JP4897978B2 - 検体の解析装置及び検体の解析方法 - Google Patents

検体の解析装置及び検体の解析方法 Download PDF

Info

Publication number
JP4897978B2
JP4897978B2 JP2009225594A JP2009225594A JP4897978B2 JP 4897978 B2 JP4897978 B2 JP 4897978B2 JP 2009225594 A JP2009225594 A JP 2009225594A JP 2009225594 A JP2009225594 A JP 2009225594A JP 4897978 B2 JP4897978 B2 JP 4897978B2
Authority
JP
Japan
Prior art keywords
sample
specimen
light
nozzle
lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009225594A
Other languages
English (en)
Other versions
JP2009300458A (ja
Inventor
亨 高橋
健 月井
杰 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009225594A priority Critical patent/JP4897978B2/ja
Publication of JP2009300458A publication Critical patent/JP2009300458A/ja
Application granted granted Critical
Publication of JP4897978B2 publication Critical patent/JP4897978B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/65Mixers with shaking, oscillating, or vibrating mechanisms the materials to be mixed being directly submitted to a pulsating movement, e.g. by means of an oscillating piston or air column
    • B01F31/651Mixing by successively aspirating a part of the mixture in a conduit, e.g. a piston, and reinjecting it through the same conduit into the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1425Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement
    • G01N15/1427Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement with the synchronisation of components, a time gate for operation of components, or suppression of particle coincidences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N15/1436Optical arrangements the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1027Determining speed or velocity of a particle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1062General features of the devices using the transfer device for another function for testing the liquid while it is in the transfer device

