JP2019174338A - 分析システム、分析用バイパス及び分析方法 - Google Patents

分析システム、分析用バイパス及び分析方法 Download PDF

Info

Publication number
JP2019174338A
JP2019174338A JP2018064316A JP2018064316A JP2019174338A JP 2019174338 A JP2019174338 A JP 2019174338A JP 2018064316 A JP2018064316 A JP 2018064316A JP 2018064316 A JP2018064316 A JP 2018064316A JP 2019174338 A JP2019174338 A JP 2019174338A
Authority
JP
Japan
Prior art keywords
analysis
sample
light
measurement site
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018064316A
Other languages
English (en)
Other versions
JP6983709B2 (ja
JP2019174338A5 (ja
Inventor
駿介 河野
Shunsuke Kono
駿介 河野
琢也 神林
Takuya Kanbayashi
琢也 神林
利光 野口
Toshimitsu Noguchi
利光 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018064316A priority Critical patent/JP6983709B2/ja
Priority to US16/208,464 priority patent/US10921239B2/en
Publication of JP2019174338A publication Critical patent/JP2019174338A/ja
Publication of JP2019174338A5 publication Critical patent/JP2019174338A5/ja
Application granted granted Critical
Publication of JP6983709B2 publication Critical patent/JP6983709B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/052Tubular type; cavity type; multireflective
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8557Special shaping of flow, e.g. using a by-pass line, jet flow, curtain flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample
    • G01N2201/0668Multiple paths; optimisable path length

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hydrology & Water Resources (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】高精度の光学分析を可能とする分析システムを提供すること。【解決手段】液体状の試料に光を照射し、試料を分析する分析システムであって、反応槽12と、流入口14と、流出口16と、を有する反応部1と、分析セル22aと、少なくとも1つの光源部24と、少なくとも1つの受光部26と、を有する分析部2と、第一の流路32と、第二の流路34と、を有する流路管3と、を備え、分析セル22aの計測部222は、断面積が互いに異なる第一の計測部位2221及び第二の計測部位2222を有する分析システムAとすること。【選択図】図1

