JP2019162983A - 衝突判定装置 - Google Patents

衝突判定装置 Download PDF

Info

Publication number
JP2019162983A
JP2019162983A JP2018053030A JP2018053030A JP2019162983A JP 2019162983 A JP2019162983 A JP 2019162983A JP 2018053030 A JP2018053030 A JP 2018053030A JP 2018053030 A JP2018053030 A JP 2018053030A JP 2019162983 A JP2019162983 A JP 2019162983A
Authority
JP
Japan
Prior art keywords
collision
acceleration
lateral acceleration
value
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018053030A
Other languages
English (en)
Other versions
JP7013982B2 (ja
Inventor
勇希 井口
Yuki Iguchi
勇希 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018053030A priority Critical patent/JP7013982B2/ja
Priority to US16/356,147 priority patent/US11592459B2/en
Publication of JP2019162983A publication Critical patent/JP2019162983A/ja
Application granted granted Critical
Publication of JP7013982B2 publication Critical patent/JP7013982B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0004Frontal collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0023Offset collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0025Pole collision

Abstract

【課題】衝突形態をより迅速且つ的確に判定すること。【解決手段】衝突判定装置(230)は、第一加速度取得部(231)と第二加速度取得部(232)と衝突判定部(236)とを備える。第一加速度取得部は、車幅方向における一方側にて車両(1)の前部に配置された第一加速度センサ(21)の出力に基づいて、第一縦減速度と第一横加速度とを取得する。第二加速度取得部は、車幅方向における他方側にて車両の前部に配置された第二加速度センサ(22)の出力に基づいて、第二縦減速度と第二横加速度とを取得する。横加速度は、車両中心線に向かう内側方向の加速度を正値とし反対の外側方向の加速度を負値とする。衝突判定部は、第一横加速度および第二横加速度の、衝突初期の値である初期値が、ともに、負値であるフルラップ判定閾値未満である場合、衝突形態がフルラップ前面衝突であると判定する。【選択図】図2

