JP2019091686A - 電極材料及びそれを用いた電池 - Google Patents

電極材料及びそれを用いた電池 Download PDF

Info

Publication number
JP2019091686A
JP2019091686A JP2018198580A JP2018198580A JP2019091686A JP 2019091686 A JP2019091686 A JP 2019091686A JP 2018198580 A JP2018198580 A JP 2018198580A JP 2018198580 A JP2018198580 A JP 2018198580A JP 2019091686 A JP2019091686 A JP 2019091686A
Authority
JP
Japan
Prior art keywords
active material
electrode
material particles
electrode material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018198580A
Other languages
English (en)
Inventor
隆 神前
Takashi Kanzaki
隆 神前
菅原 亮
Akira Sugawara
亮 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2019091686A publication Critical patent/JP2019091686A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】高いクーロン効率を安定的に達成するための技術を提供する。【解決手段】電極材料は、ニッケルを含有する複数の活物質粒子と、複数の活物質粒子の表面をそれぞれ被覆し、かつ、各々がニオブを含有する複数の被覆層と、を備える。電極材料のX線光電子分光スペクトルにおいて、Ni2pに帰属されるピークの強度Bに対するNb3dに帰属されるピークの強度Aの比率A/Bが、0<A/B<2を満たす。【選択図】図1