Description

本発明は、分析システム、分析用バイパス及び分析方法に関する。
従来、液体状の試料に光を照射し、試料に含まれる成分を分析する手法が知られている。例えば、特許文献1には「サンプル流路を切断することなくフローセルを設けることができ、可撓性チューブを変形させることでフローセルの光路長を任意に変えることができる分光分析装置」が記載されている。
特開2014−209063号公報
上述した可撓性チューブのような流路管内の液体環境(例えば、温度)は、反応槽の環境とは異なる。反応槽において所定の反応を進行させつつ、液体状の試料を連続的に光学分析を行う場合、反応槽から送液された試料を早めに光学分析することが、成分変化が少ないため好適である。また、もし光学分析した液体試料を反応槽に還流させる場合は、分析後の試料も早めに反応槽に送液することが、反応槽内部の試料の分析による成分変化を回避する視点で望ましい。しかし、特許文献1に開示の技術では、可撓性チューブを変形により断面積を減少させる。よって、上述した理由により、可撓性チューブへの送液速度を上げた場合、可撓性チューブ内で光を照射して分析する部位での試料の流速は送液速度よりも速くなり、その結果、光学分析の精度が低下する。
そこで、本発明は、高精度の光学分析を可能とする分析システム、分析用バイパス及び分析方法を提供することを目的とする。
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。
本発明に係る第一の態様は、液体状の試料に光を照射し、試料を分析する分析システムであって、試料を収容する反応槽と、反応槽へ試料が流入する流入口と、反応槽から試料が流出する流出口と、を有する反応部と、試料を分析する分析セルと、分析セルに光を照射する少なくとも1つの光源部と、試料の透過光又は散乱光を受光する少なくとも1つの受光部と、を有する分析部と、反応槽の流出口から分析セルへ試料を送液する第一の流路と、分析セルから反応槽の流入口へ試料を送液する第二の流路と、を有する流路管と、を備え、
分析セルは、光源部からの光が試料に照射される計測部と、第一の流路から計測部へ試料を供給する供給口と、計測部から第二の流路へ試料を排出する排出口と、を備え、計測部は、断面積が互いに異なる第一の計測部位及び第二の計測部位を有する。
本発明に係る第二の態様は、分析用バイパスであって、液体状の試料を分析する分析セルを有する分析部と、分析セルへ試料を送液する第一の流路と、分析セルから外部へ試料を送液する第二の流路と、を有する流路管と、を備え、
分析セルは、断面積が互いに異なる第一の計測部位及び第二の計測部位を有する。
本発明に係る第三の態様は、液体状の試料に光を照射し、試料を分析する分析方法であって、
(1)容器内に収容された液体状の試料を、容器に接続された分析セルに流す工程と、
(2)分析セル内に存在する試料に光を照射して、試料を分析する工程と、
を含み、
分析セルは、第一の流路から試料が供給される供給口と、光源部から照射された光が試料を通過する計測部と、計測部から第二の流路に試料を排出する排出口と、を有し、計測部は、第一の計測部位と、第一の計測部位の断面積と異なる断面積を有する第二の計測部位と、を有する。
本発明によれば、高精度の光学分析を可能とする分析システムを提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
図1は、本実施形態に係る分析システムの一例を示す図である。 図2は、本実施形態における分析セルの一例を示す図である。 図3は、本実施形態における光学系の一例を示す図である。 図4は、試料(a)の流速と分析精度の関係を示すグラフである。 図5は、試料(b)の流速と分析精度の関係を示すグラフである。 図6は、本実施形態における光学系の別の一例を示す図である。 図7は、本実施形態における光学系の更に別の一例を示す図である。 図8は、本実施形態における分析セルの別の一例を示す図である。 図9は、本実施形態における分析セルの更に別の一例を示す図である。 図10は、本実施形態に係る分析方法の一例を示すフローチャートである。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。また、以下の実施形態においては便宜上その必要があるときは、各実施形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部又は全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施形態において、要素の数等(個数、数値、量、範囲等を含む。)に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。さらに、以下の実施形態において、その構成要素(要素ステップ等も含む。)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。
同様に、以下の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合及び原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似又は類似するもの等を含むものとする。このことは、上記数値及び範囲についても同様である。
さらに、実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。そして、理解のため、X軸、Y軸、Z軸の直交座標系を用いて説明する場合があるが、特に断りがない限り、X軸、Y軸は水平面を構成する方向とし、Z軸はこの水平面に対する垂直方向とする。そして、厳密に各軸に一致していなくても、実質的に同じ作用効果を達成できる範囲内の変更は許容され、これに包含される。
<分析システム>
本実施形態の第一の態様は、分析システムである。
図1は、本実施形態に係る分析システムの一例である。図2は、図1における分析セルの一例を示す図である。図3は、本実施形態における光学系の一例を示す図である。
分析システムAは、液体状の試料に光を照射し、試料を分析する分析システムであって、試料を収容する反応槽12と、反応槽12へ試料が流入する流入口14と、反応槽12から試料が流出する流出口16と、を有する反応部1と、試料を分析する分析セル22aと、分析セル22aに光を照射する少なくとも1つの光源部24と、試料の透過光又は散乱光を受光する少なくとも1つの受光部26と、を有する分析部2と、反応槽12の流出口16から分析セル22aへ試料を送液する第一の流路32と、分析セル22aから反応槽12の流入口14へ試料を送液する第二の流路34と、を有する流路管3と、を備える。分析セル22aは、光源部24からの光が試料に照射される計測部222と、第一の流路32から計測部222へ試料を供給する供給口224と、計測部222から第二の流路34へ試料を排出する排出口226と、を備える。計測部222は、断面積が互いに異なる第一の計測部位2221及び第二の計測部位2222を有する。