Description

本発明は、車両の前面衝突における衝突形態を判定するように構成された、衝突判定装置に関する。
この種の装置として、特許文献1に記載のものが知られている。特許文献1に記載の装置は、加速度検出手段と、左右のカーテンエアバッグと、エアバッグ展開制御手段とを有する。加速度検出手段は、車両前方の左右にそれぞれ配置されていて、左右それぞれの前後加速度(すなわち前後方向の加速度)を検出する。エアバッグ展開制御手段は、加速度検出手段により検出された左右の前後加速度の差が所定以上の場合、オフセット衝突と判定して、左右のカーテンエアバッグのうち前後加速度が大きい側のエアバッグを展開する。
具体的には、特許文献1に記載の装置は、左右いずれか一方の加速度検出手段で検出された前後加速度が所定の基準値以上になることを条件として、一方の加速度検出手段に対応する側のカーテンエアバッグを展開する。さらに、この装置は、他方の加速度検出手段で検出された前後加速度も所定の基準値以上になれば、正面衝突と判定して、運転席や助手席のエアバッグを展開する。
特開2006−160066号公報
周知の通り、車両の前面衝突には、様々な形態がある。したがって、この種の装置においては、衝突形態をより迅速且つ的確に判定することが求められている。本発明は、上記に例示した事情等に鑑みてなされたものである。
請求項1に記載の衝突判定装置(230)は、車両(1)の前面衝突における衝突形態を判定するように構成されている。
この衝突判定装置は、
車両中心線(L)よりも車幅方向における一方側にて前記車両の前部に配置された第一加速度センサ(21)の出力に基づいて、前記車両中心線と平行な車両全長方向の減速度である第一縦減速度と、前記車幅方向の加速度であって前記車両中心線に向かう内側方向の加速度を正値とし前記内側方向とは反対の外側方向の加速度を負値とする第一横加速度とを取得するように設けられた、第一加速度取得部(231)と、
前記車両中心線よりも前記車幅方向における他方側にて前記車両の前部に配置された第二加速度センサ(22)の出力に基づいて、前記車両全長方向の減速度である第二縦減速度と、前記車幅方向の加速度であって前記内側方向の加速度を正値とし前記外側方向の加速度を負値とする第二横加速度とを取得するように設けられた、第二加速度取得部(232)と、
前記第一加速度取得部にて取得された前記第一縦減速度および前記第一横加速度、ならびに、前記第二加速度取得部にて取得された前記第二縦減速度および前記第二横加速度に基づいて、前記衝突形態を判定するように設けられた、衝突判定部(236)と、
を備え、
前記衝突判定部は、
前記第一横加速度および前記第二横加速度の、衝突初期の値である初期値が、ともに、負値であるフルラップ判定閾値未満である場合、前記衝突形態が、前記車両が車体(2)の前面(3)のほぼ全幅にわたって障害物と衝突するフルラップ前面衝突であると判定するように構成されている。
請求項7に記載の衝突判定装置(230)は、車両(1)の前面衝突における衝突形態を判定するように構成されている。
この衝突判定装置は、
車両中心線(L)よりも車幅方向における一方側にて前記車両の前部に配置された第一加速度センサ(21)の出力に基づいて、前記車両中心線と平行な車両全長方向の減速度である第一縦減速度と、前記車幅方向の加速度であって前記車両中心線に向かう内側方向の加速度を正値とし前記内側方向とは反対の外側方向の加速度を負値とする第一横加速度とを取得するように設けられた、第一加速度取得部(231)と、
前記車両中心線よりも前記車幅方向における他方側にて前記車両の前部に配置された第二加速度センサ(22)の出力に基づいて、前記車両全長方向の減速度である第二縦減速度と、前記車幅方向の加速度であって前記内側方向の加速度を正値とし前記外側方向の加速度を負値とする第二横加速度とを取得するように設けられた、第二加速度取得部(232)と、
前記第一加速度取得部にて取得された前記第一縦減速度および前記第一横加速度、ならびに、前記第二加速度取得部にて取得された前記第二縦減速度および前記第二横加速度に基づいて、前記衝突形態を判定するように設けられた、衝突判定部(236)と、
を備え、
前記衝突判定部は、
前記第一横加速度および前記第二横加速度の、衝突初期の値である初期値が、ともに、正値である低ラップ判定閾値未満であり、
且つ、
前記第一縦減速度の前記初期値および前記第二縦減速度の前記初期値が、ともに、正値であるオフセット判定閾値以上である場合、
前記衝突形態が、前記車両が車体(2)の前面(3)のほぼ全幅にわたって障害物と衝突するフルラップ前面衝突であると判定するように構成されている。
なお、出願書類中の各欄において、各要素に括弧付きの参照符号が付されている場合、かかる参照符号は、単に、同要素と後述する実施形態に記載の具体的構成との対応関係の一例を示すものである。よって、本発明は、かかる参照符号の記載によって、何ら限定されるものではない。
本発明の一実施形態が適用された車両の概略構成を示す平面図である。 図1に示された保護制御装置の概略的な機能構成を示すブロック図である。 図2に示された衝突判定装置の一動作例を説明するためのグラフである。 車両の前面衝突における衝突形態を説明するための平面図である。 車両の前面衝突における衝突形態を説明するための平面図である。 車両の前面衝突における衝突形態を説明するための平面図である。 車両の前面衝突における衝突形態を説明するための平面図である。 車両の前面衝突における衝突形態を説明するための平面図である。 図2に示された衝突判定装置の一動作例を説明するためのフローチャートである。 図2に示された衝突判定装置の他の一動作例を説明するためのフローチャートである。
以下、本発明の実施形態を、図面に基づいて説明する。なお、一つの実施形態に対して適用可能な各種の変形例については、当該実施形態に関する一連の説明の途中に挿入されると当該実施形態の理解が妨げられるおそれがあるため、当該実施形態の説明の後にまとめて記載する。
(車両の概略構成)
まず、図1を参照しつつ、本発明の適用対象である車両1の概略構成について説明する。車両1における、「前」、「後」、「左」、および「右」の概念は、図1等にて矢印で示した通りである。
なお、車両中心線Lと平行な前後方向を「車両全長方向」を称し、これと直交する左右方向を「車幅方向」と称することがある。また、車両全長方向および車幅方向と直交する方向、すなわち上下方向を「車高方向」と称することがある。車高方向は、車両1が略水平な地面に載置された状態にて、重力作用方向と略平行となる。また、車両1を車高方向に沿って上方から見ることを「平面視」と称し、車両1を車両全長方向に沿って前方から見ることを「正面視」と称する。
車両1は、いわゆる自動車であって、箱状の車体2を有している。車体2の前面3には、フロントバンパー4が装着されている。フロントバンパー4の内側には、「バンパーリインフォースメント」と称される補強部材5が配置されている。補強部材5は、正面視にて車幅方向に延設された棒状部材であって、本実施形態においては平面視にて前方に向かって凸となる部分円弧状に湾曲するように形成されている。補強部材5は、前方に延設された一対のサイドメンバ6の前端部に固定されている。本実施形態においては、一対のサイドメンバ6の各々は、車両全長方向と略平行に延設されている。なお、後述するように、補強部材5およびサイドメンバ6のジオメトリは、上記の具体例に限定されない。補強部材5およびサイドメンバ6のジオメトリの変形例については後述する。
車両1には、乗員保護システム10が搭載されている。乗員保護システム10は、車両1の外部に存在する物体(例えば、他車両、壁、ポール等。)と車両1とが衝突した場合に、車両1の乗員を保護するように構成されている。
具体的には、本実施形態においては、乗員保護システム10は、運転席前面エアバッグ11と、助手席前面エアバッグ12と、運転席ニーエアバッグ13と、助手席ニーエアバッグ14と、運転席サイドエアバッグ15と、助手席サイドエアバッグ16と、運転席カーテンエアバッグ17と、助手席カーテンエアバッグ18と、ベルト巻取機構19と、保護制御装置20とを備えている。なお、運転席前面エアバッグ11、助手席前面エアバッグ12、運転席ニーエアバッグ13、助手席ニーエアバッグ14、運転席サイドエアバッグ15、助手席サイドエアバッグ16、運転席カーテンエアバッグ17、助手席カーテンエアバッグ18、およびベルト巻取機構19を総称して、「保護デバイス」と称することがある。
運転席前面エアバッグ11は、運転席に着座した乗員の上半身の前方にて展開するように設けられている。助手席前面エアバッグ12は、助手席に着座した乗員の上半身の前方にて展開するように設けられている。
運転席ニーエアバッグ13は、運転席に着座した乗員の膝部の前方にて展開するように設けられている。助手席ニーエアバッグ14は、助手席に着座した乗員の膝部の前方にて展開するように設けられている。