Description

本開示は、電極材料及びそれを用いた電池に関する。
近年、電気製品の小型化及び軽量化に伴い、その主電源としてリチウム二次電池の需要が拡大している。リチウム二次電池は、高い起電力及び高いエネルギー密度を有することを特徴とする。従来のリチウム二次電池の欠点の1つとして、可燃性の非水電解液が使用されていることが挙げられる。
他方、可燃性の非水電解液に代えて、不燃性の固体電解質を用いた全固体リチウム二次電池の開発が進められている。全固体リチウム二次電池においては、固体電解質と活物質粒子との界面におけるイオン伝導性を向上させることが要求される。
特許文献1及び2には、活物質粒子の表面にリチウムイオン伝導材料の被覆層を形成することが記載されている。
特開2010−225309号公報 特開2016−42417号公報
活物質粒子の表面に設けられた被覆層は、リチウム二次電池の特性に大きな影響を及ぼす。本開示は、高いクーロン効率(放電容量/充電容量)を安定的に達成するための技術を提供する。
本開示の一態様に係る電極材料は、ニッケルを含有する複数の活物質粒子と、前記複数の活物質粒子の表面をそれぞれ被覆し、かつ、各々がニオブを含有する複数の被覆層と、を備えた電極材料であって、前記電極材料のX線光電子分光スペクトルにおいて、Ni2pに帰属されるピークの強度Bに対するNb3dに帰属されるピークの強度Aの比率A/Bが、0<A/B<2の関係を満たす。
本開示によれば、高いクーロン効率を安定的に達成できる。
図1は、実施形態1にかかる電極材料の概略構成を示す図である。 図2は、電極材料の製造方法の一例を示すフローチャートである。 図3は、実施形態2にかかる電池の概略構成を示す図である。 図4は、ピーク強度の比率とクーロン効率との関係を示すグラフである。
(本開示の基礎となった知見)
固体電解質と活物質粒子との間のイオン伝導抵抗は、非水電解液と活物質粒子との間のイオン伝導抵抗を大きく上回る。非水電解液と活物質粒子との間には、活物質粒子の内部へのリチウムイオンの侵入及び活物質粒子の内部からのリチウムイオンの離脱を容易にするSEI(Solid Electrolyte Interphase)被膜が形成される。SEI被膜は、固体電解質と活物質粒子との間には自発的には形成されない。そのため、全固体リチウム二次電池においては、高いレートでの充電及び放電で活物質粒子に含まれたリチウムイオンを十分に活用することが難しい。
固体電解質と活物質粒子との間のイオン伝導抵抗を低減するために、SEI被膜に相当する被覆層を活物質粒子の表面に形成することが考えられる。被覆層の材料としては、リチウムイオンは通過させるが電子は通過させないというSEI被膜と同じ性質を有するリチウムイオン伝導材料が採用されうる。リチウムイオン伝導材料の代表例はLiNbO3である。リチウムイオン伝導材料で活物質粒子の表面を被覆すると、固体電解質と活物質粒子との間のイオン伝導抵抗が低減し、電池の放電容量が増加するとの報告もある。ただし、リチウムイオン伝導材料が絶縁材料である場合、リチウムイオン伝導材料で被覆された活物質粒子を電極に用いると、電極の電子伝導性が低下し、電気抵抗が増大する。電池の性能を向上させるためには、イオン伝導性と電子伝導性とのバランスを考慮に入れつつ、活物質粒子の表面に被覆層を形成することが要求される。
特許文献1には、正極活物質二次粒子内のリチウム以外の全金属元素に対する被覆層に含まれた元素Xのモル比が0.1〜10.0mol%であることが記載されている。特許文献2には、正極活物質の表面におけるコート部の被覆率が50%以上であり、75〜95%の範囲にあることが好ましいことが記載されている。被覆率は、(活物質粒子の表面のうち、コート部によって被覆された部分の面積)/(活物質粒子の表面の面積)を意味すると解釈できるものの、被覆率を測定する方法は不明である。
イオン伝導材料によって被覆された活物質粒子の表面にも、導電領域と絶縁領域とが含まれる。導電領域は、電子は流れるがイオンは流れにくい領域である。絶縁領域は、電子は流れないがイオンは流れやすい領域である。本発明者らは、イオン伝導性と電子伝導性とを両立させる上で、導電領域と絶縁領域とに着目した。
電子伝導に関して言えば、厚さ2nmの絶縁物が存在したとしても、トンネル効果によって電流が流れる。したがって、導電領域とは、イオン伝導材料の被覆層の厚さが2nm以下の領域又はイオン伝導材料によって被覆されていない領域であると考えることができる。絶縁領域とは、イオン伝導材料の被覆層の厚さが2nmを超える領域であると考えることができる。
本発明者らは、導電領域と絶縁領域との比率を適切に制御することによって、高いクーロン効率を達成できるのではないかと考え、本開示の電極材料及び電池を想到するに至った。具体的には、本発明者らは、導電領域に対する絶縁領域の比率を識別する方法に加え、導電領域に対する絶縁領域の比率を制御する方法を見出した。
活物質粒子の表面にイオン伝導材料の被覆層を形成する方法の例としては、液相被覆法と気相被覆法とが挙げられる。どちらの方法も均一な厚さの被覆層の形成に適した方法であり、不均一な厚さの被覆層を意図的に形成することには適していない。例えば、液相被覆法によれば、溶液の濃度、活物質粒子に溶液を接触させる時間、溶液の温度などを最適化することによって、被覆層の平均膜厚をある程度制御することは可能である。しかし、導電領域に対する絶縁領域の比率を制御することは不可能である。気相被覆法の場合も同様であり、導電領域に対する絶縁領域の比率を制御することは原理的に不可能である。
また、被覆層の厚さがナノメートルオーダーである場合、電子顕微鏡観察によって導電領域と絶縁領域とを識別し、導電領域に対する絶縁領域の比率を算出することは困難である。
本開示は、高いクーロン効率を達成しうる電極材料を提供する。本開示は、導電領域に対する絶縁領域の比率を制御する方法を提供する。本開示は、導電領域に対する絶縁領域の比率を定量する方法を提供する。
(本開示にかかる一態様の概要)
本開示の第1態様にかかる電極材料は、
Niを含む複数の活物質粒子と、
Nbを含み、前記複数の活物質粒子の表面をそれぞれ被覆している複数の被覆層と、
を備えた電極材料であって、
X線光電子分光法によって前記電極材料を分析したときに得られるスペクトルにおいて、Ni2pに帰属されるピークの強度Bに対するNb3dに帰属されるピークの強度Aの比率A/Bが0<A/B<2の関係を満たす。