反応槽12内の試料は、ポンプ4により系内を循環する。試料は、反応槽12の流出口16から、第一の流路32を経て、分析部の分析セル22aに送られ、分光分析が行われる。その後、試料は、第二の流路34を経て、流入口14から反応槽12に送られる。分析システムAは、反応槽12の反応や試料の送液を停止させることなく、連続的に分析を行うことができる。例えば、反応槽12において、生物学的、化学的又は物理的な反応を行い、その反応溶液(液体状の試料)を分析セル22aにおいて測定することができる。さらに、反応槽12において所定の反応を進行させつつ、反応溶液を分析セル22aにおいて連続的に光学分析を行うことができる。あるいは、その経時変化を観察することもできる。
また、分析システムAは、試料の非破壊分析が可能であり、試料の再利用も可能である。例えば、分析システムを大スケールで長時間稼働させるような場合には、測定した試料は多量になるから、かかる試料を再利用できることの経済的利点も大きい。
試料は液体状であれば、その種類は限定されない。例えば、溶質と溶媒とが均質に混ざり合っている溶液、固体粒子が溶媒中に分散した懸濁液、油滴等を含む乳濁液、コロイド液等であってもよい。そして、液体状の試料を構成する成分は、複数成分であってもよい。試料が複数成分である場合、少なくとも1つの成分が液相であればよい。例えば、液相−液相、液相−固相、液相−気相、液相−固相−気相等のような組み合わせであってもよい。また、試料の粘性は、送液可能な程度の流動性を有していればよく、特に限定されない。
試料の具体例としては、例えば、生物学的反応を行う細胞、微生物、菌類等の培養液や、化学的反応を行う各種化学薬品や溶媒等が挙げられるが、これらの中でも生物学的反応を行う細胞、微生物、菌類等の培養液が好ましい。
分析セル22aで行う光学分析の種類は、特に限定されない。例えば、赤外分光分析、近赤外分光分析、紫外・可視分光分析、蛍光分光分析、燐光分光分析、X線分析等が挙げられる。その他にも、試料に光を照射して透過光の強度を測定する各種吸収分光分析、試料に光を照射して散乱光の強度を測定する各種光散乱分光分析、試料に光を照射して放出される光電子のエネルギーを測定する各種光電子分光分析等が挙げられる。
本実施形態で扱う透過光や散乱光(特に断りがない限り、本明細書では反射光も含む。)には、例えば、上述した各種分光分析において測定対象となる光が含まれる。
光源部24及び受光部26は、使用する分光分析の種類や測定条件等に応じて、好適な構成を適宜採用することができる。光源部24としては、例えば、赤外光、近赤外光、紫外光、可視光、励起光、X線等を照射可能な装置を使用できる。受光部26としては、例えば、測定する光を検出可能な検出器等を使用することができる。受光部26の具体例としては、例えば、InGaAsフォトダイオード、InSb光導電素子、PbS光導電素子、光電子増倍管、Siフォトダイオード等が具備された装置等が挙げられる。
分析システムAの光学系は、光源部24から分析セル22aに対して光照射を行い、それを受光部26で分析するものであればよく、必要に応じて、複数の光源部24、複数の受光部26を設けてもよいし、光源部24や受光部26を可動・可変としてもよい。
光源部24と受光部26はそれぞれ可動である(図3参照)。一対の光源部24と受光部26を動かすことで、第一の計測部位2221又は第二の計測部位2222に選択的に光を照射し、これを受光することができる。また、光照射は、いわゆるスポット照射に限定されず、例えば、スポットを各計測部位内で走査させてもよい。
そして、図示はしないが、分析部2は、第一の計測部位2221又は第二の計測部位2222において、光の照射スポットを変動させる位置変動機構を、更に備えることが好ましい。位置変動機構の構成は特に限定されず、第一の計測部位2221内又は第二の計測部位2222内の目標照射位置に向けて光を照射可能とするものであればよい。位置変動機構を備えることで、目標位置に対して光をより正確に照射することができる。
なお、試料に含有される成分の濃度によって、吸収される光量が異なる傾向がある。このことを利用して、光路長を固定(フラット)した光学分析を行うことで、試料中の成分の濃度を求めることができる。また、光路上に存在する散乱体の数に依存して受光部26が受光する光の強度が変化する傾向がある。このことを利用して、光学分析では試料中の散乱体濃度を計測することもできる。ところが、光路上の散乱体の数が多すぎると受光部26の受光強度が弱くなりすぎ、光路上の散乱体の数が少なすぎると受光部26の受光強度の変化が乏しくなるため、光路上の散乱体数を調整することが散乱体濃度測定では重要である。よって、本実施形態では、光路長が一定の計測部位での光学分析と、光路長が変化する計測部位での光学分析とを行うことで、試料に関する種々の情報を得ることもできる。
さらに、第一の計測部位2221と第二の計測部位2222は、光源部24より照射された光の光路長が相互に同じ部位と、光源部24より照射された光の光路長が相互に異なる部位と、を有することが好ましい。試料の流れ方向(矢印F参照)であるX軸方向と垂直であるY軸方向(すなわち、紙面の左右方向)では、第一の計測部位2221の光路長と第二の計測部位2222の光路長が異なる。そして、X軸方向とY軸方向を含む平面に対して垂直なZ軸方向では、第一の計測部位2221の光路長と第二の計測部位2222の光路長は同じである。
まず、光路長が変化する光学系において、粒子の数や形状等を測定し、続いて、光路長が一定(フラット)である光学系における測定に適切な箇所を決定し、その箇所で成分濃度等を測定する、といった多角的な分光分析を行うことができる。例えば、分析セル22aを用いる場合、Y軸方向において粒子の数や形状等を光学的に測定し、Z軸方向において粒子の成分濃度を光学的に測定することができる。多角的な分析を行う場合には、分析セル22aの光の光路長が同じ部位において試料の成分濃度を計測し、光の光路長が異なる部位において試料の散乱体濃度を計測する、といった使い分けができる。
