JP2019028747A - 流量制御装置、流量制御方法、及び、流量制御装置用プログラム - Google Patents

流量制御装置、流量制御方法、及び、流量制御装置用プログラム Download PDF

Info

Publication number
JP2019028747A
JP2019028747A JP2017147801A JP2017147801A JP2019028747A JP 2019028747 A JP2019028747 A JP 2019028747A JP 2017147801 A JP2017147801 A JP 2017147801A JP 2017147801 A JP2017147801 A JP 2017147801A JP 2019028747 A JP2019028747 A JP 2019028747A
Authority
JP
Japan
Prior art keywords
flow rate
downstream
flow
fluid resistance
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017147801A
Other languages
English (en)
Other versions
JP7164938B2 (ja
Inventor
忠弘 安田
Tadahiro Yasuda
忠弘 安田
ビル ホワイト
White Bill
ビル ホワイト
パトリック ローリー
lowery Patrick
パトリック ローリー
マックス グンドラック
Gundlach Maximilian
マックス グンドラック
ライアン オーウェン
Owens Ryan
ライアン オーウェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2017147801A priority Critical patent/JP7164938B2/ja
Priority to KR1020180080692A priority patent/KR102483417B1/ko
Priority to CN201810762767.6A priority patent/CN109324641B/zh
Priority to TW107125734A priority patent/TWI815814B/zh
Priority to US16/048,750 priority patent/US10545514B2/en
Publication of JP2019028747A publication Critical patent/JP2019028747A/ja
Priority to JP2021183490A priority patent/JP2022010221A/ja
Application granted granted Critical
Publication of JP7164938B2 publication Critical patent/JP7164938B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0664Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a plurality of diverging flows from a single flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • G01F22/02Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0647Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37371Flow

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)
  • Paper (AREA)

Abstract

【課題】制御点であるバルブにおける実際の流量を従来よりも小さい時間遅れで得ることができ、測定点と制御点を一致させることで応答速度を大幅に向上させることができる流量制御装置を提供する。【解決手段】流路に設けられた流体抵抗と、流体抵抗の下流側に設けられた下流側バルブと、前記流体抵抗、及び、前記下流側バルブの間における前記流路の容積中の圧力を測定する下流側圧力センサと、前記流体抵抗を流れる第1流量を算出する第1流量算出部と、第1流量、及び、前記下流側圧力センサで測定される下流側圧力の時間変化量に基づいて、前記下流側バルブから流出する第2流量を算出する第2流量算出部と、設定流量と、第2流量とに基づいて前記下流側バルブを制御する流量制御部と、を備えた。【選択図】図1