第1態様の電極材料は、高いクーロン効率を発揮しうる。
本開示の第2態様において、例えば、第1態様にかかる電極材料では、前記比率A/Bが0.48≦A/B≦1.25の関係を満たす。第2態様の電極材料は、より高いクーロン効率を発揮しうる。
本開示の第3態様において、例えば、第1又は第2態様にかかる電極材料では、前記被覆層は、前記活物質粒子の前記表面の一部のみを被覆している。第3態様によれば、イオン伝導性と電子伝導性とのバランスをとりやすい。
本開示の第4態様において、例えば、第1〜第3態様のいずれか1つにかかる電極材料では、前記活物質粒子は、Co及びAlをさらに含む。第4態様によれば、活物質粒子は、高いエネルギー密度及び優れた安全性を発揮しうる。
本開示の第5態様において、例えば、第1〜第4態様のいずれか1つにかかる電極材料では、前記被覆層は、イオン伝導材料によって構成されている。イオン伝導材料で活物質粒子の表面が被覆されていると、固体電解質と活物質粒子との間のイオン伝導抵抗が低減する。このことは、高いクーロン効率を達成するうえで有利である。
本開示の第6態様にかかる電池は、第1〜第5態様のいずれか1つにかかる電極材料を含む正極を備えている。本開示の電極材料が正極活物質として用いられているので、第6態様の電池は、高いクーロン効率を示す。
本開示の第7態様において、例えば、第6態様にかかる電池は、負極と、前記正極と前記負極との間に配置された硫化物固体電解質層とをさらに備えている。固体電解質として、硫化物固体電解質を使用すれば、高いエネルギー密度を有する電池が得られる。
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
(実施形態1)
図1は、実施形態1にかかる電極材料の概略構成を示している。図1に示すように、本実施形態の電極材料20は、複数の複合粒子14によって構成されている。複数の複合粒子14は、それぞれ、活物質粒子1及び被覆層2を有する。言い換えれば、電極材料20は、複数の活物質粒子1及び複数の被覆層2を有する。被覆層2は、Nbを含み、活物質粒子1の表面を被覆している。
活物質粒子1は、Niを含む化合物の粒子でありうる。Niを含む化合物の例としては、LixNiO2、LixCoyNi1-y2、LixCoyNiy’1-y-y’z、LixMnyNiy’1-y-y’z、LixNi1-yyz、及びLixMn2-yNiy4が挙げられる。Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb及びBからなる群より選ばれる少なくとも1種である。x、y、y’及びzは、それぞれ、0<x≦1.2、0≦y≦0.9、0≦y’≦0.9、2.0≦z≦2.3を満たす。値xは、初期値であり、充放電に応じて増減する。LixNi1-yyzは、例えば、LiNiCoAlO2(NCA:Lithium Nickel Cobalt Aluminum Oxide)、または、LiNiCoMnO2(NCM:Lithium Nickel Cobalt Manganese Oxide)であってもよい。NCA及びNCMは、高いエネルギー密度、優れた安全性などの特徴を有している。活物質粒子1は、例えば、Nbを含有していない。
活物質粒子1は、例えば、LixNi1-yyz、LixMn2-y’Niy’4、およびLi1+x’Niy’’1-x’-y’’2からなる群より選択される少なくとも1種であってもよい。ここで、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、およびBからなる群より選ばれる少なくとも1種である。x、y、y’、z、x’及びy’’は、それぞれ、0≦x≦1.2、0≦y≦0.2、1.2≦y’≦2.0、1.8≦z≦3.0、0≦x’≦0.2、及び、0.8≦y’’≦1.0を満たす。これらの材料のNi含有量は、後述のサンプル1〜4のNCAのNi含有量と同程度、または、それよりも少ない。
上記の化合物の他にも、遷移金属カルコゲン化物、有機導電性物質を用いた共役系ポリマー、シェブレル相化合物などの他の化合物を活物質粒子1の材料として用いることが可能である。互いに異なる組成を有する複数の材料を混合して用いることも可能である。つまり、複数の活物質粒子1には、第1の組成を有する活物質粒子と第2の組成を有する活物質粒子とが存在していてもよい。
活物質粒子1は、正極活物質粒子であってもよく、負極活物質粒子であってもよい。活物質粒子1は、典型的には、正極活物質粒子である。活物質粒子1の平均粒径は特に限定はされず、例えば、1〜30μmの範囲にある。
本明細書において、粒子の平均粒径は、次の方法によって算出されうる。粒子群を電子顕微鏡で観察し、電子顕微鏡像における特定の粒子の面積を画像処理にて算出する。粒子群のみを直接観察できない場合、粒子が含まれた構造を電子顕微鏡で観察し、電子顕微鏡像における特定の粒子の面積を画像処理にて算出する。算出された面積に等しい面積を有する円の直径をその特定の粒子の直径とみなす。任意の個数(例えば10個)の粒子の直径を算出し、それらの平均値を粒子の平均粒径とみなす。活物質粒子1の形状は特に限定されない。
被覆層2は、イオン伝導材料によって構成されている。イオン伝導材料は、Nbを含む化合物でありうる。Nbを含む化合物の例としては、LixNbOz及びNbOy(0<x≦1.2、0≦y≦2.7、2.0≦z≦3.3)が挙げられる。被覆層2には、イオン伝導材料とともに、LixO(0.8≦x≦2.3)及び金属リチウムから選ばれる少なくとも1つが含まれていてもよい。イオン伝導材料は、詳細には、リチウムイオン伝導材料でありうる。被覆層2は、例えば、Niを含有していない。
被覆層2は、例えば、LixNbOzおよびNbOyからなる群より選択される少なくとも1種であってもよい。ここで、x、y、zは、それぞれ、0<x≦1.2、2.8≦y≦4.0、及び、2.75≦z≦4.0を満たす。被覆層2には、さらに、LixO(ここで、0.8≦x≦2.3)及び金属リチウムからなる群より選ばれる少なくとも1つが含まれていてもよい。これらの材料のNb含有量は、後述のサンプル1〜4のLiNbO3のNb含有量と同程度、または、それよりも多い。