運転席サイドエアバッグ15は、運転席に着座した乗員の側方にて展開するように設けられている。助手席サイドエアバッグ16は、助手席に着座した乗員の側方にて展開するように設けられている。
運転席カーテンエアバッグ17は、運転席に着座した乗員の側方にて上方から下方に向かって展開するように設けられている。助手席カーテンエアバッグ18は、助手席に着座した乗員の側方にて上方から下方に向かって展開するように設けられている。
ベルト巻取機構19は、車両1の内部の各座席におけるシートベルトを巻き取るように、各座席に対応して設けられている。ベルト巻取機構19は、いわゆるベルトプリテンショナ機構であって、各座席に対応するシートベルトに所定値以上の張力を付与することで、乗員を座席に拘束するように構成されている。ベルト巻取機構19は、周知の、可逆式または不可逆式の構成を有している。
(保護制御装置の構成)
保護制御装置20は、乗員保護システム10の動作を制御するように構成されている。具体的には、保護制御装置20は、第一加速度センサ21と、第二加速度センサ22と、保護制御ECU23とを備えている。ECUはElectronic Control Unitの略である。
第一加速度センサ21は、車両中心線Lよりも車幅方向における一方側にて、車両1の前部に配置されている。具体的には、第一加速度センサ21は、車体2における右前方の角部に配置されるように、右側のサイドメンバ6における先端側の位置に固定されている。
第二加速度センサ22は、車両中心線Lよりも車幅方向における他方側にて、車両1の前部に配置されている。具体的には、第二加速度センサ22は、車体2における左前方の角部に配置されるように、左側のサイドメンバ6における先端側の位置に固定されている。第一加速度センサ21と第二加速度センサ22とは、車両中心線Lを挟んで左右対称に配置されている。
第一加速度センサ21および第二加速度センサ22は、いわゆる二軸の加速度センサであって、車両全長方向の減速度および車幅方向の加速度に応じた電気出力を発生するように構成されている。第一加速度センサ21および第二加速度センサ22は、車載ネットワーク等の通信回線を介して、保護制御ECU23と、信号授受可能に接続されている。
保護制御ECU23は、いわゆる車載マイクロコンピュータであって、不図示のCPU、ROM、RAM、および不揮発性RAMを備えている。不揮発性RAMは、例えば、フラッシュROM等である。保護制御ECU23のCPU、ROM、RAMおよび不揮発性RAMを、以下単に「CPU」、「ROM」、「RAM」および「不揮発性RAM」と略称する。
保護制御ECU23は、CPUがROM又は不揮発性RAMからプログラムを読み出して実行することで、各種の制御動作を実現可能に構成されている。また、ROM又は不揮発性RAMには、プログラムの実行の際に用いられる各種のデータが、あらかじめ格納されている。各種のデータには、例えば、初期値、ルックアップテーブル、マップ、等が含まれている。RAMは、CPUがプログラムを実行する際に、演算結果、および、外部から入力されたデータ等を、一時的に格納するように設けられている。保護制御ECU23の機能構成の詳細については後述する。
保護制御ECU23は、第一加速度センサ21および第二加速度センサ22の出力に基づいて、車両1と物体との衝突を検知するとともに、衝突を検知した場合にあわせてシビアリティおよび衝突形態を検知するように構成されている。「シビアリティ」とは、衝突の度合いを示す指標である。シビアリティは、例えば、特許第5,772,712号明細書およびこれに対応する米国特許第8,983,698号明細書等と同様に、軽度、中度、重度の三段階に判定することが可能である。また、保護制御ECU23は、衝突ならびにシビアリティおよび衝突形態を検知した場合に、シビアリティおよび衝突形態に応じて保護デバイスを動作させるように構成されている。すなわち、本実施形態においては、乗員保護システム10は、特許第4,168,944号明細書およびこれに対応する米国特許第7,606,646号明細書等と同様に、シビアリティに対応して段階的に駆動されるように構成されている。
(保護制御ECUの機能構成)
保護制御ECU23は、マイクロコンピュータにて実現される機能上の構成として、衝突判定装置230を備えている。衝突判定装置230は、車両1の前面衝突における衝突形態を判定するように構成されている。具体的には、衝突判定装置230は、第一加速度取得部231と、第二加速度取得部232と、第三加速度取得部233と、積分値算出部234と、閾値格納部235と、衝突判定部236とを有している。
第一加速度取得部231は、第一加速度センサ21の出力に基づいて、第一縦減速度と第一横加速度とを取得するように設けられている。第一縦減速度は、車両中心線Lと平行な車両全長方向の減速度である。すなわち、第一縦減速度は、後方向きの加速度である。よって、第一縦減速度は、後方向きの加速度を正値とし、前方向きの加速度を負値とする。第一横加速度は、車幅方向の加速度である。第一横加速度は、車両中心線Lに向かう内側方向の加速度を正値とし、内側方向とは反対の外側方向の加速度を負値とする。第一加速度取得部231は、CPUの内蔵メモリ、または、RAM上の記憶領域として構成され得る。
第二加速度取得部232は、第二加速度センサ22の出力に基づいて、第二縦減速度と第二横加速度とを取得するように設けられている。第二縦減速度は、車両全長方向の減速度である。よって、第二縦減速度も、後方向きの加速度を正値とし、前方向きの加速度を負値とする。第二横加速度は、車幅方向の加速度である。第二縦減速度は、内側方向の加速度を正値とし、外側方向の加速度を負値とする。第二加速度取得部232は、CPUの内蔵メモリ、または、RAM上の記憶領域として構成され得る。
第三加速度取得部233は、第三縦減速度を取得するように設けられている。第三縦減速度は、車両全長方向の減速度である。よって、第三縦減速度も、後方向きの加速度を正値とし、前方向きの加速度を負値とする。本実施形態においては、第三加速度取得部233は、いわゆるフロアGセンサであって、保護制御ECU23の筐体に内蔵されている。
積分値算出部234は、第三縦減速度の積分値を算出するように設けられている。閾値格納部235には、衝突形態推定用の閾値が格納されている。本実施形態においては、衝突形態推定用の閾値は、第三縦減速度の積分値に応じて変化するように設定されている。すなわち、閾値格納部235には、第三縦減速度の積分値をパラメータとする閾値マップが格納されている。衝突形態推定用の閾値(例えばオブリーク判定閾値等)の詳細については後述する。
衝突判定部236は、第一加速度取得部231にて取得された第一縦減速度および第一横加速度、ならびに、第二加速度取得部232にて取得された第二縦減速度および第二横加速度に基づいて、衝突形態を判定するように設けられている。すなわち、衝突判定部236は、第三縦減速度の積分値に基づいて閾値マップから閾値を読み出すとともに、取得された縦減速度および横加速度と閾値とを比較することで、衝突形態を判定するようになっている。
(動作概要)
以下、本実施形態に係る衝突判定装置230の動作概要について説明する。
第一加速度取得部231は、第一加速度センサ21の出力に基づいて、第一縦減速度と第一横加速度とを取得する。第二加速度取得部232は、第二加速度センサ22の出力に基づいて、第二縦減速度と第二横加速度とを取得する。第三加速度取得部233は、第三縦減速度を取得する。
積分値算出部234は、第三縦減速度の積分値を算出する。衝突判定部236は、積分値算出部234によって算出された、第三縦減速度の積分値に基づいて、閾値格納部235に格納された閾値マップから閾値を読み出す。衝突判定部236は、第一加速度取得部231および第二加速度取得部232にて取得された横加速度と、対応する閾値とを比較する。衝突判定部236は、第一加速度取得部231および第二加速度取得部232にて取得された縦減速度と、対応する閾値とを比較する。衝突判定部236は、これらの比較結果に基づいて、前面衝突における衝突形態を判定する。
図3は、衝突判定部236による衝突判定の概要を示すグラフである。図3において、「第一軸」としての横軸Dvは、第三縦減速度の積分値を示す。また、「第二軸」としての縦軸Gは、加速度、すなわち、縦減速度または横加速度を示す。グラフ中の、実線で示された曲線は、第一縦減速度、第一横加速度、第二縦減速度、または第二横加速度の取得値を示す。グラフ中の、一点鎖線で示された折れ線は、閾値マップから読み出された閾値を示す。
図3に示されているように、横軸Dvおよび縦軸Gを用いて、縦減速度または横加速度の取得値を表すことで、衝突初期の縦減速度または横加速度の波形をグラフ中の左側に配置することができる。そこで、衝突判定部236は、第三縦減速度の積分値を横軸、第一縦減速度、第一横加速度、第二縦減速度および第二横加速度のうちのいずれか1つの値を縦軸に表した場合に、横軸の値に応じて変化する閾値と縦軸の値とに基づいて、衝突形態を判定する。
