JP2019045334A - 3次元距離測定装置 - Google Patents

3次元距離測定装置 Download PDF

Info

Publication number
JP2019045334A
JP2019045334A JP2017169404A JP2017169404A JP2019045334A JP 2019045334 A JP2019045334 A JP 2019045334A JP 2017169404 A JP2017169404 A JP 2017169404A JP 2017169404 A JP2017169404 A JP 2017169404A JP 2019045334 A JP2019045334 A JP 2019045334A
Authority
JP
Japan
Prior art keywords
light
irradiation
subject
distance
dimensional distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017169404A
Other languages
English (en)
Other versions
JP7028588B2 (ja
Inventor
泉 克彦
Katsuhiko Izumi
克彦 泉
直也 松浦
Naoya Matsuura
直也 松浦
利昌 神定
Toshimasa Kamisada
利昌 神定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi LG Data Storage Inc
Original Assignee
Hitachi LG Data Storage Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi LG Data Storage Inc filed Critical Hitachi LG Data Storage Inc
Priority to JP2017169404A priority Critical patent/JP7028588B2/ja
Priority to US15/984,449 priority patent/US10614584B2/en
Priority to CN201810726106.8A priority patent/CN109425864B/zh
Publication of JP2019045334A publication Critical patent/JP2019045334A/ja
Application granted granted Critical
Publication of JP7028588B2 publication Critical patent/JP7028588B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data

Abstract

【課題】TOF法を用いる3次元距離測定装置において、被写体の状況に応じて照射光の範囲や光量を適切に設定し、距離測定の精度の劣化を抑えること。【解決手段】3次元距離測定装置は、被写体に光を照射する複数の光源11と、複数の光源の発光を制御する発光制御部12と、被写体からの反射光を検出する受光部13と、反射光の伝達時間に基づき被写体までの距離を算出する距離計算部14と、算出した距離データに基づき被写体の距離画像を生成する画像処理部15と、を備える。ここに複数の光源により照射される複数の照射領域3は、隣接する照射領域とのみ互いに重なるように配置されている。また発光制御部12により、複数の光源11に対し、各々個別に点灯または消灯、あるいは発光量の調整が可能である。【選択図】図1