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は検体(凝集検体)の分離方法、識別方法、分注方法および各方法を実施するための装置及び解析装置に関するものである。
検体の分離・識別・分注に用いられる従来のセルソーターは、大まかに分離部と、検出部と、分注部とから構成されている。
まず、図41を参照して分離部について説明する。まず、試験管241中に存在する凝集検体243を均一化させるため、試験管241を振動させるか、もしくは試験管241内を攪拌する。続いて、試験管241内の凝集検体243を、ピペット245で繰返し吸引・吐出251する。凝集検体247は、この吸引・吐出251を繰返すことによりせん断応力を受けるため、単一検体249に分離されることになる。この方法では、凝集検体247の表面側に位置する単一検体はせん断応カを受け易いため、単一検体249に分離されやすい。しかしながら、凝集検体247の中心に位置する単一検体は、凝集検体247の分離が終了するまで、常に高い圧迫力を受けることになる。
次に、図42により検出部について説明する。検出部201において、分離された検体211が収容されている容器を、例えば、加圧空気215を用いて加圧すると、検体211はノズルの吐出・吸入口214から流入してノズルを上昇する。ノズルの吐出・吸入口214から流入された検体211は、モニタ光203が照射され、照射されることにより蛍光・散乱光205が発生する。この蛍光・散乱光205を検出することにより、検体一つ一つの判定を行う。この際、検体211を含む試料流207は、シース流209で包み込まれるが、試料流207およびシース流209の流速を制御し、試料流207の幅を検体211が1個ずつ流れる程度に制卸する。これは検体一つ一つに対して、モニタ光203を照射させるためである。
次に、図43により分注部について説明する。分注部221で検体を分注する。まず排出部223にて超音波振動を加えて液滴を形成する。次に、超音波振動により形成きれた液滴225に、例えば数百ボルトの電荷を与える。ついで、偏向板227より数千ボルトの電圧を印加し、それぞれの液滴の落下方向をプラス極側229とマイナス極側231に分けて容器233、235に分注する。
山下達郎、丹羽真一郎、細胞工学 Vol.16.No.10 p1532-1541,1997
従来のセルソーターは、前述のように分離部と、検出部と、分注部に分けられるが、以下に示す問題点を持つ。
まず従来の分離部では、試験管の振動、試験管内の攪拌、ピペットの吸引・吐出が、いずれも手作業であり、定量性がなく、再現性に欠け、さらには分離効率が悪いという問題がある。また、分離状態が確認できないため、確実に単一検体に分離されているかどうかの確認ができない。
次に従来の検出部では、流路外部から検体211にモニタ光203を照射させ、発生された蛍光・散乱光205の受光を流路外部で行うため、モニタ光203の照射効率が低いことと、蛍光・散乱光205の受光感度が低いという問題がある。また、試料吸引部から測定点までの距離213が長く、多量の試料、例えば数ml程度を流さないと測定できないという問題点があった。
次に従来の分注部では、分注時に高周波振動や数千ボルトという高い電荷が検体にかけられる。そのため、例えば、検体例として生細胞を用いた場合、分注後の検体の死亡率が高く、また生きている検体も確実に正常な状態である保証がないという問題があった。
前記課題を解決するために本発明の第1の態様は、検体塊をより小さい検体塊または前記検体に分離する検体塊分離装置と、分離された前記検体と前記検体塊に対する所望の測定対象項目を測定する検体識別装置と、前記検体識別装置の動作を制御する制御手段と、を備える検体の解析装置であって、
前記検体塊分離装置は、前記検体と前記検体塊を含んだ液体が収容されている容器と、前記容器から前記検体と前記検体塊を吸引、吐出するためのノズルと、前記ノズルを上下左右に動かすためのノズル動作手段と、前記ノズルの吸引力、吐出力を制御するためのノズル制御手段と、を有し、
前記検体識別装置は、前記検体塊分離装置によって分離された前記検体と前記検体塊を供給する検体供給源と、検体供給源に存在する前記検体と前記検体塊を含む試料に一端を接触させて該試料を他端へ導入する検体導入ノズルと、前記検体導入ノズルの前記他端が一部に差し込まれ、且つ前記他端から供給された前記試料の流れを前記検体と前記検体塊の識別要素の識別に適した形状にする流路と、前記検体と前記検体塊の前記識別要素を光情報として検出する受光部が前記流路の周囲の一部に設置され、前記受光部で得られた前記光情報に基づいて前記検体と前記検体塊に対する所望の前記測定対象項目を測定する識別部と、を有し、
前記検体塊分離装置は、前記ノズルの位置から前記容器の内壁面までの距離及び前記検体塊の大きさを含む各種データに基づいて、前記ノズルの位置及び前記ノズルの吸引力、吐出力を、前記ノズル動作手段及び前記ノズル制御手段によって調整しながら、前記ノズルによる前記検体と前記検体塊の前記容器からの吸引と、吸引した前記検体と前記検体塊の前記ノズルから前記容器への吐出と、前記容器の内壁面と前記検体塊との衝突とを繰返して、前記検体塊にせん断応力及び前記容器の内壁面に前記検体塊を衝突させることによる引張り応力を発生させて、前記検体塊を分離させることを特徴とする検体の解析装置である。
ここで、検体と検体塊に対する所望の測定対象項目とは、検体と検体塊の形状や大きさ、検体と検体塊の流速等のことである。
本発明の第2の態様は、本発明の第1の態様において、前記検体識別装置の前記識別部の前記受光部が、前記流路を形成する壁面よりも当該流路内に該受光部の一部が露出すように設置され、前記流路を形成する材料層を介さずに前記光情報を直接検出することを特徴とする検体の解析装置である。
本発明の第3の態様は、本発明の第1又第2の態様において、前記検体識別装置の前記検体供給源が、試料容器および試料供給ノズルを複数備え、複数の前記試料容器のうち少なくとも一つの前記試料容器には前記検体または前記検体塊が収容され、その他の前記試料容器には液体が収容され、前記複数の試料供給ノズルは互いに接続されて下流側で前記検体導入ノズルの前記一端に繋げられていることを特徴とする検体の解析装置である。
本発明の第4の態様は、本発明の第1又第2の態様において、前記検体識別装置の前記検体供給源が、少なくとも1つに前記検体または前記検体塊を含む液体が流される複数の試料供給ノズルを備え、複数の前記試料供給ノズルの各々を流れる液体の合流位置又はその近傍には乱流発生用の凹部又は凸部のうち少なくとも一方が設けられてその下流側で前記検体導入ノズルの前記一端に接続されていることを特徴とする検体の解析装置である。
本発明の第5の態様は、本発明の第1乃至第4のいずれか1つの態様において、前記検体塊分離装置が、前記ノズル内を流れる前記検体と前記検体塊の識別要素の有無もしくは光に対する反応を識別するためのモニタ光照射部および受光部を備え、前記モニタ光照射部によってモニタ光を前記検体と前記検体塊に照射して、前記受光部によって前記検体と前記検体塊による該モニタ光の変化を計測しながら得た光情報を、前記各種データの一部として利用して、前記検体塊を分離させることを特徴とする検体の解析装置である。
本発明の第6の態様は、本発明の第1乃至第5のいずれか1つの態様の検体の解析装置を用いて、前記検体の分離及び識別を行う検体の解析方法であって、
(a)検体塊をより小さい検体塊または前記検体に分離する工程と(b)測定対象の少なくとも1つ以上の前記検体または前記検体塊を含む試料を、検体供給源から取り出して流路内に流す工程と、(c)受光部によって前記流路内を流れている前記検体と前記検体塊の識別要素を光情報として検出し、前記受光部で得られた前記光情報に基づいて前記検体と前記検体塊に対する所望の測定対象項目を測定する工程と、を備え、
前記工程(a)は、(a1)前記検体と前記検体塊を含んだ液体が収容されている容器から吸引力を、ノズルの先端から前記容器の内壁面までの距離及び前記検体塊の大きさを含む各種データに基づいて調整しながら前記ノズルで前記検体と前記検体塊を吸引する工程と、(a2)吸引した前記検体と前記検体塊を前記ノズルから吐出力をデータに基づいて調整して前記容器に吐出する工程と、(a3)前記容器の内壁面に衝突させて前記検体塊を分離する工程と、を備え、各工程(a1)乃至(a3)を繰返して前記検体塊にせん断応力及び前記容器の内壁面に前記検体塊を衝突させることによる引張り応力を発生させて、前記検体塊を分離させることを特徴とする検体の解析方法である。
本発明の第7の態様は、本発明の第6の態様において、前記検体と前記検体塊にモニタ光を照射し、前記検体と前記検体塊による該モニタ光の変化を計測しながら前記検体塊を分離させることを特徴とする検体の解析方法である。
本発明の第8の態様は、本発明の第1乃至第5のいずれか1つの態様において、前記検体識別装置が、前記検体導入ノズル、前記流路、前記識別部及び前記検体供給源のうち少なくとも一つを上下又は左右に可動させる可動手段を備えていることを特徴とする検体の解析装置である。
本発明の第9の態様は、本発明の第1乃至第5のいずれか1つの態様、もしくは、本発明の第8の態様において、微細な前記流路内を流れる前記検体の識別要素を識別する識別領域において、前記検体を前記該微細流路の中心から偏心させて流すことを特徴とする検体の解析装置である。
本発明の第10の態様は、本発明の第1乃至第5のいずれか1つの態様、もしくは、本発明の第8または第9の態様において、微細な前記流路内を流れる前記検体の識別要素を識別する識別領域において、測定対象の前記検体を回転させながら流すことを特徴とする検体の解析装置である。
本発明の第11の態様は、本発明の第1乃至第5のいずれか1つの態様、もしくは、本発明の第8乃至第10のいずれか1つの態様において、前記流路内に測定対象となる前記検体を流し、前記検体からの光の変動を測定し、その測定結果により前記検体の識別要素を識別することを特徴とする検体の解析装置である。
本発明の第12の態様は、本発明の第11の態様において、前記検体からの前記光情報は、蛍光、透過光、散乱光のうち少なくとも1つ以上の情報であり、前記光情報に基づいて前記検体の識別要素を識別することを特徴とする検体の解析装置である。
本発明の第13の態様は、本発明の第11又は第12の態様において、前記検体からの前記光情報は、前記流路の周囲の一部において、前記流路の中心軸に垂直な面に対して斜に傾く光軸を有する光ファイバからなる前記受光部によって受光されることを特徴とする検体の解析装置である。
本発明の第14の態様は、本発明の第11又は第12の態様において、前記検体にモニタ光を照射し、前記モニタ光の直進方向の領域の少なくとも一部が遮光部で覆われた光ファイバからなる前記受光部を前記流路の周囲の一部に配置することを特徴とする検体の解析装置である。
本発明の第15の態様は、本発明の第11又は第12の態様において、前記受光部が光ファイバからなり、前記光ファイバの端面が前記流路の壁面に露出して設置され、前記端面により前記検体からの前記光を受光することを特徴とする検体の解析装置である。
本発明の第16の態様は、本発明の第13乃至第15のいずれか1つの態様において、前記光はコアの端面形状が四角形の光ファイバの端面により受光され、前記コアの前記四角形のうちの対向2辺を前記流路に沿って配置することを特徴とする検体の解析装置である。
本発明の第17の態様は、本発明の第16の態様において、前記四角形のうち前記流路を横切る方向に延びる残りの2辺は、前記流路の幅よりも広いことを特徴とする検体の解析装置である。
本発明の第18の態様は、本発明の第11又は第12の態様において、前記受光部は光ファイバからなり、前記流路内の前記検体にモニタ光照射部からモニタ光を照射し、前記モニタ光の直進方向に対して側方に前記光ファイバの端面の中心を合わせて配置することを特徴とする検体の解析装置である。
本発明の第19の態様は、本発明の第18の態様において、前記別の光ファイバの前記端面は、前記モニタ光の前記直進方向に対して45〜135°又は225〜315°の範囲内に前記中心を合わせることを特徴とする検体の解析装置である。
本発明の第20の態様は、本発明の第11又は第12の態様において、前記流路内の前記検体にモニタ光照射部からモニタ光を照射し、前記モニタ光の直進方向に対して前記流路の上流、下流のいずれかの方向にずれて配置される光ファイバからなる前記受光部を有することを特徴とする検体の解析装置である。
本発明の第21の態様は、本発明の第11又は第12の態様において、前記流路内に測定対象の前記検体を流し、前記検体の進行方向に垂直な平面上に光軸を設定して複数方向からモニタ光を前記検体に照射することを特徴とする検体の解析装置である。
本発明の第22の態様は、本発明の第11又は第12の態様において、モニタ光を照射することにより得られる前記検体からの前記光の2つ以上の要素の変動を同時に測定し、これにより得られる測定結果に基づいて検体の識別要素を識別することを特徴とする検体の解析装置である。
本発明の第23の態様は、本発明の第11乃至第22のいずれか1つの態様において、前記検体から得られる前記光に基づく任意の値および変動時間を含む変動パターンを測定することを特徴とする検体の解析装置である。
本発明の第24の態様は、本発明の第1乃至第5のいずれか1つの態様、もしくは、本発明の第8乃至第22のいずれか1つの態様において、流路内に測定対象の検体を流し、前記検体にモニタ光を照射し、モニタ光を照射することにより得られる検体からの光の情報を、検体の流れる方向に対して、前記モニタ光の光軸を含む検体進行方向と垂直な平面上とは異なる少なくとも一箇所以上の受光部で測定し、その測定結果により検体の識別要素の有無もしくは程度を識別することを特徴とする検体の解析装置である。
本発明の第25の態様は、本発明の第1乃至第5のいずれか1つの態様、もしくは、本発明の第8乃至第22のいずれか1つの態様において、モニタ光を照射することにより得られる検体からの光の情報を、モニタ光の光軸を含む検体進行方向と垂直な平面の流路の中央を中心として、検体進行方向に対し±45°以上の領域に位置する流路内壁で測定することを特徴とする検体の解析装置である。
本発明の第26の態様は、本発明の第20乃至第25の態様のいずれか1つの態様において、前記モニタ光を集光させずに検体に照射することを特徴とする検体の解析装置である。
本発明の第27の態様は、本発明の第1乃至第5のいずれか1つの態様、もしくは、本発明の第8乃至第26のいずれか1つの態様において、流路内に測定対象の少なくとも1つ以上の検体を流し、前記検体の進行方向に対して異なる少なくとも2箇所以上の位置に配置された各受光部で、検体より得られるそれぞれの光情報を測定し、各受光部で得られた光情報の測定時差と、各受光部の間隔から流速を測定することを特徴とする検体の解析装置である。
本発明の第28の態様は、本発明の第27の態様において、前記検体の進行方向に対して異なる少なくとも2箇所以上からモニタ光を照射し、前記モニタ光を照射することにより前記検体から得られる光情報を、検体の流れる方向に対して、モニタ光の光軸を含む検体進行方向と垂直な平面上に配置された各受光部で測定し、各受光部で得られた光情報の測定時差と、各受光部の間隔から流速を測定することを特徴とする検体の解析装置である。
本発明の第29の態様は、本発明の第1乃至第5のいずれか1つの態様、もしくは、本発明の第8乃至第28のいずれか1つの態様において、前記検体識別装置によって測定された前記検体の測定対象項目の結果に基づいて、目的検体と非目的検体とに分注する検体分注装置を更に備えていることを特徴とする検体の解析装置である。
本発明の第30の態様は、本発明の第29の態様において、前記検体塊分離装置、前記検体識別装置及び前記検体分注装置を自動制御し、検体の分離・識別・分注を全自動で行うことを特徴とする検体の解析装置である。
本発明の第31の態様は、本発明の第6または第7の態様において、前記工程(c)の後に、
(d)前記工程(c)によって測定された前記検体の測定対象項目の結果に基づいて、前記目的検体と前記非目的検体とに分注する工程を備えていることを特徴とする検体の解析方法である。