分析セル22aは、光源部24からの光が試料に照射される計測部222と、第一の流路32から計測部222へ試料を供給する供給口224と、計測部222から第二の流路34へ試料を排出する排出口226と、を備える(図2参照)。計測部222は、断面積が互いに異なる第一の計測部位2221及び第二の計測部位2222を有する。分析セル22aは、試料が内部を流れることができるよう中空である。ここで、断面積とは、試料の流れ方向(矢印F参照)に垂直な面における各計測部位の内部の試料が充満する空間の断面積のことである。
分析セル22aの材料は、分光測定に使用可能な材料であればよく、特に限定されない。分析セル22aの材料は、耐熱性、耐圧性、機械的強度が高く、洗浄や滅菌等が容易であり、試料に対して安定であるものが好ましい。分析セル22aの好ましい材料としては、例えば、石英ガラス、有機物等が挙げられる。
流路管3の材料は、特に限定されないが、耐熱性、耐圧性、機械的強度が高く、洗浄、滅菌等が容易であり、試料に対して安定であるものが好ましい。
分析セル22aは断面積の異なる第一の計測部位2221と第二の計測部位2222を有しており、試料の測定に適したいずれかの計測部位を選択できる。第一の計測部位2221と第二の計測部位2222とは、互いの光路長は同じあるが、断面積が異なる。これにより、試料の流速や濃度の変化に起因する分析精度の低下を抑制でき、高精度の光学分析が可能である。
(分析セルにおける分析精度の検証等)
通常、流路管3内や分析セル22a内を送液される試料は、光源部24から光が照射される計測部位における試料の流速に依存して分析精度が変化してしまうといった問題がある。この問題を詳細に検証すべく、試料の流速と分析精度の関係(流速依存性)を確認した。
流速依存性に関して、断面積が3mmである計測領域(分析セル)に液体状の試料を送液し、この計測領域で近赤外光分光分析を行った場合の、検量モデルの決定係数(R(validation))を評価した。決定係数は、検量モデルの精度を表す指標値の一つ(予測値と真値の相関係数)である。通常、決定係数は0以上1以下の値をとり、決定係数が0.85以上であれば検量モデルの精度が高いと評価される。
検証で用いた液体状の試料は、溶媒として純水、溶質としてグルコース(濃度:0〜100mM)、散乱体としてポリスチレン粒子(3μm粒子径)を用いて、調製した。ポリスチレン粒子の濃度を、(a)8.4×10個/mLの場合と(b)16.8×10個/mLの場合にそれぞれ設定し、これらについて検証した。
図4は、試料(a)の流速と分析精度の関係を示すグラフである。図5は、試料(b)の流速と分析精度の関係を示すグラフである。
図4から、試料(a)は流速の増加に伴い分析精度が低下していることが、少なくとも確認された。一方、図5から、試料(b)は流速が2cm/sのときに分析精度が最も高いことが、少なくとも確認された。すなわち、流速が遅すぎると、分析セル22aへの汚れの付着等の理由から、分析精度が低下する傾向が強くなる。また、流速が速すぎると、試料を通過する光(透過光や散乱光を含む。)の光量が安定せず、分析精度が低下する傾向が強くなる。これらのことから、高精度の光学分析を行うためには、少なくとも、適切な流速の下で光学分析を行うことが重要であることが確認された(但し、本実施形態の作用はこれらに限定されない。)。
この点、本実施形態の分析セル22aは、第一の計測部位2221と第二の計測部位2222の断面積が異なる構造を有することから、第一の計測部位2221を流れる試料の流速と、第二の計測部位2222を流れる試料の流速が異なる。よって、第一の計測部位2221と第二の計測部位2222のうち、行うべき光学分析に適した流速の計測部位を選択することで、高い分析精度で分析を行うことができる。
分析システムAは、このような構造を有する分析セル22aを用いることで、流路管3内での試料の流速や濃度に起因する分析精度の低下が抑制でき、高精度の光学分析が可能となる。とりわけ、試料が散乱体を含む場合にかかる効果は顕著であり、流速や散乱体濃度の上昇に伴う分析精度の低下を一層効果的に抑制できる。試料が散乱体を含む場合には流速や濃度の上昇による影響が大きいところ、本実施形態によれば、散乱体を含む液体状の試料であっても高精度で分析することができるからである。
(光学系の変形例)
分析システムAにおける光学系は、その分析対象や分析条件等を考慮して、適宜好適な構成を採用することができる。例えば、光源部24や受光部26について、以下のような好適な変形例を採用することができる。
図6は、本実施形態における光学系の別の一例の構成を示す図である。
光源部24として、第一の計測部位2221の試料に第一の光を照射する第一の光源部241と、第二の計測部位2222の試料に第二の光を照射する第二の光源部242と、を備える。そして、受光部26として、第一の計測部位2221の試料の透過光又は散乱光を受光する第一の受光部261と、第二の計測部位2222の試料の透過光又は散乱光を受光する第二の受光部262と、を備える。
ここでは、二対の光源部24(第一の光源部241、第二の光源部242)と受光部26(第一の受光部261、第二の受光部262)を有する構成を例示したが、3対以上の光源部24と受光部26を有する構成であってもよい。三対以上の光源部24と受光部26を有する場合も、二対の光源部24と受光部26を有する場合と同様に、これらが平行に配置されていることに限定されない。また、光源部24、計測部222及び受光部26がこの順に一直線上に配置されていることに限定されない。例えば、必要に応じて、ミラー等を介してこれらの光学系が構成されていてもよい。
図示はしないが、分析部2は、第一の受光部261で得られた分析結果に基づき、第二の光源部242の光の照射条件(例えば、照射位置、照射強度、照射時間等)を制御する制御部を、更に備えることが好ましい。このような構成をとることで、第一の光源部241から照射される第一の光を用いた第一の光学分析の結果を、第二の光源部242から照射される第二の光を用いた第二の光学分析に反映させることができるため、分析精度を一層向上させることができる。
さらに、第一の計測部位2221と第二の計測部位2222で異なる種類の分光分析を行うことで、多角的な分析を行うこともできる。例えば、第一の計測部位2221において試料の成分濃度(試料中に溶解している成分の濃度)を計測し、第二の計測部位2222において試料の散乱体濃度を計測することができる。その際、例えば、第一の構成部位2221と第二の計測部位2222において、互いの光路長が一定(フラット)となるように各測定箇所を選択してもよいし、互いの光路長が異なるように各測定箇所を選択してもよい。