Description

本発明は、人物等の被写体の位置を距離画像として出力する3次元距離測定装置に関する。
光の伝達時間に基づいて被写体までの距離を測定し(以下、TOF法:タイム・オブ・フライト)、距離を表示した画像(距離画像)として出力する距離測定装置(測距装置)が知られる。例えば特許文献1に記載の人物位置検出装置は、TOF式距離画像センサからの距離情報に基づいて、室内空間の物体までの距離変位を検出する距離変位検出手段と、検出された距離変位領域の形状特定化によって人物かどうかを判別する人物判別手段とを有し、人物として形状特定化された距離変位領域までの方向および距離を人物位置として検出する構成が開示されている。
特開2009−174830号公報
特許文献1の技術では、室内空間の物体までの距離を測定し、測定値の時間変化量から距離変位領域を検出するとともに、予め登録した人物形状の特徴と検出された距離変位領域の特徴とを比較することで、人物かどうかを判別するものである。
被写体までの3次元距離を正確に測定するためには、空間内の各被写体へ光を照射し、各被写体を反射した光を精度良く検出する必要がある。しかし、測距装置に戻る光は微弱であるだけでなく、例えば室内の天井などの被写体以外から反射される不要光などが存在すると、本来の被写体からの反射光の外乱成分となり、高精度の測定が困難になる。また、距離の異なる複数の被写体が存在するとき、距離の遠い被写体からの反射光の強度はより微弱になるので、距離を正常に測定できない場合がある。これらの現象は、被写体の状況に応じて照射光の範囲や光量が適切に設定されていないことが原因である。前記特許文献1をはじめ従来技術では、被写体の状況に応じた照射環境については特に考慮されていなかった。
本発明の目的は、TOF法を用いる3次元距離測定装置において、被写体の状況に応じて照射光の範囲や光量を適切に設定し、距離測定の精度の劣化を抑えることである。
本発明は、被写体の位置を距離画像として出力する3次元距離測定装置において、被写体に光を照射する複数の光源と、複数の光源の発光を制御する発光制御部と、被写体からの反射光を検出する受光部と、受光部にて検出した反射光の伝達時間に基づき被写体までの3次元距離を算出する距離計算部と、距離計算部で算出した距離データに基づき被写体の2次元の距離画像を生成する画像処理部と、を備える。前記複数の光源により照射される複数の照射領域は、隣接する照射領域とのみ互いに重なるように配置されている。また前記発光制御部により、前記複数の光源に対し、各々個別に点灯または消灯、あるいは発光量の調整が可能である。
本発明によれば、被写体の状況に応じて照射光の範囲や光量を適切に設定し、TOF法による距離測定の精度の劣化を抑えた3次元距離測定装置を提供することができる。
実施例1における3次元距離測定装置の構成図。 TOF法による距離測定の原理を説明する図。 TOF法による距離測定の原理を説明する図。 設置角度検出部の動作を説明する図。 1つのレーザ光源による照射光量の分布を示す図。 複数のレーザ光源の配置と照射領域の重なりを示す図。 レーザ光源を全て点灯した場合の照射領域を示す図。 レーザ光源を全て点灯した場合の照射光量の分布を示す図。 レーザ光源の一部を消灯した場合の照射領域を示す図。 レーザ光源の一部を消灯した場合の照射光量の分布を示す図。 天井反射による外乱光の影響を説明する図。 マルチパスによる外乱光の影響を説明する図。 レーザ光源の一部を消灯し外乱光をなくした場合を示す図。 レーザ光源を全て点灯した場合の距離画像の例を示す図。 レーザ光源の一部を消灯した場合の距離画像の例を示す図。 照射領域の設定処理を示すフローチャート。 レーザ光源を全て同一光量で点灯した場合の照射領域を示す図(以下、実施例2)。 レーザ光源を全て同一光量で点灯した場合の照射光量分布を示す図。 レーザ光源を異なる光量で点灯した場合の照射領域を示す図。 レーザ光源を異なる光量で点灯した場合の照射光量分布を示す図。 複数の被写体の距離測定を示す図(各領域の照射光量が等しい)。 複数の被写体の距離測定を示す図(各領域の照射光量が異なる)。 各領域の照射光量が等しい場合の距離画像の例を示す図。 各領域の照射光量が異なる場合の距離画像の例を示す図。 照射光量分布の設定処理を示すフローチャート。
以下、本発明の実施形態について図面を用いて説明する。
実施例1では、複数の光源を個別に点灯可能な構成とし、被写体に対する照射領域の変更を可能としたものである。
図1は、実施例1における3次元距離測定装置の構成図である。以下の例では被写体として人物の位置を検出する場合について説明する。3次元距離測定装置では、人物を含む被写体までの距離をTOF方式で測定し、測定した被写体の各部までの距離を例えば色で区別して表示し、距離画像として出力する。3次元距離測定装置は、TOF方式による距離画像を生成する距離画像生成部1(以下、TOFカメラと呼ぶ)をCPU17によって制御する構成である。
TOFカメラ1は、被写体2にパルス光を照射するレーザダイオード(LD)や発光ダイオード(LED)などを備える発光部10と、被写体2から反射したパルス光を受光するCCDセンサやCMOSセンサなどを備える受光部13と、受光部13の検出信号から被写体2までの距離を計算する距離計算部14と、距離計算部14から出力される距離データを基に被写体2の距離画像として出力する画像処理部15と、TOFカメラ1の設置角度を検出する設置角度検出部16から構成されている。このTOFカメラ1は、CPU17により制御されることにより、3次元距離測定を行うことができる。次に各部の構成及び機能に関して、詳細に説明する。
TOFカメラ1において、発光部10は複数のレーザ光源(LD)からなる光源部11と、各レーザ光源の点灯または消灯、あるいは発光量の調整を行う発光制御部12から構成されている。本例では、光源部11には3つのレーザ光源11a,11b,11cが配置されており、各レーザ光源から照射されるレーザ光は、各々が3a,3b,3cからなる照射領域を照射することが可能である。ここに各々の照射領域3a,3b,3cは、隣接する照射領域との間でのみ照射領域が重なるように、各レーザ光源11a,11b,11cの照射方向を異ならせて配置している。
発光制御部12は、レーザ光源を駆動するレーザ駆動回路から構成されており、1つのレーザ光源に対して、1つのレーザ駆動回路が対応している。本例では3つのレーザ光源11a,11b,11cに対して、3つのレーザ駆動回路12a,12b,12cがそれぞれ対応しており、CPU17からの指令に従い、光源部11のレーザ光源の点灯や消灯を制御する。
被写体2から反射した光は、受光部13に搭載されているCCDセンサ13aにより検出され、光電変換された信号が、距離計算部14に送られる。距離計算部14では、被写体2までの距離を計算し、被写体2までの距離データを画像処理部15へ送る。