すなわち、衝突判定部236は、衝突初期の縦減速度または横加速度の値である「初期値」と、閾値とを比較することで、衝突形態を判定する。具体的には、本実施形態においては、衝突判定部236は、横軸Dvの値が0〜所定値ΔDvの間の、縦減速度または横加速度の取得値が、閾値以上であるか否かに基づいて、衝突形態を判定する。これにより、衝突初期の縦減速度または横加速度の値を、衝突後期の値から良好に分離して、衝突形態の判定に用いることが可能となる。
図4A〜図4Eは、前面衝突における衝突形態の代表例を示す。図4A〜図4Eに示されているように、「前面衝突」とは、車両1における車体2の前面3、典型的にはフロントバンパー4に、障害物Bが衝突することをいう。障害物Bは、例えば、壁等の建築構造物、あるいは他車両である。なお、図4A〜図4Eにおいて、正値の加速度あるいは減速度が黒塗りの太い矢印で示されており、負値の加速度あるいは減速度が白抜きの矢印で示されている。
図4Aは、オブリーク前面衝突を示す。オブリーク前面衝突とは、平面視にて車幅方向に対して傾斜するように立設する傾斜面を有する障害物Bの当該傾斜面に、車体2の前面3の角部が衝突する前面衝突である。オブリーク前面衝突は、「斜め衝突」とも称される。
図4Aにおいては、オブリーク前面衝突の典型例として、NHTSAにて規定されたオブリーク衝突試験における試験条件相当の、相対角15°およびオーバーラップ率35%程度での衝突形態が示されている。NHTSAはNational Highway Traffic Safety Administrationの略である。オーバーラップ率とは、車幅に対して、車体2の障害物Bとの衝突領域の車幅方向寸法が占める割合である。車幅とは、車体2の車幅方向寸法である。なお、オブリーク前面衝突においては、相対速度90km/hでの衝突が想定されている。
図4Aに示されているように、オブリーク前面衝突の場合、衝突側の第二加速度センサ22には、大きな正方向の横加速度が印加される。これに対し、反対側の第一加速度センサ21には、大きな負方向の横加速度が印加される。すなわち、第一加速度センサ21に印加される加速度および減速度と、第二加速度センサ22に印加される加速度および減速度とは、非対称となる。
したがって、衝突判定部236は、第一横加速度の初期値と、正値であるオブリーク判定閾値との大小関係を比較する。「大小関係」は、絶対値のみならず符号をも含めた、2つの値の間の関係である。すなわち、2つの値のうち、より「+∞」に近い方の値が、「大きい」値となる。以降の大小関係の比較についても同様である。また、衝突判定部236は、第二横加速度の初期値と、オブリーク判定閾値との大小関係を比較する。さらに、衝突判定部236は、第一横加速度の初期値および第二横加速度の初期値のうちのいずれか一方のみがオブリーク判定閾値以上である場合、衝突形態がオブリーク前面衝突であると判定する。
図4Bおよび図4Cは、オフセット前面衝突を示す。オフセット前面衝突とは、車体2の前面3の車幅方向における一端側に偏った領域が障害物Bと前面衝突する衝突形態である。すなわち、オフセット前面衝突は、オーバーラップ率が所定値(例えば75%)以下の前面衝突である。
オフセット前面衝突のうち、図4Bは、IIHSにて規定されたスモールオーバーラップ前面衝突試験における試験条件相当の、オーバーラップ率25%程度の場合を示す。IIHSはInsurance Institute for Highway Safetyの略である。一方、図4Cは、JNCAPにて規定されたオフセット前面衝突試験における試験条件相当の、オーバーラップ率40%程度の場合を示す。JNCAPはJapan New Car Assessment Programの略である。
本明細書においては、図4Bに示されているような、オーバーラップ率が比較的低いオフセット前面衝突を、「低ラップ前面衝突」と称する。低ラップ前面衝突におけるオーバーラップ率の範囲は、例えば、10〜30%である。なお、低ラップ前面衝突においては、相対速度64km/hでの衝突が想定されている。また、オーバーラップ率が低ラップ前面衝突におけるオーバーラップ率範囲の下限値(例えば上記の例では10%)よりも小さい場合は、車体2が受ける衝撃の態様は、図4Aに示されているオブリーク前面衝突とほぼ同様となる。このため、この場合は、オブリーク前面衝突であるものとして取り扱うことが可能である。
一方、図4Cに示されているような、オーバーラップ率が比較的高いオフセット前面衝突を、「高ラップ前面衝突」と称する。高ラップ前面衝突におけるオーバーラップ率の範囲は、例えば、30〜75%である。オーバーラップ率が高ラップ前面衝突におけるオーバーラップ率範囲の上限値(例えば上記の例では75%)を超える場合は、車体2が受ける衝撃の態様は、後述するフルラップ前面衝突とほぼ同様となる。このため、この場合は、フルラップ前面衝突であるものとして取り扱うことが可能である。
図4Bに示されているように、低ラップ前面衝突の場合、衝突側の第二加速度センサ22には、大きな正方向の横加速度が印加される。これに対し、反対側の第一加速度センサ21には、大きな負方向の横加速度が印加される。すなわち、低ラップ前面衝突にて車体2が受ける衝撃の態様は、オブリーク前面衝突と同様となる。但し、オブリーク前面衝突の方が、低ラップ前面衝突よりも、発生する横加速度の絶対値が大きくなる。特に、衝突側にて発生する横加速度は、低ラップ前面衝突よりもオブリーク前面衝突の方が大きくなる。
したがって、衝突判定部236は、第一横加速度の初期値と、オブリーク判定閾値および低ラップ判定閾値との大小関係を比較する。低ラップ判定閾値は、オブリーク判定閾値と同様に正値であって、オブリーク判定閾値よりも絶対値が小さい。また、衝突判定部236は、第二横加速度の初期値と、オブリーク判定閾値および低ラップ判定閾値との大小関係を比較する。さらに、衝突判定部236は、第一横加速度の初期値および第二横加速度の初期値のうちの一方のみが、低ラップ判定閾値以上であって且つオブリーク判定閾値未満である場合、衝突形態が低ラップ前面衝突であると判定する。
図4Cに示されているように、高ラップ前面衝突の場合は、オブリーク前面衝突および低ラップ前面衝突の場合のような大きな絶対値の横加速度は発生しない。また、縦減速度についても、高ラップ前面衝突の場合は、オブリーク前面衝突および低ラップ前面衝突の場合よりも小さな値となる。
したがって、衝突判定部236は、第一横加速度の初期値と、低ラップ判定閾値との大小関係を比較する。また、衝突判定部236は、第二横加速度の初期値と、低ラップ判定閾値との大小関係を比較する。また、衝突判定部236は、第一縦減速度の初期値と、正値であるオフセット判定閾値の大小関係を比較する。また、衝突判定部236は、第二縦減速度の初期値と、オフセット判定閾値の大小関係を比較する。さらに、衝突判定部236は、第一横加速度の初期値および第二横加速度の初期値がともに低ラップ判定閾値未満であり、且つ、第一縦減速度の初期値および第二縦減速度の初期値のうちのいずれか一方がオフセット判定閾値未満である場合、衝突形態が高ラップ前面衝突であると判定する。
図4Dは、ポール衝突を示す。ポール衝突とは、車体2の前面3の車幅方向における中間部に、ポール状の障害物Bが衝突する前面衝突である。ポール状の障害物Bは、路面あるいは地面から車高方向に延設されていて、延設方向と直交する方向の寸法である幅寸法が車体2の車幅方向よりも充分小さい障害物Bである。ポール衝突は、ポール前面衝突とも称される。
ポール衝突の場合、図1を参照すると、衝突発生前にて前方に凸状に湾曲していた補強部材5が、衝突初期にて直ちに折れ曲がる。このため、図4Dに示されているように、第一横加速度の初期値および第二横加速度の初期値は、ともに、大きな正値となる。
したがって、衝突判定部236は、第一横加速度の初期値と、正値であるポール判定閾値との大小関係を比較する。また、衝突判定部236は、第二横加速度の初期値と、ポール判定閾値との大小関係を比較する。さらに、衝突判定部236は、第一横加速度の初期値および第二横加速度の初期値が、ともに、ポール判定閾値以上である場合、衝突形態がポール衝突であると判定する。なお、ポール判定閾値は、例えば、低ラップ判定閾値以上の値である。あるいは、例えば、ポール判定閾値は、オフセット判定閾値以下の値である。
図4Eは、フルラップ前面衝突を示す。フルラップ前面衝突とは、車両1が車体2の前面3のほぼ全幅にわたって障害物Bと衝突する衝突形態であって、「正面衝突」とも称される。すなわち、フルラップ前面衝突は、オーバーラップ率がほぼ100%の前面衝突である。