図7は、本実施形態における光学系の更に別の一例の構成を示す図である。
光源部24は、第一の計測部位2221に照射される光の光路と、第二の計測部位2222に照射される光の光路が、互いにねじれの位置にあるように配置されることが好ましい。ここで、ねじれの位置とは、両光路が、平行でなく、かつ、交差しない位置関係にあることをいう。第一の計測部位2221の光学系(第一の光源部241と第一の受光部261)と第二の計測部位2222の光学系(第二の光源部242と第二の受光部262)がねじれの位置にあることで、装置の省スペース化に資する。
また、光源部24から照射される光の断面積が、第一の計測部位2221の照射領域の表面積と第二の計測部位2222の照射領域の表面積のいずれよりも小さいことが好ましい。例えば、第一の計測部位2221の照射領域の表面積とは、第一の計測部位2221において、光源部24からの光が第一の計測部位2221に照射可能な領域の面積をいう。これにより、光学分析の精度を一層向上させることができる。
(分析セルの変形例)
本実施形態における分析セルは、断面積が異なる2つ以上の計測部位を有していればよく、上述した形状に限定されるものでない。例えば、図示はしないが、分析セル内の計測部位は必ずしも互いに隣接している必要はなく、連結部等を介して接続されているような構造であってもよい。そして、試料の流速に応じて、複数の計測部位から適した計測部位を選択できる構造として、例えば、以下のような変形例を採用することもできる。
図8は、本実施形態における分析セルの別の一例の構成を示す図である。
分析セルの好適例として、第一の計測部位2221と第二の計測部位2222とが隣接した、略円錐台形状である分析セル22bが挙げられる。分析セル22bの側面が傾斜面であることにより、第一の計測部位2221と第二の計測部位2222の各断面積が無段階で可変とすることができる。これによって、光学分析に適切な流速の選択の幅(選択可能性)が向上し、分析精度を一層向上させることができる。
加えて、分析セル22bは、第一の計測部位2221と第二の計測部位2222の各光路長も無段階で可変とすることができる。これによって、分光測定に適した光路長の選択の幅(選択可能性)が向上し、このような観点からも分析精度を一層向上させることができる。
さらに加えて、分析セル22bは、測定箇所の数を2箇所に限定することなく、任意に構成することができる。これによって、分光測定を行う測定箇所の選択の幅(選択可能性)が向上し、このような観点からも分析精度を一層向上させることができる。
図9は、本実施形態における分析セルの更に別の一例の構成を示す図である。
分析セル22cは、試料の流れ方向をX軸方向とし、流れ方向と略垂直方向をY軸方向とし、X軸方向とY軸方向を含む平面に対する垂直方向をZ軸方向とすると、X軸方向に沿って、第一の計測部位2221と、第二の計測部位2222と、第三の計測部位2223と、第四の計測部位2224と、第五の計測部位2225と、をこの順に、少なくとも有する。そして、第一〜第三の計測部位の各断面積は、互いに異なり、かつ、第三〜第五の計測部位の各断面積は、互いに異なる。さらに、第一〜第五の計測部位のZ軸方向の長さは、いずれも略等しい。またさらに、Y軸方向の長さは、下記式(i)で表される関係、及び下記式(ii)で表される関係を満たす。
(i)第三の計測部位2223のY軸方向の長さ>第二の計測部位2222のY軸方向の長さ>第一の計測部位2221のY軸方向の長さ
(ii)第三の計測部位2223のY軸方向の長さ>第四の計測部位2224のY軸方向の長さ>第五の計測部位2225のY軸方向の長さ
分析セル22cは、第一〜第五の計測部位を有し、隣接する3つの計測部位(第一〜第三の計測部位、第三〜第五の計測部位)の断面積が異なる構造である。断面積が異なる計測部位が多い程、より適切な流速で試料を測定することができるため、光学分析の精度を一層向上させることができる。
さらに、分析セル22cを用いることで、より多角的な分光分析を連続的にかつ高精度に行うこともできる。例えば、Y軸方向に沿った光路上で第一の光学分析を行い、Y軸方向に沿った光路上で第二の光学分析を行うことができる。例えば、第一の光学分析は、第一の光源部241と第一の受光部261を用いて行い、第二の光学分析は、第二の光源部242と第二の受光部262を用いて行う。その際、第一の光学分析と第二の光学分析は、独立して分析を行う構成でもよい。あるいは、第一の光学分析の分析結果に基づき、第二の光学分析の測定条件を決定し、第二の光学分析を行う構成とすることもできる。一方の光学分析結果を、他方の光学分析の条件設定に反映させることで、分析精度を一層向上させることができる。
第一の光学分析(Y軸方向)では、各計測部位の光路長が異なるため、分析に適した光路長の計測部位を5段階で選択できる。
第二の光学分析(Z軸方向)では、各計測部位の光路長は同じであるが、上流側の部位と下流側の部位で試料の流速が異なる。すなわち、流れ方向(X軸方向)に沿って、分析に適した流速である測定箇所を無段階で選択でき、Z軸方向に沿って光照射する。
第一の光学分析を行うにあたって、光路長が短すぎると、透過光や散乱光を十分に取得することができず、分析精度が低下する。一方で、光路長が長すぎると、光を十分に試料に透過させることができず、分析精度が低下する、といった問題がある。
この点、本実施形態によれば、第一の光学分析では、光路長が異なる5つの計測部位から適切な光路長や流速の計測部位を選択し、そこで光学分析を行うことができるため、かかる問題を解消できる。そして、第二の光学分析では、上流側の試料の成分濃度よりも下流側の試料の成分濃度が高くなる傾向にあるが、本実施形態では、このような影響を考慮した上で、適切な流速の計測部位を選択し、当該箇所で光学分析を行うことができるため、光学分析を一層で行うことができる。
このように、分析セル22cを用いる場合、多角的な分析が可能であり、かつ、各分析を高精度で行うことができる。加えて、一対の光源部241及び受光部261が、もう一対の光源部242及び受光部262に対して、空間的な干渉をすることがないため、装置の省スペース化に資する。
多角的な分析を行う一例として、第一の光学分析として試料中の粒子の数・形状や粒子間の距離等を測定し、その測定結果に基づき、第二の光学分析として試料の成分濃度等の成分分析を行うことができる。具体的には、まず、第一の光学分析として、光路長が変化する光学系において、試料中の散乱体の数や形状等を測定し、続いて、第一の光学分析の結果に基づき、光路長が一定(フラット)である光学系における測定の最適箇所を決定し、当該箇所において成分濃度等を測定する。