本発明の検体分離装置およびその方法では、検体を吸引・吐出するノズルの位置を調整しながら、容器の内壁面(底面や側面等)に凝集状態の検体を衝突させて小さな凝集検体集団(もしくは単一検体)に分離するため、凝集状態の検体に最適なせん断応力を与えて分離させることができる。この結果、吸引・吐出作業の回数も最適化され、余計な負荷を検体に与えずに検体を分離することができる。
また、検体の分離は、検体の大きさを監視しながら行うことが可能であるため、凝集状態の検体が任意の凝集形態になった時点、例えば単一検体に分離された時点で終了させることができる。この結果、不必要な検体分離を行わずにすみ、吸引・吐出作業の回数も最適化され、余計な負荷を検体に与えずに検体を分離することができる。
本発明の検体識別装置およびその方法では、流路壁面から直接モニタ光の照射や蛍光・透過光の受光を行うことができるので、モニタ光照射効率の向上、蛍光・透過光の受光効率の向上を図ることができる。また、検体識別装置を小型化することができるので、検体を含んだ試料の量が少なくても、検体の識別を行うことができる。さらに、検体を含んだ試料が収容される容器が複数配置され、この容器に収容された試料のうち少なくとも一つには検体が含まれ、他の容器には検体が含まれていない試料を収容させることにより、検体を含んだ試料の量が少ない場合でも、検体識別装置に試料を流すことが可能であるため、検体の識別作業を行うことができる。
本発明の検体分注装置およびその方法では、識別部で検体の流速を測定し、そこから分注ノズル先端までの検体の到達時間を算出し、検体が分注ノズル先端に到達するタイミングで回収容器を作動させることができるため、回収が必要な検体が流れてきた場合は回収容器を作動させて回収し、採取不要な検体が流れてきた場合は排液用容器に廃棄することができる。このため、従来法のように、高周波振動や数千ボルトという高い電荷等の余計な負荷が検体にかけられることがない。また、分注ノズルの先端位置を制御することが可能で、さらに分注ノズルからの検体を含む液滴もしくは液流状態を制御することも可能である。このため、分注ノズルから検体を含む液滴もしくは液流を連続的に回収容器もしくは排液槽に流すことができる。この結果、分注後の検体は、死亡率が低くなり、また正常
な状態で採取することができるだけでなく、液滴が形成されるまで待たずに分注、廃棄を行うため、高速な分注を行うことができる。
本発明では、検体分離装置と、検体識別装置と、検体分注装置とを組合せることにより、例えば、幹細胞の細胞塊から単一細胞を採取する場合、上述の通り、ダメージを与えることなく細胞塊から単一細胞を取得することができる。また、各装置の条件を連動制御することにより、細胞塊から単一細胞を採取するまでを、全自動で行うことも可能である。
本発明の実施形態に係る検体分離装置を示す断面図である。 本発明の実施形態に係る検体分離装置の動作説明図である。 本発明の実施形態に係る攪拌装置の構成図である。 本発明の実施形態に係る検体識別装置の一例を示す構成図である。 本発明の実施形態に係る検体識別装置を用いた場合の散乱光の説明図である。 本発明の実施形態に係る検体識別装置を用いて得られる検出信号の波形図である。 本発明の実施形態に係る検体識別装置を用いて2つの検体について得られる第1例の波形図である。 本発明の実施形態に係る検体識別装置を用いて2つの検体について得られる第2例の波形図である。 本発明の実施形態に係る検体識別の1つの光照射位置と複数の受光位置の配置関係の第1例、第2例を示す側面図である。 本発明の実施形態に係る検体識別の2つの受光位置における受光強度の変化を示す波形図である。 本発明の実施形態に係る検体識別装置における光ファイバの取り付けの一例を示す断面図である。 本発明の実施形態に係る検体識別装置における受光用光ファイバコアの一般的な形状を示す端面図である。 本発明の実施形態に係る検体識別装置の受光用光ファイバコアの好ましい形状を示す端面図である。 本発明の実施形態に係る検体識別装置を示す斜視図である。 本発明の実施形態に係る検体識別装置の検体導入用ノズルの配置の変形例を示す側断面図である。 本発明の実施形態に係る検体識別装置の検体供給経路の範囲を示す側断面図及び横断面図である。 本発明の実施形態に係る検体識別装置の検体の回転状態を示す動作説明図である。 本発明の実施形態に係る検体識別装置の検体供給系の動作説明図である。 本発明の実施形態に係る検体識別装置における光照射位置と受光位置の関係を示す第1例の構成図である。 本発明の実施形態に係る検体識別装置における光照射位置と受光位置の関係を示す第2例の構成図である。 本発明の実施形態に係る検体識別装置における光照射位置と受光位置の関係を示す第3例の構成図である。 本発明の実施形態に係る検体識別装置における光照射位置と受光位置の関係を示す第4例の構成図である。 本発明の実施形態に係る検体識別装置における光照射位置と受光位置の関係を示す第5例の構成図である。 本発明の実施形態に係る検体識別装置における光照射位置と受光位置の関係を示す第6例の構成図である。 本発明の実施形態に係る検体識別装置における光照射位置と受光位置の関係を示す第7例の構成図である。 本発明の実施形態に係る検体識別装置の一例を示す斜視図である。 本発明の実施形態に係る検体識別の説明図である。 本発明の実施形態に係る検体識別試料の搬送装置の第1例を示す構成図である。 本発明の実施形態に係る検体識別試料の搬送装置の第2例を示す構成図である。 本発明の実施形態に係る検体識別試料の搬送装置の第3例を示す構成図である。 本発明の実施形態に係る検体分注装置の第1例を示す構成図である。 本発明の実施形態に係る検体分注装置の第2例を示す構成図である。 本発明の実施形態に係る検体分注方法の第3例を示す構成図である。 本発明の実施形態に係る検体分注装置の第4例を示す構成図である。 本発明の実施形態に係る検体分注装置の第5例を示す構成図である。 本発明の実施形態に係る検体分注装置の第6例を示す構成図である。 本発明の実施形態に係る検体分注装置の第7例を示す構成図である。 本発明の実施形態に係る検体分注装置の第8例を示す構成図である。 本発明の実施形態に係る分離、識別、分注及び制御手段のブロック図である 本発明の実施例に係る分析装置の構成図である。 従来例の攪拌例である。 従来例の検体識別例である。 従来例の検体分注例である。
以下に本発明の実施形態を、図面を参照して説明する。なお、本発明でいう検体とは、粒子状の物体、例えば、0.1μm〜500μm程度の大きさの有機物、例えば細胞等、無機物、例えばポリスチレン、発泡性物質、磁性物質等、金属およびその他の物質、又は、これらが液体中に懸濁した状態を示す。また、検体は、その識別要素の有無もしくは程度が標識されているもの、もしくは自然発光するものを示す。この場合、検体は複数の識別要素の有無もしくは程度の組み合わせで標識化されてもよく、また、複数種類の標識要素をもつ検体を複数存在させてもよい。さらに、凝集検体とは、前記検体が凝集した0.2μm〜10mm程度の大きさの物質、又は、これらが液体中に懸濁した状態のものである。
検体の解析は、以下に示す装置を用いることにより、凝集検体から単位検体を分離し、分離された検体を識別し、識別された検体を分注するステップを経て行われる。
そこで、微小物の解析装置に適用される検体の分離、識別、分注等の方法及び装置について順に説明する。
(検体分離)
まず、図1を参照し、本発明の検体の分離の一実施形態について説明する。分離は、分離および攪拌で構成される。円筒形状のノズル1は、図2,図3に示すように、その下端を容器11内の検体含有溶液に漬けてその溶液中の検体を吸引したり、吐出するために使用され、例えばステンレスから構成されている。ノズル1は、ノズル1を上下左右に動かすためのノズル動作手段5に取り付けられている。また、ノズル1には、検体をノズル1内に吸引したり、ノズル1内から外に吐出するための吸引、吐出力を制御するための吸引・吐出制御手段7が取り付けられている。吸引・吐出制御手段7の吸引・吐出条件とノズル動作手段5のノズル1の移動条件は、検体分離制御回路8により制御される。なお、ノズル1の壁面には、必要に応じて、1組の光ファイバ3が対向配置され、一方の光ファイバ3からモニタ光4が照射され、もう一方の光ファイバ3で受光する構成であり、ノズル1内を流れる検体の識別要素の有無もしくは程度を検出している。
図2の模式図により、本発明の検体の分離方法について説明する。
容器11内の検体含有溶液中に下端部が漬けられたノズル1内の凝集状態の検体9は、前記吸引・吐出力制御手段7を用いてノズル1から吐出され、容器11の底面又は側面等に衝突させる。なお、図2では、容器11の底面に衝突させた場合を示している。容器11の底面に衝突された凝集状態の検体(細胞塊)9は、衝突時に発生する引張応力13により第一回目の分離が行われる。この吸引・吐出を必要に応じて数回繰り返すことにより、分離の工程は終了となる。なお、検体9を凝集状態から任意の凝集状態に分離させるには、吸引・吐出の繰返しの回数と、引張力13とを制御すれば良いが、繰返しの回数は、検体9の凝集状態を、必要に応じて、図1に示した光ファイバ3およびモニタ光4を用いて観察すれば良い。また、引張力13は、ノズル動作手段5によりノズル1の高さを調整
することによるその先端から容器11の底面までの距離17と、吸引・吐出力制御手段7により吐出力を調整することにより制御される。吸引・吐出の繰返し回数と引張力13を調整することにより、検体は、短時間で、余計な負荷がかからない最適な条件で、任意の凝集状態に分離されることになる。過大な負荷は、検体9の損傷の原因となるからである。
上記の検体の観察は、図1に示した光ファイバ3を通してモニタ光を検体に照射することにより得られる検体からの光情報を測定するものである。
光情報とは、主に識別要素の有無もしくは程度のことであり、例えば、検体自体についての、又は検体が有する識別物質についての大きさの程度、その材料の屈折率、反射率、磁化率、電場もしくは磁場の強度、又は電磁波(電波、紫外線、X線等)もしくは蛍光の波長、電磁波の強度等の性質の有無又は程度のことを示すものである。また、光情報は、検体にモニタ光を照射することにより得られるもの、もしくは検体自体が自然発光するものを含み、例えば、透過光、散乱光(前方散乱光、側方散乱光、後方散乱光)、吸収、電磁波、波長範囲、蛍光等の性質の有無又は程度のことも含まれる。
電磁波とは、検体自体又は検体が有する識別物質から自己発生される場合に限らず、検体又は前記標識物質以外からの電磁波の影響を受けて(例えば、反射、透過、遮蔽、吸収等)標識化される場合を含むものである。
検体の観察に使用されるモニタ光4は、レーザ光源、キセノンランプやキセノン水銀ランプ等の光源を用いることが望ましい。モニタ光4の照射面および受光面(測定点)は後述の検体識別装置での説明と同様にノズル1の内壁面に露出する状態で取り付けられている。これは、検体のより近くでモニタ光の照射および受光を行うためである。また、一対の光ファイバ3の各端面である照射面と受光面は検体流路を挟んで対向配置され、モニタ光の光路は、照射面からノズル1の中心を通って受光面に至ることが望ましい。ただし、検体がノズル(流路)1の中心を流れない場合はこれに限らず、モニタ光の光路は、検体が流れる場所を通るように設定させれば良い。つまり、検体の流れる場所に応じて、ノズル1内のモニタ光の光路が決定され、この光路により照射面および受光面の形成位置が決定されることになる。なお、図示しないが、この照射面および受光面は、必要に応じて流路方向に多段で壁面に設けられていても良い。この構造にすると、同一波長で測定すれば2重、3重の測定になるため信頼性が向上し、多くの情報量が得られる。また、異なる波長で測定すれば波長に応じた情報が得られ、また多くの情報を得られる。
ノズル1により吸引され、その後に吐出された凝集状態の検体9がその吐出力により容器11の底面に衝突すると、検体9は底面から衝突力15が与えられることになる。この場合、凝集状態の検体9の分離に必要な力以上の余分な負荷が検体9にかからないようにするため、検体9の凝集の大きさ(凝集状態)に応じて、吐出力の調整とともに、ノズル1の先端から容器11の底面までの距離17を制御する。つまり、検体9の損傷を最低限に抑えながら凝集状態を分離させる場合は、吸引・吐出の繰返し回数と、引張力13の他に衝突力15を調整する必要がある。いずれの場合も、距離17と吐出力吸引・吐出力制御手段により吐出力を制御すれば良い。なお、予め最適条件を把握し、距離17と、吐出力と、繰返し回数を自動制御させても良い。
さらに、上記ノズル1から吐出された検体9は、容器11の底面に衝突してさらにノズル1に吸引される間に、検体9の周囲の液体12からせん断応力19を受ける。この液体12から受けるせん断応力19は、凝集状態の検体9を分離させる。つまり、この検体分離装置では、検体が容器11の底面に衝突する際に発生する衝突力および引張力13だけでなく、検体をノズル1から吐出・吸引する際に周囲の液体12から受けるせん断応力により分離されることになる。そのせん断応力は、液体12の圧力によって相違するので、ノズル1と容器11の底面との距離17の最適な条件を選択する必要がある。そして、凝集状態の検体9は、任意の凝集状態、例えば単一状態の検体21に分離されるまで、ノズル1に吸引、ノズル1から吐出、容器11の底面へ衝突の各工程が繰返される。
なお、ノズル1の形状は、特に限定されるものではなく、内側に液体を流すための流路が形成されたパイプ状のもので、その側面から光ファイバ3の照射面および受光面が露出することができれば良い。例えば、ノズル1の横断面形状は、円筒形、正方形、矩形等、特に限定されるものではない。また、ノズル1の内壁面は、図2では平滑なものを示したが、これに限定されず、より吸引・吐出の際の検体分離効率を上げるために、凹凸、波型、もしくは突起部等を形成させてもよい。
次に、図3を参照して、検体分離装置の後段であって検体識別装置の前段に、必要に応じて配置される検体の攪拌作業について説明する。まず、図3(a)に示したように、ノズル1の先端を容器11内の溶液に浸漬させ、ノズル1の内部に検体21を含ませる。次いで、ノズル動作手段5によりノズル1を上昇させながら、検体21を容器11内に吐出23させる。
次いで、図3(b)に示すように、ノズル1をノズル動作手段5により下降させながら検体21を吸引25する。次いで、ノズル1を上昇させながら検体21を吐出し、またノズル1を下降させながら検体21を吸引することにより行う。この操作を数回繰返すことにより、容器11内の検体21が攪拌される。本方法によれば容器11内に検体21を均一に分散させることができる。
以上の条件は検体の種類、例えば細胞の種類によって異なるので、図1に示すように、検体分離制御回路8は検体毎に分離条件を予め実験により求めてデータとしてメモリ10に蓄積し、そのデータに基づいて検体分離制御回路8は吸引・吐出力制御手段7、ノズル動作手段5を制御する。
(検体識別)
次に、図4を参照し、本発明の検体識別装置について説明する。検体識別は、大きく別けて、識別工程および搬送工程で構成される。
まず、検体識別装置について説明する。
図4(a)に示す検体識別装置は、容器11の開口端を覆う蓋体28と、蓋体28の一部に設けられるガス導入口29と、蓋体28を貫通して容器11内の液状の試料49に一端が差し込まれる検体導入ノズル45と、検体導入ノズル45の他端がテーパー部に差し込まれる層流孔40と、層流孔40の内側の壁面52から露出する検出光照射用の光ファイバ31a及び検出光受光用の光ファイバ31bとを有している。その層流孔40は、管又はブロックの中に形成された孔であって、内径が0.1mm程度の測定部と、測定部から下方に広がるテーパー部とを有していて、テーパー部の下方からシース流形成用液体、例えば水が上に向けて導入される。また、そのテーパー部には検体導入ノズル45の他端が差し込まれる。層流孔40と検体導入ノズル45は例えばステンレスから構成される。
検出光照射用の光ファイバ31aの照射端面と検出光受光用の光ファイバ31bの受光端面は、それぞれ、図4(b)に示すように、層流孔40内を流れる微細流路51に接する状態で取り付けられている。
