JP2020040385A - 耐火積層体及びバッテリー - Google Patents

耐火積層体及びバッテリー Download PDF

Info

Publication number
JP2020040385A
JP2020040385A JP2019049101A JP2019049101A JP2020040385A JP 2020040385 A JP2020040385 A JP 2020040385A JP 2019049101 A JP2019049101 A JP 2019049101A JP 2019049101 A JP2019049101 A JP 2019049101A JP 2020040385 A JP2020040385 A JP 2020040385A
Authority
JP
Japan
Prior art keywords
fire
resistant
refractory
resin
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019049101A
Other languages
English (en)
Other versions
JP7168494B2 (ja
Inventor
健一 大月
Kenichi Otsuki
健一 大月
彰人 土肥
Akihito Doi
彰人 土肥
倫男 島本
Tomoo Shimamoto
倫男 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019049101A priority Critical patent/JP7168494B2/ja
Publication of JP2020040385A publication Critical patent/JP2020040385A/ja
Application granted granted Critical
Publication of JP7168494B2 publication Critical patent/JP7168494B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】高い耐火性を有し、かつ発火が起こった際に高い消火性能を発揮できる耐火積層体を提供する。【解決手段】耐火積層体20は、基材21と、基材21の少なくとも一方の面に設けられる耐火樹脂層22とを備え、耐火樹脂層22が、樹脂と、吸熱剤、難燃剤、及び熱膨張性層状無機物からなる群から選択される少なくとも1種の耐火性添加剤とを含む耐火樹脂組成物からなり、基材21の軟化点又は融点が300℃以上である。【選択図】図1