被覆層2は、固体電解質と活物質粒子1との間のイオン伝導抵抗を低減する役割を担う。イオン伝導材料で活物質粒子1の表面が被覆されていると、固体電解質と活物質粒子1との間のイオン伝導抵抗が低減する。このことは、高いクーロン効率を達成するうえで有利である。
イオン伝導材料が絶縁材料である場合、イオン伝導材料で被覆された活物質粒子を電極に用いると、電極の電子伝導性が低下し、電気抵抗が増大する。電池の性能を向上させるためには、イオン伝導性と電子伝導性とのバランスを考慮に入れつつ、活物質粒子の表面に被覆層を形成すればよい。
図1において、被覆層2は、活物質粒子1の表面の一部のみを被覆している。活物質粒子1の表面において、被覆層2が複数の部分に分かれていてもよい。このような構造によれば、イオン伝導性と電子伝導性とのバランスをとりやすい。電極材料20の中には、図1に示す構造を有する活物質粒子1だけでなく、表面の全部が被覆層2によって被覆されている活物質粒子1が存在していてもよく、被覆層2によって被覆されていない活物質粒子1が存在していてもよい。
先に説明したように、イオン伝導材料によって被覆された活物質粒子1の表面には、導電領域と絶縁領域とが含まれる。導電領域は、電子は流れるがイオンは流れにくい領域である。絶縁領域は、電子は流れないがイオンは流れやすい領域である。
電子伝導に関して言えば、厚さ2nmの絶縁物が存在したとしても、トンネル効果によって電流が流れる。したがって、導電領域とは、イオン伝導材料の被覆層2の厚さが2nm以下の領域又はイオン伝導材料によって被覆されていない領域であると考えることができる。絶縁領域とは、イオン伝導材料の被覆層2の厚さが2nmを超える領域であると考えることができる。
導電領域と絶縁領域との比率を適切に制御することによって、高いクーロン効率を達成できる。導電領域に対する絶縁領域の比率は、以下に説明する方法によって識別できる。
X線光電子分光法(XPS)によって電極材料20を分析するとき、軟X線が電極材料20に照射され、電極材料20から放出された光電子がアナライザによって検出される。軟X線源として、AlKα線(1486.6eV)を用いた場合、光電子の脱出深さは約2nmである。被覆層2の厚さが2nmを超える絶縁領域では、活物質粒子1に含まれた元素に由来するピークは検出されない。被覆層2の厚さが2nm以下の導電領域では、活物質粒子1に含まれた元素に由来するピークが検出される。この原理を利用すれば、活物質粒子1に含まれた元素に由来するピークの強度に対する被覆層2に含まれた元素に由来するピークの強度の比率を測定することによって、絶縁領域/導電領域の面積比に比例した値を求めることができる。
電極材料20において、Niは、活物質粒子1にのみ含まれている。電極材料20において、Nbは、被覆層2にのみ含まれている。X線光電子分光法(XPS)によって電極材料20を分析したときに得られるスペクトルにおいて、Ni2pに帰属されるピークの強度Bに対するNb3dに帰属されるピークの強度Aの比率A/Bが0<A/B<2の関係を満たす。比率A/Bが0<A/B<2の関係を満たすとき、電極材料20は、高いクーロン効率を発揮しうる。比率A/Bは、0.48≦A/B≦1.25の関係を満たしてもよく、さらに、0.48≦A/B≦1.05の関係を満たしてもよい。この場合、電極材料20は、より高いクーロン効率を発揮しうる。なお、Ni2pに帰属されるピークは、詳細には、Ni2p3/2に帰属されるピークを意味する。Nb3dに帰属されるピークは、詳細には、Nb3d5/2に帰属されるピークを意味する。電極材料20が電池に用いられた場合には、電池の充放電状態に応じて各ピークが現れる結合エネルギーはシフトすることがあるものの、Ni2p3/2に帰属されるピークは、結合エネルギーが840〜890eVの範囲内に現れる。また、Nb3d5/2に帰属されるピークは、結合エネルギーが195〜220eVの範囲に現れる。各ピークの結合エネルギーの値は、C1sに帰属される物理吸着カーボンピークを284.8eVとして校正することによって得られたものであってもよい。
次に、電極材料20の製造方法について説明する。導電領域に対する絶縁領域の比率は、以下に説明する方法によって制御できる。
図2に示すように、工程S1において、活物質粒子1の粉末を準備する。活物質粒子1の粉末は、例えば、固相法によって合成される。固相法では、複数の原料粉末を混合して焼成することによって、活物質粒子1の粉末が得られる。また、様々な組成の活物質粒子1の粉末が市販されており、それらは容易に入手できる。
次に、工程S2において、活物質粒子1の表面に被覆層2を形成する。被覆層2を形成する方法は特に限定されない。被覆層2を形成する方法の例としては、液相被覆法と気相被覆法とが挙げられる。
例えば、液相被覆法においては、イオン伝導材料の前駆体溶液を活物質粒子1の表面に塗布する。LiNbO3の被覆層2を形成する場合、前駆体溶液は、溶媒、リチウムアルコキシド及びニオブアルコキシドの混合溶液(ゾル溶液)でありうる。リチウムアルコキシドの例としては、リチウムエトキシドが挙げられる。ニオブアルコキシドの例としては、ニオブエトキシドが挙げられる。溶媒は、例えば、エタノールなどのアルコールである。被覆層2の目標組成に応じて、リチウムアルコキシド及びニオブアルコキシドの量を調整する。必要に応じて、前駆体溶液に水を加えてもよい。前駆体溶液は、酸性であってもよく、アルカリ性であってもよい。
前駆体溶液を活物質粒子1の表面に塗布する方法は特に限定されない。例えば、転動流動コーティング装置を用いて前駆体溶液を活物質粒子1の表面に塗布することができる。転動流動コーティング装置によれば、活物質粒子1を転動及び流動させつつ、活物質粒子1に前駆体溶液を吹き付け、前駆体溶液を活物質粒子1の表面に塗布することができる。これにより、活物質粒子1の表面に前駆体被膜が形成される。その後、前駆体被膜によって被覆された活物質粒子1を熱処理する。熱処理によって前駆体被膜のゲル化が進行し、被覆層2が形成される。この時点において、被覆層2は、活物質粒子1の表面の概ね全体を被覆している。被覆層2の厚さは概ね均一である。
気相被覆法の例としては、パルスレーザー堆積(Pulsed Laser Deposition:PLD)法、真空蒸着法、スパッタリング法、熱化学気相堆積(Chemical Vapor Deposition:CVD)法、プラズマ化学気相堆積法などが挙げられる。例えば、PLD法においては、ターゲットとしてのイオン伝導材料にエネルギーの強いパルスレーザー(例えば、KrFエキシマレーザー、波長:248nm)を照射し、昇華したイオン伝導材料を活物質粒子1の表面に堆積させる。LiNbO3の被覆層2を形成する場合には、高密度に焼結したLiNbO3がターゲットとして用いられる。
