力と、可動側部2Mと固定側部3AM及び3BMとの間の静電力が同一方向に働くと、静電力により可動構造が制動されて動きにくくなり、低い加速度では発電ができなくなる恐れがある。
これに鑑み、この第2の実施形態では、図10(A)に示すアーム部202Uの左側の可動枝部203ULと固定側部3AMの左側の固定枝部303ALとの左側グループにおける突部204UL及び205ULと突部304AL及び305ALとの対向位相と、図10(B)に示すアーム部202Uの右側の可動枝部203URと固定側部3AMの右側の固定枝部303ARとの右側グループにおける突部204UR及び205URと突部304AR及び305ARとの対向位相とが、静電力による影響が、左側グループと、右側グループとで互いに相殺されるように異なる構成とされている。
この図9の例では、配列ピッチLを1周期(360度)としたとき、左側グループと、右側グループとで90度位相が異なるように構成されている。すなわち、図10(A)に示すように、左側グループの可動枝部203ULの突部204UL及び205ULと、固定枝部303ALの突部304AL及び305ALとが互いに正対するような状態であるときには、図10(B)に示すように、右側グループの可動枝部203URの突部204UR及び205URと、固定枝部303ARの突部304AR及び305ARとは、正対せずに、90度ずれた状態となるように構成されている。
なお、図示は省略するが、上述と同様にして、アーム部202Dの左側の可動枝部203DLと固定側部3BMの左側の固定枝部303BLとの左側グループにおける突部204DL及び205DLと突部304BL及び305BLとの対向位相と、アーム部202Dの右側の可動枝部203DRと固定側部3BMの右側の固定枝部303BRとの右側グループにおける突部204DR及び205DRと突部304BR及び305BRとの対向位相とが、同様にして、静電力による影響が、左側グループと、右側グループとで互いに相殺されるように異なる構成とされている。
このように、この第2の実施形態の振動発電デバイス10Mにおいては、可動側部2Mの突部を、振動方向に2つのグループに分け、固定側部3AM及び固定側部3BMの突部との間の対向位相が、その2つのグループで互いに異なるようにしたことにより、可動側部2Mと固定側部3AM及び固定側部3BMとの間に働く静電力を、それらの2つのグループで逆方向に働かせるようにすることができ、可動側部2Mが静電力により制動されて、振動しづらくなる状態を軽減、あるいは振動を継続しなくなる状態を回避することができる。
なお、上述の説明では、可動側部2Mの突部を、振動方向に2つのグループに分けたが、固定側部3AM及び固定側部3BMの突部を、振動方向に2つのグループに分けるようにしても勿論よい。
図示は省略したが、この第2の実施形態の振動発電デバイス10Mにおいても、可動側部2Mの可動主軸部201の上には、錘が載せられるのは、第1の実施形態の振動発電デバイス10の場合と同様である。
この第2の実施形態の振動発電デバイス10Mも、第1の実施形態の振動発電デバイス10と同様にして、可動側部2Mの両端側に電極25M及び26Mが形成されると共に、固定側部3AMには電極33AMが形成され、固定側部3BMには電極33BMが形成される。そして、この第2の実施形態の振動発電デバイス10Mの場合にも、図8に示した充電回路により、蓄電用キャパシタ9に蓄電することができる。