Description

本発明は、耐火積層体、及び耐火積層体を備えるバッテリーに関する。
リチウム電池に代表される各種バッテリーは、内部短絡等が原因によりバッテリーが熱暴走し、発火や発煙等の不具合を生じることがある。このような不具合による被害を最小限に抑えるために、異常高温になったバッテリーの熱を周囲のバッテリー及びバッテリーを収容した筐体に伝え難くする方法が検討されており、例えば、バッテリーセルの周辺に耐火材や断熱層等の保護材を用いる方法が挙げられる。
例えば、特許文献1には、外側の少なくとも一部が耐火性コーティングで覆われている電池セルが開示されており、耐火性コーティングがアブレーティブコーティング、膨張性コーティング又は吸熱性コーティングであること、ポリウレタン系コーティングが使用可能であることが開示されている。
特表2013−528911号公報
ところで、近年、携帯電話のバッテリーなどでは、電池容量が高く、急激な温度上昇により発火しやすくなっており、高い耐火性及び消火性能が求められている。しかし、特許文献1の耐火性コーティングは、発火が生じるとその形状を保持できずに、十分な耐火性及び消化性能を発揮することができない。
そこで、本発明は、例えばバッテリーの温度上昇等に伴う発火に対して、高い耐火性及び消化性能を有する耐火積層体、及び、耐火積層体を備えるバッテリーを提供することを課題とする。
本発明者らは、鋭意検討の結果、高い軟化点又は融点を有する基材の上に、耐火性添加剤を有する耐火樹脂層を設けることで、発火が生じた後でも、基材が支持体として効果的に働き耐火性添加剤をその場に留めておくことで、高い耐火性及び消火性能を発揮できることを見出し、以下の本発明を完成させた。
すなわち、本発明は、下記[1]〜[15]を要旨とする。
[1]基材と、前記基材の少なくとも一方の面に設けられる耐火樹脂層とを備え、
前記耐火樹脂層が、樹脂と、吸熱剤、難燃剤、及び熱膨張性層状無機物からなる群から選択される少なくとも1種の耐火性添加剤とを含む耐火樹脂組成物からなり、
前記基材の軟化点又は融点が300℃以上である耐火積層体。
[2]前記基材の200℃における引張り強度が3GPa以上である上記[1]に記載の耐火積層体。
[3]前記基材が、金属基材である上記[1]又は[2]に記載の耐火積層体。
[4]前記吸熱剤が、熱分解開始温度500℃以下、吸熱量500J/g以上である上記[1]〜[3]のいずれか1項に記載の耐火積層体。
[5]前記吸熱剤が水和金属化合物である上記[1]〜[4]のいずれか1項に記載の耐火積層体。
[6]前記吸熱剤が、水酸化アルミニウム、水酸化マグネシウム、硫酸カルシウム2水和物、及び硫酸マグネシウム7水和物からなる群から選ばれる少なくとも1種である上記[1]〜[5]のいずれか1項に記載の耐火積層体。
[7]前記熱膨張性層状無機物が、熱膨張性黒鉛である上記[1]〜[6]のいずれか1項に記載の耐火積層体。
[8]前記難燃剤が、リン原子含有化合物である上記[1]〜[7]のいずれか1項に記載の耐火積層体。
[9]前記耐火性添加剤の含有量が、樹脂100質量部に対して、50〜2500質量部である上記[1]〜[8]のいずれか1項に記載の耐火積層体。
[10]前記樹脂が熱可塑性樹脂である上記[1]〜[9]のいずれか1項に記載の耐火積層体。
[11]前記耐火樹脂層の厚さが、2〜5000μmである上記[1]〜[10]のいずれか1項に記載の耐火積層体。
[12]前記基材に対する前記耐火樹脂層の厚さの比が2/8〜9/1である上記[1]〜[11]のいずれか1項に記載の耐火積層体。
[13]バッテリーに使用される上記[1]〜[12]のいずれか1項に記載の耐火積層体。
[14]上記[1]〜[13]のいずれか1項に記載の耐火積層体と、バッテリーセルとを備え、前記耐火積層体が、バッテリーセルの表面上に設けられるバッテリー。
[15]前記バッテリーセル側から、前記耐火樹脂層及び前記基材の順に配置されるように、前記耐火積層体が、前記バッテリーセルの表面上に設けられる上記[14]に記載のバッテリー。
本発明によれば、高い耐火性を有し、かつ発火が起こった際に高い消火性能を発揮できる耐火積層体、及び、耐火積層体を備えるバッテリーを提供できる。
耐火積層体の一実施形態を示す模式的な断面図である。 耐火積層体の別の一実施形態を示す模式的な断面図である。 角型バッテリーセルを有するバッテリーの一実施形態を示す概略的な断面図である。 角型バッテリーセルを有するバッテリーの別の実施形態を示す概略的な断面図である。 ラミネート型のバッテリーセルを有するバッテリーの一実施形態を示す概略的な断面図である。 円筒形バッテリーセルを有するバッテリーの一実施形態を示す概略的な断面図である。 バッテリーセルが2つ設けられたバッテリーの一実施形態を示す概略的な断面図である。
以下、本発明を実施形態を用いて詳細に説明する。
[耐火積層体]
本発明の耐火積層体は、基材と、基材の少なくとも一方の面に設けられる耐火樹脂層とを備え、耐火樹脂層が、樹脂と、所定の耐火性添加剤とを含む耐火樹脂組成物からなり、基材の軟化点又は融点が300℃以上となるものである。
本発明では、耐火樹脂層が、所定の耐火性添加剤を有することで一定の耐火性及び消火性能を発現することができる。また、基材は、高軟化点又は高融点を有するので、発火が生じても支持体として効果的に機能して耐火性添加剤を所定の場所に留めることができるので、耐火性及び消火性能が向上する。
本発明において、耐火積層体は、図1に示すように、基材21と、基材21の片面に耐火樹脂層22が設けられた耐火積層体20でもよいし、図2に示すように、基材21と、基材11の両面に耐火樹脂層22、22が設けられた耐火積層体25でもよい。これらの中では、図1に示すように、基材21の片面に耐火樹脂層22が設けられた耐火積層体20が好ましい。
また、耐火樹脂層22は、基材21に直接積層されてもよいし、本発明の効果を阻害しない範囲内であれば、基材21の表面上に形成されたプライマー層、接着層などを介して基材21に積層されてもよいが、直接積層されることが好ましい。
以下、本発明の耐火積層体を構成する各部材を詳細に説明する。
[耐火樹脂層]
本発明において、耐火樹脂層は、樹脂と、耐火性添加剤とを含む。耐火樹脂層において使用される耐火性添加剤は、吸熱剤、難燃剤、及び熱膨張性層状無機物から選択される少なくとも1種である。耐火樹脂層は、耐火性添加剤を含有することで、耐火性を有し、かつ発火が生じた際に、鎮火させる消火性能を有する。
(樹脂)
耐火樹脂層に使用される樹脂としては、熱可塑性樹脂、熱硬化性樹脂、及びエラストマー樹脂が挙げられる。
熱可塑性樹脂としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ(1−)ブテン樹脂、及びポリペンテン樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリビニルアセタール樹脂、エチレン酢酸ビニル共重合体(EVA)樹脂、ポリビニルアルコール樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、アクリル樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂(PVC)、ノボラック樹脂、ポリウレタン樹脂、及びポリイソブチレン等の合成樹脂が挙げられる。
熱硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリイミド等の合成樹脂が挙げられる。
エラストマー樹脂としては、アクリロニトリルブタジエンゴム、エチレン−プロピレン−ジエンゴム(EPDM)、エチレン−プロピレンゴム、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレン−ブタジエンブロック共重合体、水素添加スチレン−ブタジエンブロック共重合体、水素添加スチレン−ブタジエン−スチレンブロック共重合体、水素添加スチレン−イソプレンブロック共重合体、水素添加スチレン−イソプレン−スチレンブロック共重合体等が挙げられる。
本発明においては、これら樹脂のうち1種を単独で用いても、2種以上を混合して用いてもよい。
耐火樹脂層に含有される樹脂は、上記した中でも、熱可塑性樹脂が好ましい。耐火樹脂層に熱可塑性樹脂を使用すると、後述する押出成形やスラリーなどの塗布により、基材の上に耐火樹脂層を容易に形成できる。
また、熱可塑性樹脂の中でも、耐火性の観点からはポリ塩化ビニル樹脂が好ましく、基材との接着性、耐火樹脂層の成形性、耐火性添加剤の分散性などの観点からは、ポリビニルアセタール樹脂、エチレン酢酸ビニル共重合体樹脂、アクリル樹脂、ポリビニルアルコール樹脂などが好ましい。これらの中では、ポリ塩化ビニル樹脂、ポリビニルアセタール樹脂、エチレン酢酸ビニル共重合体樹脂がより好ましく、ポリビニルアセタール樹脂が特に好ましい。
(ポリビニルアセタール樹脂)
ポリビニルアセタール樹脂は、ポリビニルアルコールをアルデヒドでアセタール化して得られるポリビニルアセタール樹脂であれば特に限定されないが、ポリビニルブチラール樹脂が好適である。
上記ポリビニルアセタール樹脂の水酸基量は、好ましくは20〜40モル%である。水酸基量を20モル%以上とすることで、極性が高くなり基材への接着性が良好になりやすい。また、水酸基量を40モル%以下とすることで、耐火樹脂層が硬くなり過ぎたりすることを防止する。上記水酸基量は、基材への接着性をより高くする観点から高いほうがよく、より好ましくは23モル%以上、さらに好ましくは26モル%以上である。また、上記水酸基量は、より好ましくは37モル%以下、さらに好ましくは33モル%以下である。
上記ポリビニルアセタール樹脂のアセタール化度は、好ましくは40〜80モル%である。アセタール化度を上記範囲内とすることで、上記する水酸基量を所望の範囲内として、基材への接着性を良好にしやすくなる。アセタール化度は、より好ましくは55モル%以上であり、さらに好ましくは60モル%以上であり、また、より好ましくは75モル%以下、さらに好ましくは72モル%以下である。
また、上記ポリビニルアセタール樹脂のアセチル基量は、好ましくは0.1〜30モル%である。アセチル基量がこの範囲内であると、耐湿性に優れ、可塑剤との相溶性に優れ、高い柔軟性を発揮して取扱い性が向上する。また、アセチル基量をこれら範囲内とすることで、上記する水酸基量を所望の範囲内として、基材への接着性を良好にしやすくなる。これら観点から、アセチル基量は、0.2モル%以上がより好ましく、0.5モル%以上がさらに好ましく、また、15モル%以下がより好ましく、7モル%以下がさらに好ましい。
なお、アセタール化度、水酸基量、及びアセチル基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定し、また算出することができる。
ポリビニルアセタール樹脂の重合度は、好ましくは300〜4000である。重合度をこれら範囲内にすることで、耐火性添加剤を適切に耐火樹脂層中に分散させ、かつ成形性なども良好になる。重合度は、より好ましくは400以上、さらに好ましくは600以上である。
ポリビニルアセタール樹脂の重合度を低くすると粘度も下がり、耐火樹脂層中に耐火性添加剤を分散しやすくなる。そのような観点から、ポリビニルアセタール樹脂の重合度は、好ましくは2000以下、より好ましくは1500以下、さらに好ましくは1000以下である。