上述した各構成は一例であり、光路長が変化する側面を複数有していてもよいし、光路長が変化しない側面を複数有していてもよい。光路長が異なる計測が可能であることで、流速だけでなく光路長の最適化も可能となるため、分析精度を一層向上させることができる。
<分析用バイパス>
本実施形態の第二の態様は、分析用バイパスである。
本実施形態に係る分析用バイパスは、上述した分析セル22(22a、22b、22c)を有する分析部2と、分析セル22へ試料を送液する第一の流路32と、分析セル22から外部へ試料を送液する第二の流路34と、を有する。本実施形態に係る分析用バイパスは、上述した分析システムを構成する一部品として使用することもできる。本実施形態に係る分析用バイパスを構成する部位は、特に断りがない限り、上述した分析システムにおいて説明した部位を用いることができる。
分析用バイパスの好適例の一つは、液体状の試料を分析する分析セル22を有する分析部と、分析セル22へ試料を送液する第一の流路32と、分析セル22から外部へ試料を送液する第二の流路34と、を有する流路管3と、を備え、分析セル22は、断面積が互いに異なる第一の計測部位2221及び第二の計測部位2222を有する、分析用バイパスである。
分析用バイパスの分析セル22としては、上述した分析セルの各態様を好適例として採用することができる。
<分析方法>
本実施形態の第三の態様は、分析方法である。
本実施形態に係る分析方法は、液体状の試料に光を照射し、試料を分析する分析方法であって、
(1)容器内に収容された液体状の試料を、容器に接続された分析セル22に流す工程と、
(2)分析セル22内に存在する試料に光を照射して、試料を分析する工程と、
を含む。
そして、分析セル22は、第一の流路32から試料が供給される供給口224と、光源部24から照射された光が試料を通過する計測部222と、計測部222から第二の流路34に試料を排出する排出口226と、を有する。さらに、計測部222は、第一の計測部位2221と、第一の計測部位2221の断面積と異なる断面積を有する第二の計測部位2222と、を有する。
さらに、本実施形態に係る分析方法としては、第一の計測部位2221に存在する試料に光を照射し、第一の計測部位2221で得られた分析結果に基づき、第二の計測部位2222に存在する試料に照射する光の照射条件(例えば、照射位置、照射強度、照射時間等)を制御して、第二の計測部位2222に存在する試料に光を照射することが好ましい。
また、本実施形態に係る分析方法としては、第一の計測部位2221と第二の計測部位2222とは、光源部24より照射された光の光路長が相互に同じである部位と、光源部24より照射された光の光路長が相互に異なる部位と、を有し、光の光路長が同じである部位において、試料の成分濃度を計測し、光の光路長が異なる部位において、試料の散乱体濃度を計測することが好ましい。
本実施形態に係る反応方法の他の好適例として、上述した分析システムを用いて、各工程を行う方法が挙げられる。特に断りがない限り、分析システムについて説明した内容を、反応方法として行うことができる。
図10は、本実施形態に係る反応方法の一例を示すフローチャートであり、以下の各工程を行う。
(S1)反応槽12から分析セル22への試料の送液:
ポンプ4が、反応槽12内の試料を分析部2に送液させる。
(S2−1)第一の光学分析(第一の計測部位2221による試料の光学分析):
第一の光源部241が試料に光を照射し、第一の受光部261がその透過光又は散乱光を受光し、信号として取り出す。
(S2−2)第二の光学分析の測定条件の決定:
制御部が、第一の計測部位2221で取り出した信号に基づき、第二の光学分析に適切な測定条件を選択し、位置変動機構に第二の光源部242を移動させるよう指令を出す。
(S2−3)第二の光学分析(第二の計測部位2222による試料の光学分析):
第二の光源部242が試料に光を照射し、第二の受光部262がその透過光又は散乱光を受光し、信号として取り出す。
(S3)測定結果の出力:
解析部が、第一の計測部位2221と第二の計測部位2222の信号を解析し、測定結果として出力する。その後、再び、(S1)に戻り、定期的に又は連続的に分析を行い、反応をモニタリングする。
これまでに説明した分析方法を実行する態様として、例えば、コンピュータに上述した各工程として機能させるためのプログラムを用いることができる。あるいは、コンピュータに上述した各工程を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を用いることができる。
また、上述した各工程は、制御装置を用いて実行させることができる。制御装置として、例えば、パーソナルコンピュータ等の端末を使用することができる。図示はしないが、端末には、例えば、CPU(Central Processing Unit)、記憶装置、メインメモリ等との通信を行うインターフェイス等を具備させることができる。制御装置の各種機能は、アプリケーションプログラム等として記憶装置に格納することができる。CPUは、アプリケーションプログラムを記憶装置から読み出し、メインメモリに格納し、実行することで各種機能を実現することができる。
またさらに、光学測定の分析条件を制御し、それに基づき一連の分析を実行させる機能は、例えば、アプリケーションプログラムにより実装させることができる。さらに、制御装置は、試料の反応を行う反応部1、分析部2、試料を送液するポンプ4、位置変動機構及び解析部のそれぞれに対して指令を送る構成としてもよい。またさらに、制御装置は、ユーザーの別途の操作を受け付けてもよい。
以上、本発明者らによってなされた発明を実施形態に基づき具体的に説明したが、本実施形態は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
1…反応部、2…分析部、3…流路管、4…ポンプ、12…反応槽、14…流入口、16…流出口、22、22a、22b、22c…分析セル、222…計測部、2221…第一の計測部位、2222…第二の計測部位、2223…第三の計測部位、2224…第四の計測部位、2225…第五の計測部位、224…供給口、226…排出口、24…光源部、241…第一の光源部、242…第二の光源部、26…受光部、261…第一の受光部、262…第二の受光部、32…第一の流路、34…第二の流路、A…分析システム