この場合に、この第2の実施形態においては、図8に示す電極25に対応する電極25Mと、電極33Aに対応する電極33AMとの間には、複数の可動枝部203UL及び可動枝部203UR(可動主軸部201を含む)と複数の固定枝部303AL及び固定枝部303AR(固定主軸部301Aを含む)との対の間でそれぞれ生成される複数個の静電容量が並列に接続されていることになる。同様に、図8に示す電極26に対応する電極26Mと、電極33Bに対応する電極33BMとの間には、複数の可動枝部203DL及び可動枝部203DR(可動主軸部201を含む)と複数の固定枝部303BL及び固定枝部303BR(固定主軸部301Bを含む)との対の間でそれぞれ生成される複数個の静電容量が並列に接続されていることになる。
したがって、この第2の実施形態の振動発電デバイス10Mによれば、第1の実施形態と同様の作用効果を有する上に、振動発電の発電量を大きくすることができる広帯域の振動発電デバイスを実現することができる。
そして、この第2の実施形態の振動発電デバイス10Mによれば、可動側部の突部と固定側部の突部との対向位相が互いに異なる2つのグループに分け、それら2つのグループ間で、可動側部と固定側部との間に働く静電力を互いに相殺するように構成したので、可動側部が静電力により振動しづらくなる状態を軽減、あるいは振動を継続しなくなる状態を回避することができる。
この第2の実施形態の振動発電デバイス10Mによれば、可動側部2Mが自由振動する際のバネ定数kにおける共振周波数を100Hzであるとき、図11に示すように広帯域の励振周波数に対して、所定値以上の充電電圧が得られることが確認できた。すなわち、この図11から明らかなように、第2の実施形態の振動発電デバイス10Mによれば、励振周波数が50Hzのときには、2ボルトの充電電圧が得られ、70Hzでは3.5ボルト、120Hzでは4.5ボルトの充電電圧が得られた。すなわち、共振周波数である100Hzでのみならず、この共振周波数を含む広帯域の周波数範囲で、所定値以上の充電電圧が得られる振動発電デバイスを実現することができたことが確認された。なお、この場合の励振エネルギーは、0.1Gの場合である。
また、図13に、外部振動エネルギーとして、エアコンの振動エネルギー(この例では0.02Grms)が第2の実施形態の振動発電デバイス10Mに与えられときの、当該振動発電デバイス10Mの振動周波数のスペクトル分析結果を示す。図13においては、下方にエアコンの振動のスペクトルを示し、その上方に、この第2の実施形態の振動発電デバイス10Mの周波数スペクトルを示す。この図13から明らかなように、第2の実施形態の振動発電デバイス10Mは、広範囲の振動エネルギーに応答して、広帯域の振動をすることが分かる。
[第2の実施形態の変形例]
上述の第2の実施形態の例においても、固定側部3BM側を省略して、可動側部2Mと、固定側部3AMとの組み合わせからなるものとしてもよい。
また、可動側部2Mの可動主軸部201から振動方向に直交する方向に延伸するアーム部を、更に、振動方向の異なる位置に複数個設け、それぞれのアーム部について、上述と同様の構成となるようにするとともに、固定側部3AM及び3BMも、それぞれのアーム部に対応する部分を、上述と同様に構成することにより、より多数の可動枝部と固定枝部との対からなる構成とすることもできる。
また、上述の第2の実施形態においては、可動側部と固定側部との間の静電力を相殺するようにするために、突部の対向位相が異なるグループを、可動側部の振動方向に配置するようにした。しかし、突部の対向位相が異なるグループを、振動方向に直交する方向に配置してもよい。すなわち、可動側部2Mと固定側部3AMとのグループと、可動側部2Mと固定側部3BMとのグループとで、突部の対向位相が異なるグループを構成してもよい。その場合には、第1の実施形態においても適用が可能であることは言うまでもない。
そして、突部の対向位相の異なりは、上述の例の90度に限らず、可動側部と固定側部との間の静電力を相殺するようにする寄与する位相の異なりであればよい。
[その他の実施形態または変形例]