なお、ポリビニルアセタール樹脂の重合度は、JIS K6728に記載の方法に基づいて測定した粘度平均重合度をいう。
上記アルデヒドは特に限定されないが、一般には、炭素数が1〜10のアルデヒドが好適に用いられる。上記炭素数が1〜10のアルデヒドは特に限定されず、例えば、n−ブチルアルデヒド、イソブチルアルデヒド、n−バレルアルデヒド、2−エチルブチルアルデヒド、n−ヘキシルアルデヒド、n−オクチルアルデヒド、n−ノニルアルデヒド、n−デシルアルデヒド、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。なかでも、n−ブチルアルデヒド、n−ヘキシルアルデヒド、n−バレルアルデヒドが好ましく、n−ブチルアルデヒドがより好ましい。これらのアルデヒドは単独で用いてもよく、2種以上を併用してもよい。
(ポリ塩化ビニル樹脂)
ポリ塩化ビニル樹脂は、塩化ビニル単独重合体であってもよいし、塩化ビニル系共重合体でよい。塩化ビニル系共重合体は、塩化ビニル及び塩化ビニルと共重合可能な不飽和結合を有する単量体の共重合体であって、塩化ビニル由来の構成単位を50質量%以上含有する。
塩化ビニルと共重合可能な不飽和結合を有する単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル、エチレン、プロピレン等のオレフィン、アクリロニトリル、スチレン等の芳香族ビニル、塩化ビニリデン等が挙げられる。
また、ポリ塩化ビニル樹脂は、塩化ビニル単独重合体、塩化ビニル系共重合体などを塩素化したポリ塩素化塩化ビニル樹脂でもよい。
ポリ塩化ビニル樹脂は、上記したものの中から1種単独で使用してもよいし、2種以上
を併用してもよい。
(エチレン−酢酸ビニル共重合体樹脂)
エチレン−酢酸ビニル共重合体樹脂としては、非架橋型のエチレン−酢酸ビニル共重合体樹脂であってもよいし、また、高温架橋型のエチレン−酢酸ビニル共重合体樹脂であってもよい。また、エチレン−酢酸ビニル共重合体樹脂としては、エチレン−酢酸ビニル共重合体けん化物、エチレン−酢酸ビニルの加水分解物などのようなエチレン−酢酸ビニル変性体樹脂も用いることができる。
エチレン−酢酸ビニル共重合体樹脂は、JIS K 6730「エチレン・酢酸ビニル樹脂試験方法」に準拠して測定される酢酸ビニル含量が好ましく10〜50質量%、より好ましくは25〜45質量%である。酢酸ビニル含量をこれら下限値以上とすることで、基材への接着性が高くなる。また、酢酸ビニル含量をこれら上限値以下とすることで、耐火樹脂層の破断強度などの機械強度が良好となる。
耐火樹脂組成物における樹脂の含有量は、耐火樹脂組成物全量基準で、例えば4質量%以上である。樹脂の含有量を4質量%以上とすると、耐火樹脂組成物の成形性や、樹脂による耐火性添加剤の保持性能、樹脂における耐火性添加剤の分散性などが良好となり、基材の上に耐火樹脂層を適切に形成しやすくなる。耐火樹脂層の成形性や、耐火性添加剤の保持性能や分散性などをより良好とする観点から、樹脂の含有量は、より好ましくは6質量%以上、さらに好ましくは8質量%以上である。また、耐火樹脂層の基材との接着性を良好にする観点から、樹脂の含有量はさらに多いほうがよく、樹脂の含有量は、12質量%以上であることがよりさらに好ましい。
また、上記樹脂の含有量は、好ましくは85質量%以下、より好ましくは50質量%以下、さらに好ましくは30質量%以下、よりさらに好ましくは20質量%以下である。本発明では、これら上限値以下とすることで耐火性添加剤を多量に配合することが可能になる。
(耐火性添加剤)
本発明において、耐火性添加剤は、吸熱剤、難燃剤、及び熱膨張性層状無機物から選択される1種又は2種以上である。耐火性添加剤は、耐火性を有し、発火が生じたときに、消火性能を発揮するものである。耐火性添加剤は、耐火積層体において樹脂中に分散され、かつ樹脂によって保持される。耐火性添加剤は、耐火性、消火性能、樹脂基材との接着性の観点から、吸熱剤を含むことが好ましい。
(吸熱剤)
耐火性添加剤に使用する吸熱剤の具体例としては、水和金属化合物が挙げられる。水和金属化合物としては、火炎の接触により分解して水蒸気を発生し、吸熱する効果を有する化合物である。水和金属化合物としては、金属水酸化物、金属塩の水和物が挙げられる。具体的には、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、カルシウム−マグネシウム系水酸化物、ハイドロタルサイト、ベーマイト、タルク、ドーソナイト、硫酸カルシウムの水和物、硫酸マグネシウムの水和物、ホウ酸亜鉛[2ZnO・3B・3.5HO]などが挙げられる。
これらの中では、耐火性、消火性能などの観点から、水酸化アルミニウム、水酸化マグネシウム、硫酸カルシウム2水和物、及び硫酸マグネシウム7水和物から選ばれる少なくとも1種が好ましく、特に水酸化アルミニウムが好ましい。
吸熱剤としては、熱分解開始温度が500℃以下、吸熱量が500J/g以上であるものが好ましい。熱分解開始温度、及び吸熱量のいずれかが上記範囲内となると、バッテリーなどが発火した場合に速やかに消火することができる。
吸熱剤の熱分解開始温度は、400℃以下が好ましく、300℃以下がより好ましく、250℃以下が更に好ましい。吸熱剤の熱分解開始温度をこれら上限値以下とすることで発火時に速やかに吸熱剤が分解し、迅速に消火することが可能になる。また、吸熱剤の熱分解開始温度は、通常100℃以上、好ましくは150℃以上、さらに好ましくは180℃以上である。
なお、熱分解開始温度は、熱重量示差熱分析装置(TG-DTA)により測定することができ、具体的には実施例に記載の方法により測定することができる。
前記吸熱剤の吸熱量は、好ましくは600J/g以上、より好ましくは900J/g以上、更に好ましくは1500J/g以上である。吸熱剤の吸熱量が上記範囲内であると、熱の吸収性が向上するため、耐火性、消火性能がより良好となる。吸熱剤の吸熱量は、通常、4000J/g以下、好ましくは3000J/g以下である。
なお、吸熱量は熱重量示差熱分析装置(TG-DTA)を用いて測定することができ、具体的には実施例に記載の方法により測定することができる。
熱分解開始温度が500℃以下、吸熱量が500J/g以上である化合物としては、上記した水和金属化合物が挙げられるが、より具体的には、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、硫酸カルシウム2水和物、硫酸マグネシウム7水和物、ハイドロタルサイト、ホウ酸亜鉛等が挙げられる。追加ございません。
また、吸熱剤は、平均粒子径が0.1〜90μmであるものが好ましい。平均粒子径が上記範囲内とすることで、樹脂中に吸熱剤が分散しやすくなり、吸熱剤を多量に配合させやすくなる。
吸熱剤の平均粒子径は、0.5〜60μmがより好ましく、0.8〜40μmがさらに好ましく、0.8〜10μmがよりさらに好ましい。吸熱剤の平均粒子径が上記範囲内であると、耐火樹脂組成物中における吸熱剤の分散性が向上し、吸熱剤を樹脂中に均一に分散させたり、樹脂に対する吸熱剤の配合量を多くしたりすることができる。さらに、耐火性、消火性能も向上させやすくなる。
なお、吸熱剤及び後述する難燃剤の平均粒子径は、レーザー回折/散乱式粒度分布測定装置により測定したメディアン径(D50)の値である。
(難燃剤)
本発明に使用する難燃剤としてはリン原子含有化合物が挙げられる。リン原子含有化合物としては、赤リン、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、及びキシレニルジフェニルホスフェート等の各種リン酸エステル、リン酸ナトリウム、リン酸カリウム、及びリン酸マグネシウム等のリン酸金属塩、亜リン酸ナトリウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸アルミニウム等の亜リン酸金属塩、ポリリン酸アンモニウム、下記一般式(1)で表されるリン系化合物等が挙げられる。これらリン含有化合物を使用することで、耐火樹脂層に適切な耐火性、消火性能を付与できる。難燃剤は、これら1種単独で使用してもよいし、2種以上を併用してもよい。
前記一般式(1)中、R及びRは、同一又は異なって、水素、炭素数1〜16の直鎖状もしくは分岐状のアルキル基、又は炭素数6〜16のアリール基を示す。Rは、水酸基、炭素数1〜16の直鎖状もしくは分岐状のアルキル基、炭素数1〜16の直鎖状もしくは分岐状のアルコキシル基、炭素数6〜16のアリール基、又は炭素数6〜16のアリールオキシ基を示す。
前記一般式(1)で表される化合物の具体例としては、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、n−プロピルホスホン酸、n−ブチルホスホン酸、2−メチルプロピルホスホン酸、t−ブチルホスホン酸、2,3−ジメチル−ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4−メトキシフェニル)ホスフィン酸等が挙げられる。
上記した難燃剤の中では、耐火シートの耐火性、消火性能を向上させる観点から、リン酸エステル、亜リン酸金属塩、及びポリリン酸アンモニウムから選択される1種又は2種以上が好ましい。なお、これら3成分は、全てを使用してもよいし、3成分のうち2成分を使用してもよい。複数種の難燃剤を使用することで、効果的に耐火性、消火性能を向上させやすくなる。
難燃剤は、好ましくは、常温(23℃)及び常圧(1気圧)で固体状となるものである。難燃剤の平均粒子径は、1〜200μmが好ましく、1〜60μmがより好ましく、3〜40μmがさらに好ましく、5〜20μmがよりさらに好ましい。難燃剤の平均粒子径が上記範囲内であると、耐火樹脂組成物中における難燃剤の分散性が向上し、難燃剤を樹脂中に均一に分散させたり、樹脂に対する難燃剤の配合量を多くしたりすることができる。
(熱膨張性層状無機物)
熱膨張性層状無機物は、加熱時に膨張する従来公知の物質であり、例えば、バーミキュライト、熱膨張性黒鉛などが挙げられ、中でも熱膨張性黒鉛が好ましい。熱膨張性層状無機物としては、粒子状やりん片状のものを用いてもよい。熱膨張性層状無機物は、加熱されることで膨張して大容量の空隙を形成するため、耐火積層体に着火した場合に延焼を抑制したり、消火したりする。
熱膨張性黒鉛は、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を、無機酸と、強酸化剤とで処理してグラファイト層間化合物を生成させたものであり、炭素の層状構造を維持したままの結晶化合物の一種である。無機酸としては濃硫酸、硝酸、セレン酸等が挙げられる。強酸化剤としては濃硝酸、過硫酸塩、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、重クロム酸塩、過酸化水素等が挙げられる。上記のように酸処理して得られた熱膨張性黒鉛は、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等でさらに中和処理してもよい。