次に、搬送工程について説明する。図4(a)に示すように、加圧空気47を用いて容器11内を加圧すると、容器11内で検体21を含む液状の試料49は検体導入ノズル45の吸入口53から流入して検体導入ノズル45内を上昇する。すると、層流孔40のテーパー部においてシース流41と出合って試料流39を形成して上昇48し、識別部に向けて搬送される。層流孔40の識別部では、検体21を含む試料流39がシース流41に囲まれた状態で流れて微細流路51となる。
次に、識別工程について説明する。識別工程は、搬送工程から搬送された検体を識別(観察)する工程である。検体21が含まれた試料49は、層流孔40の測定部内の微細流路51を流れる際に、検出光照射用の光ファイバ31aからモニタ光33が照射される。この際、検体21から発生する蛍光もしくは透過光を検出光受光用の光ファイバ31bで受光することにより、検体21の識別を行うことができる。なお、モニタ光33は、検体21が測定部に到達した時点で照射するか、もしくは常時照射していても良い。また、検体21がモニタ光33を照射させなくても自然発光する場合は、モニタ光33を照射させなくてもよい。
本発明では試料流39を挟んで対向配置された2本の光ファイバ31a,31bを1組として一つの測定部とする。この測定部を構成する光ファイバ31a,31bは、その先端が、図4(b)に示すように微細流路51に接して設置されている。微細流路51が接する壁面52に光ファイバ31a,31bを設置することにより、モニタ光33は図4(a)に示すように空気層、透明部材を伝搬せずに璧面52から検体21に直接照射され、そして透過光35や蛍光37も、モニタ光33と同様に空気層を伝搬せずに受光されることになる。このため、このような構造にすると、モニタ光の照射効率、そして蛍光・透過光の受光効率を向上させることが可能となる。
なお、図4(b)では、光ファイバ31a、31bを層流孔40に直接取り付けた状態を示しているが、光ファイバ31a、31bがブロックに取り付けられている場合には、ブロックが層流孔40内に取り付けられる。
試料流39内を流れる検体21の形状測定を行う場合は、上述の測定と同様に、検体21に対し壁面52からモニタ光4を照射させ、図5に示すように、検体21からの透過光35もしくは散乱光(前方散乱光、後方散乱光、側方散乱光)を用いればよい。この場合、モニタ光33の光ファイバ31a,31bの照射部と受光部(図5では透過光および前方散乱光の受光部)の光軸を一致させて両者を配置させ、照射部と受光部の光軸上に位置する検体流路を検体21の測定点とする。検体21がこの測定点を通過すると、受光部での受光量が変動(受光量が増減)することになり、この受光量の変動を検出することにより、検体の形状測定を行うことができる。例えば、検体21が非透過性の物質であれば、検体21が測定点を通過すると、受光量の損失が見られることになる。また別の例として、図6のような透過光信号が検出された場合、その信号の変化時間をΔt、ピーク値をΔP、また波形そのものの形状(変動パターン)からその形状、大きさを識別することも可能である。なお、受光部では、検体からの前方散乱光、もしくは透過光を受光するが、透過光を利用した方が、表面状態の影響を受けにくいため、より精度良く形状の測定を行うことが出来る。
また、上述では、モニタ光の前方散乱光もしくは透過光の一方の受光量変動を測定したが、両者の受光量の変動を測定することにより検体の形状測定を行っても良い。両者の受光量の変動を測定することにより、検体の形状に関するより多くの情報が得られるので、より精確な形状測定を行うことができる。
さらに、図5に示すように、モニタ光4を検体21に照射し、透過光35の受光量変動を測定するとともに、検体21からの後方散乱光の受光量変動を測定しても良い。なお、後方散乱光は、モニタ光4の照射側(モニタ光33の光源側)に非相反光デバイスを介して受光部を設置し、モニタ光33が伝搬される光ファイバ31a内を伝搬させて受光部にて受光量の変動を測定する。この場合、光ファイバ31aとは別の光ファイバ、もしくは光導波路手段を用いて後方散乱光を受光部まで伝搬させてもよい。なお、非相反光デバイスは一方の方向の光を通し、逆方向の光を通過させないものである。
上述のように、透過光と後方散乱光の受光量変動を測定すると、後方散乱光の受光量の変動測定結果を用いて、透過光の受光量の変動測定結果を補正することが出来るので、より精度の良い検体の測定ができる。例えば、図7(a)、(b)のグラフは、大きさが同一である2つの検体A,Bの透過光の受光パワー変動を測定した結果を示している。
このグラフからわかるように、検体A,Bの大きさが同一だとしても、透過光の受光パワー変動は異なる場合がある。例えば、図7(a)に示すサンプルAの透過光は50%の損失で、図7(b)に示すサンプルBの透過光は20%の損失である。これは、透過光の受光パワー変動は、検体の状態(透過率、吸収等)により影響を受けるからである。このため、検体の状態を検出(認識)するために、例えば図8(a)、(b)に示すように、サンプルA,Bにより生じた後方散乱光の受光パワー変動を測定する。言い換えると、後方散乱光の受光パワー変動の測定結果から、検体の状態(透過率、吸収等)を検出(認識)することが可能である。後方散乱光の受光量変動の測定結果を利用して、透過光の受光量変動の測定結果を補正することにより、より精確な検体の形状測定が可能となる。
サンプルAとサンプルBのそれぞれの識別要素は、図7、図8によれば、後方散乱光の分布は透過光の分布を補う形状となっている。そこで、その相関関係を予め測定したデータの蓄積によって求めることにより、サンプルAとサンプルBがほぼ同じ大きさと計算することができる。
なお、上述した検体の測定において、受光量が変動する時間と度合いは、検体の大きさ、形状や状態によって異なる。つまり、この受光量の変動している時間と度合いを測定することにより、検体の大きさ、形状等を精確に測定することが可能となる。この測定では、透過光を用いると、検体が蛍光等で標識されていなくても測定が可能である。このため、検体の蛍光等による標識の手間を省くことが出来るので、コスト等の削減にもつながる。また、標識できない検体の形状測定も可能となる。
さらに、モニタ光の受光量の変動により検体の大きさ、形状や状態を識別する際は、予め大きさ、形状や状態が既知のものを測定し、受光量の変動する時間と度合いを測定しておく。つまり、大きさ、形状や状態が異なる数種の検体の受光量変動を測定することにより、検体の測定による受光量の変動度合いを把握しておく。こうすることにより、大きさ、形状および状態が未知のものを測定しても、精度良く検体の大きさ、形状および様態を測定することが出来る。
また、本発明の検体識別装置では、測定部以外が遮光性の部材、例えばステンレス鋼を用いて構成させても良い。これは、光ファイバ31a,31bの先端が微細流路の内壁面に設置されているので、モニタ光33は検体を含んだ試料流39内のみ伝搬することになる。このため、測定部以外が遮光性の部材で形成されると、外乱の影響をなくすことができるので好都合である。なお、検体識別装置は、測定部を含む微細流路全体が透過性に優れた材質、例えば、ガラスや樹脂等で形成されても良い。この場合、検体識別装置全体を、必要に応じて遮光性を有する部材で覆うと、外乱の影響を無くすことができるので好ましい。
本発明の検体識別装置は、検体を吸引するための円筒形状のノズルと、シース流および試料流を流すための微細流路を形成し、かつ、検体の識別要素の有無もしくは程度を検出するためのモニタ光を照射又は受光する光ファイバを備えた測定部を設置するための壁面とで一体構造となるように形成されている。即ち、図4(a)に示したように、検体21を含む試料49に一端を接触させて該試料49を他端へ導入する検体導入ノズル45と、検体導入ノズル45の他端が一部に差し込まれ、且つその他端から供給された試料49の流れを検体21の識別要素の識別に適した形状にする流路と、検体21の識別要素を光により検出するための受光用の光ファイバ31aが流路の周囲の一部に設置される識別部とによって構成される。この場合の流路は、図4(a)では層流路40に該当し、管又はブ
ロックの中に形成された孔であって、内径が例えば0.1mm程度の測定部とそこから下方に広がるテーパー部とから構成される。そのテーパー部には検体導入ノズル45の他端が差し込まれる。
一体構造となるように形成することで、ノズル45と測定部との距離43を短くすることができる。この結果、試料49を吸引した直後に識別の判定をすることが可能となり、微量試料、例えば試料量が数拾μl(マイクロリットル)オーダーでも識別の測定が可能となる。その試料49は、特に容器11に入れられている必要はなく、皿の上に僅かに載っている状態でもよい。
また、本発明の検体識別装置では、モニタ光4の照射部(照射用光ファイバ)を設置しないか、もしくは一箇所設置するのに対して、検体からの前方散乱光、後方散乱光、側方散乱光もしくは透過光等の受光部(受光用光ファイバ)を、検体の進行方向に向かって、所定の間隔を設けて多段に設置させてもよい。この際、検体自身が発光する場合は照射部を設置しなくても光情報を入手することが可能であるため、照射部を設置しなくても良い構成となる。
例えば、図9(a)、(b)に示すように、モニタ光4の照射部となる光ファイバ32を一箇所設置するのに対して、受光部となる光ファイバ34、36a,36bを1箇所又は2箇所以上設置してもよい。図9(a)では、照射用の光ファイバ32の上に受光部となる光ファイバ34が配置され、その受光面が微細流路51に接している。また、図9(b)では、照射用の光ファイバ32の光軸の延長上とそれらの上方で、3本の受光用の光ファイバ34,36a、36bが配置されている。受光用の光ファイバ34,346a,36bの受光面は細流路51に接して配置される。これらの場合、照射用の光ファイバ32より上に配置された光ファイバ34,36bは、検体21の蛍光及び前方散乱を受光する受光部となる。
このような構成の検体識別装置では、微細流路51内に検体21を流すと、光ファイバ34,36a,36bの各段の測定点でのモニタ光の変動が時差を持って検出されることになる。このモニタ光の変動の時差と、測定点の間隔から、検体21の流速を測定することが可能となる。なお、照射部と受光部の設置数は特に限定されず、必要に応じた数を設置すればよい。また、設置場所も透過光、散乱光、蛍光を受光出来る位置であれば特に限定されない。
さらに、複数箇所設けられた受光部同志が近傍である場合は、図9(a)、(b)に示すように、検体21からの光情報を同時に複数箇所で受光させることが可能となる。この場合、図10に示すように、微細流路51内を検体21が流れるに従い、下段の光ファイバ36aの受光量が減るとともに、上段の光ファイバ34,36bの受光量が増大し、任意の時間で、時間差をもってお互い受光強度のピーク値を得ることができる。この上段・下段の光ファイバ34,36a,36bの受光強度のピーク値の時間差と上段・下段の光ファイバ34,36a,36bの間隔とから検体21の流速を測定することができる。
さらに、モニタ光の照射用もしくは受光用に複数の光ファイバを用いる場合は、図11に示すように、層流孔40の側面に多心光コネクタ構造18を取り付けてもよい。この場合、数μm以下の精度で照射用若しくは受光用の光ファイバ31a,31bを検体21の進行方向に設置することが可能である。さらに8心の光コネクタを使用した場合には1μm以下の精度で設置することが可能である。
以上のように精度良くモニタ光の照射用もしくは受光用の光ファイバを設置すると、より精確な検体の流速を測定することが可能となる。なお、精確に流速の測定が出来ると、この測定結果をフィードバック制御することより、安定した流速の制御を行うことが可能となり、次工程の分注の信頼性向上につながる。
ところで、透過光35の受光素子として使用される光ファイバ31bのコア31cのうち試料流39に面する端面は、図12の断面図に示すような円形であるよりも、図13の断面図に示すような四角形であることが好ましい。この場合、四角のコア31cの端面のうち互いに対向する一組の2辺が試料流39の進行方向に対して直交する方向であり、残りの一組の2辺が試料流39の進行方向に対して平行となる方向となるように配置される。その四角形のうち横方向に延びる2つの辺の長さは、試料流39の幅が30μmの場合には例えば50μmである。また、試料流39の幅が30μmの場合に、断面が円形のコア31cの直径は50μmである。
光ファイバ31bのコア31cの端面が図12に示すような円形の場合には、その円の中心部を通る検体21の通過時間と中心部から外れた経路を通る検体21の通過時間に違いが生じる。従って、光ファイバ31bの受光面において検体21の流れる経路の違いが光ファイバ31bによる受光量の違いとなって現れるので、検体測定精度が低下する原因となる。
これに対して、光ファイバ31bのコア31cの断面が四角であって図13に示すような状態に配置される場合には、受光領域においてその中心部を通る検体の通過時間とその側部を通る検体21の通過時間が実質的に等しくなる。従って、受光領域において検体21の流れる経路に違いがあっても光ファイバ31bによる受光量が実質的に同じになるので、検体測定精度が向上する。
そのような四角のコア31cは、試料流39の進行方向に垂直な辺が試料流39の横幅よりも広い方が好ましい。これは、試料流39から横方向にはみ出した透過光、散乱光又は蛍光を受光するためであり、これにより測定精度が高くなる。なお、上記したように複数の光ファイバを試料流39の進行方向に隣接して配置することにより、試料流39の進行方向の測定精度をさらに高くできる。
また、光ファイバ31bのコア31cの断面を横幅の大きな四角形とする場合には、試料流39の進行方向に垂直な2辺の長さが、進行方向に平行な2辺の長さの2倍以上になることが好ましい。
なお、四角のコア31aを有する光ファイバ31は、光照射用として使用してもよいし、後述する側方散乱受光用として使用してもよい。
次に、図14を参照して、本発明の別の検体識別装置について説明する。図14では、一つの測定部の微細流路51の測定点の周囲において、対向配置される2本一組の光ファイバ31が同一平面状に二組設置されている構成となっている。つまり、一つの測定部において、4本の光ファイバ31が、周方向に90°間隔で設置されていることになる。なお、図14では、4つの測定部が検体21の流れる方向に向かって、図面の下から順に4段構成で設けられている。この測定部の数は、特に4つに限定されるものではなく、必要に応じて設置数を決定すればよい。
また、図14では、一つの測定部において、4本の光ファイバ31が周方向に90°間隔で設置されているが、これに限定されず、必要に応じて光ファイバ31の本数および設置間隔を決定すればよい。この際、2本の光ファイバ31を一組として対向配置させると、照射および受光を行う際の照射効率又は受光効率が低下しないため、好ましい構成となる。
上述のような構成の場合、一つの測定部において複数の方向から識別(観察)を行うことができる。この結果、検体の大きさ、形状を2次元的に測定することが可能となり、より多くの情報を取得することができる。また、複数の測定部を多段に設けることにより、2次元的な測定の機会が増え、各段の測定部において同一波長を用いて識別測定(観察)することにより、信頼性が向上し、さらに多くの情報を得ることができるとともに、精度良く検体の形状測定を行うことができる。
さらに、上述のような構成で、検体の透過光を測定するとともに、検体からの後方散乱光を測定しても良い。この場合、上述のように2本の光ファイバ31を一組として対向配置させる。一方の光ファイバ31はモニタ光と後方散乱光の伝搬用であり、対向配置されているもう一方の光ファイバ31は透過光伝搬用となる。図14では、対向配置された2組の光ファイバ31が配置されているので、合計4本の光ファイバ31が配置されている。図14では、紙面手前側の2本の光ファイバからモニタ光が伝搬され、モニタ光として検体に照射されると、透過光は紙面奥側の2本の光ファイバで伝搬され、後方散乱光は紙面手前側の2本の光ファイバで伝搬される。このように、一つの検体に関し、2方向から透過光、後方散乱光を測定すると、検体の形状を多角的に測定することができ、二次元的