次に、工程S3において、活物質粒子1の表面から被覆層2の一部を除去する。あるいは、被覆層2の厚さを減少させる。これにより、粉末状の電極材料20が得られる。具体的には、被覆層2によって被覆された活物質粒子1の粉末を撹拌する。活物質粒子1の粉末を機械的に撹拌すると、活物質粒子1が互いに衝突し、衝突のエネルギーによって被覆層2が剥離する。あるいは、衝突のエネルギーによって被覆層2の厚さが減少する。この原理によって、導電領域に対する絶縁領域の比率を所望の範囲に調節できる。具体的には、撹拌方法、撹拌時間などの条件に応じて、導電領域に対する絶縁領域の比率を制御できる。
活物質粒子1の粉末を撹拌する工程は、振動方式ミキサー、自転・公転方式ミキサー、ボールミル、回転方式ミキサー、双腕方式ミキサー、ニーダーなどの混合撹拌装置を用いて行うことができる。これらから選ばれる複数の混合撹拌装置を組み合わせて活物質粒子1の粉末を撹拌してもよい。撹拌は、アルゴンガス雰囲気などの不活性雰囲気で行ってもよい。撹拌時間は特に限定されない。一例において、撹拌時間は、3〜12分間である。撹拌時間は、3〜8分間であってもよい。
以上の各工程を経て、所望の比率A/Bを示す電極材料20が得られる。
(実施形態2)
図3は、実施形態2にかかる電池の概略構成を示している。図3に示すように、本実施形態の電池30は、正極11、電解質層5、負極12、電池ケース8、正極リード9及び負極リード10を備えている。正極11は、正極集電体3及び正極活物質層4を有する。負極12は、負極集電体6及び負極活物質層7を有する。正極集電体3の上に正極活物質層4が配置されている。負極集電体6の上に負極活物質層7が配置されている。正極11と負極12との間に電解質層5が配置されている。詳細には、正極活物質層4と負極活物質層7との間に電解質層5が配置されている。正極11、電解質層5及び負極12は、電池ケース8の内部に配置されている。正極リード9は、正極集電体3に接続されており、電池ケース8の外部まで延びている。負極リード10は、負極集電体6に接続されており、電池ケース8の外部まで延びている。
集電体3及び6の材料として、電池30において化学変化を起こさない電子伝導材料が用いられる。集電体3の材料は、集電体6の材料と同一であってもよいし、異なっていてもよい。集電体3及び6の材料の例として、銅、ステンレス鋼、ニッケル、チタン、炭素、リチウム、インジウム、及び導電性樹脂が挙げられる。集電体3及び6の材料として、典型的には、銅又は銅合金が使用されうる。これらの材料の表面は酸化されていてもよい。集電体3及び6は、基板及び被膜を有していてもよい。基板は、例えば、銅、ステンレス鋼などの金属材料で作られている。被膜は、基板の表面に形成されており、例えば、カーボン、ニッケル又はチタンで作られている。集電体3及び6の形状は特に限定されない。集電体3及び6の形状の例として、箔、フィルム、シート、ネット、パンチングメタル、ラス体、多孔質体、発泡体、及び繊維成形体が挙げられる。集電体3及び6の表面に凹凸が付与されていてもよい。
正極活物質層4は、例えば、実施形態1における電極材料20を含む。電極材料20が正極活物質として用いられているので、本実施形態の電池30は、高いクーロン効率を示す。正極活物質層4は、イオン伝導材料、導電助剤、結着剤などの他の材料を含んでいてもよい。
電解質層5は、例えば、イオン伝導材料によって作られている。電解質層5の材料の例として、硫化物、酸化物、窒化物、及びリチウム化合物が挙げられる。電解質層5は、Li、P、S、O、Ti、Ge、Al、Si、N、B、La、Zr、Y、Br、Cl、Bi、F及びIから選ばれる少なくとも1つの元素を含んでいてもよい。電解質層5は、共役系ポリマーなどの有機導電材料を含んでいてもよい。
電解質層5の材料は、有機ポリマー固体電解質、酸化物固体電解質、硫化物固体電解質などの固体電解質でありうる。電解質層5の材料は、典型的には、硫化物固体電解質である。硫化物固体電解質は、成形性に富み、高いイオン伝導性を有する。固体電解質として、硫化物固体電解質を使用すれば、高いエネルギー密度を有する電池30が得られる。硫化物固体電解質の中でも、Li2S−P25は、高い電気化学的安定性及び高いイオン伝導性を有する。固体電解質として、Li2S−P25を使用すれば、より高いエネルギー密度を有する電池30が得られる。
負極活物質層7は、負極活物質を含む。負極活物質の例としては、炭素材料、リチウム合金、金属酸化物、窒化リチウム(Li3N)、金属リチウム、及び金属インジウムが挙げられる。炭素材料の例として、人造黒鉛、グラファイト、難黒鉛化性炭素、及び易黒鉛化性炭素が挙げられる。リチウム合金の例として、Al、Si、Pb、Sn、Zn及びCdからなる群より選ばれる少なくとも1つの金属とリチウムとの合金が挙げられる。金属酸化物の例として、LiFe23、WO2、MoO2、SiO、及びCuOが挙げられる。複数の材料の混合物又は複合体を負極活物質として用いてもよい。負極活物質層7は、イオン伝導材料、導電助剤、結着剤などの他の材料を含んでいてもよい。
電池ケース8は、例えば、アルミラミネートフィルムによって構成されている。電池ケース8は、鉄、アルミニウム、ニッケルなどの金属材料で作られていてもよく、プラスチック材料で作られていてもよい。
リード9及び10は、高い電子伝導性を有する材料によって作られている。リード9及び10の材料は、集電体3及び6の材料と同一であってもよく、異なっていてもよい。リード9及び10の材料の例として、Cu、Al、Ni、Li、Al、Inなどの金属が挙げられる。リード9及び10の材料は、上記の金属群から選ばれる少なくとも1つを含む化合物であってもよく、上記の金属群から選ばれる少なくとも1つを含む合金であってもよい。
以下、本開示の実施例を記載する。以下の実施例は一例であって、本開示は以下の実施例のみに限定されない。
(サンプル1)