図4A、図4B、および図4Dに示されているような衝突形態においては、第一横加速度の初期値および第二横加速度の初期値のいずれか一方にて、絶対値が比較的大きな正値が発生する。あるいは、図4Cに示されているような衝突形態においては、第一横加速度の初期値および第二横加速度の初期値の双方が、絶対値が比較的小さな値となる。
これに対し、フルラップ前面衝突の場合、図1を参照すると、衝突発生前にて前方向かってに凸状に湾曲していた補強部材5が、衝突初期にて一旦左右に引き伸ばされる。このため、フルラップ前面衝突の場合、図4Eに示されているように、第一横加速度の初期値および第二横加速度の初期値は、ほぼ同様な絶対値の、大きな負値となる。また、第一加速度センサ21に印加される加速度および減速度と、第二加速度センサ22に印加される加速度および減速度とは、ほぼ対称となる。これらの点で、フルラップ前面衝突は、図4A〜図4Dに示されているような他の衝突形態とは大きく異なる特徴を有する。
したがって、衝突判定部236は、第一横加速度の初期値と、負値であるフルラップ判定閾値との大小関係を比較する。また、衝突判定部236は、第二横加速度の初期値と、フルラップ判定閾値との大小関係を比較する。さらに、衝突判定部236は、第一横加速度の初期値および第二横加速度の初期値が、ともに、フルラップ判定閾値未満である場合、衝突形態がフルラップ前面衝突であると判定することが可能である。すなわち、以下の2つの条件が成立する場合、フルラップ前面衝突判定が成立する。(F11)第一横加速度の初期値および第二横加速度の初期値が、ともに、負値である。(F12)第一横加速度の初期値および第二横加速度の初期値の絶対値が、ともに、フルラップ判定閾値の絶対値よりも大きい。
また、フルラップ前面衝突の場合、第一加速度センサ21の出力に基づいて取得される加速度および減速度の波形と、第二加速度センサ22の出力に基づいて取得される加速度および減速度の波形とは、ほぼ対称となる。このため、第一縦減速度の初期値および第二縦減速度の初期値は、ほぼ同様な絶対値の正値となり、且つ、高ラップ前面衝突よりも大きな値となり得る。
そこで、衝突判定部236は、以下の2つの条件が成立する場合、衝突形態がフルラップ前面衝突であると判定することが可能である。(F21)第一横加速度の初期値および第二横加速度の初期値が、ともに、低ラップ判定閾値未満である。(F22)第一縦減速度の初期値および第二縦減速度の初期値が、ともに、オフセット判定閾値以上である。
上記の通り、本実施形態においては、衝突判定部236は、第一横加速度の初期値および第二横加速度の初期値と、低ラップ判定閾値、オブリーク判定閾値、フルラップ判定閾値、およびポール判定閾値との大小関係に基づいて、衝突形態を判定する。また、衝突判定部236は、第一縦減速度の初期値および第二縦減速度の初期値と、オフセット判定閾値との大小関係に基づいて、衝突形態を判定する。これにより、前面衝突の衝突形態が、オブリーク前面衝突、低ラップ前面衝突、高ラップ前面衝突、ポール衝突、およびフルラップ前面衝突のうちのいずれであるかが、より迅速且つ的確に判定され得る。
(動作例)
以下、本実施形態に係る衝突判定装置230の具体的な動作例について、図5のフローチャートを用いて説明する。なお、図面において、「ステップ」を「S」と略記している。
保護制御ECU23のCPUは、車両1に設けられた不図示のイグニッションスイッチがオンされた時点を初回として、所定時間経過毎に、図5に示されている衝突形態判定ルーチンを実行する。また、CPUは、図5に示されている衝突形態判定ルーチンとは別に、車両1が車両1の外部の物体と衝突したか否かと、衝突が発生した場合のシビアリティとを判定するための衝突判定ルーチンも、所定時間毎に実行する。
図5に示されている衝突形態判定ルーチンが起動されると、まず、ステップ501にて、CPUは、第一縦減速度、第一横加速度、第二縦減速度、第二横加速度、および第三縦減速度を取得し、取得結果を時系列でRAMに格納する。次に、ステップ502にて、CPUは、第三縦減速度の積分値Dvを算出し、算出結果を時系列でRAMに格納する。
続いて、ステップ504にて、CPUは、時間経過毎の積分値Dvに対応する、低ラップ判定閾値、オブリーク判定閾値、フルラップ判定閾値、ポール判定閾値、およびオフセット判定閾値を、閾値格納部235から読み出す。また、CPUは、ステップ505以降の判定処理によって、衝突形態を判定する。
具体的には、まず、ステップ505にて、CPUは、第一横加速度GyRの初期値および第二横加速度GyLの初期値が、ともに、正値であるポール判定閾値G_POL以上であるか否かを判定する。ステップ505の判定が「NO」である場合、CPUは、処理をステップ506に進行させる。
ステップ506にて、CPUは、第一横加速度GyRの初期値および第二横加速度GyLの初期値のうちのいずれか一方が、正値である低ラップ判定閾値G_LL以上であるか否かを判定する。ステップ506の判定が「YES」である場合、CPUは、処理をステップ507に進行させる。一方、ステップ506の判定が「NO」である場合、CPUは、処理をステップ508に進行させる。
ステップ507にて、CPUは、第一横加速度GyRの初期値および第二横加速度GyLの初期値のうちのいずれか一方が、正値であるオブリーク判定閾値G_OBL以上であるか否かを判定する。一方、ステップ508にて、CPUは、第一横加速度GyRの初期値および第二横加速度GyLの初期値が、ともに、負値であるフルラップ判定閾値未満であるか否かを判定する。
ステップ508の判定が「NO」である場合、CPUは、処理をステップ509に進行させる。ステップ509にて、CPUは、第一縦減速度GxRの初期値および第二縦減速度GxLの初期値が、ともに、正値であるオフセット判定閾値G_OFS以上であるか否かを判定する。
第一横加速度GyRの初期値および第二横加速度GyLの初期値が、ともに、正値であるポール判定閾値G_POL以上である場合がある。この場合、ステップ505の判定が「YES」となる。この場合、CPUは、処理をステップ511に進行させる。ステップ511にて、CPUは、衝突形態がポール衝突であると判定し、本ルーチンを一旦終了する。
第一横加速度GyRの初期値および第二横加速度GyLの初期値のうちのいずれか一方のみが、正値であるオブリーク判定閾値G_OBL以上である場合がある。この場合、ステップ505の判定が「NO」となり、ステップ506の判定が「YES」となり、ステップ507の判定が「YES」となる。この場合、CPUは、処理をステップ512に進行させる。ステップ512にて、CPUは、衝突形態がオブリーク前面衝突であると判定し、本ルーチンを一旦終了する。
第一横加速度GyRの初期値および第二横加速度GyLの初期値のうちの一方のみが、低ラップ判定閾値G_LL以上であって且つオブリーク判定閾値G_OBL未満である場合がある。この場合、ステップ505の判定が「NO」となり、ステップ506の判定が「YES」となり、ステップ507の判定が「NO」となる。この場合、CPUは、処理をステップ513に進行させる。ステップ513にて、CPUは、衝突形態が低ラップ前面衝突であると判定し、本ルーチンを一旦終了する。
第一横加速度GyRの初期値および第二横加速度GyLの初期値が、ともに、負値であるフルラップ判定G_FL閾値未満である場合がある。この場合、ステップ505の判定が「NO」となり、ステップ506の判定が「NO」となり、ステップ508の判定が「YES」となる。この場合、CPUは、処理をステップ514に進行させる。ステップ514にて、CPUは、衝突形態がフルラップ前面衝突であると判定し、本ルーチンを一旦終了する。
第一横加速度GyRの初期値および第二横加速度GyLの初期値がともに低ラップ判定閾値G_LL未満であり、且つ、第一縦減速度GxRの初期値および第二縦減速度GxLの初期値がともにオフセット判定閾値G_OFF以上である場合がある。この場合、ステップ505の判定が「NO」となり、ステップ506の判定が「NO」となり、ステップ508の判定が「NO」となり、ステップ509の判定が「YES」となる。すなわち、第一横加速度GyRの初期値および第二横加速度GyLの初期値のうちのいずれか一方が負値であるフルラップ判定G_FL閾値未満とはならなくても、ステップ509の判定が「YES」となる。この場合も、CPUは、処理をステップ514に進行させる。ステップ514にて、CPUは、衝突形態がフルラップ前面衝突であると判定し、本ルーチンを一旦終了する。
第一横加速度GyRの初期値および第二横加速度GyLの初期値がともに低ラップ判定閾値G_LL未満であり、且つ、第一縦減速度GxRの初期値および第二縦減速度GxLの初期値のうちのいずれか一方がオフセット判定閾値G_OFF未満である場合がある。この場合、ステップ505の判定が「NO」となり、ステップ506の判定が「NO」となる。この場合、ステップ508の判定が「NO」となり、ステップ509の判定が「NO」となる。この場合、CPUは、処理をステップ515に進行させる。ステップ515にて、CPUは、衝突形態が高ラップ前面衝突であると判定し、本ルーチンを一旦終了する。