Description

本発明は、例えば半導体製造装置に用いられる流体の流量を制御するための流量制御装置に関するものである。
半導体プロセスにおいて、例えばエッチングチャンバ内に導入される各種ガスの流量を制御するためにマスフローコントローラとよばれる各種流体機器と制御機構がパッケージ化された流量制御装置が用いられている。
例えばマスフローコントローラは、流路に対して設けられた流量センサと、流量センサの下流側に設けられたバルブと、流量センサで測定される測定流量が目標値である設定流量となるように前記バルブの開度を制御する流量制御部と、を備えたものがある(特許文献1参照)。
このようなマスフローコントローラには、設定流量に対してバルブの下流側を流れている実際のガスの流量ができる限り早く追従するように応答速度を向上させることが求められる。
しかしながら、近年、半導体製造プロセスにおいて求められる応答速度は非常に厳しく、上述したような流量制御系を有するマスフローコントローラでは対応することが難しくなりつつある。この原因について本願発明者らが鋭意検討を行ったところ、以下に説明するような原理的な問題があることを見出した。
すなわち、前述したマスフローコントローラでは、バルブよりも上流側で測定される流量がフィードバックされて、バルブが制御されており、流量センサによる流量の測定点と、バルブによる流量の制御点は、流量センサとバルブの設置間隔分だけずれている。
例えば流量センサが層流素子等の流体抵抗を具備している場合、測定点となる流体抵抗と制御点となるバルブとの間の内部容積に設定流量を実現するために必要な圧力が実現されるようにガスを流出入させるには、流体抵抗の作用によって所定時間が必要となる。
このため、制御点で起こった流量の変化が、流量センサのある測定点に表れるようになるまでには時間遅れが発生する。したがって、バルブは、制御点では所定時間前の流量の情報に基づいて常に開度が制御され続けるので、応答速度には必然的に限界が発生してしまう。
特開2004−280688号公報
本発明は、上述したような問題を鑑みてなされたものであり、制御点であるバルブにおける実際の流量を従来よりも小さい時間遅れで得ることができ、測定点と制御点を一致させることで応答速度を大幅に向上させることができる流量制御装置を提供することを目的とする。
すなわち、本発明に係る流量制御装置は、流路に設けられた流体抵抗と、流体抵抗の下流側に設けられた下流側バルブと、前記流体抵抗、及び、前記下流側バルブの間における前記流路の容積中の圧力を測定する下流側圧力センサと、前記流体抵抗を流れる第1流量を算出する第1流量算出部と、第1流量、及び、前記下流側圧力センサで測定される下流側圧力の時間変化量に基づいて、前記下流側バルブから流出する第2流量を算出する第2流量算出部と、設定流量と、第2流量とに基づいて前記下流側バルブを制御する流量制御部と、を備えたことを特徴とする。
また、本発明に係る流量制御方法は、流路に設けられた流体抵抗と、流体抵抗の下流側に設けられた下流側バルブと、前記流体抵抗、及び、前記下流側バルブの間における前記流路の容積中の圧力を測定する下流側圧力センサと、を備えた流量制御装置を用いた流量制御方法であって、前記流体抵抗を流れる第1流量を算出する第1流量算出ステップと、第1流量、及び、前記下流側圧力センサで測定される下流側圧力の時間変化量に基づいて、前記下流側バルブから流出する第2流量を算出する第2流量算出ステップと、設定流量と、第2流量とに基づいて前記下流側バルブを制御する流量制御ステップと、を備えたことを特徴とする。
このようなものであれば、下流側圧力の時間変化量は、前記流体抵抗、及び、前記下流側バルブの間における前記流路の容積に流入する流体の流量と、前記容積から流出する流体の流量の差に基づいて決定される。
したがって、前記第2流量算出部は、前記容積から流出する流体の流量である前記下流側バルブから流出する第2流量は、前記容積に流入する流体の流量である第1流量と、下流側圧力の時間変化量からが算出することができる。
このようにして、制御点となる下流側バルブでの流量である第2流量について時間遅れをほとんど発生させずに得られるので、前記流量制御部は、制御点と測定点を一致させて前記下流側バルブを制御でき、従来よりも例えば過渡応答時における応答速度を向上させることができる。
第2流量算出部の具体的な構成としては、前記第2流量算出部が、下流側圧力の時間変化量を算出する変化量算出部と、第1流量と下流側圧力の時間変化量から算出される換算流量の差に基づいて、第2流量を算出する流量演算部と、を備えるものが挙げられる。