活物質粒子として、LiNi0.8Co0.15Al0.052(NCA)の粉末を準備した。転動流動コーティング装置を用いて、活物質粒子の表面にLiNbO3の被覆層を形成した。被覆層の目標膜厚は7nmであった。具体的には、ニオブ酸リチウムの前駆体を含有するコート溶液を調製した。転動流動層コーティング装置を用い、吸気温度120℃、噴霧速度4.5g/minの条件にて、コート溶液を活物質粒子に対して噴霧し、乾燥させた。その後、200℃で熱処理を行い、活物質粒子の表面にLiNbO3の被覆層を形成した。
Li2S粉末とP25粉末とを75:25のモル比率で混合し、メカニカルミリング法によって、Li2S−P25(Li2S:P25=75:25)の組成を有する硫化物固体電解質の粉末を得た。
LiNbO3によって被覆された活物質粒子の粉末と硫化物固体電解質の粉末とを7:3の重量比率にて混合し、混合物を得た。混合物の重量に対して0.5重量%の割合で混合物にバインダーを加え、さらに、固形分率が80重量%となるように溶媒を加えて正極スラリーを得た。振動方式ミキサー(撹拌装置A)を用い、正極スラリーを8分間撹拌した。その後、自転・公転方式ミキサー(撹拌装置B)を用い、正極スラリーを3分間撹拌した。
振動方式ミキサー(撹拌装置A)は、材料に超音波振動を与えることによって、材料に繰り返し激しい衝撃を加える。振動方式ミキサーには、粒子を分散させる能力もあり、粒子の表面に衝撃を与えながら材料を撹拌することができる。自転・公転方式ミキサー(撹拌装置B)においては、自転及び公転の2つの遠心力が相互作用することによって、材料に対流が生じ、材料に内包された気泡が逃がされる。これにより、気泡を巻き込むことなく、材料の撹拌を行うことができる。被覆層を脱落させる力の種類が振動方式ミキサーでは超音波衝撃であり、自転・公転方式ミキサーでは遠心力である。これらの撹拌方法によれば、被覆層の脱落を積極的に起こし、かつ脱落の程度を制御することができる。
次に、正極スラリーを厚さ15μmの銅集電体の上に均一に塗布し、集電体の上に塗布膜を形成した。塗布膜を乾燥させて正極活物質層を形成した。このようにして、サンプル1の正極を得た。
正極活物質層の上に固体電解質の粉末のみを含むスラリーを塗布し、塗布膜を乾燥させることによって、電解質層を形成した。電解質層の上に負極として金属インジウム箔を配置した。正極、電解質層及び負極をプレス機で加圧し、サンプル1の全固体二次電池を得た。
なお、サンプル1の正極を製造する工程では、被覆層の一部を除去する、及び/又は、被覆層の厚さを減少させるために、スラリーを十分に撹拌した。ただし、被覆層の一部を除去する、及び/又は、被覆層の厚さを減少させるために、スラリーを調製する前に、被覆層によって被覆された活物質粒子の粉末を撹拌する工程を行ってもよい。この場合、実施形態1で説明した電極材料が得られる。
(サンプル2)
振動方式ミキサー(撹拌装置A)を用い、正極スラリーを12分間撹拌した。正極スラリーの撹拌条件を変更したことを除き、サンプル1と同じ方法でサンプル2の正極及び全固体二次電池を作製した。
(サンプル3)
自転・公転方式ミキサー(撹拌装置B)を用い、正極スラリーを3分間撹拌した。正極スラリーの撹拌条件を変更したことを除き、サンプル1と同じ方法でサンプル3の正極及び全固体二次電池を作製した。
(サンプル4)
LiNbO3の被覆層の目標膜厚を30nmに変更したことを除き、サンプル1と同じ方法でサンプル4の正極及び全固体二次電池を作製した。
(サンプル5)
LiNbO3の被覆層を形成しなかったことを除き、サンプル1と同じ方法によってサンプル5の正極及び全固体二次電池を作製した。
(XPS測定)
X線光電子分光法によって、サンプル1〜5の正極を分析した。分析には、アルバックファイ社製PHI500(Versa Probe)を使用した。軟X線源として、AlKα線を用いた。スペクトルの解析にはアルバックファイ社製のPHI MultiPakを用いた。
(充放電試験)
サンプル1〜5の全固体二次電池の充電容量及び放電容量を測定した。測定は、充電から行った。充電は、0.05Cの電流値、3.7Vの充電終止電圧で行った。放電は、0.05Cの電流値、1.9Vの放電終止電圧で行った。初回の充電容量に対する初回の放電容量の比率(初期クーロン効率)を算出した。結果を表1及び図4に示す。図4の横軸は、Ni2p3/2に帰属されるピークの強度Bに対するNb3d5/2に帰属されるピークの強度Aの比率A/Bを示している。図4の縦軸は、全固体二次電池の初期クーロン効率を示している。
Figure 2019091686
表1及び図4に示すように、サンプル1〜3の全固体二次電池は、高い初期クーロン効率を示した。サンプル4及び5の全固体二次電池の初期クーロン効率は低かった。特に、比率A/Bが0.48〜1.25のとき、62%以上の初期クーロン効率が達成された。比率A/Bが0.48〜1.05のとき、68%以上の初期クーロン効率が達成された。サンプル1の全固体二次電池は、最も高い初期クーロン効率を示した。サンプル1では、適切な厚さの被覆層に加え、2種類の撹拌方法を採用したことが良好なクーロン効率に影響している可能性がある。
表1に示すように、目標膜厚は7nm又は30nmであった。ただし、XPS測定において、Ni2pに帰属されるピークが観測されたことから明らかなように、撹拌工程において、被覆層の平均厚さが減少したと考えられる。
本開示の電極は、電極材料に加えて固体電解質を含む。電極において、Niは活物質粒子にのみ含まれており、Nbは被覆層にのみ含まれている。Ni2pのピークは活物質粒子に起因し、Nb3dのピークは被覆層に寄与する。したがって、電極(詳細には、活物質層)のXPS測定によって得られた比率A/Bは、理論上、電極材料のXPS測定によって得られた比率A/Bに一致する。撹拌工程において活物質粒子の表面から脱落した被覆層の一部(LiNbO3)の体積は僅かである。脱落した被覆層の一部は、XPS測定の検出限界を下回るので、XPS測定の結果に影響を及ぼさない。
本開示の技術は、リチウム二次電池などの蓄電デバイスに適用されうる。蓄電デバイスは、携帯情報端末、携帯電子機器、家庭用電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車などに使用されうる。
1 活物質粒子
2 被覆層
3 正極集電体
4 正極活物質層
5 電解質層
6 負極集電体
7 負極活物質層
8 電池ケース
9 正極リード
10 負極リード
11 正極
12 負極
14 複合粒子
20 電極材料
30 電池