上述の実施形態の振動発電デバイスは、半導体製造プロセスにより製造されるMEMSデバイスの場合であったが、この発明による振動発電デバイスは、MEMSデバイスに限られるものではない。
また、上述の実施形態においては、可動側部及び固定側部に形成する突部は、断面が矩形形状のものとしたが、突部の形状は、これに限られるものではない。
また、上述の実施形態では、振動発電デバイスを重力方向から見たときに、可動側部の左右方向に固定側部を配置するようにしたが、可動側部と固定側部とを上下方向に所定の間隔を空けて配置するようにしてもよい。また、可動側部の振動方向は、直線方向ではなく、回転方向であってもよい。
1,1M…半導体基板、2,2M…可動側部、3A,3B,3AM,3BM…固定側部、4L,4R,4LM,4RM…支持梁部、7…錘、23,24…可動側部2の突部、32A,32B…固定側部3A,3Bの突部
上記の課題を解決するために、請求項1の発明は、
外部から印加される振動エネルギーにより所定の振動方向に振動することが可能なように構成されており、前記振動方向に沿う第1の面を備える可動側部と、
前記可動側部が前記振動方向に振動することが可能なように、前記可動側部の前記第1の面と所定の間隔を隔てて対向する第2の面を備え、前記振動エネルギーに対しても位置固定するように構成されている固定側部と、
を備え、
前記固定側部と前記可動側部との少なくとも一方には、エレクトレット膜が形成されていると共に、
前記可動側部の前記第1の面及び前記固定側部の前記第2の面のそれぞれには、前記振動方向に直交する方向に突出する複数個の突部が前記振動方向に櫛歯状に配列されて形成されていると共に、
前記固定側部の少なくとも前記第1の面、または、前記可動側部の少なくとも前記第2の面の少なくとも一方の面には、所定のエレクトレット電位とされたエレクトレット膜が形成され、
前記可動側部のバネ定数が、前記可動側部と前記固定側部との間に働く静電力により、前記振動方向の位置の関数として変調されているように構成されており、更に、
前記エレクトレット電位の値と、前記固定側部の前記複数個の突部及び前記可動側部の前記複数個の突部の配列周期と、前記可動側部の振動移動により前記固定側部と前記可動側部との間に生じる静電容量の最大値と最小値との差の値とが、前記可動側部の自由振動時のバネ定数に対して、前記可動側部と前記固定側部との間で生じる静電力による前記可動側部自身が備えるバネ定数の低下効果を有するように選定されている
ことを特徴とする振動発電デバイスを提供する。
また、請求項の発明は、請求項の発明において、
前記固定側部と前記可動側部とが半導体基板から形成されたMEMSデバイスである
ことを特徴とする振動発電デバイスを提供する。
請求項の発明においては、エレクトレット電位の値と、固定側部の複数個の突部及び可動側部の複数個の突部の配列周期と、可動側部の振動移動により固定側部と可動側部との間に生じる静電容量の最大値と最小値との差の値とが選定されて、隣り合う突部同士の振動移動においては、可動側部と固定側部との間で生じる静電力によって、可動側部の自由振動時のバネ定数の低下効果(ソフトスプリング効果と称する)を有するようにされている。
すなわち、請求項のように、エレクトレット電位の値と、固定側部の複数個の突部及び可動側部の複数個の突部の配列周期と、可動側部の振動移動により固定側部と可動側部との間に生じる静電容量の最大値と最小値との差の値とを選定しておくことにより、可動側部の自由振動時のバネ定数の低下効果が得られるので、振動発電デバイスの周波数の広帯域化を有効に図ることができると共に、可動側部を振動し易くことができるという効果がある。
請求項の発明においては、振動発電デバイスが、MEMSデバイスとされている。したがって、微小小型という環境発電素子として、有益なデバイスを提供することが可能となる。