熱膨張性黒鉛の粒度は、20〜200メッシュが好ましい。膨張性黒鉛の粒度が前記範囲内であると、膨脹して大容量の空隙を作りやすくなるため耐火性が向上する。また、樹脂への分散性も向上する。
熱膨張性黒鉛の平均アスペクト比は、2以上が好ましく、5以上がより好ましく、10以上が更に好ましい。熱膨張性黒鉛の平均アスペクト比の上限は特に限定されないが、熱膨張性黒鉛の割れ防止の観点から、1,000以下であることが好ましい。熱膨張性黒鉛の平均アスペクト比が2以上であることにより、膨張して大容量の空隙を作りやすくなるため難燃性が向上する。
熱膨張性黒鉛の平均アスペクト比は、10個の熱膨張性黒鉛について、それぞれ最大寸法(長径)及び最小寸法(短径)測定し、最大寸法(長径)を最小寸法(短径)で除した値の平均値を平均アスペクト比とする。熱膨張性黒鉛の長径及び短径は、例えば、電界放出型走査電子顕微鏡(FE−SEM)を用いて測定することができる。
(耐火性添加剤の含有量)
耐火樹脂組成物における耐火性添加剤の含有量は、樹脂100質量部に対して、例えば50〜2500質量部である。50質量部以上とすることで、耐火積層体に適切な耐火性、消火性能を付与できる。また、2500質量部以下とすると、耐火樹脂層に一定割合以上の樹脂を含有させることができるので、耐火樹脂層の樹脂中に耐火性添加剤を適切に分散させることが可能になる。そのため、成形性が良好となり、さらには、基材に対する接着性も良好となる。
耐火性添加剤の含有量は、樹脂100質量部に対して、耐火性、消火性能を向上させる観点から、好ましくは100質量部以上、より好ましくは250質量部以上であり、さらに好ましくは400質量部以上である。また、上記耐火性添加剤の含有量は、樹脂100質量部に対して、成形性、分散性の観点から、好ましくは2100質量部以下、より好ましくは1600質量部以下であり、さらに好ましくは1100質量部以下であり、基材との接着性の観点から、特に好ましくは750質量部以下である。
耐火性添加剤は、吸熱剤、難燃剤、及び熱膨張性層状無機物の3成分うちの1成分を単独で使用してもよいし、これらのうち2成分を組み合わせて使用してもよい。すなわち、吸熱剤と難燃剤を併用してもよいし、難燃剤と熱膨張性層状無機物を併用してもよいし、吸熱剤と熱膨張性層状無機物を併用してもよい。さらには、吸熱剤、難燃剤、及び熱膨張性層状無機物の全てを使用してもよい。
2成分以上を併用する場合には、中でも、難燃剤と、熱膨張性層状無機物及び吸熱剤の少なくとも1種とを併用することが好ましく、難燃剤と吸熱剤とを併用することがより好ましい。このように併用することで、耐火積層体の消火性能をより一層向上させやすくなる。併用する場合、耐火性添加剤の合計含有量が、上記範囲内となればよいが、熱膨張性層状無機物及び吸熱剤の少なくとも1種の含有量が、難燃剤の含有量より多くすることが好ましく、例えば、樹脂100質量部に対して、難燃剤の含有量を1〜200質量部とする一方で、熱膨張性層状無機物及び吸熱剤の少なくとも1種の含有量を49〜2400質量部とするとよい。
また、好ましくは難燃剤の含有量が2〜100質量部であるとともに、熱膨張性層状無機物及び吸熱剤の少なくとも1種の含有量が98〜2000質量部であり、より好ましくは難燃剤の含有量が5〜100質量部であるとともに、熱膨張性層状無機物及び吸熱剤の少なくとも1種の含有量が240〜1500質量部である。また、さらに好ましくは難燃剤の含有量が5〜50質量部であるとともに、熱膨張性層状無機物及び吸熱剤の少なくとも1種の含有量が300〜1000質量部であり、特に好ましくは難燃剤の含有量が5〜30質量部であるとともに、熱膨張性層状無機物及び吸熱剤の少なくとも1種の含有量が380〜720質量部である。
(無機充填剤)
本発明の耐火樹脂組成物は、上記した耐火性添加剤以外の無機充填剤を更に含有してもよい。耐火性添加剤以外の無機充填剤としては特に制限されず、例えば、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト等の金属酸化物、炭酸カルシウムなどの水和金属化合物以外の金属化合物、ガラス繊維、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、木炭粉末、各種金属粉、炭化ケイ素、ステンレス繊維、各種磁性粉、スラグ繊維、フライアッシュ、及び脱水汚泥等が挙げられる。これらの無機充填剤は、単独で使用してもよいし、2種以上を組み合わせて用いてもよい。
無機充填剤の平均粒子径は、0.5〜100μmが好ましく、1〜50μmがより好ましい。無機充填剤は、含有量が少ないときは分散性を向上させる観点から粒子径が小さいものが好ましく、含有量が多いときは高充填が進むにつれて、耐火樹脂組成物の粘度が高くなり成形性が低下するため粒子径が大きいものが好ましい。
本発明の耐火樹脂組成物が、耐火性添加剤以外の無機充填剤を含有する場合、その含有量は樹脂100質量部に対して、好ましくは10〜300質量部、より好ましくは10〜200質量部である。無機充填剤の含有量が前記範囲内であると、耐火樹脂層の機械的物性を向上させることができる。
(可塑剤)
本発明の耐火樹脂組成物は、更に可塑剤を含有してもよい。特に樹脂成分がポリ塩化ビニル樹脂やポリビニルアセタール樹脂である場合、成形性などを向上させる観点から可塑剤を含むことが好ましい。
可塑剤は、一般にポリ塩化ビニル樹脂やポリビニルアセタール樹脂と併用される可塑剤であれば特に限定されない。具体的には、例えば、ジ−2−エチルヘキシルフタレート(DOP)、ジブチルフタレート(DBP)、ジヘプチルフタレート(DHP)、ジイソデシルフタレート(DIDP)等のフタル酸エステル可塑剤、ジ−2−エチルヘキシルアジペート(DOA)、ジイソブチルアジペート(DIBA)、ジブチルアジペート(DBA)等の脂肪酸エステル可塑剤、エポキシ化大豆油等のエポキシ化エステル可塑剤、アジピン酸エステル、アジピン酸ポリエステル等のアジピン酸エステル可塑剤、トリー2−エチルヘキシルトリメリテート(TOTM)、トリイソノニルトリメリテート(TINTM)等のトリメリット酸エステル可塑剤、鉱油等のプロセスオイル等が挙げられる。可塑剤は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
本発明の耐火樹脂組成物が可塑剤を含有する場合、可塑剤の含有量は、樹脂100質量部に対して1〜60質量部が好ましく、5〜50質量部がより好ましく、10〜40質量部がさらに好ましい。可塑剤の含有量が前記範囲内であると、成形性が向上する傾向にあり、また耐火樹脂層が柔らかくなり過ぎることを抑制できる。
(その他成分)
本発明の耐火樹脂組成物は、本発明の目的が損なわれない範囲で、必要に応じて上記以外の添加成分を含有させることができる。この添加成分の種類は特に限定されず、各種添加剤を用いることができる。このような添加剤として、例えば、滑剤、収縮防止剤、結晶核剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、難燃助剤、帯電防止剤、界面活性剤、加硫剤、分散剤、及び表面処理剤等が挙げられる。添加剤の添加量は成形性等を損なわない範囲で適宜選択でき、添加剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
耐火樹脂層の厚さは、例えば、2〜5000μm、好ましくは10〜2000μm、より好ましくは20〜500μm、さらに好ましくは35〜150μmである。耐火樹脂層の厚さを下限値以上とすることで、耐火積層体に適切な耐火性、消化性能を容易に付与できる。また、上限値以下とすることで、耐火積層体の厚さが必要以上に厚くなることを防止し、携帯電話、スマートフォンなどの携帯機器に使用される小型のバッテリーにも適用しやすくなる。なお、上記した耐火樹脂層の厚さは、基材の両面に設けられる場合は、各耐火樹脂層の厚さである。
[基材]
本発明では、基材として軟化点又は融点が300℃以上の基材を使用する。基材は、軟化点又は融点が300℃未満であると、発火が生じたときに支持体として効果的に機能できない。そのため、耐火性添加剤を所定の場所に留めることができず、耐火積層体の耐火性及び消火性能が低下する。
基材の軟化点又は融点は、耐火性、及び消火性能をより優れたものとする観点から、450℃以上が好ましく、600℃以上がより好ましく、850℃以上がさらに好ましく、1400℃以上が特に好ましい。また、基材の軟化点又は融点は、高ければ高いほどよいが、例えば5000℃以下、実用的には3000℃以下である。
基材としては、樹脂、金属、金属以外の無機材料、又はこれらの複合体などにより形成されるが、これらの中では金属が好ましい。また、基材の形態としては、フィルム、箔などでもよいし、クロス、メッシュなどでもよい。したがって、例えば、樹脂フィルム、金属箔、金属クロス、金属メッシュ、有機繊維クロス、金属以外の無機材料のクロス(無機繊維クロス)などが挙げられる。
樹脂フィルムとしては、ポリアミドイミド樹脂フィルム、ポリイミド樹脂フィルム、ポリベンゾイミダゾール(PBI)樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリテトラフルオロエチレン(PTFE)樹脂フィルム、ポリフェニレンスルフィド樹脂フィルム、これら樹脂の2種以上を含む樹脂フィルムなどが挙げられ、これらの中では、ポリイミド樹脂フィルムが好ましい。ポリイミド樹脂フィルムを使用することで、耐火樹脂層との接着性が良好となりやすい。また、ポリイミド樹脂フィルムは、耐熱性が高いため発火時においても効果的に支持体として機能しやすくなる。
金属としては、亜鉛、金、銀、クロム、チタン、鉄、アルミニウム、銅、ニッケル、タンタル又はこれらを含む合金が挙げられ、合金としてはSUSなどのステンレス、黄銅、ベリリウム銅、インコネルなどが挙げられる。これら金属は、1種単独で使用してもよいし、2種以上を併用してもよい。これら金属は、金属クロスとしてもよいし、金属メッシュにしてもよいし、金属箔としてよい。また、金属箔は、パンチングなどにより、複数の孔が開けられてよい。金属メッシュ又はパンチングされた金属箔は、軽量でありながらも、効果的に支持体としての機能を発揮できる。
また、クロスとしては、金属クロス以外にも、ガラス繊維クロス、炭素繊維クロスなどの無機繊維クロス、アラミド繊維クロス、PBO(ポリパラフェニレンベンズオキサゾール)繊維クロス、ポリイミド繊維クロス、PEEK繊維クロス、PBI繊維クロスなどの有機繊維クロス、またはこれら無機繊維及び有機繊維から選択される2種以上を含むクロスであってもよい。なお、クロスは、織布であってもよいし、編布であってもよいし、不織布であってもよい。
上記した中では、消火性能と、耐火樹脂層との接着性を両立する観点から、金属箔、金属メッシュ、金属クロスなど、金属から形成される金属基材、ガラス繊維クロスなどの金属以外の無機繊維クロス、樹脂フィルムなどが好ましく、中でも、金属基材、特に金属箔が好ましい。
また、金属としては、銅、アルミニウム、ステンレス、ニッケルから選択される1種以上が好ましく、中でも、引張り強度を高くして支持機能を効果的に向上させるために、ステンレス、ニッケルから選択される1種以上がより好ましい。また、無機繊維クロスとしては、ガラス繊維クロスが好ましく、樹脂フィルムとしては、ポリイミド樹脂フィルムが好ましい。