前記下流側バルブによって第2流量が設定流量で安定した後は前記流体抵抗の上流側の圧力変動が生じても第2流量が変動しにくいロバストな制御を実現できるようにするには、前記流体抵抗よりも上流側に設けられた上流側バルブと、前記上流側バルブ、及び、前記流体抵抗の間における前記流路の容積中の圧力を測定する上流側圧力センサと、設定圧力と、前記上流側圧力センサで測定される上流側圧力とに基づいて前記上流側バルブを制御する圧力制御部と、をさらに備えたものであればよい。
前記流体抵抗の前後で発生する差圧によって前記第1流量算出部が正確な第1流量を算出できるようにしつつ、センサ数の増加を抑えられるようにするには、前記第1流量算出部が、上流側圧力、及び、下流側圧力に基づいて前記流体抵抗を流れる第1流量を算出するように構成されたものであればよい。
流量制御装置だけで内部の異常を自己診断できるようにするには、前記下流側バルブが閉鎖されている状態において、第1流量と第2流量とを比較して異常の有無を診断する診断部をさらに備えたものであればよい。
本発明における第1流量を得るための別の具体的な実施態様としては、前記流体抵抗を流れる第1流量に応じた検出信号を出力する流量検出機構をさらに備え、前記第1流量算出部が、前記流量検出機構の出力する検出信号に基づいて第1流量を算出するように構成されたものが挙げられる。
例えば既存の流量制御装置に対してプログラムをアップデートするだけで、本発明に係る流量制御装置と同様の効果を享受できるようにするには、流路に設けられた流体抵抗と、流体抵抗の下流側に設けられた下流側バルブと、前記流体抵抗、及び、前記下流側バルブの間における前記流路の容積中の圧力を測定する下流側圧力センサと、を備えた流量制御装置に用いられるプログラムであって、前記流体抵抗を流れる第1流量を算出する第1流量算出部と、第1流量、及び、前記下流側圧力センサで測定される下流側圧力の時間変化量に基づいて、前記下流側バルブから流出する第2流量を算出する第2流量算出部と、設定流量と、第2流量とに基づいて前記下流側バルブを制御する流量制御部と、としての機能をコンピュータに発揮させることを特徴とする流量制御装置用プログラムを用いればよい。
なお、流量制御装置用プログラムは、電子的に配信されるものであってもよいし、CD、DVD,HDD,フラッシュメモリ等の記録媒体に記録されるものであってもよい。
このように本発明に係る流量制御装置によれば、流量の制御点である下流側バルブで実際に流れている第2流量を第1流量と下流側圧力の時間変化量に基づいて得ることができ、流量の測定点と制御点を一致させて制御することにより、応答速度を向上させることができる。
本発明の第1実施形態に係る流量制御装置を示す模式図。 第1実施形態の流量制御装置の制御動作について示すフローチャート。 本発明の第2実施形態に係る流量制御装置を示す模式図。 本発明の第3実施形態に係る流量制御装置を示す模式図。
本発明の第1実施形態に係る流量制御装置100について図1及び図2を参照しながら説明する。
第1実施形態の流量制御装置100は、例えば半導体製造プロセスにおいてエッチングチャンバに対してガスを設定流量で供給するために用いられるものである。ここで、設定流量は、ある流量値から別の流量値へ階段状に立ち上がる、あるいは、立ち下がるステップ信号である。このステップ信号に対して例えば製造される半導体の品質を満たすように所定時間内に追従するように、この流量制御装置100は構成してある。
すなわち、流量制御装置100は、図1に示すように、流路に設けられたセンサ、バルブからなる流体機器と、当該流体機器の制御を司る制御器COMと、を備えている。
流路に対して上流側から順番に供給圧センサP0、上流側バルブV1、上流側圧力センサP1、流体抵抗R、下流側圧力センサP2、下流側バルブV2が設けてある。ここで、流体抵抗Rは例えば層流素子であり、その前後に流れるガス流量に応じた差圧を発生する。
供給圧センサP0は、上流側から供給されるガスの圧力をモニタリングするためのものである。なお、供給圧センサP0については供給圧が安定していることが保証されている場合等には、省略してもよい。
上流側圧力センサP1は、流路において上流側バルブV1と流体抵抗Rとの間における容積である上流側容積内にチャージされているガスの圧力である上流側圧力を測定するものである。
下流側圧力センサP2は、流路において流体抵抗Rと下流側バルブV2との間における容積である下流側容積VLにチャージされているガスの圧力である下流側圧力を測定するものである。
このように上流側圧力センサP1と下流側圧力センサP2は、上流側バルブV1、流体抵抗R、下流側バルブV2で形成される2つの容積の圧力をそれぞれ測定している。また、別の表現をすると、上流側圧力センサP1と下流側圧力センサP2は、流体抵抗Rの前後に配置されたそれぞれの容積内の圧力を測定するものである。