Claims (10)

  1. 外部から印加される振動エネルギーにより所定の振動方向に振動することが可能なように構成されており、前記振動方向に沿う第1の面を備える可動側部と、
    前記可動側部が前記振動方向に振動することが可能なように、前記可動側部の前記第1の面と所定の間隔を隔てて対向する第2の面を備え、前記振動エネルギーに対しても位置固定するように構成されている固定側部と、
    を備え、
    前記固定側部と前記可動側部との少なくとも一方には、エレクトレット膜が形成されていると共に、
    前記可動側部の前記第1の面及び前記固定側部の前記第2の面のそれぞれには、前記振動方向に直交する方向に突出する複数個の突部が前記振動方向に櫛歯状に配列されて形成されていると共に、
    前記固定側部の少なくとも前記第1の面、または、前記可動側部の少なくとも前記第2の面の少なくとも一方の面には、所定のエレクトレット電位とされたエレクトレット膜が形成され、
    前記可動側部のバネ定数が、前記可動側部と前記固定側部との間に働く静電力により、前記振動方向の位置の関数として変調されているように構成されている
    ことを特徴とする振動発電デバイス。
  2. 前記エレクトレット電位の値と、前記固定側部の前記複数個の突部及び前記可動側部の前記複数個の突部の配列周期と、前記可動側部の振動移動により前記固定側部と前記可動側部との間に生じる静電容量の最大値と最小値との差の値とが、前記可動側部の自由振動時のバネ定数に対して、前記可動側部と前記固定側部との間で生じる静電力による前記可動側部自身が備えるバネ定数の低下効果を有するように選定されている
    ことを特徴とする請求項1に記載の振動発電デバイス。
  3. 前記固定側部と前記可動側部とが半導体基板から形成されたMEMS(Micro Electro Mechanical System)デバイスである
    ことを特徴とする請求項1または請求項2に記載の振動発電デバイス。
  4. 前記可動側部の前記第1の面と前記固定側部の前記第2の面とは、それぞれ前記半導体基板の基板面に直交する方向の面であり、前記可動側部の前記振動方向の両端は、前記半導体基板から形成された支持梁により支持されて、前記可動側部が振動移動可能とされている
    ことを特徴とする請求項3に記載の振動発電デバイス。
  5. 前記可動側部の前記前記振動方向に沿う前記第1の面は複数個であり、
    前記固定側部は、前記可動側部の複数個の前記第1の面のそれぞれに対向する複数個の前記第2の面を有する
    ことを特徴とする請求項1〜請求項4のいずれかに記載の振動発電デバイス。
  6. 前記可動側部には、前記振動方向に対して交差する方向に重さが加わるように錘が配置されている
    ことを特徴とする請求項1〜請求項5のいずれかに記載の振動発電デバイス。
  7. 前記振動方向に直交する方向に複数個の前記可動側部を備えると共に、前記固定側部材は、複数個の前記可動側部の前記第1の面のそれぞれに対向する複数個の前記第2の面を有する
    ことを特徴とする請求項1〜請求項6のいずれかに記載の振動発電デバイス。
  8. 前記可動側部の前記第1の面及び前記固定側部の前記第2の面に形成されている前記複数個の突部同士の対向位相が異なる第1のグループと第2のグループとを備え、
    前記第1のグループの前記可動側部と前記固定側部との間に働く静電力と、前記第2のグループの前記可動側部と前記固定側部との間に働く静電力とは、互いに逆方向に働くように構成されている
    ことを特徴とする請求項1〜請求項7のいずれかに記載の振動発電デバイス。
  9. 前記第1のグループと前記第2のグループは、前記可動側部の振動方向に設けられている
    ことを特徴とする請求項8に記載の振動発電デバイス。
  10. 前記第1のグループと前記第2のグループは、前記可動側部の振動方向に直交する方向に設けられている
    ことを特徴とする請求項8に記載の振動発電デバイス。
JP2016231750A 2016-11-29 2016-11-29 振動発電デバイス Active JP6338070B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016231750A JP6338070B2 (ja) 2016-11-29 2016-11-29 振動発電デバイス
CN201780068547.7A CN110036560B (zh) 2016-11-29 2017-11-16 振动发电装置
US16/464,367 US11374507B2 (en) 2016-11-29 2017-11-16 Vibrational energy harvester device
PCT/JP2017/041174 WO2018101046A1 (ja) 2016-11-29 2017-11-16 振動発電デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231750A JP6338070B2 (ja) 2016-11-29 2016-11-29 振動発電デバイス