基材の厚さに対する耐火樹脂層の厚さの比は、特に限定されないが、2/8〜9/1であることが好ましく、3/7〜7/1であることがより好ましく、4/6〜6/1であることがさらに好ましい。厚さ比を上記範囲内とすると、耐火積層体と基材の厚さのバランスが良好となり、耐火積層体の厚さを必要以上に大きくすることなく、良好な耐火性、消火性能を得ることができる。
基材の厚さは、特に限定されないが、2〜1000μmが好ましく、好ましくは5〜500μm、より好ましくは8〜200μm、さらに好ましくは12〜90μmである。厚さをこれら下限値以上とすることで、発火したときでも耐火樹脂層を基材により支持しやすくなる。一方、上限値以下とすることで、基材を必要以上に厚くすることなく良好な性能を発揮しやすくなる。さらには、基材を薄くすることで耐火積層体に柔軟性を付与し、例えばバッテリー表面が曲面を有していたり、凹凸を有したりしても、耐火積層体をバッテリー表面に追従させることが可能になる。
基材は、200℃における引張り強度が3GPa以上であることが好ましい。200℃における引張り強度が3GPa以上であると、基材は、耐火積層体が発火し又は高温に加熱されたときに、十分に支持体としての機能を果たすことが可能である。上記引張り強度は、より好ましくは8GPa以上、さらに好ましくは40GPa以上、よりさらに好ましくは50GPa以上である。引張り強度の上限値は、特に限定されないが、例えば1000GPa、実用的には500GPaである。
なお、基材の200℃における引張り強度は、JIS7113に準拠してオートグラフを用い引張速度20mm/分により測定したものである。
基材の軟化点又は融点は、その使用される材料によって測定方法が異なり、例えば、基材が樹脂などの有機材料から形成される場合には、熱機械分析装置(TMA)により測定される軟化点を意味する。具体的にはセイコーインスツルメンツ社製「TMA−6000」を用い、厚み30μmのフィルムを作成し、3mm×15mmに切り出したサンプルを、装置にセットし、5℃/分の条件で加熱し、5gの荷重をかけながら下に変位し始める温度を軟化点とする。
また、基材が、金属などの無機材料により形成される場合には、示差走査熱分析(DSC)により測定される融点を意味する。具体的にはセタラムインスツルメンツ社製「LABSYS EVO」を用い、アルゴン雰囲気下、20℃/分の条件で加熱し、吸熱ピークが観測される温度を融点とする。
なお、基材が、有機材料と無機材料の複合材料で形成される場合には、上記DSCにより測定し、ピークが2つ観測される場合には、上記示差走査熱分析(DSC)により測定されるうち、高い方の融点を意味する。また、融点又は軟化点を有しない材料(すなわち、上記方法では、軟化点などが測定されない材料)についても、本明細書では、上記示差走査熱分析(DSC)により測定した際、基材が分解する分解温度を融点又は軟化点とする。
<製造方法>
本発明の耐火積層体は、耐火樹脂組成物を押出成形などすることで、基材の一方の面又は両面上に耐火樹脂層を形成することで製造することができる。また、本発明の耐火積層体は、溶剤により希釈した耐火樹脂組成物の希釈液を、基材の一方の面又は両面に塗布し、乾燥することで、基材の一方の面又は両面上に耐火樹脂層を形成することで製造してもよい。
さらに、本発明の耐火積層体は、予めシート状にした耐火樹脂組成物を、耐火樹脂層として、基材の一方の面又は両面に圧着などすることで積層させて製造してもよい。シート状の耐火樹脂組成物(耐火樹脂層)は、例えば、離型シート上に、押出成形などにより成形してもよいし、耐火樹脂組成物の希釈液を離型シート上に塗布し乾燥することで成形してもよい。
なお、基材の両面に、耐火樹脂層を形成する場合には、両面に同時に耐火樹脂層を形成してもよいし、片面ずつ順次、耐火樹脂層を形成してもよい。
また、本発明では、溶剤により希釈した耐火樹脂組成物の希釈液を用いて耐火樹脂層を形成することが好ましい。希釈液を用いる場合、樹脂は、通常、熱可塑性樹脂であり、好ましくはポリビニルアセタール樹脂である。
耐火樹脂組成物は、樹脂、耐火性添加剤、及び任意成分をビーズミル、ボールミル、バンバリーミキサー、ニーダーミキサー、混練ロール、ライカイ機、遊星式撹拌機等の公知の混合装置を用いて混合することにより得られる。また、耐火樹脂組成物は、溶剤により希釈する場合、耐火樹脂組成物の希釈液は、これらにさらに溶剤を加えて上記混合装置を用いて混合して得ればよい。
耐火樹脂組成物を希釈する際に使用する溶剤としては、特に限定されないが、n−ペンタン、n−ヘキサン、n−ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、トルエンなどの芳香族炭化水素系溶媒、酢酸エチル、酢酸n−ブチルなどのエステル系溶媒、アセトン、メチルエチルケトン(MEK)等のケトン系溶媒、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶媒などが挙げられる。
耐火樹脂組成物の希釈液は、通常、樹脂が溶剤により溶解され、かつ耐火性添加剤が溶剤中に分散されスラリーとなる。スラリーとする場合、例えば、まず、溶媒、分散剤、吸熱材を含む無機粉末をビーズミルなどの分散混合機により攪拌して無機分散液を作製する。その後、無機分散液に、予め溶剤に溶解した樹脂溶液を添加し、上記分散混合機によりさらに攪拌することで、耐火樹脂組成物の希釈液を作製するとよい。
耐火樹脂組成物の希釈液における固形分濃度は、例えば30〜70質量%、好ましくは35〜65質量%、より好ましく40〜60質量%である。固形分濃度が下限値以上であると、効率的に樹脂組成物層を形成することができる。また、上記上限値以下とすることで、樹脂を溶媒に溶解させ、かつ耐火性添加剤を溶媒に分散させやすくなる。
[粘着材]
本発明の耐火積層体は、粘着材を備えてもよい。粘着材は、耐火樹脂層が基材の一方の面のみに設けられる場合、基材の他方の面に設けられてもよいし、耐火樹脂層上に設けられてもよいが、耐火樹脂層上に設けられることが好ましい。耐火樹脂層上に粘着材が設けられると、耐火積層体は、粘着材を介してバッテリーに貼り合わせた場合、バッテリー側から、耐火樹脂層、基材の順で配置されることになる。このような配置により、後述するように消火性能が高めやすくなる。
また、耐火樹脂層が基材の両面に設けられる場合、粘着材は、一方の耐火樹脂層上に設けられてもよいし、両方の耐火樹脂層上に設けられてもよいが、両方の耐火樹脂層上に設けられることが好ましい。粘着材が両方の耐火樹脂層上に設けられることで、例えば、2つのバッテリーセルの間に耐火積層体が配置される場合、耐火積層体は両方のバッテリーセルに貼り合わせることができる。
粘着材は、粘着剤層からなるものでもよいし、基材の両表面に粘着剤層が設けられた両面粘着テープでもよいが、粘着剤層からなることが好ましい。なお、両面粘着テープは、一方の粘着剤層が耐火積層体に貼り合わせられることで、耐火積層体上に積層されて粘着材を構成することになる。
粘着剤層を構成する粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等が挙げられるが、これらに限定されない。粘着材の厚みは、特に限定されないが、例えば、3〜500μm、好ましくは10〜200μmである。
また、両面粘着テープに使用する基材は、樹脂フィルム、不織布など、両面粘着テープに使用される公知の基材を使用するとよい。
[バッテリー]
本発明の耐火積層体は、バッテリーに用いられることが好ましい。バッテリーは、通常、少なくとも1つのバッテリーセルを有し、そのバッテリーセルの表面上に耐火積層体が配置されるとよい。また、耐火積層体は、耐火樹脂層がバッテリーセル側に向けられることが好ましい。すなわち、耐火積層体は、バッテリーセル側から、耐火樹脂層、基材の順に配置されることが好ましい。耐火樹脂層がバッテリーセルに向けられることで、バッテリーセルで発火が生じたときに、その発火を耐火樹脂層により迅速に消火できるようになる。バッテリーは、バッテリーセルを1つ有してもよいし、2つ以上有してもよい。
バッテリーセルは、正極材、負極材、セパレータ、正極端子、及び負極端子等が外装部材に収容されたバッテリーの構成単位を指す。また、バッテリーセルは、セルの形状により、円筒型、角型、ラミネート型に分類される。
バッテリーセルが円筒型の場合、正極材、負極材、セパレータ、正極端子、負極端子、絶縁材、安全弁、ガスケット、及び正極キャップ等が外装缶に収容されているバッテリーの構成単位を指す。一方、バッテリーセルが角型の場合、正極材、負極材、セパレータ、正極端子、負極端子、絶縁材、及び安全弁等が外装缶に収容されているバッテリーの構成単位を指す。バッテリーセルがラミネート型の場合、正極材、負極材、セパレータ、正極端子、及び負極端子等が外装フィルムに収容されているバッテリーの構成単位を指す。ラミネート型のバッテリーでは、2枚の外装フィルムの間、或いは、1枚の外装フィルムが例えば2つ折りで折り畳まれ、その折り畳まれた外装フィルムの間に、正極材、負極材、セパレータ、正極端子、及び負極端子等が配置され、外装フィルムの外縁部がヒートシールによって圧着されている。外装フィルムとしては例えば、ポリエチレンテレフタレートフィルムが積層されたアルミニウムフィルム等が挙げられる。
また、バッテリーセルは、リチウムイオン電池、リチウムイオンポリマー電池、ニッケル・水素電池、リチウム・硫黄電池、ニッケル・カドミウム電池、ニッケル・鉄電池、ニッケル・亜鉛電池、ナトリウム・硫黄電池、鉛蓄電池、空気電池等の二次電池であり、これらの中でもリチウムイオン電池が好ましい。
バッテリーは、例えば、携帯電話及びスマートフォン等の小型電子機器、ノートパソコン、自動車等に使用されるが、これらに限定されない。
耐火積層体は、バッテリーセルのいずれの表面上に設けられるとよいが、バッテリーセルの大部分(例えば、表面積の50%以上、より好ましくは70%以上)の表面を覆うことが好ましい。耐火積層体が表面の大部分を覆うことでバッテリーセルの発火に対して、迅速に消火しやすくなる。
また、バッテリーセルは、安全弁を有することが多いが、安全弁を有する場合、耐火積層体によって安全弁を覆うように設けられることが好ましい。このとき、耐火積層体は、安全弁の機能を担保するために、安全弁を密封させないように覆うとよい。さらに、ラミネート型のバッテリーセルの場合には、ヒートシールによって圧着されるヒートシール部を耐火積層体によって覆うように設けられることが好ましい。
バッテリーセルは、安全弁又はヒートシール部から発火することが多いため、これらを耐火積層体で覆うことでバッテリーセルの発火より有効に消火しやすくなる。
さらに、耐火積層体は、バッテリーセルの大部分の表面を多い、かつ安全弁又はヒートシール部を有する場合、安全弁又はヒートシール部も覆うように配置されることがより好ましい。例えば、耐火積層体はバッテリーセルに巻くように配置されるとよい。