Claims (15)

  1. 液体状の試料に光を照射し、前記試料を分析する分析システムであって、
    前記試料を収容する反応槽と、前記反応槽へ前記試料が流入する流入口と、前記反応槽から前記試料が流出する流出口と、を有する反応部と、
    前記試料を分析する分析セルと、前記分析セルに光を照射する少なくとも1つの光源部と、前記試料の透過光又は散乱光を受光する少なくとも1つの受光部と、を有する分析部と、
    前記反応槽の前記流出口から前記分析セルへ前記試料を送液する第一の流路と、前記分析セルから前記反応槽の前記流入口へ前記試料を送液する第二の流路と、を有する流路管と、
    を備え、
    前記分析セルは、前記光源部からの光が前記試料に照射される計測部と、前記第一の流路から前記計測部へ前記試料を供給する供給口と、前記計測部から前記第二の流路へ前記試料を排出する排出口と、を備え、前記計測部は、断面積が互いに異なる第一の計測部位及び第二の計測部位を有する、
    分析システム。
  2. 請求項1に記載の分析システムであって、
    前記光源部は、
    前記第一の計測部位の前記試料に第一の光を照射する第一の光源部と、
    前記第二の計測部位の前記試料に第二の光を照射する第二の光源部と、
    を備え、
    前記受光部は、
    前記第一の計測部位の前記試料の前記透過光又は散乱光を受光する第一の受光部と、
    前記第二の計測部位の前記試料の前記透過光又は散乱光を受光する第二の受光部と、
    を備える、
    分析システム。
  3. 請求項2に記載の分析システムであって、
    前記分析部は、前記第一の受光部で得られた分析結果に基づき、前記第二の光源部の光の照射条件を制御する、制御部を、更に備える、
    分析システム。
  4. 請求項1に記載の分析システムであって、
    前記分析部は、前記第一の計測部位又は前記第二の計測部位において、前記光の照射位置を変動させる、位置変動機構を、更に備える、
    分析システム。
  5. 請求項1に記載の分析システムであって、
    前記第一の計測部位において前記試料の成分濃度を計測し、
    前記第二の計測部位において前記試料の散乱体濃度を計測する、
    分析システム。
  6. 請求項1に記載の分析システムであって、
    前記第一の計測部位と前記第二の計測部位は、前記光源部より照射された前記光の光路長が相互に同じである部位と、前記光源部より照射された前記光の光路長が相互に異なる部位と、を有する、
    分析システム。
  7. 請求項6に記載の分析システムであって、
    前記光の光路長が同じ部位において、前記試料の成分濃度を計測し、
    前記光の光路長が異なる部位において、前記試料の散乱体濃度を計測する、
    分析システム。
  8. 請求項1に記載の分析システムであって、
    前記光源部は、前記第一の計測部位に照射される前記光の光路と、前記第二の計測部位に照射される前記光の光路が、互いにねじれの位置にあるように配置された、
    分析システム。
  9. 請求項1に記載の分析システムであって、
    前記光源部から照射される前記光の断面積が、前記第一の計測部位の★照射領域の表面積と前記第二の計測部位の照射領域の表面積のいずれよりも小さい、
    分析システム。
  10. 液体状の試料を分析する分析セルを有する分析部と、
    前記分析セルへ前記試料を送液する第一の流路と、前記分析セルから外部へ前記試料を送液する第二の流路と、を有する流路管と、
    を備え、
    前記分析セルは、断面積が互いに異なる第一の計測部位及び第二の計測部位を有する、
    分析用バイパス。
  11. 請求項10に記載の分析用バイパスであって、
    前記分析セルは、前記第一の計測部位と前記第二の計測部位とが隣接した、略円錐台形状である、
    分析用バイパス。
  12. 請求項10に記載の分析用バイパスであって、
    前記分析セルにおいて、前記試料の流れ方向をX軸方向とし、前記流れ方向と略垂直方向をY軸方向とし、前記X軸方向と前記Y軸方向を含む平面に対する垂直方向をZ軸方向とすると、
    前記分析セルは、前記X軸方向に沿って、前記第一の計測部位と、前記第二の計測部位と、第三の計測部位と、第四の計測部位と、第五の計測部位と、をこの順に、少なくとも有し、
    前記第一〜第三の計測部位の各断面積は、互いに異なり、かつ、
    前記第三〜第五の計測部位の各断面積は、互いに異なり、
    前記第一〜第五の計測部位の前記Z軸方向の長さは、いずれも略等しく、
    前記Y軸方向の長さは、
    前記第三の計測部位の前記Y軸方向の長さ>前記第二の計測部位の前記Y軸方向の長さ>前記第一の計測部位の前記Y軸方向の長さ、の関係を満たし、かつ、
    前記第三の計測部位の前記Y軸方向の長さ>前記第四の計測部位の前記Y軸方向の長さ>前記第五の計測部位の前記Y軸方向の長さ、の関係を満たす、
    分析用バイパス。
  13. 液体状の試料に光を照射し、前記試料を分析する分析方法であって、
    (1)容器内に収容された液体状の試料を、前記容器に接続された分析セルに流す工程と、
    (2)前記分析セル内に存在する前記試料に光を照射して、前記試料を分析する工程と、
    を含み、
    前記分析セルは、前記第一の流路から前記試料が供給される供給口と、前記光源部から照射された光が前記試料を通過する計測部と、前記計測部から前記第二の流路に前記試料を排出する排出口と、を有し、前記計測部は、第一の計測部位と、前記第一の計測部位の断面積と異なる断面積を有する第二の計測部位と、を有する、
    分析方法。
  14. 請求項13に記載の分析方法であって、
    前記第一の計測部位に存在する前記試料に光を照射し、
    前記第一の計測部位で得られた分析結果に基づき、前記第二の計測部位に存在する前記試料に照射する光の照射条件を制御して、前記第二の計測部位に存在する前記試料に光を照射する、
    分析方法。
  15. 請求項13に記載の分析方法であって、
    前記第一の計測部位と前記第二の計測部位とは、前記光源部より照射された前記光の光路長が相互に同じである部位と、前記光源部より照射された前記光の光路長が相互に異なる部位と、を有し、
    前記光の光路長が同じである部位において、前記試料の成分濃度を計測し、
    前記光の光路長が異なる部位において、前記試料の散乱体濃度を計測する、
    分析方法。
JP2018064316A 2018-03-29 2018-03-29 分析システム、及び分析方法 Active JP6983709B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018064316A JP6983709B2 (ja) 2018-03-29 2018-03-29 分析システム、及び分析方法
US16/208,464 US10921239B2 (en) 2018-03-29 2018-12-03 Analysis system, analysis bypass, and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064316A JP6983709B2 (ja) 2018-03-29 2018-03-29 分析システム、及び分析方法