Claims (8)

  1. ニッケルを含有する複数の活物質粒子と、
    前記複数の活物質粒子の表面をそれぞれ被覆し、かつ、各々がニオブを含有する複数の被覆層と、を備えた電極材料であって、
    前記電極材料のX線光電子分光スペクトルにおいて、Ni2pに帰属されるピークの強度Bに対するNb3dに帰属されるピークの強度Aの比率A/Bが、0<A/B<2を満たす、
    電極材料。
  2. 前記比率A/Bが0.48≦A/B≦1.25を満たす、
    請求項1に記載の電極材料。
  3. 前記比率A/Bが0.48≦A/B≦1.05を満たす、
    請求項2に記載の電極材料。
  4. 前記被覆層は、前記活物質粒子の前記表面の一部を被覆している、
    請求項1から3のいずれか1項に記載の電極材料。
  5. 前記活物質粒子は、コバルト及びアルミニウムをさらに含有する、
    請求項1から4のいずれか1項に記載の電極材料。
  6. 前記被覆層は、イオン伝導材料によって構成されている、
    請求項1から5のいずれか1項に記載の電極材料。
  7. 請求項1から6のいずれか1項に記載の電極材料を含む正極を備えた、
    電池。
  8. 負極と、
    前記正極と前記負極との間に配置された硫化物固体電解質層と、
    をさらに備えた、
    請求項7に記載の電池。
JP2018198580A 2017-11-14 2018-10-22 電極材料及びそれを用いた電池 Pending JP2019091686A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017219296 2017-11-14
JP2017219296 2017-11-14