画像処理部15は、距離データに基づき被写体画像の色相を変えるカラー化処理を行って距離画像を生成し、外部装置(ディスプレイ)に出力して表示する。画像処理は、明度、コントラスト等を変える処理でも構わない。ユーザはカラー化された距離画像を見ることで、被写体2(人物等)の位置(距離)と形状(姿勢)を容易に知ることができる。また必要に応じ、受光部13にて検出した反射光の強度を外部装置(ディスプレイ)に表示する。表示された距離画像が不完全であったり反射光強度に過不足が生じている場合には、ユーザはCPU17の入力装置を介し、照射領域や照射光量分布について設定変更を指示することができる。
設置角度検出部16は例えば加速度センサを用いたものであり、ここで得られるTOFカメラ1の姿勢情報を画像処理部15に送ることにより、画像処理の際に被写体2の3次元座標を得ることができる。
図2Aと図2Bは、TOF法による距離測定の原理を説明する図である。TOF(タイム・オブ・フライト)法では、出射光信号と受光信号の時間差により距離を算出する、
図2AはTOFカメラ(距離画像生成部)1と被写体2(例えば人物)の関係を示す図である。TOFカメラ1は発光部10と受光部13を有し、発光部10から被写体2へ距離測定用の光31を出射する。出射光には赤外光を用いる。受光部13は、被写体2に出射された光の反射光32を受光するが、対物レンズ33を介してCCDなどの2次元センサ34で受光する。被写体2は、発光部10および受光部13からd[m]離れた位置に存在する。ここで、光速をc[m/s]として、発光部10が光出射を開始してから受光部13が反射光を受光するまでの時間差をt[s]とすると、被写体2までの距離d[m]は、
d[m]=c[m/s]×t[s]/2 (1)
で求められる。
図2Bは時間差tの測定を示す図である。距離計算部14は、発光部10から出射した光31のタイミングと、受光部13で反射光32を受光したタイミングから、その時間差tを測定し、式(1)から被写体2との距離dを算出する。また、2次元センサ34における各画素位置での受光タイミングのずれから、被写体各位置の距離の差、すなわち被写体の凹凸形状を求めることができる。
図3は、設置角度検出部の動作を説明する図である。設置角度検出部16は例えば加速度センサからなり、そのセンサ出力値からTOFカメラ1の設置角度θを検出する。すなわち、TOFカメラ1からの光出射方向が水平方向(θ=0°)か、垂直方向(θ=90°)か、あるいはそれ以外の斜め方向(例えばθ=45°)かを検出する。ここで得られるTOFカメラ1の姿勢情報を画像処理部15に送ることにより、画像処理の際に被写体2の3次元座標を算出することができる。
図4Aは、1つのレーザ光源による照射光量の分布を示す図である。レーザ光源11から出射された光は、所定の角度の広がりを持ち、照射領域3の範囲を照射する。ここで、照射領域内の照射光量分布50はガウス分布となる場合を示しており、最大光量の1/e^2(=Lo、しきい値)以上となる範囲を照射範囲51として定義している。以下では、特に断らない限り、照射領域3とはこの照射範囲51の大きさを意味する。ここでは、レーザ光源が照射する光がガウス分布の場合の広がり角度や照射光量の分布の例を示したが、これに限定されない。レーザ光源自身の広がり角度が異なる場合や、図には記載していないが、各レーザ光源の出射後の位置に、例えば拡散板、マイクロレンズアレイ、レンズなどの光学部品を配置した構成により、ガウス分布とは異なる照射光量分布であっても構わない。その場合でも、最大光量の1/e^2(=Lo)以上となる範囲を照射範囲51と定義する。
図4Bは、複数のレーザ光源の配置と照射領域の重なりを示す図である。この例では、TOFカメラ1内に3つのレーザ光源11a,11b,11cを配置している。これら3つのレーザ光源から出射される光は、その照射領域3a,3b,3cが互いに隣接する照射領域とのみ一部が重なるように、各々のレーザ光源の向きが設定されている。すなわち、照射領域3aは、照射領域3bと重なるが、照射領域3cとは重ならない。照射領域3bは、照射領域3a,3cと異なる領域で重なっている。照射領域3cは、照射領域3aとは重ならない。
次に図5と図6で、レーザ光源の点灯状態と照射領域の関係を説明する。
図5は、3つのレーザ光源を全て点灯した場合で、図5Aは照射領域を、図5Bは照射光量の分布を示す図である。図5Aで示すように、3つの照射領域3a,3b,3cは隣接する照射領域との間で一部が重なっているために、全体として1つの大きな照射領域3を形成している。
図5Bは、照射領域3a,3b,3cの断面A−A’に関して、照射光量の分布を示している。各レーザ光源から照射される光の照射光量分布を50a,50b,50cで、それぞれの照射範囲(図4Bで定義)を51a,51b,51cで示す。各照射範囲は、隣り合う照射領域の間では重なる部分があるが、隣り合わない照射範囲とは重なる部分がない。
例えば、照射範囲51aと照射範囲51bは、重なり幅ΔWabで互いに重なり、その重なり幅ΔWabは、照射範囲51aの半幅Wa/2、及び照射範囲51bの半幅Wb/2よりも小さく設定する。
0<ΔWab<Wa/2、0<ΔWab<Wb/2 (2a)
また、照射範囲51bと照射範囲51cの重なり幅ΔWbcについても同様で、照射範囲51bの半幅Wb/2、及び照射範囲51cの半幅Wc/2よりも小さく設定する。
0<ΔWbc<Wb/2、0<ΔWbc<Wc/2 (2b)
このように、隣接する照射範囲の重なり幅を制限することで、隣接しない照射範囲51aと51cとの間で重なりをなくす構成とすることができる。
図6は、3つのレーザ光源のうち一部を消灯した場合で、図6Aは照射領域を、図6Bは照射光量の分布を示す図である。この例では、図4Aにおける2つのレーザ光源11a,11bを点灯し、11cを消灯している。図6Aで示すように、点灯した2つのレーザ光源からの照射領域3aと3bにより全体の照射領域3が形成されており、図5Aにおける照射領域3から照射領域3cを除いたものとなっている。
図6Bは、照射領域3a,3b,3cの断面A−A’に関して、照射光量の分布を示している。点灯した2つのレーザ光源による照射光量分布50a,50bと、それぞれの照射範囲51a,51bを示す。図5Bと同様に、照射範囲51aと照射範囲51bは、重なり幅ΔWabで互いに重なっており、重なり幅ΔWabは上記(2a)の条件を満たしている。
なお、図6の例では2つのレーザ光源11a,11bを点灯し、11cを消灯したが、3つのレーザ光源のうち、どれを点灯しどれを消灯するかは任意に設定できることは言うまでもない。
このように本実施例においては、複数のレーザ光源を個別に点灯、あるいは消灯することが可能な構成であるため、TOFカメラ1による照射領域(照射範囲)を変更することが可能となる。これにより以下に述べるように、TOFカメラ1による距離測定時の外乱光をなくし、測定精度を向上させることができる。
図7は、距離測定時の外乱光の影響を説明する図である。図7Aは天井反射による外乱光がある場合を、図7Bはマルチパスによる外乱光がある場合を、図7Cは外乱光の発生をなくすためレーザ光源のうち1つを消灯した場合を示す。