例えば、図3に示すようにバッテリーセル11が角型の場合、耐火積層体20は、バッテリーセル11の外周面を巻き付けられるように配置され、例えば、バッテリーセル11の主面11A,11Bと、端面11C,11Dの上に配置されることが好ましい。なお、主面11A,11Bとは、角型のバッテリーセル11において、最も面積が大きくなる両面であり、端面11C,11Dは、主面11A,11Bを接続する端面である。角型セルでは、一般的に、端面11C,11Dのいずれかに安全弁(図示しない)が設けられるため、図3の構成においても、耐火積層体20がバッテリーセル11の安全弁を覆う。
また、例えば、図4に示すようにバッテリーセル11が角型の場合、耐火積層体20は、主面11A,11Bの両方のみに設けられてもよい。さらに、主面11A,11Bのうち、一方のみに設けられてもよい。
バッテリーセル11がラミネート型の場合、図5に示すように、耐火積層体20は、例えば、バッテリーセル11の両面11X,11Yそれぞれを覆うように設けられるとよい。このとき、耐火積層体20は、ヒートシール部11Zも覆うように配置されるとよい。 なお、ラミネート型においても、耐火積層体20は、一方の面11Xのみを覆うように設けられてもよい。さらに、ラミネート型においても、耐火積層体20は、バッテリーセル11の外周面を巻くように配置されてもよい。
さらに、図6に示すように、バッテリーセル11が円筒型の場合、耐火積層体20は、バッテリーセル11の外周面に巻き付けられるように配置されればよい。
図3〜6に示すように、耐火積層体20は、耐火樹脂層22側がバッテリーセル11の表面に向けられて配置され、したがって、バッテリーセル11から耐火樹脂層22、基材21がこの順に配置されることが好ましい。このように配置されることで、バッテリーセル11で発火が生じたときに、その発火を耐火樹脂層22により迅速に消火できるようになる。
また、耐火積層体20は、耐火積層体20の一方の面に設けられた粘着材を介してバッテリーセル11に接着されてもよい。すなわち、耐火樹脂層22の表面上に配置された粘着材を介してバッテリーセル11に取り付けられてもよい。
また、図7に示すように、バッテリーにバッテリーセル11が複数設けられる場合には、基材21の両面に耐火樹脂層22、22が設けられた耐火積層体25が、バッテリーセル11,11の間に配置されることが好ましい。この場合、耐火積層体25の各耐火樹脂層22が各バッテリーセル11に向けて配置されるとよい。すなわち、バッテリーセル11、耐火樹脂層22、基材21、耐火樹脂層22、バッテリーセル11の順に並べられることになる。このような構成によれば、1つのバッテリーセル11が熱暴走により発火しても、耐火積層体25によって有効に消火されることになるので、隣接するバッテリーセル11が連鎖的に発火したりすることを防止できる。
図7に示すバッテリーは、模式的にバッテリーセル11を2つのみ示すが、3つ以上のバッテリーセルが設けられてもよい。その場合、バッテリーセル11、11の間それぞれには、耐火積層体25が上記した構成で配置されるとよい。
なお、図3〜7に示したバッテリーは、バッテリーの構成の一例に過ぎず、様々な態様を採用することが可能である。例えば、図7に示すように、複数のバッテリーセル11が設けられる場合でも、片面に耐火樹脂層22が設けられた耐火積層体20が使用されてもうよい。また、図7に示す複数のバッテリーセル11は、角型のバッテリーセル11である構成を示したが、このような構成に限定されず、ラミネート型のバッテリーセルなどでもよい。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。
各物性の測定方法及び評価方法は以下のとおりである。
<熱分解開始温度の測定方法>
熱重量示差熱分析装置(TG-DTA)を用いて測定した。測定条件は、室温から1000℃まで、昇温速度4℃/min、吸熱剤重量10mgであった。得られたTG曲線から重量が減少し始める温度を熱分解開始温度とした。
<吸熱量の測定方法>
熱重量示差熱分析装置(TG-DTA)を用いて、測定条件は、室温から1000℃まで、昇温速度4℃/min、吸熱剤重量10mgであった。得られたDTA曲線から吸熱量(凹部の面積)から算出した。
<平均粒子径の測定方法>
各成分の平均粒子径はレーザー回折法で測定した。具体的には、レーザー回折散乱方式粒度分布計等の粒度分布計によって求めた粒度分布における積算値50%での粒子径を平均粒子径とした。
<基材の引張り強度>
引張り強度は、JIS7113に準拠してAUTOGRAPH(島津製作所製、AGS−J)を用い、引張速度20mm/分により測定した。
<基材の融点又は軟化点>
明細書記載の方法により測定した。
<バッテリー発火テスト>
スマートフォンに使用されるラミネート型のリチウムイオン電池の周囲に、実施例及び比較例で作成した耐火積層体を巻くように配置し、300℃に設定したホットプレート上に試験体を載せて火の放出から火が消されるまでの時間を評価した。消火時間が5秒以内であった場合を「A」、消火時間が5秒超10秒以内であった場合を「B」、消火時間が10秒超30秒以下であった場合を「C」、消火時間が30秒超であった場合を「D」として評価し、消火時間が短い方が消火性能に優れていることを表す。結果を表1に示す。
<短冊燃焼試験>
実施例及び比較例で作成した耐火積層体を2cm×5cmの試験片に切り出し、その切り出したサンプルの下端に炎の先端が接触するようにガスライター(商品名「チャッカマン」、株式会社東海製)であぶり、下記の評価基準で判定した。
A:1分以上変化なし。
B:30秒以内に燃焼して変形した。
C:15秒以内に燃焼して変形した。
D:5秒以内に燃焼して変形した。
<高温引張り強度>
実施例及び比較例で得られた耐火積層体の常温(23℃)及び200℃における引張り強度を測定して、200℃における引張り強度の常温時からの悪化率(強度の低下率)をもとに下記で判定した。
A:悪化率10%以下
B:悪化率10〜40%
C:悪化率40〜80%
D:悪化率80%以上、もしくは形状保持できず
<碁盤目試験残存率>
JIS D0202−1988に準拠して碁盤目テープ剥離試験を行った。セロハンテープ(商品名「CT24」,ニチバン株式会社製)を用い、実施例及び比較例で得られた耐火樹脂層に指の腹で密着させた後剥離した。判定は100マスの内、基材から剥離しないマス目のパーセントで表し,下記で判定した。
A:80%以上
B:40%以上80%未満
C:10%以上40%未満
D:10%未満
実施例、比較例で使用した各成分は以下のとおりである。
<樹脂>
PVB1:ポリビニルブチラール樹脂、重合度800、アセタール化度69mol%、アセチル基量1mol%、水酸基量30mol%
PVB2:ポリビニルブチラール樹脂、重合度1700、アセタール化度75mol%、アセチル基量3mol%、水酸基量22mol%
PVC:ポリ塩化ビニル樹脂、商品名「TKシリーズ」、信越化学社製
EVA:エチレン−酢酸ビニル共重合体樹脂、商品名「エバフレックス」、三井デュポンケミカル社製、酢酸ビニル含量40質量%
<可塑剤>
DIDP:ジイソデシルフタレート
<熱膨張性黒鉛>
ADT501:商品名「ADT−501」、ADT社製、平均アスペクト比25.2
<吸熱剤>
水酸化アルミニウム1:BF013、日本軽金属株式会社製、平均粒子径1μm、熱分解開始温度201℃、吸熱量1998J/g
水酸化アルミニウム2:SB303、日本軽金属株式会社製、平均粒子径27μm、熱分解開始温度201℃、吸熱量1998J/g
硫酸カルシウム:硫酸カルシウム2水和物、ナカライテスク社製、平均粒子径42μm、熱分解開始温度120℃、吸熱量750J/g
<難燃剤>
ポリリン酸アンモニウム:AP422、クラリアント社、平均粒子径15μm
亜リン酸アルミニウム;APA100、太平化学産業社製、平均粒子径42μm
トリフェニルホスフェート:Triphenyl Phosphate EP、東京化成工業株式会社製、平均粒子径100μm
<分散剤>
楠本化成社製:ED400
[実施例1〜6、11、13、14、16〜18]
表1に示した配合に従って、吸熱剤、難燃剤、分散剤をエタノール加えて、ビーズミル(アイメックス社製「レディーミル」)にて、30分間撹拌することにより、無機分散液を作製した。次に、この無機分散液に、予め樹脂、可塑剤をエタノールに溶解した樹脂溶液を添加し、ビーズミルにてさらに60分間攪拌することで固形分濃度52質量%のスラリー液を用意した。そのスラリー液を厚さ15μmのSUS箔に塗布して、80℃、30分間で乾燥させて、厚さ40μmの耐火樹脂層を形成して、基材の片面に耐火樹脂層を設けた耐火積層体を得た。
[実施例7、8]
実施例7,8はそれぞれ固形分濃度を40質量%、65質量%に変更してシートを作製した以外は実施例1と同様に実施した。
[実施例9、10、12、15、19、20]
表1に示した配合を有する耐火樹脂組成物を、一軸押出機に供給し、150℃で押出成形して基材上に積層することで、厚さ40μmの耐火樹脂層を形成して、基材の片面に耐火樹脂層を設けた耐火積層体を得た。
[実施例21、22、24〜29]
基材を表2に示す種類のものに変更した以外は、実施例1と同様に実施した。なお、ガラスクロスとしては、日東紡社製の「NCRガラス」を使用した。ポリイミドとしては、東レデュポン社製のポリイミド樹脂フィルム(商品名「カプトン」)を使用した。パンチングSUS箔及びパンチング銅箔は、厚さ20μmのSUS箔、又は銅箔に直径1mmの孔を3mm間隔で碁盤目状に設けたものであった。SUSメッシュは、阪倉金網社製のものであって、厚み70μm、目開き250メッシュ、平織タイプのものを使用した。
[実施例23]
基材を表2に示す種類のものに変更した以外は、実施例12と同様に実施した。
[実施例30、31]
基材を表2に示す種類のものを使用し、かつ耐火樹脂層を基材の両面に設けた以外は、実施例1と同様に実施した。なお、耐火樹脂層は、実施例1と同様に基材の一方の面に耐火樹脂層を形成した後、同様の方法によって基材の他方の面にも耐火樹脂層を形成した。
[比較例1]
スラリー液をSUS箔に塗布する代わりに、離型フィルム(リンテック社製のPETフィルム)に塗布して乾燥させて、厚さ40μmの耐火樹脂層を形成し、離型フィルムを耐火樹脂層から剥離して、厚さ40μmの耐火樹脂層単層からなる耐火シートを得た。
[比較例2]
表2に示した配合を有する耐火樹脂組成物を、一軸押出機に供給し、150℃で押出成形して、厚さ40μmの耐火樹脂層単層からなる耐火シートを得た。
[比較例3〜5]
基材を表2に示す種類のものに変更した以外は、実施例1と同様に実施した。なお、PET(ポリエチレンテレフタレート)フィルムは、東洋紡社製の「エスペットフィルム」を使用し、PP(ポリプロピレン)フィルムは、フタムラ化学社製の2軸延伸ポリプロピレンフィルムを使用した。紙としては一般的なコピー用紙を使用した。
以上の各実施例に示すように、基材の少なくとも一方の面に耐火樹脂層を設けた耐火積層体において、耐火樹脂層に所定の耐火性添加剤を配合し、かつ基材の軟化点又は融点を300℃以上とすることで、耐火性、及び消火特性が良好となった。それに対して、比較例1〜5では基材が設けられず、また、基材が設けられても軟化点又は融点が所定値以上でないため、耐火性、及び消火特性が良好とならなかった。さらに、比較例6では、所定の耐火性添加剤を配合しなかったため、耐火性、及び消火特性が良好とならなかった。
10 バッテリー
11 バッテリーセル
20、25 耐火積層体
21 基材
22 耐火樹脂層