Publications (1)

Publication Number Publication Date
JP2019091686A true JP2019091686A (ja) 2019-06-13

Family

ID=64082919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198580A Pending JP2019091686A (ja) 2017-11-14 2018-10-22 電極材料及びそれを用いた電池

Country Status (4)

Country Link
US (1) US20190148719A1 (ja)
EP (1) EP3483955A1 (ja)
JP (1) JP2019091686A (ja)
CN (1) CN109786683A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261600A1 (ja) * 2019-06-24 2020-12-30 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、及び全固体リチウムイオン電池用正極活物質の製造方法
JP2021072259A (ja) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 全固体電池
WO2022163585A1 (ja) * 2021-01-29 2022-08-04 株式会社Gsユアサ 活物質粒子、電極、蓄電素子、全固体二次電池、活物質粒子の製造方法及び蓄電装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2592341B (en) * 2019-10-16 2022-10-19 Nyobolt Ltd Electrode compositions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225309A (ja) 2009-03-19 2010-10-07 Toyota Motor Corp 正極活物質材料の製造方法
WO2013084352A1 (ja) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法
JP5725054B2 (ja) * 2013-02-08 2015-05-27 トヨタ自動車株式会社 複合活物質及びその製造方法
JP6667985B2 (ja) 2014-08-15 2020-03-18 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池
JP6380221B2 (ja) * 2015-04-27 2018-08-29 トヨタ自動車株式会社 活物質複合粒子、電極活物質層および全固体リチウム電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261600A1 (ja) * 2019-06-24 2020-12-30 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、及び全固体リチウムイオン電池用正極活物質の製造方法
JP2021002504A (ja) * 2019-06-24 2021-01-07 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、及び全固体リチウムイオン電池用正極活物質の製造方法
JP2021072259A (ja) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 全固体電池
JP7207265B2 (ja) 2019-11-01 2023-01-18 トヨタ自動車株式会社 全固体電池の製造方法
WO2022163585A1 (ja) * 2021-01-29 2022-08-04 株式会社Gsユアサ 活物質粒子、電極、蓄電素子、全固体二次電池、活物質粒子の製造方法及び蓄電装置

Also Published As

Publication number Publication date
US20190148719A1 (en) 2019-05-16
EP3483955A1 (en) 2019-05-15
CN109786683A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
JP6438281B2 (ja) リチウムイオン二次電池
WO2017046915A1 (ja) 二次電池用複合電解質、二次電池及び電池パック
CN112514109A (zh) 用于涂层阴极材料的方法和系统以及涂层阴极材料的用途
KR101726504B1 (ko) 리튬 전지용 정극 활물질, 리튬 전지 및 리튬 전지용 정극 활물질의 제조 방법
JP2016062683A (ja) リチウムイオン(lithiumion)二次電池
JP2019091686A (ja) 電極材料及びそれを用いた電池
US11121403B2 (en) Production method of electrode for all-solid-state batteries and production method of all-solid-state battery
JP7283657B2 (ja) 硫黄正極合材およびその製造方法、硫黄正極、リチウム硫黄固体電池
JP2007329001A (ja) 非水電解質二次電池用負極材料およびその製造方法、ならびにそれを用いる非水電解質二次電池
JP2004319469A (ja) 負極活物質およびそれを用いた非水電解質二次電池
KR101440207B1 (ko) 리튬 이온 이차 전지 음극재용 분말 및 그 제조 방법
JP2012014866A (ja) リチウム二次電池用負極活物質およびその製造方法
KR20180027873A (ko) 음극 활물질, 상기 음극 활물질을 포함한 음극 및 리튬 이차 전지, 및 상기 음극 활물질의 제조방법
JP2022066203A (ja) 電池
JP6576033B2 (ja) リチウムイオン二次電池、およびリチウムイオン二次電池用正極活物質の製造方法
US11532837B2 (en) Sulfide solid electrolyte particles and all-solid-state battery
JP7392464B2 (ja) 全固体型リチウムイオン二次電池用正極活物質とその製造方法、および全固体型リチウムイオン二次電池
JP2017050204A (ja) 非水電解質二次電池用正極材料、その製造方法および非水電解質二次電池
Cui et al. Electrochemical behavior of tin foil anode in half cell and full cell with sulfur cathode
WO2019216216A1 (ja) 全固体電池用集電層、全固体電池、及び炭素材料
CN115152049A (zh) 二次电池用负极和其制造方法以及二次电池
JP2019133923A (ja) 電極合剤、電池及び電極の製造方法
JP6988738B2 (ja) 硫化物全固体電池用負極及び硫化物全固体電池
JP7136063B2 (ja) ナトリウムイオン伝導体、及びナトリウムイオン固体電池
JP7443851B2 (ja) リチウムイオン電池の負極用粉末材料およびその製造方法