(変形例)
本発明は、上記実施形態に限定されるものではない。故に、上記実施形態に対しては、適宜変更が可能である。以下、代表的な変形例について説明する。以下の変形例の説明においては、上記実施形態と異なる部分についてのみ説明する。また、上記実施形態と変形例とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の変形例の説明において、上記実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、上記実施形態における説明が適宜援用され得る。
本発明は、上記実施形態にて示された具体的な装置構成に限定されない。例えば、補強部材5およびサイドメンバ6のジオメトリは、上記の具体例に限定されない。すなわち、例えば、一対のサイドメンバ6の各々は、前方に向かうにつれて互いの車幅方向における間隔が広がるように、車両全長方向に対して傾斜して延設されていてもよい。この場合、補強部材5は、上記の具体例と同様に湾曲するように形成されていてもよい。あるいは、補強部材5は、正面視および平面視にて車幅方向と略平行な直棒状に形成されていてもよい。乗員保護システム10に設けられる保護デバイスの種類、個数、構成および配置についても、特段の限定はない。
第一縦減速度、第一横加速度、第二縦減速度、および第二横加速度の取得に際しては、ノイズ低減等のためのフィルタ処理が施されることが通常である。かかるフィルタ処理のためのフィルタの存在は、本願の出願時点において、すでに周知技術となっている。このため、かかるフィルタは、図2において、図示が省略されている。なお、かかるフィルタは、第一加速度センサ21および第二加速度センサ22側に設けられていてもよい。あるいは、かかるフィルタは、第一加速度取得部231および第二加速度取得部232側に設けられていてもよい。
第三加速度取得部233は、いわゆるフロアGセンサに限定されない。すなわち、例えば、第三加速度取得部233は、第一加速度取得部231および第二加速度取得部232のうちの少なくともいずれか一方と共通化され得る。
本発明は、上記実施形態にて示された具体的な動作例に限定されない。例えば、図5に示された衝突形態判定ルーチンには、起動条件が設定されもよい。この起動条件には、車両1の走行速度が所定値を超えたことが含まれてもよい。その他、図5に示された衝突形態判定ルーチンの起動タイミングについては、特段の限定はない。
すなわち、例えば、図5に示された衝突形態判定ルーチンは、車両1にて何らかの形態の前面衝突が発生した可能性が高いと判定した場合に起動されてもよい。具体的には、例えば、第三加速度取得部233にて取得された第三縦減速度が所定値(例えば3G)を超えた場合に、かかるルーチンが起動されてもよい。かかる起動タイミングの変更に対応して、図5に示された衝突形態判定ルーチンに対しても、適宜変更が施され得る。
図5に示された衝突形態判定ルーチンの内容も、上記の具体例に限定されない。すなわち、図5に示された衝突形態判定ルーチンに対して、適宜変更が施され得る。具体的には、例えば、第三縦減速度が所定値(例えば1.5G)未満であることが所定期間以上継続した場合に各縦減速度および横加速度の格納値をクリアするステップが追加されてもよい。
図6は、図5に示された衝突形態判定ルーチンの一部を変容した一例である。かかる変形例においては、図5におけるステップ508が省略されている。かかる動作例によっても、前面衝突の衝突形態が、オブリーク前面衝突、低ラップ前面衝突、高ラップ前面衝突、ポール衝突、およびフルラップ前面衝突のうちのいずれであるかが、より迅速且つ的確に判定され得る。
具体的には、第一横加速度GyRの初期値および第二横加速度GyLの初期値が、ともに、正値であるポール判定閾値G_POL以上である場合(すなわちステップ505=YES)、CPUは、ステップ511の処理を実行した後、本ルーチンを一旦終了する。ステップ511にて、CPUは、衝突形態がポール衝突であると判定する。
ステップ505の判定が「NO」である場合、CPUは、処理をステップ506に進行させる。ステップ506にて、CPUは、第一横加速度GyRの初期値および第二横加速度GyLの初期値のうちのいずれか一方が、正値である低ラップ判定閾値G_LL以上であるか否かを判定する。
ステップ506の判定が「YES」である場合、さらに、ステップ507にて、第一横加速度GyRの初期値および第二横加速度GyLの初期値のうちのいずれか一方が、低ラップ判定閾値G_LLよりも大きな正値であるオブリーク判定閾値G_OBL以上であるか否かが判定される。ステップ507の判定結果に応じて、上記の具体例と同様に、衝突形態がオブリーク前面衝突であるか低ラップ前面衝突であるかが判定される。
ステップ506の判定が「NO」である場合、CPUは、処理をステップ509に進行させる。ステップ509にて、CPUは、第一縦減速度GxRの初期値および第二縦減速度GxLの初期値が、ともに、正値であるオフセット判定閾値G_OFS以上であるか否かを判定する。
第一横加速度GyRの初期値および第二横加速度GyLの初期値がともに低ラップ判定閾値G_LL未満であり、且つ、第一縦減速度GxRの初期値および第二縦減速度GxLの初期値がともにオフセット判定閾値G_OFF以上である場合があり得る。この場合、ステップ505の判定が「NO」となり、ステップ506の判定が「NO」となり、ステップ509の判定が「YES」となる。この場合、CPUは、処理をステップ514に進行させ、衝突形態がフルラップ前面衝突であると判定する。
第一横加速度GyRの初期値および第二横加速度GyLの初期値が、ともに低ラップ判定閾値G_LL未満であり、且つ、第一縦減速度GxRの初期値および第二縦減速度GxLの初期値のうちのいずれか一方が、オフセット判定閾値G_OFF未満であるがあり得る。この場合、ステップ505の判定が「NO」となり、ステップ506の判定が「NO」となり、ステップ509の判定が「NO」となる。この場合、CPUは、処理をステップ515に進行させ、衝突形態が高ラップ前面衝突であると判定する。
ステップ502とステップ504との間に、第三縦減速度の積分値Dvが所定値Dv0を超えたか否かを判定するステップが設けられてもよい。かかる変形例においては、第三縦減速度の積分値Dvが所定値Dv0を超えていない場合、前面衝突が発生していないことが推認される。そこで、この場合、CPUは、本ルーチンを一旦終了する。一方、第三縦減速度の積分値Dvが所定値Dv0を超えた場合、車両1にて何らかの形態の前面衝突が発生したことが推認される。そこで、この場合、CPUは、衝突形態を判定するため、処理をステップ504以降に進行させる。
「低ラップ前面衝突」等におけるオーバーラップ率の範囲も、上記の具体例に限定されない。また、上記実施形態においては、衝突判定装置230は、衝突形態が、ポール衝突、オブリーク前面衝突、低ラップ前面衝突、高ラップ前面衝突、およびフルラップ前面衝突のうちのいずれであるかを判定した。しかしながら、本発明は、かかる態様に限定されない。すなわち、例えば、ポール衝突、オブリーク前面衝突、低ラップ前面衝突、および高ラップ前面衝突のうちの、少なくともいずれか1つの判定は、省略され得る。具体的には、例えば、ポール衝突判定は、省略され得る。あるいは、低ラップ前面衝突と高ラップ前面衝突とは、「オフセット前面衝突」として共通化され得る。これらの変更に対応して、図5および図6に示された衝突形態判定ルーチンに対しても、適宜変更が施され得る。
「取得」という表現は、内容に応じて、すなわち、技術的に矛盾しない範囲内において、「推定」「検出」「検知」「算出」「生成」「受信」等の他の用語に置換され得る。
各判定処理における不等号は、等号付きであってもよいし、等号無しであってもよい。すなわち、「閾値以上」と「閾値を超える」とは、相互に置換され得る。同様に、「閾値未満」と「閾値以下」とは、相互に置換され得る。
上記実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に本発明が限定されることはない。同様に、構成要素等の形状、方向、位置関係等が言及されている場合、特に必須であると明示した場合および原理的に特定の形状、方向、位置関係等に限定される場合等を除き、その形状、方向、位置関係等に本発明が限定されることはない。
変形例も、上記の例示に限定されない。また、複数の変形例が、互いに組み合わされ得る。更に、上記実施形態の全部または一部と、変形例の全部または一部とが、互いに組み合わされ得る。
1 車両
2 車体
3 前面
21 第一加速度センサ
22 第二加速度センサ
230 衝突判定装置
231 第一加速度取得部
232 第二加速度取得部
236 衝突判定部
L 車両中心線