図7Aにおいて、TOFカメラ1は天井4に近い位置に設置され、全てのレーザ光源を点灯させて照射領域3a,3b,3cを設定している。照射された光のうち照射光41は被写体2で反射されて反射光42となり、被写体2の3次元距離測定に使用される。このとき、TOFカメラ1から照射される光は被写体2の方向だけでなく上下方向に広がり、照射範囲の上端は天井4の方向へ、下端は床面5の方向へ向かう。ここで、天井4に向かう照射領域3cには被写体2が存在せず、TOFカメラ1として、被写体2に対する距離測定を実施する必要がない領域である。
TOFカメラ1から天井4に向かう照射光43は、天井面にて多くは反射されるが、一部は天井面での拡散によりTOFカメラ1に戻る不要な反射光44(以下、不要光と呼ぶ)となる。この不要光44は、TOFカメラ1から比較的近い距離にて戻るため、被写体2からの反射光42と比較して、大きな光量となる場合が多い。そのため、天井4からの不要光44が、被写体2からの反射光42の外乱光となり、距離測定精度を劣化させる要因となる。
図7Bは、マルチパスによる外乱光の影響を説明する図で、レーザ光源を全て点灯した場合を示す。TOFカメラ1から天井4に照射される光45は、天井4で一旦反射し、その後被写体2に向かう照射光46となる場合がある。この照射光46は被写体2で反射され、反射光47となってTOFカメラ1に戻ることになる。すなわちTOFカメラ1では、照射光41による本来の反射光42の他に、照射光46による不要な反射光47(不要光)を検出することになる。ここで、TOFカメラ1から被写体2に直接照射されずに被写体2に至る光路がマルチパスである。このマルチパスによる外乱光が存在すると、TOFカメラ1から被写体2までの距離が見掛け上変化してしまい、距離測定精度を劣化させる要因となる。
そこで本実施例においては、図7Cに示すように、天井4に向かって照射するレーザ光源11c(すなわち照射領域3c)を消灯し、TOFカメラ1からは照射領域3a及び3bのみを照射する状態で使用する。これにより、図7Aにおける天井反射による外乱光(不要光44)やマルチパスによる外乱光(不要光47)の発生をなくし、TOFカメラ1における測定距離精度の劣化を防止することができる。
図8は、TOFカメラ1で生成される距離画像の例を示す図である。図8Aは、TOFカメラ1の設定が前記図7Aあるいは図7Bの状態の場合である。図8Bは、TOFカメラ1の設定が前記図7Cの状態の場合である。
図8Aは、レーザ光源を全て点灯した場合を示しており、表示画面60の中に被写体2が表示されているが、被写体2の輪郭にゴースト2’が見られる。すなわち、距離測定精度が劣化したものとなっている。これは、天井4からの不要光44やマルチパスによる不要光47が存在し、被写体2の反射光42に対して外乱成分として影響しているためである。
一方図8Bは、天井4に向かって照射するレーザ光源11cを消灯した場合を示している。天井4からの不要光47が検出されず、また、マルチパスによる不要光47が発生しないために、TOFカメラ1からは、被写体2の輪郭がはっきりとした距離画像を得ることができる。
図9は、本実施例における照射領域の設定処理を示すフローチャートである。以下に示す照射領域の設定処理は、3次元距離測定装置のCPU17が図1の各部の動作を制御することで実行される。以下、ステップ順に説明する。
S101:発光制御部12により、光源部11の全てのレーザ光源を点灯する。
S102:被写体2からの反射光を受光部13にて検出し、距離計算部14にて被写体2の各部までの距離を計算し、画像処理部15にて距離画像を生成する。
S103:画像処理部15で生成した距離画像を外部装置(ディスプレイ)に表示する。また必要に応じ、受光部13にて検出した反射光の強度を外部装置(ディスプレイ)に表示する。
S104:ユーザは表示された距離画像(反射光強度)を確認し、照射領域の設定変更が必要か否かを判定する。例えば、TOFカメラ1に近くにある天井や壁などの反射光が強く、人物などの被写体から離れた位置で画像として見える場合は、外乱光が発生する恐れがあるので設定変更が必要と判定する。CPU17の入力装置を介しユーザからの変更指示がある場合はS106に進み、変更指示がない場合はS105に進む。
S105:照射領域の設定を終了して、3次元距離測定を継続する。
S106:設置角度検出部16は、TOFカメラ1の設置角度θを検出する。
S107:ユーザは表示されている距離画像(反射光強度)、あるいはTOFカメラ1の設置角度、もしくは両方の情報に基づいて、CPU17の入力装置を介し、発光部10からの照射領域の設定を変更する。例えば、距離画像に基づく場合は、TOFカメラ1の近傍(例として1m以内)として検出された天井や壁を照射領域から除外するように照射領域を設定する。また、TOFカメラ1の設置角度に基づく場合は、天井が見える角度範囲を照射領域から除外するように設定する。
S108:上記S107で変更した照射領域の設定に対して、CPU17は、変更後の照射領域のみが照射可能となるようレーザ光源を選択する。
S109:発光制御部12は、選択したレーザ光源のみを点灯する。そしてS102に戻り、設定変更後の距離画像について上記した処理を繰り返す。
以上のフローでは、S104、S107における照射領域の設定変更の判定と操作はユーザが行うものとしたが、CPU17により自動的に判断して設定することも可能である。例えば、距離画像内の被写体(人物等)の位置を認識し、図8Aのように不要な領域(天井4)からの強い反射光が存在しないか、あるいは、距離画像内の被写体の輪郭にゴーストが発生していないか、などから判断が可能である。
実施例1によれば、被写体の状況に応じて照射領域を最適化することができるので、3次元距離測定時の外乱となる天井からの反射光やマルチパスによる不要光の発生をなくし、精度良く距離測定を行うことができる。
次に、実施例2における3次元距離測定装置を説明する。実施例2では、個々のレーザ光源の発光量を個別に調整することが可能な構成としている。装置の基本構成は実施例1(図1)と同様であるため、ここでは説明を省略する。
図10と図11で、レーザ光源の点灯状態と照射光量分布の関係を説明する。
図10は、3つのレーザ光源を全て同一光量で点灯した場合で、図10Aは照射領域を、図10Bは断面A−A’における照射光量の分布を示す図である。3つの照射領域3a,3b,3cの照射光量分布を50a,50b,50cで示し、照射光量の最大値をそれぞれLa,Lb,Lcとすると、
La=Lb=Lc (3)
の関係であり、各照射領域の照射光量が等しくなっている。なお、各照射領域の照射範囲や重なり幅は実施例1(図5)と同様である。すなわち、Wa=Wb=Wc、ΔWab=ΔWbcとしている。
次に、図11は3つのレーザ光源を異なる光量で点灯した場合で、図11Aは照射領域を、図11Bは断面A−A’における照射光量の分布を示す図である。3つの照射領域3a,3b,3cに対するレーザ光源の発光量(あるいは照射する光量)が異なっている。この例では、各照射領域における照射光量の最大値La,Lb,Lcは、