Claims (15)

  1. 基材と、前記基材の少なくとも一方の面に設けられる耐火樹脂層とを備え、
    前記耐火樹脂層が、樹脂と、吸熱剤、難燃剤、及び熱膨張性層状無機物からなる群から選択される少なくとも1種の耐火性添加剤とを含む耐火樹脂組成物からなり、
    前記基材の軟化点又は融点が300℃以上である耐火積層体。
  2. 前記基材の200℃における引張り強度が3GPa以上である請求項1に記載の耐火積層体。
  3. 前記基材が、金属基材である請求項1又は2に記載の耐火積層体。
  4. 前記吸熱剤が、熱分解開始温度500℃以下、吸熱量500J/g以上である請求項1〜3のいずれか1項に記載の耐火積層体。
  5. 前記吸熱剤が水和金属化合物である請求項1〜4のいずれか1項に記載の耐火積層体。
  6. 前記吸熱剤が、水酸化アルミニウム、水酸化マグネシウム、硫酸カルシウム2水和物、及び硫酸マグネシウム7水和物からなる群から選ばれる少なくとも1種である請求項1〜5のいずれか1項に記載の耐火積層体。
  7. 前記熱膨張性層状無機物が、熱膨張性黒鉛である請求項1〜6のいずれか1項に記載の耐火積層体。
  8. 前記難燃剤が、リン原子含有化合物である請求項1〜7のいずれか1項に記載の耐火積層体。
  9. 前記耐火性添加剤の含有量が、樹脂100質量部に対して、50〜2500質量部である請求項1〜8のいずれか1項に記載の耐火積層体。
  10. 前記樹脂が熱可塑性樹脂である請求項1〜9のいずれか1項に記載の耐火積層体。
  11. 前記耐火樹脂層の厚さが、2〜5000μmである請求項1〜10のいずれか1項に記載の耐火積層体。
  12. 前記基材に対する前記耐火樹脂層の厚さの比が2/8〜9/1である請求項1〜11のいずれか1項に記載の耐火積層体。
  13. バッテリーに使用される請求項1〜12のいずれか1項に記載の耐火積層体。
  14. 請求項1〜13のいずれか1項に記載の耐火積層体と、バッテリーセルとを備え、前記耐火積層体が、バッテリーセルの表面上に設けられるバッテリー。
  15. 前記バッテリーセル側から、前記耐火樹脂層及び前記基材の順に配置されるように、前記耐火積層体が、前記バッテリーセルの表面上に設けられる請求項14に記載のバッテリー。
JP2019049101A 2019-03-15 2019-03-15 耐火積層体及びバッテリー Active JP7168494B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049101A JP7168494B2 (ja) 2019-03-15 2019-03-15 耐火積層体及びバッテリー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049101A JP7168494B2 (ja) 2019-03-15 2019-03-15 耐火積層体及びバッテリー