Claims (12)

  1. 車両(1)の前面衝突における衝突形態を判定するように構成された、衝突判定装置(230)であって、
    車両中心線(L)よりも車幅方向における一方側にて前記車両の前部に配置された第一加速度センサ(21)の出力に基づいて、前記車両中心線と平行な車両全長方向の減速度である第一縦減速度と、前記車幅方向の加速度であって前記車両中心線に向かう内側方向の加速度を正値とし前記内側方向とは反対の外側方向の加速度を負値とする第一横加速度とを取得するように設けられた、第一加速度取得部(231)と、
    前記車両中心線よりも前記車幅方向における他方側にて前記車両の前部に配置された第二加速度センサ(22)の出力に基づいて、前記車両全長方向の減速度である第二縦減速度と、前記車幅方向の加速度であって前記内側方向の加速度を正値とし前記外側方向の加速度を負値とする第二横加速度とを取得するように設けられた、第二加速度取得部(232)と、
    前記第一加速度取得部にて取得された前記第一縦減速度および前記第一横加速度、ならびに、前記第二加速度取得部にて取得された前記第二縦減速度および前記第二横加速度に基づいて、前記衝突形態を判定するように設けられた、衝突判定部(236)と、
    を備え、
    前記衝突判定部は、
    前記第一横加速度および前記第二横加速度の、衝突初期の値である初期値が、ともに、負値であるフルラップ判定閾値未満である場合、前記衝突形態が、前記車両が車体(2)の前面(3)のほぼ全幅にわたって障害物と衝突するフルラップ前面衝突であると判定するように構成された、
    衝突判定装置。
  2. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値のうちのいずれか一方が、正値であるオブリーク判定閾値以上である場合、前記衝突形態が、前記車幅方向に対して傾斜して立設する傾斜面に前記車体の前記前面の角部が衝突する前面衝突であるオブリーク前面衝突であると判定するように構成された、
    請求項1に記載の衝突判定装置。
  3. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値のうちの前記一方が、正値である低ラップ判定閾値以上であって且つ前記オブリーク判定閾値未満である場合、前記衝突形態が、オーバーラップ率が所定値以下のオフセット前面衝突である低ラップ前面衝突であると判定するように構成された、
    請求項2に記載の衝突判定装置。
  4. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値が、ともに、正値である低ラップ判定閾値未満であり、
    且つ、
    前記第一縦減速度の前記初期値および前記第二縦減速度の前記初期値のうちのいずれか一方が、正値であるオフセット判定閾値未満である場合、
    前記衝突形態が、オーバーラップ率が所定値以下のオフセット前面衝突である低ラップ前面衝突よりもオーバーラップ率が高いオフセット前面衝突である高ラップ前面衝突であると判定するように構成された、
    請求項1〜3のいずれか1つに記載の衝突判定装置。
  5. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値が、ともに、前記低ラップ判定閾値未満であり、
    且つ、
    前記第一縦減速度の前記初期値および前記第二縦減速度の前記初期値が、ともに、前記オフセット判定閾値以上である場合、
    前記衝突形態がフルラップ前面衝突であると判定するように構成された、
    請求項4に記載の衝突判定装置。
  6. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値が、ともに、正値であるポール判定閾値以上である場合、前記衝突形態が、前記車体の前記前面の前記車幅方向における中間部にポール状障害物が衝突する前面衝突であるポール衝突であると判定するように構成された、
    請求項1〜5のいずれか1つに記載の衝突判定装置。
  7. 車両(1)の前面衝突における衝突形態を判定するように構成された、衝突判定装置(230)であって、
    車両中心線(L)よりも車幅方向における一方側にて前記車両の前部に配置された第一加速度センサ(21)の出力に基づいて、前記車両中心線と平行な車両全長方向の減速度である第一縦減速度と、前記車幅方向の加速度であって前記車両中心線に向かう内側方向の加速度を正値とし前記内側方向とは反対の外側方向の加速度を負値とする第一横加速度とを取得するように設けられた、第一加速度取得部(231)と、
    前記車両中心線よりも前記車幅方向における他方側にて前記車両の前部に配置された第二加速度センサ(22)の出力に基づいて、前記車両全長方向の減速度である第二縦減速度と、前記車幅方向の加速度であって前記内側方向の加速度を正値とし前記外側方向の加速度を負値とする第二横加速度とを取得するように設けられた、第二加速度取得部(232)と、
    前記第一加速度取得部にて取得された前記第一縦減速度および前記第一横加速度、ならびに、前記第二加速度取得部にて取得された前記第二縦減速度および前記第二横加速度に基づいて、前記衝突形態を判定するように設けられた、衝突判定部(236)と、
    を備え、
    前記衝突判定部は、
    前記第一横加速度および前記第二横加速度の、衝突初期の値である初期値が、ともに、正値である低ラップ判定閾値未満であり、
    且つ、
    前記第一縦減速度の前記初期値および前記第二縦減速度の前記初期値が、ともに、正値であるオフセット判定閾値以上である場合、
    前記衝突形態が、前記車両が車体(2)の前面(3)のほぼ全幅にわたって障害物と衝突するフルラップ前面衝突であると判定するように構成された、
    衝突判定装置。
  8. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値が、ともに前記低ラップ判定閾値未満であり、
    且つ、
    前記第一縦減速度の前記初期値および前記第二縦減速度の前記初期値のうちのいずれか一方が、前記オフセット判定閾値未満である場合、
    前記衝突形態が、オーバーラップ率が所定値以下のオフセット前面衝突である低ラップ前面衝突よりもオーバーラップ率が高いオフセット前面衝突である高ラップ前面衝突であると判定するように構成された、
    請求項7に記載の衝突判定装置。
  9. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値のうちのいずれか一方が、正値であるオブリーク判定閾値以上である場合、前記衝突形態が、前記車幅方向に対して傾斜して立設する傾斜面に前記車体の前記前面の角部が衝突する前面衝突であるオブリーク前面衝突であると判定するように構成された、
    請求項7または8に記載の衝突判定装置。
  10. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値のうちの前記一方が、前記低ラップ判定閾値以上であって且つ前記オブリーク判定閾値未満である場合、前記衝突形態が、オーバーラップ率が所定値以下のオフセット前面衝突である低ラップ前面衝突であると判定するように構成された、
    請求項9に記載の衝突判定装置。
  11. 前記衝突判定部は、
    前記第一横加速度の前記初期値および前記第二横加速度の前記初期値が、ともに、正値であるポール判定閾値以上である場合、前記衝突形態が、前記車体の前記前面の前記車幅方向における中間部にポール状障害物が衝突する前面衝突であるポール衝突であると判定するように構成された、
    請求項7〜10のいずれか1つに記載の衝突判定装置。
  12. 前記車両全長方向の減速度である第三縦減速度を取得するように設けられた、第三加速度取得部(233)をさらに備え、
    前記衝突判定部は、
    前記第三縦減速度の積分値を第一軸、前記第一縦減速度、前記第一横加速度、前記第二縦減速度および前記第二横加速度のうちのいずれか1つの値を第二軸に表した場合に、前記第一軸の値に応じて変化する閾値と前記第二軸の値とに基づいて前記衝突形態を判定するように構成された、
    請求項1〜11のいずれか1つに記載の衝突判定装置。
JP2018053030A 2018-03-20 2018-03-20 衝突判定装置 Active JP7013982B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018053030A JP7013982B2 (ja) 2018-03-20 2018-03-20 衝突判定装置
US16/356,147 US11592459B2 (en) 2018-03-20 2019-03-18 Collision determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018053030A JP7013982B2 (ja) 2018-03-20 2018-03-20 衝突判定装置