な形状の情報をより多く得ることが出来る。この結果、検体の形状をより精確に測定することができる。
次に、図15を参照し、本発明のさらに別の識別方法について説明する。図15に示す検体識別装置は、検体導入ノズル45の配置場所に特徴がある。これに対して、図4及び図14では、検体導入ノズル45が微細流路51の横断面ほぼ中央に設置されている。しかしながら、図15に示す実施例の検体導入ノズル45は、微細流路51の中央と測定点を結ぶ仮想線上からずらした位置に配置されている。このように、検体導入ノズル45を偏心させて配置させることにより、試料流39を蛍光37の検出部に近い場所で流すことができる。なお、検体導入ノズル45配置場所の中心からのずらす度合いは、検体の形状・状態・種類、試料流の流速等により決定される。言い換えると、検体の識別(観察)をより詳細に、もしくはより精度良く行いたい、もしくはシース流の液体の透過率が低い場
合等は、試料流39が蛍光37の検出部により近づくようにノズルを配置させれば良い。
さらに、検体をより受光部側に近づけて流すことにより、受光部での検体通過時の受光量のピーク変化を大きくすることが出来る。そのため、より精度良く、検体の大きさ、形状および状態の測定を行うことができる。
上記内容を、図16を参照して説明する。図16(a)は、識別装置の縦断面図であり、ノズルの配置場所を中心からずらすことにより、試料流39を微細流路51の中心より照射面又は受光面に近づけた構造を示すものである。16(a)乃至(c)に記載された斜線部分が、その偏心領域となる。この偏心領域は、例えば、微細流路が円形の場合は図16(b)の斜線部分となり、四角形の場合は図16(c)の斜線部分となる。なお、照射用・受光用の光ファイバの位置は光軸が一致していれば微細流路のどこに設置されていても良い。
次に、図17を参照して、本発明のさらに別の識別方法について説明する。本発明は、試料流中で検体21を回転させながら微細流路51を流し、この回転している状態を測定部において識別(観察)することを特徴とする。
このように、単一検体21が回転することで、例えば、通常一方向でしか得られない検体の特性が、ある円周上の情報も得られることになる。しかも、検体の回転速度を速めることにより、短時間で円周上の情報も得られることになる。さらに、非球形の検体を2次元的に測定することも可能となり、より多くの情報を取得することができる。
次に検体を回転させる方法について説明する。本発明では、照射面・受光面が設置されている壁面方向に向かって検体を回転させることを特徴とする。例えば、図17において、検体21は図の垂直軸を中心として、時計周りに回転している。この回転を有することにより、検体の円周を測定することができる。
この状態を、図18を参照して説明する。図18(a)に示すように、微細流路51内の速度勾配42は微細流路中心ほど速い。図18(b)に示すように、シース流41を形成した場合、試料流39内に検体21を流した場合、検体21の左右の速度差は変わらない。図18(c)のように、偏心させた場合、検体21の左右矢印で示した流速差が生じ、結果検体に回転運動が生じる。
次に、図19、図20を参照して、本発明のさらに別の検体識別装置の一実施例について説明する。本装置は特に検体の蛍光測定に利用するものである。
図19に示す検体識別装置は、モニタ光4の照射用の光ファイバ400とは異なる光ファイバ402で蛍光の受光を行っている。これは、検体から発せられる蛍光が微弱な場合でも、感度良く測定を行うためである。例えば、モニタ光4の照射用の光ファイバ400で検体からの蛍光を受光させる場合、検体を流すための流路内の液体や流路内壁面にモニタ光4が照射されると、その照射部分で反射光が発生してしまう。この反射光は、蛍光とともにモニタ光4の照射用の光ファイバ400を介して受光部に伝搬してしまう。つまり、受光部では、反射光と蛍光の合計の光強度を測定することになってしまう。このため、特に、蛍光が微弱な場合でも感度良く測定を行う場合は、モニタ光4の照射用光ファイバ400とは異なる光ファイバ402で検体の蛍光を受光させると、モニタ光4の反射光による影響を抑制することが可能となり、蛍光の受光感度を向上させることができる。
図19に示す検体識別装置は、モニタ光4を照射する光ファイバ400と、透過光35もしくは前方散乱光を受光する光ファイバ404とが同一の光軸となるように設置され、さらに蛍光受光用の光ファイバ402が、光ファイバ400とは光軸がずらされた位置に設置されている。詳述すると、蛍光受光用の光ファイバ402は、モニタ光4の照射用光ファイバ400から検体の進行方向(図面では上方)に光軸がずらされて設置されている。
このように、モニタ光4の照射用光ファイバ400と、蛍光受光用の光ファイバ402との光軸をずらして設置させると、測定時におけるモニタ光4の照射時と蛍光の受光時の時間軸をずらすことができる。この結果、蛍光受光用の光ファイバ402を、特にその光軸をモニタ光4の照射用光ファイバ400より検体の進行方向にずらして設置させると、モニタ光4が照射され検体から発せられる蛍光をモニタ光の反射の影響を受けずに測定する事が出来る。特に、ライフタイムの長い蛍光を測定においては高感度測定が可能である。
なお、図19では、蛍光受光用の光ファイバ402を、その光軸がモニタ光4の照射用光ファイバ400より検体の進行方向にずらして設置させたが、図20に示すように、さらに、蛍光受光用の第二の光ファイバ406を、その光軸がモニタ光4の照射用光ファイバ400より検体の進行方向とは逆方向にずらして設置させてもよい。つまり、図20に示す検体識別装置では、モニタ光4の照射用光ファイバ400の検体の進行方向に向かって、前段と後段で検体から発せられる蛍光を受光することになる。図20のような構成では、図19の特徴に加え、複数の光ファイバで蛍光を受光することが出来るので、蛍光の受光量が増え、感度向上につながる。
さらに、図19、図20で説明した蛍光受光用の光ファイバ402の設置位置としては、図21の斜線領域Rに示すようなモニタ光4を照射することにより検体から発生される蛍光を受光することが可能な領域であり、少なくとも1本以上の光ファイバを設置させればよい。
図21に示す斜線領域Rには、蛍光受光用の光ファイバが、必要に応じた位置に、必要に応じた本数だけ設置されるが、その設置位置は検体進行方向と垂直なx軸上には設置されないことを特徴としている。これは、移動している検体の蛍光を励起させて受光する場合、検体を励起した瞬間には、検体はその測定部を通過しているか、もしくは通過しつつある状態なので、図21に示すように、モニタ光の同一光軸平面上より進行方向にずらした位置に受光部を設置した方が、受光部でモニタ光の反射の影響を受けずに測定する事が出来の感度向上につながるからである。
つまり、図21(a)を参照して説明すると、検体がz軸のプラス方向に進行する場合は、斜線領域RのK、L領域に蛍光受光用の光ファイバを設置することが望ましく、検体がz軸のマイナス方向に移動する場合には、斜線領域RのM、N領域に蛍光受光用の光ファイバを設置することが望ましい。なお、受光部は、図21(b)および図21(c)に示すように、斜線領域R内でも、特に受光部の光軸を含む検体進行方向と垂直な平面の流路の中央を中心として検体進行方向に対し±45°以上の領域に位置する流路内壁に設置されることがより望ましい。
なお、図21(a)〜(c)に示す領域に受光側の光ファイバ31bを設置すれば感度の良い測定が出来るが、モニタ光4の照射側の光ファイバとのさらに好ましい設置位置関係を、図22に示す。図22において、試料流39の幅をL、モニタ光照射部の半径をr、蛍光受光部領域の半径をαとした場合に、モニタ光照射部を中心とした半径αがr<α<L/2となる領域内に蛍光受光部の中心が設置されることが望ましい。
なお、上述した図19、図20および図21(a)、(b)、(c)の実施例では、照射側の光ファイバは一本のみ設置し、受光側の光ファイバを少なくとも1本以上設置させたが、逆の構成としても良い。すなわち、照射側の光ファイバを複数設置させ、蛍光受光側の光ファイバを一本のみ設置させる構成としてもよい。また、光ファイバを複数設置させる場合、バンドルファイバもしくは光コネクタ等を利用すると、設置の際の位置決め等が容易となる。
ところで、図23に示すように、照射用の光ファイバ31aの光軸と微細流路51の中心軸の交点を基準点とした場合に、蛍光又は散乱光受光用の光ファイバは、照射用の光ファイバ31aの光軸に対して基準点から微細流路51の進行方向に角度θ0 の方向に受光面が存在するように配置することが好ましい。その角度θ0 は、微細流路51の直径が0.1mmで且つ光ファイバ31a、31bのコア径が50〜100μmの場合に、例えば8°である。又は、その角度θ0 として、受光用の光ファイバ31bの光軸を照射用の光ファイバ31aの受光面の中心から例えば100μm程度離す角度を選択することが好ましい。このように光進行方向に対して斜めに受光用の光ファイバ31bを配置すると、受光効率を高くすることができる。なお、光ファイバ31bが微細経路51に突出することを防止するために、光ファイバ31の先端を斜めに切断することが好ましい。
また、図24に示すように、照射用の光ファイバ31aから直進する光が照射される領域から外れた領域に、受光用の光ファイバ31bの受光面を配置するようにしてもよい。或いは、図25に示すように、受光用の光ファイバ31bのうち、照射用の光ファイバ31aの端面から出射される光の直進方向の領域の少なくとも一部を遮光体Bで覆ってもよい。例えば、照射用の光ファイバ31aのコア径が50μmであって受光用の光ファイバ31bのコア径が100μmの場合に、受光用の光ファイバ31bのコアの中央を直径50μmの遮光体Bで覆う。遮光体Bとしては、例えば金属膜、多層構造誘電体膜がある。
いずれにしても、照射用の光ファイバ31aから直進する直接光と散乱光又は蛍光とが交差しない位置に光ファイバ31bの受光面を配置することにより、散乱光又は蛍光の受光効率が良好になる。
次に、検体21から生じた側方散乱光を受光する光ファイバの配置について説明する。
側方散乱光を受光する光ファイバの位置は、前方散乱光との混合を防止する必要がある。図26は、側方散乱光を受光する光ファイバ38の配置を示している。なお、図26において微細流路51の進行方向は紙面に垂直な方向である。
図26に示す照射用の光ファイバ31aの光軸の延長線において、微細流路51の中心軸と光ファイバ31aの光軸の交点を原点として光進行方向に対して45〜135°、2245〜315°の角度の範囲内に、側方散乱光受光用の光ファイバ38の受光面を配置する。これにより、受光用の光ファイバ38により側方散乱光が効率良く受光される。
以上説明したように、検体21に光を照射する光ファイバ31aと、検体21を透過した光を受光する光ファイバ31bと、検体21の蛍光を受光する光ファイバ34と、側方散乱を受光する光ファイバ38の配置を図27に示す。また、図27において符号38a、38b、38cは、側方散乱光受光用の光ファイバ38にダイクロイックミラー38x、38y、38zを介して分岐される分光用の光ファイバ、符号30a〜30dは、側方散乱受光用の光ファイバ38、38a、38b、38cの端部に接続される光電子増倍管(PMT)を示している。ダイクロイックミラー38x、38y、38zは、微細流路51から離れる順に例えばFITC(fluorescein isothio-cyanate)及びGFP(green fluorescent protein)、PI(propidium iodide)及びPE(R-phycoerythrin)、PerCPを分析する蛍光を分光する。また、符号40aは、透過光用の光ファイバ31bを通る光を受光するフォトダイオード、符号40bは、照射用の光ファイバ31a、32を通る後方散乱光を選択的に分光する非相反光デバイス、符号40cは、非相反光デバイス40bにより分光された後方散乱光を受光するフォトダイオードを示している。
次に、図4、図14、図15を参照して検体へのモニタ光の照射手法および検体へのモニタ光の照射状態について説明する。図4、図14、図15に示すように、モニタ光33の照射用光ファイバの先端は、集光手段が設けられずに、壁面52の内面に設置されている。つまり、モニタ光33は、図4、図14、図15に示すように、光ファイバの先端から集光されずに、非集光の状態で検体に照射されることになる。
このように、検体に照射させるモニタ光を非集光にすると、検体が流路のどの位置を流れても、照射されるモニタ光のエネルギー分布の偏りが少ない。これに対し、集光させたモニタ光を検体に照射させると、集光位置に検体を流して測定を行うため、検体の流れる位置が集光中心位置からずれると、検体に対するモニタ光のエネルギー分布の偏りが大きくなってしまう。このため、例えば透過光測定ばらつきが大きくなり、測定精度が悪くなってしまう。
一方、本実施形態では、光ファイバから出射された光をそのまま微細流路51に直接照射しているので、検体が試料流路39内で中心だけでなくどの位置を流れても、検体によるモニタ光の遮光のばらつきが少ないので、測定精度が向上するという効果が得られる。
(検体搬送装置)
次に、図28を参照して、本発明の検体識別装置の前段に設置される搬送装置について説明する。なお、この搬送装置は必要に応じて設置すればよい。検体導入ノズル45の下端は複数の試料供給ノズル89,91,93,95に分岐され、複数の試料81,83,85,87を吸引できる構造になっている。即ち、複数の試料供給ノズル89,91,93,95は、その下流側の端部で最終的に検体導入ノズル45に合流できる構造を有している。図28のような構造をとることにより、検体識別装置を駆動させることなく、圧力97,99,101,103を制御することにより、複数の試料,83,85,87を流出することが可能である。
例えば、試料81を測定する場合、圧力97は圧力99,101,103より高くする必要があるが、その際、試料81が試料83,85,87に逆流しないように、圧力99,101,103を制御する。
また、流路89を予め液体で満たしておき、圧力97,99,101,103を制御して、試料81,83,85,87をパルス状に微量に流すことで、非常に微量な試料、例えば数nl(ナノリットル)程度の測定が可能である。
図29を参照して、上記のパルス状に微量流す方法の一例を説明する。まず、圧力97を圧力99よりも高く設定し、流路89、検体導入ノズル45をダミーの試料81で満たす。圧力99はダミーの試料81が流路91に流れ込まず、かつ微量の試料90が流路89に流れ込まない程度の圧力に設定されている。このため、ダミーの試料81と微量の試料91は図29(a)のような状態で釣合っている。次に、瞬時的に、圧力97を圧力99よりも低く調整して微量の試料90を検体導入ノズル45に流し込む。さらに、次の瞬間に、圧力97を圧力99より高く調整して、微量の試料90をダミー試料81で挟み込んだ状態で微量の試料90を検体導入ノズル45に搬送する。すると、図29(b)のように、検体導入ノズル45中に微量の試料90が形成される。このため、パルス状に流す
方の検体は微量で済む。なお、チャンネルの切り替えは弁、加圧はレギュレータ等使用してもよい。
次に、図30を参照して、さらに別の搬送装置の一実施形態について説明する。図28に示した、分岐させたノズルを用いて検体が懸濁する液体を、例えば検体を流すための液体又は検体が懸濁する液体と混合する際、液体を合流させると、層流となって液体が流れる場合が多い。この層流状態の液体を混合するには、合流した時点で乱流を生ぜしめる必要がある。そこで、合流地点の近傍に凹部又は凸部を設ける。すなわち、一方の分岐ノズル153を用いて検体が懸濁する液体155を吸引し、他方の分岐ノズル157を用いて検体が懸濁する液体159を吸引して合流部151で合流させる際に、乱流163が生じるように凹部161を設けた例である。
(検体分注)
次に、本発明の検体分注装置について説明する。分注は、検体識別装置の測定部において測定された検体の流速および識別判定を基に、検体が排出されるまでの時間を計算し、必要な検体のみ回収し、不要な検体は廃棄するものである。