La<Lb<Lc (4)
の関係になっている。また、各照射領域の照射範囲や重なり幅は、光量の大きさに依存して、Wa<Wb<Wc、ΔWab<ΔWbcの関係となっている。なお、この場合の照射範囲Wa,Wb,Wcは、基準となる光量分布(例えば照射光量分布50b)に対する光量しきい値Lboから決めている。
このように本実施例においては、複数のレーザ光源を異なる光量で点灯させることが可能な構成であるため、TOFカメラ1の照射領域内での照射光量分布を最適化することが可能となる。これにより以下に述べるように、複数の被写体のうち、一部の被写体がTOFカメラ1から遠い位置にあるときでも、距離測定を精度良く行うことができる。
図12は、距離の異なる複数の被写体の距離測定を行う場合を示す図である。図12Aは、図10A,10Bのように照射領域の照射光量が等しい場合を、図12Bは、図11A,11Bのように照射領域の照射光量が異なる場合を示す。
図12Aにおいて、TOFカメラ1は天井4に近い位置に設置されており、TOFカメラ1から照射する照射領域3a,3b,3cは、3つの被写体2a,2b,2cの位置をカバーするように広がっている。ここで各被写体2a,2b,2cは、TOFカメラ1からの距離が異なるものとする。
照射領域3a,3b,3cにおける照射光量が等しい場合、TOFカメラ1において検出される各被写体からの反射光の強度は、TOFカメラ1からの距離に依存する。すなわち、距離が近い被写体2a,2bについては反射光が十分であり正常に距離を測定できるが、距離が遠い被写体2cについては、反射光が不十分となり正常な測定ができない場合がある。これは、被写体の反射率が小さい場合でも同様である。
そこで本実施例においては、図12Bに示すように、各照射領域の光量を異ならせる(各レーザ光源を異なる光量で点灯させる)ことにより、TOFカメラ1の照射光量分布の最適化を図る。具体的には、距離が遠い被写体2cに対する照射領域3cについては、対応するレーザ光源11cの光量を増加させ、距離が近い被写体2aに対する照射領域3aについては、対応するレーザ光源11aの光量を減少させる。これにより、距離が遠い被写体2cからの反射光を強め、距離測定を正常に行うことができる。また、距離が近い被写体2aについては反射光の強度に余裕があるので、適切な照射光量に調整する。このように、複数の被写体全体に対する照射光量分布を最適化させて距離測定を行う。
図13は、TOFカメラ1で生成される距離画像の例を示す図である。図13Aは、TOFカメラ1の設定が前記図12Aの状態の場合である。図13Bは、TOFカメラ1の設定が前記図12Bの状態の場合である。
図13Aは、図12Aのように各照射領域の照射光量が等しい場合を示している。表示画面60の中に3つの被写体2a,2b,2cが表示されているが、被写体2cは肩から下側の部分2c’が表示されていない。これは、TOFカメラ1からの距離が最も遠い被写体2cへの照射光量が少ないために、被写体2cの下半身部分2c’の距離測定が正常になされず、一部の画像が欠落したものである。
一方図13Bは、TOFカメラ1から距離が遠くなるほど照射領域の照射光量を大きくした場合を示している。距離が異なる3つの被写体2a,2b,2cについて、全身の距離画像を得ることができる。このように照射領域全体での照射光量の分布を調整することにより、被写体2a,2b,2cの何れからも必要な反射光量を得ることができ、照射領域全域で人物等の距離測定を正常に行うことが可能となる。
図14は、本実施例における照射光量分布の設定処理を示すフローチャートである。以下に示す照射光量分布の設定処理は、3次元距離測定装置のCPU17が図1の各部の動作を制御することで実行される。以下、ステップ順に説明する。
S201:発光制御部12により光源部11の全てのレーザ光源を同一光量で点灯する。
S202:被写体2からの反射光を受光部13にて検出し、距離計算部14にて被写体2の各部までの距離を計算し、画像処理部15にて距離画像を生成する。
S203:生成した距離画像を外部装置(ディスプレイ)に表示する。また必要に応じ、受光部13にて検出した反射光の強度を外部装置(ディスプレイ)に表示する。
S204:ユーザは表示された距離画像(反射光強度)を確認し、各照射領域の照射光量の設定変更が必要か否かを判定する。例えば、被写体画像に欠落している部分があれば、対応する照射領域の照射光量を増加させる必要がある。また、連続する床面の反射光強度が一様でない場合にも、照射光量の調整が必要になる。CPU17の入力装置を介しユーザからの変更指示がある場合はS206に進み、変更指示がない場合はS205に進む。
S205:照射光量の設定を終了して、3次元距離測定を継続する。
S206:設置角度検出部16は、TOFカメラ1の設置角度θを検出する。
S207:ユーザは表示されている距離画像(反射光強度)、あるいはTOFカメラ1の設置角度、もしくは両方の情報に基づいて、CPU17の入力装置を介し、各照射領域の照射光量の設定変更を行う。例えば、距離画像に基づく場合は、被写体画像に欠落している部分があれば、対応する照射領域の照射光量を増加するよう設定する。また、TOFカメラ1の設置角度に基づく場合は、床面からの反射光強度が一様になるよう、水平方向の領域の照射光量を増加させ、床面に垂直方向の領域の照射光量を減少させるように設定する。
S208:上記S207で変更した照射光量分布の設定に対して、CPU17は、変更後の照射光量分布が得られるよう各レーザ光源の発光量を設定する。
S209:発光制御部12は、各レーザ光源に対し設定された発光量で点灯させる。そしてS202に戻り、設定変更後の距離画像について上記した処理を繰り返す。
以上のフローでは、S204、S207における照射光量の設定変更の判定と操作はユーザにより行うものとしたが、CPU17により自動的に判断して設定することも可能である。例えば、距離画像内の被写体(人物等)の形状を認識し、図13Aのように被写体画像に欠落部が存在していないか、あるいは、連続する床面の反射光強度が一様でないか、などから判断が可能である。
実施例2によれば、距離の異なる複数の被写体に対し照射光量分布を最適に調整することができるので、3次元距離測定時の検出光量の過不足をなくし、各被写体について精度良く距離測定を行うことができる。
以上述べた各実施例では、3つのレーザ光源を備える構成としたが、光源の数と種類はこれに限定されないことは言うまでもない。
1:距離画像生成部(TOFカメラ)、
2,2a〜2c:被写体、
3,3a〜3c:照射領域、
4:天井、
5:床面、
10:発光部、
11,11a〜11c:光源部(レーザ光源)、
12,12a〜12c:発光制御部、
13:受光部、
14:距離計算部、
15:画像処理部、
16:設置角度検出部、
17:CPU、
41,43,45,46:照射光、
42,44,47:反射光、
50,50a〜50c:照射光量分布、
51,51a〜51c:照射範囲、
60:表示画面。