Publications (3)

Publication Number Publication Date
JP2019174338A true JP2019174338A (ja) 2019-10-10
JP2019174338A5 JP2019174338A5 (ja) 2020-05-14
JP6983709B2 JP6983709B2 (ja) 2021-12-17

Family

ID=68055979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064316A Active JP6983709B2 (ja) 2018-03-29 2018-03-29 分析システム、及び分析方法

Country Status (2)

Country Link
US (1) US10921239B2 (ja)
JP (1) JP6983709B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085865A1 (ko) * 2019-10-29 2021-05-06 (주)마이크로디지탈 흡광 분석 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10241024B1 (en) * 2016-05-02 2019-03-26 Rashid Mavliev System and method for characterization of inclusions in liquid samples
EP4058781A1 (en) * 2019-11-14 2022-09-21 World Precision Instruments Germany GmbH Flow cell system for optical fluid analysis and bioreactor system
JP2024500604A (ja) * 2020-12-24 2024-01-10 テルモ株式会社 細胞培養システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112785A (en) * 1977-03-14 1978-10-02 Takenori Tanimura Flow cell
JPH0763678A (ja) * 1993-08-31 1995-03-10 Olympus Optical Co Ltd 流体濃度測定用検出器
JPH07253391A (ja) * 1994-03-15 1995-10-03 Kubota Corp 濁度センサ−用測定セル
JPH1026584A (ja) * 1995-06-23 1998-01-27 Inter Tec:Kk フローセル
JPH10325797A (ja) * 1997-05-26 1998-12-08 Dainippon Screen Mfg Co Ltd 流体濃度測定装置
US5859430A (en) * 1997-04-10 1999-01-12 Schlumberger Technology Corporation Method and apparatus for the downhole compositional analysis of formation gases
JP2002243632A (ja) * 2001-02-20 2002-08-28 Kurabo Ind Ltd フローセル、検出装置及び液体試料測定装置
JP2005121499A (ja) * 2003-10-17 2005-05-12 Hitachi Software Eng Co Ltd 試料セル、光学測定装置及び光学的測定方法
JP2005214756A (ja) * 2004-01-29 2005-08-11 Moritex Corp 微量化学物質の濃度測定装置とその部品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171902B1 (en) * 1984-06-29 1990-09-05 Matsushita Graphic Communication Systems, Inc. Device for controlling concentration of a liquid developing machine
US5256155A (en) * 1991-04-01 1993-10-26 Sherwood Medical Company Drop detection method and apparatus
US5982847A (en) * 1996-10-28 1999-11-09 Utah State University Compact X-ray fluorescence spectrometer for real-time wear metal analysis of lubrucating oils
EP1248950A2 (en) * 1999-06-29 2002-10-16 Carrier Corporation Biosensors for monitoring air conditioning and refrigeration processes
JP4456308B2 (ja) * 2001-12-05 2010-04-28 富士通マイクロエレクトロニクス株式会社 薬液供給装置
JP6264741B2 (ja) 2013-04-16 2018-01-24 横河電機株式会社 分光分析装置
JP6421661B2 (ja) * 2015-03-19 2018-11-14 株式会社島津製作所 示差屈折率検出器及び液体クロマトグラフ
CN107804938B (zh) * 2016-09-08 2022-05-13 松下知识产权经营株式会社 液体处理方法和液体处理装置
US10352865B1 (en) * 2017-04-13 2019-07-16 Mainstream Engineering Corporation Fluid flow cell and method for photometric analysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112785A (en) * 1977-03-14 1978-10-02 Takenori Tanimura Flow cell
JPH0763678A (ja) * 1993-08-31 1995-03-10 Olympus Optical Co Ltd 流体濃度測定用検出器
JPH07253391A (ja) * 1994-03-15 1995-10-03 Kubota Corp 濁度センサ−用測定セル
JPH1026584A (ja) * 1995-06-23 1998-01-27 Inter Tec:Kk フローセル
US5859430A (en) * 1997-04-10 1999-01-12 Schlumberger Technology Corporation Method and apparatus for the downhole compositional analysis of formation gases
JPH10325797A (ja) * 1997-05-26 1998-12-08 Dainippon Screen Mfg Co Ltd 流体濃度測定装置
JP2002243632A (ja) * 2001-02-20 2002-08-28 Kurabo Ind Ltd フローセル、検出装置及び液体試料測定装置
JP2005121499A (ja) * 2003-10-17 2005-05-12 Hitachi Software Eng Co Ltd 試料セル、光学測定装置及び光学的測定方法
JP2005214756A (ja) * 2004-01-29 2005-08-11 Moritex Corp 微量化学物質の濃度測定装置とその部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085865A1 (ko) * 2019-10-29 2021-05-06 (주)마이크로디지탈 흡광 분석 장치
US11977023B2 (en) 2019-10-29 2024-05-07 Micro Digital Co., Ltd. Absorbance spectroscopic device

Also Published As

Publication number Publication date
US20190302006A1 (en) 2019-10-03
US10921239B2 (en) 2021-02-16
JP6983709B2 (ja) 2021-12-17

Similar Documents

Publication Publication Date Title
JP6983709B2 (ja) 分析システム、及び分析方法
US20190041314A1 (en) Flow measurement and control for improved quantification of particles in flow cytometry
JP4897978B2 (ja) 検体の解析装置及び検体の解析方法
US8692993B2 (en) Optical flow cytometer and method of investigation
JP6581726B2 (ja) 自動分析装置及び自動分析方法
KR20210089164A (ko) 슬러리 모니터 커플링 벌크 크기 분포 및 단일 입자 검출
JP4915369B2 (ja) 粒度分布測定装置及びそれを用いた体積濃度算出方法
US20090116005A1 (en) Fine particle measuring method, substrate for measurement, and measuring apparatus
JP2019174338A5 (ja)
JP2015535087A (ja) 統合多重化測光モジュールのためのシステムおよび方法
WO2012172992A1 (ja) 検体検出装置に用いられるセンサーチップおよびセンサーチップを用いた検体検出装置
US9541489B2 (en) Optical measuring apparatus and specimen discriminating and dispensing apparatus
JP7232696B2 (ja) 光分析方法および光分析システム
JP6490817B2 (ja) 光検出装置
JP2007086035A (ja) 液体性状判定装置及び方法
US20050130319A1 (en) Molecular binding event detection using separation channels
CN105424847B (zh) 高效液相色谱逆流流动池
Schasfoort Surface plasmon resonance instruments
JP6904917B2 (ja) 反応システム及び反応方法
JP5443404B2 (ja) 蛍光検出装置、蛍光検出装置の診断方法、および蛍光検出方法
Jia et al. A spectIR-fluidic reactor for monitoring fast chemical reaction kinetics with on-chip attenuated total reflection Fourier transform infrared spectroscopy
JP2010243374A (ja) ナノ粒子の粒径測定装置及びナノ粒子の粒径測定方法
JP2009103624A (ja) マイクロ流路基板及びこれを配設した液体制御装置
JP2019178898A (ja) フローサイトメーター及び粒子検出方法
JP7075865B2 (ja) 光学分析装置、光学分析方法、及び光学分析システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211124

R151 Written notification of patent or utility model registration

Ref document number: 6983709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151