図31を参照して、本発明の検体分注装置を説明する。例えば、図4に示した、シース流41の圧力や加圧47による試料搬送圧力により、分注ノズル75の先端に、目的検体65を含む液滴67または液流を形成する。なお、この液滴67または液流は、識別要素の有無もしくは程度により識別した非目的検体63を含む場合もある。
この液滴67または液流は、非目的検体63を含んでいると、排液槽69へ自由落下させて排出されるが、目的検体65を含んでいると、排液槽69がスライド方向71に移動し、ノズル移動手段61により分注ノズル75を液体が張られた容器73に挿入して目的検体65の分注を行うことができる。本検体分注装置を用いると、検体に対し、従来手法である超音波、高電圧を用いて液滴を形成させずに、余計な負荷を与えずに分注できるため、例えば、生細胞を対象とした場合、分注後の高生存率が期待される。なお、検体は分注終了まで液体、又は液滴で保護・保管される。
また、目的検体65の回収および非目的検体の排出の別方法について、図32、図33および図34を参照して説明する。まず、分注ノズル75が定常の状態では、分注ノズル75から流れる液流が途切れなく排液槽69の液面(図34では液内)に直接に当接して連続的に流れるように、分注ノズル75と排液槽69との相対位置関係を調整する。
この場合の液滴67は、容器73内の溶液72に入るまでに、分注ノズル75の先端から離れずに全体が空気(ガス)に囲まれないようにする。例えば、目的検体65を含む液滴67が、分注ノズル75から落下する前に、図32(a)、(b)に示すように、分注ノズル75から溶液72に移動するようにノズル移動手段61によって制御する。
続いて、分注しようとする目的検体が感知された分注状態では、図34に示すように、分注ノズル75と排液槽69との相対位置関係を変え、分注ノズル75から流れる液流または液滴を排液槽69の液と分離した後、目的検体を含む液流または液滴を回収容器73に分注するように分注ノズル75と回収容器73との相対位置関係を変化させる。目的検体を回収容器73に分注した後は、分注ノズル75を前述した定常の状態の位置に戻しておく。なお、前述した分注の際、分注ノズルの先端を、排液槽69、回収容器73の液面もしくは液面より液内側に位置させて排液もしくは分注を行うのが好ましい。このように分注ノズルの先端位置を制御すると、液滴が形成されるまで待たずに分注を行うことができるため、従来手法である超音波、高電圧を用いて液滴を形成させずに、検体(細胞)に負荷をかけることなく、高速に分注を行うことができる。
また、分注ノズル75と、排液槽69および回収容器73との相対位置関係を調整する際、図34に示すように、分注ノズル75の少なくとも先端を排液槽69と回収容器73との間で、任意の点を中心として曲線運動で移動させる方が好ましい。このように分注ノズル75を曲線運動で移動させると、分注を行う際に稼動する軸が1軸となるため、高速に分注を行うことが可能となり、1秒以内に単一細胞の分注を行うことができる。なお、前述した分注の際、分注ノズルの先端は、図33で説明したように排液槽69、回収容器73の液面もしくは液内に接触させても、させなくてもよく、適宜選択される。
次に、図35を参照して、本発明の別の検体分注装置について説明する。非目的検体63が流れてきた場合には、ノズル75の先端を排液槽69に挿入して排液し、目的検体65が流れてきたタイミングで排液槽69をスライド方向71に退避させ、ノズル75の先端を回収容器73に挿入して検体の吐出(分注)を行う。この検体分注装置を用いると、図31に示す分注装置を用いた方法に比べ、液滴が自重で落ちるのを待たすに検体分注を行うため、速い分注が可能となる。また、余計な負荷を与えずに分注ができる。
次に、図36を参照して、本発明のさらに別の検体分注装置について説明する。ノズル113の先端横側より常時空気圧111を印加して液滴67を形成し、容器115、117を駆動させることにより、目的検体65、非目的検体63を分注する。なお、容器は2個以上あっても良い。本分注装置を用いると、図35と同様に、より速い分注が行える。
なお、この分注速度をより速くするためには、容器115、117の駆動119の速度を速くすれば良い。また、余計な負荷を与えずに分注できる効果も奏する。
次に図37を参照して、本発明のさらに別の検体分注装置および方法について説明する。ノズル75の先端に設けられた部品121を部品123でたたくことにより所定の振動を発生させて液滴67を形成し、容器115、117を駆動119させることにより目的検体、非目的検体の分注を行う。なお、この分注速度を速くするためには、容器115、117の駆動119の速度を速くすれば良い。また、本分注装置を用いると、図31、図35、図36と同様に、余計な負荷を与えずに分注することができる。
次に、図38を参照して、本発明のさらに別の検体分注装置について説明する。ノズル75を振って部品131に衝突させて、その振動により液滴67を形成し、容器133、135、137、139を駆動141、143させて目的検体65、非目的検体63の分注を行う。容器は4つ以上あっても良い。本分注装置を用いると、図37に示した分注装置を用いる方法に比べ、倍の速度で検体の分注が行える。なお、この分注速度を速くするためには、容器133〜139の駆動速度141、143を速くすれば良い。また、本分注装置を用いると、図31、図35、図36及び図37に示す装置と同様に、余計な負荷を与えずに分注できる。
さらに、図31、図35、図36、図37及び図38の検体分注装置では、検体が蛍光標識化されていなくても、形状、大きさ、もしくは状態により分注することが可能である。これは、上述した検体識別装置において、蛍光標識化されていない検体の形状、大きさもしくは状態を測定することが出来るからである。つまり、検体識別装置での検体の形状、大きさ、もしくは状態と、検体の流速を、分注装置の制御としてフィードフォワードすると、必要に応じて検体を分取することが出来る。
上述した検体分離装置と、検体識別装置と、検体分注装置とを組合せた解析装置によれば、例えば、図39に示すように、幹細胞の細胞塊から単一細胞を採取する場合、検体分離装置、検体識別装置、検体分注装置の順に検体を流すことにより、分離・識別・分注を行うことができる。この結果、検体にダメージを与えることなく細胞塊から単一細胞を取得することが可能となる。この場合、検体分離装置、検体識別装置、検体分注装置を制御手段により連動制御することにより、細胞塊から単一細胞を採取するまでを、全自動で行う。つまり、各装置の動作環境を制御手段に入力し、制御手段から各装置に動作環境条件を入力させることにより、分離・識別・分注までの一連の工程を全自動で行う。
さらに上述した分離・識別・分注の各装置および組合わされた装置の滅菌手段について説明する。まず、測定前の滅菌手段について説明する。
滅菌手段の一手法としては、測定前の各装置にUV(紫外線)を照射させる方法がある。これはUVを各装置に照射させることにより、UVの滅菌効果を利用するものである。なお、この際、各装置の構造により、UVが照射されない、もしくはできない部位が存在する可能性がある。この際は、UVにより滅菌ができない部位に、アルコールを噴霧させることにより滅菌することが可能となる。
また滅菌手段の他の手法としては、装置毎、もしくは各装置が組合わされた装置全体をチャンバーに収納し、通気孔にフィルタを取り付け、必要に応じて換気を行う構成としても良い。言い換えると、小型のクリーンルーム内に、装置毎、もしくは各装置が組合わされた装置全体を収納する構成にしてもよい。この際、通気孔に光触媒を有する空気循環機構を設置し、滅菌された空気をチャンバー内に送り込むと、より滅菌された測定環境が得られる。
また、滅菌手段の他の手法としては、装置毎、もしくは各装置が組合わされた装置全体をチャンバーに収納し、酸化エチレン等の滅菌ガスで充満させても良い。ガスで滅菌させることにより、各装置の細かい部分もしくは部品まで、滅菌が可能となる。この際、UVランプをチャンバー内に設置し、オゾン等の滅菌ガスを発生させてチャンバー内に充満させ、各装置の滅菌を行ってもよい。
なお、各装置で検体が流れる流路の滅菌は特に重要となるが、この流路の滅菌方法を以下に説明する。まず、測定前の滅菌方法であるが、約70%濃度のエタノールを流路に流せばよい。流量、流速、流す回数等は、流路の汚れ度合いに応じて決定すればよい。次に測定後の滅菌方法であるが、まず約70%濃度のエタノールを流路に流し、次いで約100%濃度のエタノールを流路に流せばよい。測定後の滅菌方法は、測定前の滅菌方法と同様で、流量、流速、流す回数等は、流路の汚れ度合いに応じて決定すればよい。なお、上述した滅菌効果を有するガスを流路に充満させても滅菌を行うことができる。
次に、図40を参照して、本発明の実施形態に係る解析装置を説明する。本発明に係る分離・識別・分注を行う解析装置301は、凝集状態の検体を分離するための分離部311と、分離部311から搬送された検体の識別を行う識別部351と、目的検体を容器391に分注する分注部371を中心として構成されている。
分離部311は、検体を吸引・吐出するためのノズル315、ノズル内に吸引した検体をノズル外に吐出する際の吐出力を制御するための吸引・吐出力制御手段、ノズルを上下左右に動かすためのノズル動作手段、及び必要に応じて壁面に設けられる対向配置される光ファイバ等で構成されている。分離部311として上記の検体分離の装置が用いられる。
また、識別部351は、吸引された試料液とシース液の試料流が通過する流路と、試料流を挟んで対向配置された1組の光ファイバ等で構成されている。識別部351として上記の検体識別の装置が用いられる。
また、分注部371は、分注ノズル375、分注ノズルを昇降させるノズル移動手段373、非目的検体を受ける排液槽377、排液槽377をスライドさせるスライド手段379等により構成されている。分注部371として上記の検体分注の装置が用いられる。
そのような構成を有する解析装置301は以下のようなステップで操作される。
(1)まず回転台331に凝集検体を入れた容器333をセットする。このとき、容器333内の試料液量は500μl程度である。
(2)回転手段335により回転可能に設けられた回転台331を回転させ、容器333の位置を分離部311のノズル315の位置に合うように移動させる。
(3)分離部311を、ノズル動作手段313により移動させて、ノズル315の先端を容器333の底面より、例えば3mmの高さまで下降させる。
(4)分離部311を用い、ノズル制御手段313により容器333内の試料液量の150μl(マイクロリットル)程度について、ノズル315を用いて数回〜数十回吸引吐出を繰り返し、凝集検体の分離を行う。
(5)検体の大きさは、分離部311と連結される図示していない識別部、あるいは分離部311に連結された識別部351により測定される。
(6)分離された検体を含む溶液100μlを、分離部311のノズル315で吸引する。
(7)ついで、例えば、移動手段337により移動可能に設けられた、例えば、口径100μmの金属製等のフィルタ339を用いて溶液をろ過し、分離不十分な検体を除去する。
(8)フィルタ339を通してろ過した検体を含む溶液は、回転台331の回転により別の容器334に注入される。
(9)ろ過した検体を含む溶液には、希釈液が追加される。希釈量は検体量が1個/μl程度になるように調整される。
(10)ろ過した検体を含む溶液は、溶液中に検体が均一に分散するように、分離部311を用いた吸引吐出により攪拌される。
(11)希釈した検体を含む溶液の入った容器334を、回転台331及び回転手段335により回転させて識別部351の下の位置まで搬送する。
(12)識別部351を移動手段353により下降して、識別部351の先端に設けられる吸引ノズル359を容器334に挿入する。
(13)識別部351の下端と容器334の上端とで容器の開口上端をシールし、容器334内に外部から加圧エアを加え、容器334内の検体を含む溶液をノズル359を通して識別部351に流し込む。このときの、溶液の流量は例えば0.7μl/sであり、流速は例えば1m/sである。同時に、識別部351に設けられた他の穴からシース液を識別部351の流路に流し込む。
なお、吸引ノズル359の形状は、例えば、内径が0.3mm、長さが35mmであり、検体の流れる試料流39の粒径は0.03mmである。ノズルの吸引・吐出口から測定部までの距離43は約50mmであり、結果として測定部までの容量は2.5μlであった。測定部でのシース流の直径は例えば0.1mmである。
(14)検体は、シースフローを形成して識別部351に搬送される。このとき、試料流は検体の形に合わせて、検体がひとつづつ測定点を流れる径に絞ったり、広げたりする(10〜100μm程度)。検体は数秒に1個ずつ、100μm間隔の測定点を通過する。
(15)検体は、識別部351のシースフローの側部に設けられた投光ファイバ355、受光ファイバ357を備えた測定点にて測定される。ここでは、蛍光の有無、強度、検体の形状等を測定する。また測定点は多段に設けてあり、この多段の測定点で検体の流速を測定する。
(16)蛍光を発光検体のみ収集したい場合、まず、蛍光を発した検体の測定点で測定した流速と、測定点から分注部371の分注ノズル375先端までの距離から、分注ノズル375先端までの到達時間を算出する。その分注ノズル375の内径は例えば1mmである。
(17)ついで、分注ノズル375先端に検体が到達する時間に合わせて、分注する。
(18)分注ノズル375の先端に、目的検体を含む液滴が形成される。非目的検体は排液槽377へ自由落下させる。目的検体がくると、排液槽377がスライド手段379により移動する。ついで、ノズル移動手段373により分注ノズル375を容器391のウエル393に挿入して分注する。
(19)容器391の、ウル393には、一つから任意数の細胞を分注する。また、他のウル393にも容器391を移動手段397を用いて前後左右等に移動させて分注する。
再生医療、細胞研究等用の検体の測定等に用いることができる。
1 ノズル
3 光ファイバ
4 モニタ光
5 ノズル動作手段
7 吸引・吐出力制御手段
9 検体
11 容器
13 引張力
15 衝突力
17 距離
18 光コネクタ構造
19 せん断応力
21 検体
23 吐出
25 吸引
31、31a、31b、32、36a、36b、38 光ファイバ
31c コア
33 モニタ光
35 透過光
37 蛍光
39 試料流
40 層流孔
41 シース流
42 速度勾配
43 距離
45 検体導入ノズル
47 加圧
48 上昇
49 試料
51 微細流路
52 壁面
53 吸引・吐出口
55 圧力
57 圧力
61 ノズル移動手段
63 非目的検体
65 目的検体
67 液滴
69 排液槽
71 スライド方向
72 溶液
73 容器
75 ノズル
81、83、85、87 試料
89、91、93、95 流路
90 試料
97、99、101、103 圧力
111 空気圧
113 ノズル
115、117 容器
119 駆動
121、123、131 部品
133、135、137、139 容器
141、143 駆動
151 合流部
153、157 分岐ノズル
155、159 検体が懸濁する液体
161 凹部
163 乱流
201 検出部
203 モニタ光
205 蛍光・散乱光
207 試料流
209 シース流
211 検体
213 距離
214 ノズルの吐出・吸入口
215 加圧空気
221 分注部
223 排出部
225 液滴
227 偏光板
229 プラス極側
231 マイナス極側
233、235 容器
241 試験管
243 凝集検体
245 ピペット
247 凝集検体
249 単一検体
251 吸引吐出
301 分離・識別・分注装置
311 分離部
313 ノズル動作手段
315 ノズル
331 回転台
333 容器
335 回転手段
337 移動手段
339 フィルタ
351 識別部
353 移動手段
355 投光ファイバ
357 受光ファイバ
359 吸引ノズル
371 分注部
373 ノズル移動手段
375 分注ノズル
377 排液槽
379 スライド手段
391 容器
393 ウエル
397 移動手段
400、402、404、406 光ファイバ