Claims (5)

  1. 被写体の位置を距離画像として出力する3次元距離測定装置において、
    前記被写体に光を照射する複数の光源と、
    前記複数の光源の発光を制御する発光制御部と、
    前記被写体からの反射光を検出する受光部と、
    前記受光部にて検出した反射光の伝達時間に基づき前記被写体までの3次元距離を算出する距離計算部と、
    前記距離計算部で算出した距離データに基づき前記被写体の2次元の距離画像を生成する画像処理部と、を備え、
    前記複数の光源により照射される複数の照射領域は、隣接する照射領域とのみ互いに重なるように配置されていることを特徴とする3次元距離測定装置。
  2. 請求項1に記載の3次元距離測定装置において、
    前記隣接する照射領域との重なり幅は、各々の照射領域の幅の1/2よりも小さいことを特徴とする3次元距離測定装置。
  3. 請求項1または2に記載の3次元距離測定装置において、
    前記発光制御部により、前記複数の光源に対し、各々個別に点灯または消灯、あるいは発光量の調整が可能であることを特徴とする3次元距離測定装置。
  4. 請求項3に記載の3次元距離測定装置において、
    前記発光制御部は、前記複数の光源を全て点灯させて前記被写体に照射し、
    前記画像処理部にて生成した前記被写体の距離画像と前記受光部にて検出した反射光の強度をディスプレイに表示し、
    ユーザから、所定の照射領域には光が照射されないように変更指示を受けたとき、
    前記発光制御部は、ユーザから変更指示を受けた照射領域に対応する光源を個別に消灯させることを特徴とする3次元距離測定装置。
  5. 請求項3に記載の3次元距離測定装置において、
    前記発光制御部は、前記複数の光源を同一の発光量で点灯させて前記被写体に照射し、
    前記画像処理部にて生成した前記被写体の距離画像と前記受光部にて検出した反射光の強度をディスプレイに表示し、
    ユーザから、所定の照射領域の照射光量を増加または減少させるように変更指示を受けたとき、
    前記発光制御部は、ユーザから変更指示を受けた照射領域に対応する光源の発光量を個別に増加または減少させることを特徴とする3次元距離測定装置。
JP2017169404A 2017-09-04 2017-09-04 3次元距離測定装置 Active JP7028588B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017169404A JP7028588B2 (ja) 2017-09-04 2017-09-04 3次元距離測定装置
US15/984,449 US10614584B2 (en) 2017-09-04 2018-05-21 Three-dimensional distance measurement apparatus
CN201810726106.8A CN109425864B (zh) 2017-09-04 2018-07-04 3维距离测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017169404A JP7028588B2 (ja) 2017-09-04 2017-09-04 3次元距離測定装置