Publications (2)

Publication Number Publication Date
JP6338070B2 JP6338070B2 (ja) 2018-06-06
JP2018088777A true JP2018088777A (ja) 2018-06-07

Family

ID=62242480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231750A Active JP6338070B2 (ja) 2016-11-29 2016-11-29 振動発電デバイス

Country Status (4)

Country Link
US (1) US11374507B2 (ja)
JP (1) JP6338070B2 (ja)
CN (1) CN110036560B (ja)
WO (1) WO2018101046A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049415A (zh) * 2018-10-15 2020-04-21 株式会社鹭宫制作所 振动发电元件
CN111049416A (zh) * 2018-10-15 2020-04-21 株式会社鹭宫制作所 振动发电元件
JP2020065322A (ja) * 2018-10-15 2020-04-23 株式会社鷺宮製作所 振動発電素子および振動発電装置
JP2021158821A (ja) * 2020-03-27 2021-10-07 国立大学法人 東京大学 発電素子の製造方法、及び、発電素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964102B2 (ja) * 2019-01-16 2021-11-10 株式会社鷺宮製作所 Mems梁構造およびmems振動発電素子
JP7104680B2 (ja) * 2019-10-10 2022-07-21 株式会社鷺宮製作所 Mems素子および振動発電デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077717A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 振動発電器、振動発電装置、及び振動発電装置を搭載した電子機器と通信装置
WO2012008113A1 (ja) * 2010-07-16 2012-01-19 パナソニック株式会社 微小電気機械発電器およびそれを用いた電気機器
WO2016129597A1 (ja) * 2015-02-13 2016-08-18 国立大学法人 東京大学 エレクトレット素子、電気機械変換器およびエレクトレット素子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593029B2 (en) * 2001-08-20 2009-09-22 Ricoh Company, Ltd. Optical scanning device and image forming apparatus using the same
CN100511994C (zh) * 2003-03-25 2009-07-08 松下电器产业株式会社 机械共振器及使用了该机械共振器的滤波器、开关和电路
JP5333950B2 (ja) * 2008-03-04 2013-11-06 学校法人立命館 共振器および共振器アレイ
JP2011036089A (ja) 2009-08-05 2011-02-17 Panasonic Corp 振動発電素子およびその製造方法
US9496807B2 (en) 2010-01-14 2016-11-15 Omron Corporation Electrostatic induction power generator
JP5676377B2 (ja) 2011-06-29 2015-02-25 アオイ電子株式会社 エレクトレット膜およびこれを用いた振動発電素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077717A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 振動発電器、振動発電装置、及び振動発電装置を搭載した電子機器と通信装置
WO2012008113A1 (ja) * 2010-07-16 2012-01-19 パナソニック株式会社 微小電気機械発電器およびそれを用いた電気機器
WO2016129597A1 (ja) * 2015-02-13 2016-08-18 国立大学法人 東京大学 エレクトレット素子、電気機械変換器およびエレクトレット素子の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049415A (zh) * 2018-10-15 2020-04-21 株式会社鹭宫制作所 振动发电元件
CN111049416A (zh) * 2018-10-15 2020-04-21 株式会社鹭宫制作所 振动发电元件
JP2020065324A (ja) * 2018-10-15 2020-04-23 株式会社鷺宮製作所 振動発電素子
JP2020065325A (ja) * 2018-10-15 2020-04-23 株式会社鷺宮製作所 振動発電素子
JP2020065322A (ja) * 2018-10-15 2020-04-23 株式会社鷺宮製作所 振動発電素子および振動発電装置
JP6993951B2 (ja) 2018-10-15 2022-01-14 株式会社鷺宮製作所 振動発電素子
US11387749B2 (en) 2018-10-15 2022-07-12 Saginomiya Seisakusho, Inc. Vibration energy harvester
JP2021158821A (ja) * 2020-03-27 2021-10-07 国立大学法人 東京大学 発電素子の製造方法、及び、発電素子
JP7249597B2 (ja) 2020-03-27 2023-03-31 国立大学法人 東京大学 発電素子の製造方法、及び、発電素子

Also Published As

Publication number Publication date
WO2018101046A1 (ja) 2018-06-07
CN110036560A (zh) 2019-07-19
US11374507B2 (en) 2022-06-28
JP6338070B2 (ja) 2018-06-06
CN110036560B (zh) 2020-05-15
US20210119555A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6338070B2 (ja) 振動発電デバイス
US10840827B2 (en) Vibration energy harvester
US20230098623A1 (en) Vibrational Energy Harvester Element
CN110050409B (zh) 振动发电装置
US9164277B2 (en) Micromechanical device
US9287804B2 (en) Power generation apparatus
JP2009014492A (ja) 揺動体装置
CN115280797A (zh) 具有改进的性能的mems换能器
JP5226907B1 (ja) 振動発電器、振動発電装置、及び振動発電装置を搭載した電気機器と通信装置
US20230013976A1 (en) Movable piezo element and method for producing a movable piezo element
CN113316891A (zh) 振动发电元件以及振动发电元件的制造方法
US20210331912A1 (en) Multiple layer electrode transducers
KR100464297B1 (ko) 용량변화마이크로가속도계
JP2001349731A (ja) マイクロマシンデバイスおよび角加速度センサおよび加速度センサ
Zhang et al. Two mechanical tuning schemes to improve the bandwidth of electret-based electrostatic energy harvester
Liu et al. High Q and low resonant frequency micro electret energy harvester for harvesting low amplitude harmonic of vibration
Suzuki Energy harvesting from vibration using polymer electret
JP5418355B2 (ja) 角速度センサ
JP2023091648A (ja) 振動デバイスの製造方法および振動デバイス
JP2023107341A (ja) 振動発電デバイス
JP2023091647A (ja) 振動デバイスの製造方法および振動デバイス
JP2023107340A (ja) 振動デバイス
JP2023076648A (ja) 振動発電素子
Ralib et al. Fabrication techniques and performance of piezoelectric energy harvesters

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180328

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6338070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250