Claims (7)

  1. 検体塊をより小さい検体塊または前記検体に分離する検体塊分離装置と、分離された前記検体と前記検体塊に対する所望の測定対象項目を測定する検体識別装置と、前記検体識別装置の動作を制御する制御手段と、を備える検体の解析装置であって、
    前記検体塊分離装置は、
    前記検体と前記検体塊を含んだ液体が収容されている容器と、
    前記容器から前記検体と前記検体塊を吸引、吐出するためのノズルと、
    前記ノズルを上下左右に動かすためのノズル動作手段と、
    前記ノズルの吸引力、吐出力を制御するためのノズル制御手段と、
    を有し、
    前記検体識別装置は、
    前記検体塊分離装置によって分離された前記検体と前記検体塊を供給する検体供給源と、
    検体供給源に存在する前記検体と前記検体塊を含む試料に一端を接触させて該試料を他端へ導入する検体導入ノズルと、
    前記検体導入ノズルの前記他端が一部に差し込まれ、且つ前記他端から供給された前記試料の流れを前記検体と前記検体塊の識別要素の識別に適した形状にする流路と、
    前記検体と前記検体塊の前記識別要素を光情報として検出する受光部が前記流路の周囲の一部に設置され、前記受光部で得られた前記光情報に基づいて前記検体と前記検体塊に対する所望の前記測定対象項目を測定する識別部と、
    を有し、
    前記検体塊分離装置は、前記ノズルの位置から前記容器の内壁面までの距離及び前記検体塊の大きさを含む各種データに基づいて、前記ノズルの位置及び前記ノズルの吸引力、吐出力を、前記ノズル動作手段及び前記ノズル制御手段によって調整しながら、前記ノズルによる前記検体と前記検体塊の前記容器からの吸引と、吸引した前記検体と前記検体塊の前記ノズルから前記容器への吐出と、前記容器の内壁面と前記検体塊との衝突とを繰返して、前記検体塊にせん断応力及び前記容器の内壁面に前記検体塊を衝突させることによる引張り応力を発生させて、前記検体塊を分離させることを特徴とする検体の解析装置。
  2. 前記検体識別装置の前記識別部の前記受光部は、前記流路を形成する壁面よりも当該流路内に該受光部の一部が露出すように設置され、前記流路を形成する材料層を介さずに前記光情報を直接検出することを特徴とする請求項1に記載の検体の解析装置。
  3. 前記検体識別装置の前記検体供給源は、試料容器および試料供給ノズルを複数備え、複数の前記試料容器のうち少なくとも一つの前記試料容器には前記検体または前記検体塊が収容され、その他の前記試料容器には液体が収容され、前記複数の試料供給ノズルは互いに接続されて下流側で前記検体導入ノズルの前記一端に繋げられていることを特徴とする請求項1又は請求項2に記載の検体の解析装置。
  4. 前記検体識別装置の前記検体供給源は、少なくとも1つに前記検体または前記検体塊を含む液体が流される複数の試料供給ノズルを備え、複数の前記試料供給ノズルの各々を流れる液体の合流位置又はその近傍には乱流発生用の凹部又は凸部のうち少なくとも一方が設けられてその下流側で前記検体導入ノズルの前記一端に接続されていることを特徴とする請求項1又は請求項2に記載の検体の解析装置。
  5. 前記検体塊分離装置は、
    前記ノズル内を流れる前記検体と前記検体塊の識別要素の有無もしくは光に対する反応を識別するためのモニタ光照射部および受光部を備え、
    前記モニタ光照射部によってモニタ光を前記検体と前記検体塊に照射して、前記受光部によって前記検体と前記検体塊による該モニタ光の変化を計測しながら得た光情報を、前記各種データの一部として利用して、前記検体塊を分離させることを特徴とする請求項1乃至4のいずれか1項に記載の検体の解析装置。
  6. 請求項1乃至5のいずれか1項に記載の検体の解析装置を用いて、前記検体の分離及び識別を行う検体の解析方法であって、
    (a)検体塊をより小さい検体塊または前記検体に分離する工程と
    (b)測定対象の少なくとも1つ以上の前記検体または前記検体塊を含む試料を、検体供給源から取り出して流路内に流す工程と、
    (c)受光部によって前記流路内を流れている前記検体と前記検体塊の識別要素を光情報として検出し、前記受光部で得られた前記光情報に基づいて前記検体と前記検体塊に対する所望の測定対象項目を測定する工程と、
    を備え、
    前記工程(a)は、
    (a1)前記検体と前記検体塊を含んだ液体が収容されている容器から吸引力を、ノズルの先端から前記容器の内壁面までの距離及び前記検体塊の大きさを含む各種データに基づいて調整しながら前記ノズルで前記検体と前記検体塊を吸引する工程と、
    (a2)吸引した前記検体と前記検体塊を前記ノズルから吐出力をデータに基づいて調整して前記容器に吐出する工程と、
    (a3)前記容器の内壁面に衝突させて前記検体塊を分離する工程と、
    を備え、
    各工程(a1)乃至(a3)を繰返して前記検体塊にせん断応力及び前記容器の内壁面に前記検体塊を衝突させることによる引張り応力を発生させて、前記検体塊を分離させることを特徴とする検体の解析方法。
  7. 前記検体と前記検体塊にモニタ光を照射し、前記検体と前記検体塊による該モニタ光の変化を計測しながら前記検体塊を分離させることを特徴とする請求項6に記載の検体の解析方法。