Publications (2)

Publication Number Publication Date
JP2019045334A true JP2019045334A (ja) 2019-03-22
JP7028588B2 JP7028588B2 (ja) 2022-03-02

Family

ID=65514489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017169404A Active JP7028588B2 (ja) 2017-09-04 2017-09-04 3次元距離測定装置

Country Status (3)

Country Link
US (1) US10614584B2 (ja)
JP (1) JP7028588B2 (ja)
CN (1) CN109425864B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021639A (ja) * 2019-07-29 2021-02-18 パイオニア株式会社 情報処理装置、情報処理方法、プログラム、記録媒体及び検出システム
US20210231783A1 (en) * 2020-01-23 2021-07-29 Hitachi-Lg Data Storage, Inc. Measurement-distance correction method, distance measuring device, and distance measuring system
JP2021143952A (ja) * 2020-03-12 2021-09-24 株式会社日立エルジーデータストレージ 測距装置及び測距方法
JP2023508621A (ja) * 2020-12-03 2023-03-03 深▲せん▼市▲レイ▼神智能系統有限公司 レーザーレーダー

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782433B2 (ja) * 2017-03-22 2020-11-11 パナソニックIpマネジメント株式会社 画像認識装置
JP7028588B2 (ja) * 2017-09-04 2022-03-02 株式会社日立エルジーデータストレージ 3次元距離測定装置
CN111766607A (zh) * 2019-03-13 2020-10-13 科沃斯机器人股份有限公司 一种自移动设备和非接触式障碍物检测装置
JP2020153715A (ja) * 2019-03-18 2020-09-24 株式会社リコー 測距装置および測距方法
CN110221309B (zh) * 2019-04-30 2021-08-17 深圳市光鉴科技有限公司 基于异步ToF离散点云的3D成像装置及电子设备
CN110297251A (zh) * 2019-06-27 2019-10-01 杭州一隅千象科技有限公司 多台tof实现的大幅面空间覆盖的方法及系统
CN110456380B (zh) * 2019-07-31 2021-12-28 炬佑智能科技(苏州)有限公司 飞行时间传感相机及其深度检测方法
US11846731B2 (en) * 2019-07-31 2023-12-19 Canon Kabushiki Kaisha Distance detection device and imaging apparatus
CN112327313B (zh) * 2020-01-14 2024-03-29 必虎嘉骁光电技术(重庆)有限公司 一种双筒测距仪
JP7420672B2 (ja) * 2020-07-17 2024-01-23 株式会社日立エルジーデータストレージ 測距システム及び測距センサの検知強度分布表示方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283887A (ja) * 1985-06-11 1986-12-13 Nissan Motor Co Ltd 車両用レ−ザレ−ダ装置
JPH05312936A (ja) * 1992-05-08 1993-11-26 Olympus Optical Co Ltd 距離測定装置
JP2009192499A (ja) * 2008-02-18 2009-08-27 Stanley Electric Co Ltd 距離画像生成装置
JP2012168049A (ja) * 2011-02-15 2012-09-06 Stanley Electric Co Ltd 距離画像生成装置および距離画像生成方法
JP2016038211A (ja) * 2014-08-05 2016-03-22 リコー光学株式会社 レーザレーダ装置
JP2016090268A (ja) * 2014-10-30 2016-05-23 株式会社デンソー 車両用光飛行型測距装置
US20170122731A1 (en) * 2015-10-29 2017-05-04 Samsung Electronics Co., Ltd. Apparatus and method for obtaining image