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018167983 Division 2018-02-20 2018-09-07

Publications (2)

Publication Number Publication Date
JP2020040385A true JP2020040385A (ja) 2020-03-19
JP7168494B2 JP7168494B2 (ja) 2022-11-09

Family

ID=69797239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049101A Active JP7168494B2 (ja) 2019-03-15 2019-03-15 耐火積層体及びバッテリー

Country Status (1)

Country Link
JP (1) JP7168494B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092659A1 (ko) * 2020-10-27 2022-05-05 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
JP7422612B2 (ja) 2020-06-09 2024-01-26 信越ポリマー株式会社 耐火積層シート

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131630A (ja) * 1997-10-28 1999-05-18 Sekisui Chem Co Ltd 耐火構造体
JPH11270017A (ja) * 1998-03-20 1999-10-05 Sekisui Chem Co Ltd 耐火断熱積層シート及びそれを用いた鉄骨耐火被覆工法
JP2018115319A (ja) * 2017-01-13 2018-07-26 積水化学工業株式会社 熱膨張性耐火シート及び該熱膨張性耐火シートのバッテリーにおける使用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131630A (ja) * 1997-10-28 1999-05-18 Sekisui Chem Co Ltd 耐火構造体
JPH11270017A (ja) * 1998-03-20 1999-10-05 Sekisui Chem Co Ltd 耐火断熱積層シート及びそれを用いた鉄骨耐火被覆工法
JP2018115319A (ja) * 2017-01-13 2018-07-26 積水化学工業株式会社 熱膨張性耐火シート及び該熱膨張性耐火シートのバッテリーにおける使用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422612B2 (ja) 2020-06-09 2024-01-26 信越ポリマー株式会社 耐火積層シート
WO2022092659A1 (ko) * 2020-10-27 2022-05-05 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩

Also Published As

Publication number Publication date
JP7168494B2 (ja) 2022-11-09

Similar Documents

Publication Publication Date Title
JP6700490B2 (ja) 耐火積層体及びバッテリー
JP6764023B2 (ja) 耐火樹脂組成物、耐火シート、耐火積層体、及びバッテリー
JP7410635B2 (ja) 熱膨張性耐火樹脂組成物、熱膨張性耐火シート及び該熱膨張性耐火シートを備えたバッテリーセル
JP2020041121A (ja) 耐火樹脂組成物、耐火シート、耐火積層体、及びバッテリー
WO2021100813A1 (ja) バッテリーパック用熱膨張性耐火材、バッテリーパック用耐火シート、及び車載用バッテリーパック
JP2019147357A (ja) 難燃断熱シートおよび蓄電モジュール
WO2020241843A1 (ja) バッテリー用熱膨張性耐火材
JP7168494B2 (ja) 耐火積層体及びバッテリー
JP7150643B2 (ja) 耐火積層体及びバッテリー
JP2020205240A (ja) 耐火シート、及びバッテリー
JP2020132843A (ja) 耐火樹脂組成物、耐火シート、及びバッテリー
JP2019143139A (ja) 耐火樹脂組成物、耐火シート、及びバッテリー
WO2021246451A1 (ja) 耐火シート及びバッテリー
JP2021158025A (ja) 放熱シート、バッテリーセル、背面カバー材及び電子機器
JP2021002426A (ja) 電池用外装フィルム、及び電池
JP2020147734A (ja) 耐火樹脂組成物、耐火シート、及びバッテリー
JP2022035833A (ja) 電子機器
JP2021002425A (ja) 電池用外装フィルム、及び電池
JP2019143146A (ja) 耐火樹脂組成物、耐火シート、及びバッテリー
JP2022119610A (ja) 発火抑制シート及び電子機器
JP2020161249A (ja) バッテリーセル及びバッテリー
JP2021080382A (ja) 筐体用熱膨張性耐火材、筐体用耐火シート、及び携帯電子機器用筐体
JP2021118162A (ja) 耐火樹脂組成物、耐火材、耐火積層体、バッテリー、背面カバー材及び電子機器
JP2022047440A (ja) 耐火シート及びバッテリー
JP2021163712A (ja) バッテリーセル構造及び電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221027

R151 Written notification of patent or utility model registration

Ref document number: 7168494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151