JP2009225594A 2004-04-23 2009-09-29 検体の解析装置及び検体の解析方法 Active JP4897978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225594A JP4897978B2 (ja) 2004-04-23 2009-09-29 検体の解析装置及び検体の解析方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004128467 2004-04-23
JP2004128467 2004-04-23
JP2004280187 2004-09-27
JP2004280187 2004-09-27
JP2009225594A JP4897978B2 (ja) 2004-04-23 2009-09-29 検体の解析装置及び検体の解析方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006512627A Division JP4413921B2 (ja) 2004-04-23 2005-04-25 検体の解析装置及び検体の解析方法

Publications (2)

Publication Number Publication Date
JP2009300458A JP2009300458A (ja) 2009-12-24
JP4897978B2 true JP4897978B2 (ja) 2012-03-14

Family

ID=35197086

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006512627A Active JP4413921B2 (ja) 2004-04-23 2005-04-25 検体の解析装置及び検体の解析方法
JP2009225594A Active JP4897978B2 (ja) 2004-04-23 2009-09-29 検体の解析装置及び検体の解析方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006512627A Active JP4413921B2 (ja) 2004-04-23 2005-04-25 検体の解析装置及び検体の解析方法

Country Status (5)

Country Link
US (2) US8264674B2 (ja)
EP (1) EP1739402B1 (ja)
JP (2) JP4413921B2 (ja)
CN (2) CN1973195B (ja)
WO (1) WO2005103642A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120164B2 (fi) * 2008-02-15 2012-07-13 Mine On Line Service Oy Menetelmä ja laitteisto malminetsinnän tehostamiseksi
US9314788B2 (en) 2008-07-09 2016-04-19 Furukawa Electric Co., Ltd. Specimen identification and dispensation device and specimen identification and dispensation method
CN102272561B (zh) * 2009-01-06 2014-05-14 古河电气工业株式会社 光测量装置及检测体识别分注装置
US8211708B2 (en) * 2009-03-13 2012-07-03 Furukawa Electric Co., Ltd. Optical measuring device and method therefor
US20120148194A1 (en) * 2009-06-24 2012-06-14 Li-Chen Wang Light guiding device
WO2011077765A1 (ja) * 2009-12-25 2011-06-30 古河電気工業株式会社 検体識別分取装置および検体識別分取方法
DE202011111070U1 (de) * 2010-02-09 2019-05-24 Microjet Corporation Ausstoßvorrichtung für flüssiges Material mit partikelförmigen Körpern
FR2957672B1 (fr) * 2010-03-22 2013-03-15 Novacyt Procede automatique et automate de preparation et d'analyse d'une pluralite de suspensions cellulaires
WO2011121751A1 (ja) * 2010-03-31 2011-10-06 古河電気工業株式会社 細胞の識別装置及び識別方法
JP5580117B2 (ja) * 2010-06-08 2014-08-27 公益財団法人神奈川科学技術アカデミー 細胞分析装置
US8330954B2 (en) * 2010-06-17 2012-12-11 Hewlett-Packard Development Company, L.P. Light scattering aerosol detect device
JP2012026837A (ja) 2010-07-22 2012-02-09 Sony Corp 微小粒子測定装置
CN104769414B (zh) * 2012-09-06 2018-08-24 古河电气工业株式会社 检体识别分离提取装置及检体识别分离提取方法
CN110579435B (zh) 2012-10-15 2023-09-26 纳诺赛莱克特生物医药股份有限公司 颗粒分选的系统、设备和方法
JP2015031665A (ja) * 2013-08-06 2015-02-16 トライボテックス株式会社 粒子計数装置及び粒子計数方法
US9580294B2 (en) 2014-12-03 2017-02-28 Brewer Science Inc. Computer program and method for verifying container of material to be dispensed
WO2016089393A1 (en) * 2014-12-03 2016-06-09 Brewer Science Inc. Computer program and method for verifying container of material to be dispensed
JP6962563B2 (ja) * 2015-05-12 2021-11-05 株式会社オンチップ・バイオテクノロジーズ 単一粒子解析方法およびその解析のためのシステム
DE102015225989B3 (de) * 2015-12-18 2017-05-18 Kuka Roboter Gmbh Verfahren zur Durchführung wenigstens eines Energieversorgungsvorgangs zwischen einer Energieversorgungseinheit und wenigstens einem mit Energie zu versorgenden Kraftfahrzeug
US10247436B2 (en) * 2016-09-07 2019-04-02 Solarcity Corporation Systems and methods for controlling operations of a heating and cooling system
CN106706479B (zh) * 2016-12-29 2020-07-07 桂林优利特医疗电子有限公司 粒子鞘流成像装置
WO2018181481A1 (ja) * 2017-03-28 2018-10-04 ユニバーサル・バイオ・リサーチ株式会社 測光分注ノズルユニット、測光分注装置、および測光分注処理方法
JP6467579B2 (ja) * 2017-04-07 2019-02-13 トライボテックス株式会社 粒子計数装置及び粒子計数方法
DE102018118110B4 (de) * 2018-07-26 2023-01-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Sensorvorrichtung und verfahren zur herstellung einer sensorvorrichtung
US11473954B2 (en) * 2018-07-27 2022-10-18 Micro Motion, Inc. Manifold
CN113490556A (zh) * 2019-02-27 2021-10-08 锂工科技股份有限公司 用于智能电池收集、分类和包装的方法和系统
US20220355298A1 (en) * 2019-07-03 2022-11-10 Centre For Cellular And Molecular Platforms A microfluidic analyser
US11738339B2 (en) * 2019-09-09 2023-08-29 Lumacyte, Inc. Microfluidic devices and method for sampling and analysis of cells using optical forces and Raman spectroscopy
CN114667188B (zh) 2019-11-22 2023-06-27 美国西门子医学诊断股份有限公司 传送包含聚集体的液体的装置、系统和方法
EP4232790A4 (en) * 2020-10-20 2024-04-17 Becton, Dickinson and Company FLOW CYTOMETERS INCLUDING OPTICAL TILT BEAM SHAPING COMPONENTS, AND METHODS OF USE THEREOF

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758948A (fr) * 1969-11-18 1971-05-13 Cornell Aeronautical Labor Inc Appareil destine a identifier diverses particules microstructurees a l'interieur d'un fluide
EP0183798A1 (en) * 1984-06-01 1986-06-11 Howard Maurice Shapiro Optical systems for flow cytometers
US4781460A (en) * 1986-01-08 1988-11-01 Coulter Electronics Of New England, Inc. System for measuring the size distribution of particles dispersed in a fluid
US5760900A (en) * 1989-03-18 1998-06-02 Canon Kabushiki Kaisha Method and apparatus for optically measuring specimen
US5275787A (en) * 1989-10-04 1994-01-04 Canon Kabushiki Kaisha Apparatus for separating or measuring particles to be examined in a sample fluid
DE69025256T2 (de) * 1989-10-11 1996-06-27 Canon Kk Gerät und Verfahren zur Trennung von Teilchen aus flüssigkeitssuspendierten Teilchen in Zusammenhang mit deren Eigenschaften
JP2966057B2 (ja) * 1990-07-19 1999-10-25 株式会社千代田製作所 自動細胞処理装置
JPH04204254A (ja) * 1990-11-30 1992-07-24 Nippon Koden Corp セルソータ
JP2969935B2 (ja) * 1990-11-30 1999-11-02 東ソー株式会社 液定量取出し装置
JP3005305B2 (ja) 1991-04-09 2000-01-31 オリンパス光学工業株式会社 検査装置
JPH0812146B2 (ja) * 1991-04-12 1996-02-07 秩父小野田株式会社 粉末度測定機
IL108497A0 (en) * 1993-02-01 1994-05-30 Seq Ltd Methods and apparatus for dna sequencing
US5522555A (en) * 1994-03-01 1996-06-04 Amherst Process Instruments, Inc. Dry powder dispersion system
US5576827A (en) * 1994-04-15 1996-11-19 Micromeritics Instrument Corporation Apparatus and method for determining the size distribution of particles by light scattering
JPH07294412A (ja) * 1994-04-27 1995-11-10 Shimadzu Corp 粒度分布測定装置
JPH0812146A (ja) 1994-06-24 1996-01-16 Fujitsu Ltd 媒体搬送装置
US5700692A (en) * 1994-09-27 1997-12-23 Becton Dickinson And Company Flow sorter with video-regulated droplet spacing
JPH08338849A (ja) * 1995-04-11 1996-12-24 Precision Syst Sci Kk 液体の吸引判別方法およびこの方法により駆動制御される分注装置
JP2000502446A (ja) * 1995-12-18 2000-02-29 センター フォー ラボラトリー テクノロジー,インク. 血液診断装置及び判定方法
US5956139A (en) * 1997-08-04 1999-09-21 Ohio Aerospace Institute Cross-correlation method and apparatus for suppressing the effects of multiple scattering
JPH1173029A (ja) * 1997-08-27 1999-03-16 Nec Niigata Ltd 液体現像剤濃度測定装置、液体現像剤濃度管理装置およ びこれらを使用する電子写真記録装置
US20070240496A1 (en) * 1999-02-20 2007-10-18 Bayer Healthcare Llc Variable Rate Particle Counter and Method of Use
JP4310863B2 (ja) 1999-09-02 2009-08-12 栗田工業株式会社 汚泥脱水装置
US6890487B1 (en) 1999-09-30 2005-05-10 Science & Technology Corporation ©UNM Flow cytometry for high throughput screening
US7024316B1 (en) * 1999-10-21 2006-04-04 Dakocytomation Colorado, Inc. Transiently dynamic flow cytometer analysis system
JP2001183382A (ja) 1999-12-28 2001-07-06 Roche Diagnostics Gmbh 分注機の動作確認装置および確認方法
US6970245B2 (en) * 2000-08-02 2005-11-29 Honeywell International Inc. Optical alignment detection system
US7978329B2 (en) * 2000-08-02 2011-07-12 Honeywell International Inc. Portable scattering and fluorescence cytometer
DE20014733U1 (de) * 2000-08-25 2000-10-19 Wella Ag, 64295 Darmstadt Vorrichtung mit einer Mischkammer
US6979570B2 (en) * 2001-07-26 2005-12-27 Sysmex Corporation Particle analyzer and particle analyzing method
AUPR846501A0 (en) * 2001-10-26 2001-11-15 Btf Pty Ltd A cytometer
GB2383127B (en) * 2001-12-12 2004-10-20 Proimmune Ltd Device and method for investigating analytes in liquid suspension or solution
JP3401504B2 (ja) 2002-02-15 2003-04-28 プレシジョン・システム・サイエンス株式会社 分注装置
EP1348943A3 (en) * 2002-03-25 2003-12-17 Sysmex Corporation Sheath liquid for particle analyzer
US6976590B2 (en) * 2002-06-24 2005-12-20 Cytonome, Inc. Method and apparatus for sorting particles
US20070065808A1 (en) * 2002-04-17 2007-03-22 Cytonome, Inc. Method and apparatus for sorting particles
JP4595067B2 (ja) * 2002-08-01 2010-12-08 エックスワイ,エルエルシー 低圧精子細胞分離システム
JP2004069395A (ja) * 2002-08-02 2004-03-04 Nec Corp マイクロチップ、マイクロチップの製造方法および成分検出方法
CN100570360C (zh) * 2002-08-15 2009-12-16 Xy公司 一种流式细胞仪及流式细胞计数方法
GB0229967D0 (en) 2002-09-18 2003-01-29 Accentus Plc Protein production
DK2305171T3 (da) * 2003-03-28 2022-03-21 Inguran Llc Apparat og fremgangsmåder til tilvejebringelse af kønssorteret dyresæd
US20040260157A1 (en) * 2003-06-20 2004-12-23 Montes Miguel A. Method for automated screening of cervical/endocervical malignant and premalignant epithelial lesions using flow cytometry with HPV DNA fluorescent in-situ hybridization ( FISH) technology
US7392908B2 (en) * 2005-01-12 2008-07-01 Beckman Coulter, Inc. Methods and apparatus for sorting particles hydraulically
US7880108B2 (en) * 2007-10-26 2011-02-01 Becton, Dickinson And Company Deflection plate
JP2009270845A (ja) * 2008-04-30 2009-11-19 Nippon Koden Corp 診断装置及び診断システム
WO2011077765A1 (ja) 2009-12-25 2011-06-30 古河電気工業株式会社 検体識別分取装置および検体識別分取方法

Also Published As

Publication number Publication date
WO2005103642A1 (ja) 2005-11-03
EP1739402B1 (en) 2017-08-02
US8264674B2 (en) 2012-09-11
EP1739402A1 (en) 2007-01-03
US8586890B2 (en) 2013-11-19
JP4413921B2 (ja) 2010-02-10
CN102519919B (zh) 2016-03-16
CN1973195B (zh) 2011-12-07
JPWO2005103642A1 (ja) 2008-03-13
EP1739402A4 (en) 2012-09-26
US20080257072A1 (en) 2008-10-23
CN1973195A (zh) 2007-05-30
CN102519919A (zh) 2012-06-27
US20130026180A1 (en) 2013-01-31
JP2009300458A (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4897978B2 (ja) 検体の解析装置及び検体の解析方法
JP7152414B2 (ja) マイクロ流体チャネルを使用してマイクロ粒子のバルク選別を行う方法及び装置
US7386199B2 (en) Providing light to channels or portions
US20190234861A1 (en) Apparatus and method for analyzing and sorting cell particles in solution
JP5487638B2 (ja) 微小粒子分取のための装置及びマイクロチップ
WO2016136377A1 (ja) 自動分析装置
WO2012172992A1 (ja) 検体検出装置に用いられるセンサーチップおよびセンサーチップを用いた検体検出装置
JP5941220B2 (ja) 血液凝固検査方法
CN106018859B (zh) 尿样本分析装置及尿样本分装方法
EP3152546B1 (en) Biased sample injection flow cell
JP5480455B1 (ja) 検体識別分取装置および検体識別分取方法
JP5736975B2 (ja) マイクロチップ送液システム
US10823657B2 (en) Flow cell for analyzing particles in a liquid to be examined
JP5758949B2 (ja) 血液凝固検査方法
JP4906789B2 (ja) 液滴分光システムと分光法
JP4163673B2 (ja) 液滴分光システムと分光法
JP2016156673A (ja) 自動分析装置および分析方法
US20210172854A1 (en) Microparticle measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111223

R151 Written notification of patent or utility model registration

Ref document number: 4897978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250