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426669B2 (ja) * 1999-06-03 2010-03-03 オリンパス株式会社 マルチaf装置
EP1191306B1 (en) * 2000-09-26 2006-11-22 Fuji Photo Film Co., Ltd. Distance information obtaining apparatus and distance information obtaining method
JP2002323315A (ja) * 2001-04-26 2002-11-08 Olympus Optical Co Ltd 測距装置の調整装置
JP5171158B2 (ja) * 2007-08-22 2013-03-27 浜松ホトニクス株式会社 固体撮像装置及び距離画像測定装置
US20090148038A1 (en) * 2007-12-10 2009-06-11 Youichi Sawachi Distance image processing apparatus and method
JP5175562B2 (ja) 2008-01-28 2013-04-03 シャープ株式会社 人物位置検出装置および空気調和機
WO2010021090A1 (ja) * 2008-08-20 2010-02-25 パナソニック株式会社 距離推定装置、距離推定方法、プログラム、集積回路およびカメラ
JP2013156109A (ja) * 2012-01-30 2013-08-15 Hitachi Ltd 距離計測装置
KR20130102400A (ko) * 2012-03-07 2013-09-17 삼성전자주식회사 티오에프 센서 및 티오에프 카메라
JP2014109490A (ja) * 2012-11-30 2014-06-12 Keyence Corp 計測顕微鏡装置及びこれを用いた画像撮像方法
WO2014097539A1 (ja) * 2012-12-20 2014-06-26 パナソニック株式会社 3次元測定装置および3次元測定方法
KR101770872B1 (ko) * 2013-12-27 2017-08-23 주식회사 만도 차량용 tof 카메라 및 그의 구동 방법
JP2015135447A (ja) * 2014-01-20 2015-07-27 株式会社日立エルジーデータストレージ 映像投射装置、ヘッドマウントディスプレイ
JP2016008875A (ja) * 2014-06-24 2016-01-18 株式会社リコー 距離測定装置
JP2016102697A (ja) * 2014-11-27 2016-06-02 パナソニックIpマネジメント株式会社 距離画像生成装置、距離画像生成方法、及び距離画像生成プログラム
US10145670B2 (en) * 2016-01-12 2018-12-04 The Boeing Company Systems and methods for projected grid-based location tracking
JP7028588B2 (ja) * 2017-09-04 2022-03-02 株式会社日立エルジーデータストレージ 3次元距離測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283887A (ja) * 1985-06-11 1986-12-13 Nissan Motor Co Ltd 車両用レ−ザレ−ダ装置
JPH05312936A (ja) * 1992-05-08 1993-11-26 Olympus Optical Co Ltd 距離測定装置
JP2009192499A (ja) * 2008-02-18 2009-08-27 Stanley Electric Co Ltd 距離画像生成装置
JP2012168049A (ja) * 2011-02-15 2012-09-06 Stanley Electric Co Ltd 距離画像生成装置および距離画像生成方法
JP2016038211A (ja) * 2014-08-05 2016-03-22 リコー光学株式会社 レーザレーダ装置
JP2016090268A (ja) * 2014-10-30 2016-05-23 株式会社デンソー 車両用光飛行型測距装置
US20170122731A1 (en) * 2015-10-29 2017-05-04 Samsung Electronics Co., Ltd. Apparatus and method for obtaining image

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021639A (ja) * 2019-07-29 2021-02-18 パイオニア株式会社 情報処理装置、情報処理方法、プログラム、記録媒体及び検出システム
US20210231783A1 (en) * 2020-01-23 2021-07-29 Hitachi-Lg Data Storage, Inc. Measurement-distance correction method, distance measuring device, and distance measuring system
JP2021117036A (ja) * 2020-01-23 2021-08-10 株式会社日立エルジーデータストレージ 測距装置の測定値補正方法
JP2021143952A (ja) * 2020-03-12 2021-09-24 株式会社日立エルジーデータストレージ 測距装置及び測距方法
JP7286573B2 (ja) 2020-03-12 2023-06-05 株式会社日立エルジーデータストレージ 測距装置及び測距方法
JP2023508621A (ja) * 2020-12-03 2023-03-03 深▲せん▼市▲レイ▼神智能系統有限公司 レーザーレーダー
JP7420915B2 (ja) 2020-12-03 2024-01-23 深▲せん▼市▲レイ▼神智能系統有限公司 レーザーレーダー

Also Published As

Publication number Publication date
US20190073781A1 (en) 2019-03-07
JP7028588B2 (ja) 2022-03-02
US10614584B2 (en) 2020-04-07
CN109425864A (zh) 2019-03-05
CN109425864B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
JP2019045334A (ja) 3次元距離測定装置
CN109959942B (zh) 距离测量设备、识别设备和距离测量方法
KR101891907B1 (ko) 거리 측정 장치 및 시차 연산 시스템
JP5073273B2 (ja) 遠近判定方法およびその装置
US7095002B2 (en) Adaptive lighting control for vision-based occupant sensing
US20160330434A1 (en) Control method of a depth camera
JPWO2014097539A1 (ja) 3次元測定装置および3次元測定方法
JP7321956B2 (ja) 測距装置の測定値補正方法
KR20080070084A (ko) 전자기 빔 프로젝션의 위치 탐지
JP2008232887A (ja) 物体検知装置、および照射軸調整方法
JP2012068066A (ja) 光測距装置
KR100728482B1 (ko) 계측 영역의 자동 설정 수단을 구비한 변위 센서
KR101213987B1 (ko) 거리 측정 장치 및 이의 제어 방법
CN109239722B (zh) 距离测定装置以及其角度调整方法
US10652508B2 (en) Projector and method for projecting an image pixel by pixel
JP7257275B2 (ja) 3次元距離測定装置
WO2015145599A1 (ja) 映像投影装置
JP2006292731A (ja) 計測領域の自動設定手段を備えた変位センサ
JP2018155658A (ja) 物体検出装置、物体検出方法、および物体検出プログラム
KR102476951B1 (ko) 광 출력장치의 광 출력 최적화 방법
US11869206B2 (en) Controllable laser pattern for eye safety and reduced power consumption for image capture devices
JP2023068814A (ja) 距離測定装置、距離測定プログラム
KR102549434B1 (ko) 깊이 센서 제어 시스템
KR20130017026A (ko) 물체 검출 시스템
JP2014181995A (ja) 三次元形状計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7028588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150