Publications (2)

Publication Number Publication Date
JP2019162983A true JP2019162983A (ja) 2019-09-26
JP7013982B2 JP7013982B2 (ja) 2022-02-01

Family

ID=67984938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018053030A Active JP7013982B2 (ja) 2018-03-20 2018-03-20 衝突判定装置

Country Status (2)

Country Link
US (1) US11592459B2 (ja)
JP (1) JP7013982B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047871A1 (ja) * 2021-09-22 2023-03-30 株式会社デンソー 衝突判定装置および起動制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020205511A1 (de) * 2020-04-30 2021-11-04 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Ermittlung eines Typs einer Kollision eines Fahrzeugs
CN114148278A (zh) * 2021-10-22 2022-03-08 合众新能源汽车有限公司 车辆小偏置碰撞的处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113138A (en) * 1996-12-09 2000-09-05 Siemens Aktiengesellschaft Control device in a motor vehicle
JP2000296755A (ja) * 1999-02-09 2000-10-24 Toyota Motor Corp 乗員保護装置の起動制御装置
JP2014088074A (ja) * 2012-10-29 2014-05-15 Mitsubishi Motors Corp 車両の衝突判別装置
JP2017001517A (ja) * 2015-06-10 2017-01-05 株式会社デンソー 車両用衝突判定装置
JP2017144747A (ja) * 2016-02-15 2017-08-24 トヨタ自動車株式会社 乗員保護装置の起動制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247004A (ja) 2000-03-02 2001-09-11 Toyota Motor Corp 衝突形態判別装置および衝突形態判別方法
JP3819274B2 (ja) 2001-10-16 2006-09-06 三菱電機株式会社 衝突形態判定装置および判定方法
JP4168944B2 (ja) 2004-01-28 2008-10-22 株式会社デンソー 乗員保護システムおよび判定装置
JP4424183B2 (ja) 2004-12-07 2010-03-03 トヨタ自動車株式会社 エアバッグ展開制御装置、エアバッグ展開制御方法
JP5772712B2 (ja) 2012-05-14 2015-09-02 株式会社デンソー 車両装置
JP6528973B2 (ja) 2015-12-07 2019-06-12 株式会社デンソー 車両用衝突判定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113138A (en) * 1996-12-09 2000-09-05 Siemens Aktiengesellschaft Control device in a motor vehicle
JP2000296755A (ja) * 1999-02-09 2000-10-24 Toyota Motor Corp 乗員保護装置の起動制御装置
JP2014088074A (ja) * 2012-10-29 2014-05-15 Mitsubishi Motors Corp 車両の衝突判別装置
JP2017001517A (ja) * 2015-06-10 2017-01-05 株式会社デンソー 車両用衝突判定装置
JP2017144747A (ja) * 2016-02-15 2017-08-24 トヨタ自動車株式会社 乗員保護装置の起動制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047871A1 (ja) * 2021-09-22 2023-03-30 株式会社デンソー 衝突判定装置および起動制御装置

Also Published As

Publication number Publication date
US11592459B2 (en) 2023-02-28
US20190293679A1 (en) 2019-09-26
JP7013982B2 (ja) 2022-02-01

Similar Documents

Publication Publication Date Title
JP3436185B2 (ja) 乗員保護装置の起動制御装置
JP3608050B2 (ja) ロールオーバ判別装置
JP3252797B2 (ja) ロールオーバー判別方法
US9409535B2 (en) Control device for occupant protection device
JP7013982B2 (ja) 衝突判定装置
EP1640219B1 (en) Collision determining apparatus for a vehicle
JP2002200962A (ja) 乗員保護装置の制御装置
JP2015193367A (ja) 車両用乗員保護装置
US20140379222A1 (en) Method and device for analyzing a collision of a vehicle
US7286920B2 (en) Collision determining device
KR100888308B1 (ko) 차량 전복 감지 방법
JP2022180592A (ja) 制御装置、及び保護装置の制御方法
US9751483B2 (en) Control device for occupant protection device
JP2877145B2 (ja) 乗員保護装置の制御装置
JP2002362301A (ja) 乗員保護装置の起動装置
JP3364920B2 (ja) 乗員保護装置の起動制御装置
JP6265181B2 (ja) 車両用エアバッグ制御システム
JP2015077826A (ja) 車両衝突判定装置
JP2019027833A (ja) 衝突検知装置
JP6988374B2 (ja) 車両回転検出装置
JP2003261003A (ja) 乗員保護装置の起動制御装置
JP2008137606A (ja) 車両用乗員保護装置の衝突検出構造
JP6019694B2 (ja) 車両制御装置
JP7323263B2 (ja) 乗員保護制御装置
WO2023157530A1 (ja) 衝突検知装置、衝突検知方法、および衝突検知プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103