上流側バルブV1、及び、下流側バルブV2は、第1実施形態では同型のものであり、例えばピエゾ素子によって弁体が弁材に対して駆動されるピエゾバルブである。上流側バルブV1は、上流側圧力センサP1で測定される上流側圧力に基づいて上流側容積内の圧力を制御する。一方、流体機器において最も下流側に設けられている下流側バルブV2は、流体機器から流出するガス流量全体を制御するものである。
次に制御器COMについて詳述する。
制御器COMは、例えばCPU、メモリ、A/D・D/Aコンバータ、入出力手段を具備するいわゆるコンピュータであって、メモリに格納されている流量制御装置用プログラムが実行されて各種機器が協業することにより、少なくとも第1流量算出部1、第2流量算出部2、流量制御部3、圧力制御部4としての機能を発揮する。
第1流量算出部1は、上流側圧力センサP1、流体抵抗R、下流側圧力センサP2とともにいわゆる差圧式の流量センサを構成するものである。つまり、第1流量算出部1は、上流側圧力センサP1で測定される上流側圧力と、下流側圧力センサP2で測定される下流側圧力を入力として、流体抵抗Rを流れるガス流量である第1流量を算出し、出力するものである。ここで、第1流量算出部1で用いられる流量の算出式は既存のものを用いることができる。第1流量算出部1で算出される第1流量は、連続的に変化するものであるが、下流側バルブV2の制御により実現される当該下流側バルブV2を通過している実際の流量に対して所定の時間遅れが発生している。
第2流量算出部2は、第1流量算出部1で算出される第1流量と、下流側圧力センサP2で測定される下流側圧力とに基づいて、下流側バルブV2から流出するガス流量である第2流量を算出し、出力する。より具体的には、第2流量算出部2は、流体抵抗Rと下流側バルブV2との間の下流側容積VLに対して流入するガス流量である第1流量と、下流側容積VLから流出するガス流量である第2流量の差の定数倍が、下流側圧力の時間変化量と等しいことに基づいて第2流量を算出している。
すなわち、第2流量算出部2は、下流側圧力センサP2で測定される下流側圧力の時間変化量を算出する変化量算出部21と、第1流量と下流側圧力の時間変化量に基づいて第2流量を算出する流量演算部22とを備えている。
以下では第2流量が第1流量と下流側圧力の時間変化量に基づいて算出できる点について説明する。
下流側圧力をP、下流側容積VLの体積をV、ガスの温度をT、気体定数をR,質量をnとした場合、気体の状態方程式からP=nRT/Vとなる。この式について時間微分を取ると、
また、質量の時間微分は単位時間当たりに下流側容積VLに流出入するガス流量と比例関係にあるので、第1流量をQ、第2流量をQ、定数をaとすると、
各式から第2流量Qについて、解くと、
ここで、AはR、T、V、aをまとめた関数であり、下流側圧力の時間変化量に対して関数Aを乗じた値は、換算流量である。この式から、実測される値である第1流量と下流側圧力の時間変化量である時間微分に基づいて、第2流量を算出可能であることが分かる。
第1実施形態では、変化量算出部21は、下流側圧力センサP2で測定される下流側圧力の時間変化量として時間微分を算出する。なお、時間微分は、下流側圧力の時系列データから差分を取ることで算出できる。
流量演算部22は、例えば予め実験等で求めておいた定数Aと、入力される第1流量Qと変化量算出部21から入力される下流側圧力の時間微分から第2流量を算出し、流量制御部3に対して出力する。
流量制御部3は、ユーザによって設定される設定流量と、第2流量算出部2から入力される第2流量に基づいて下流側バルブV2を制御する。すなわち、流量制御部3は、設定流量と第2流量の偏差が小さくなるように、下流側バルブV2から流出するガス流量である第2流量のフィードバックによって下流側バルブV2を制御する。
一方、圧力制御部4はユーザによって設定される設定圧力と、上流側圧力センサP1で測定される上流側圧力に基づいて上流側バルブV1を制御する。すなわち、圧力制御部4は、設定圧力と上流側圧力の偏差が小さくなるように上流側圧力のフィードバックによって上流側圧力を制御する。ここで、設定圧力は、第2流量が設定流量で安定した場合において流体抵抗Rの前後において保たれるべき圧力差に基づいて設定される。
次に下流側バルブV2が全閉されており、第2流量がゼロの状態から所定の流量へと変化させる場合の制御動作例について図2のフローチャートを参照しながら説明する。
設定流量の値がゼロの間(ステップS0)は、流量制御部3は下流側バルブV2を全閉状態で維持し、下流側バルブV2からガスが流出しないようにする(ステップS1)。
一方、圧力制御部4は上流側容積内の圧力が設定圧力となるように上流側バルブV1の開度を制御し、当該上流側容積内へとガスを流入させる(ステップS2)。
設定流量がゼロから所定値にステップ状に変化すると(ステップS3)、流量制御部3は、流体抵抗Rの差圧から第1流量、及び、下流側圧力の時間変化量から算出される制御点での流量である第2流量が、設定流量の所定値となるように下流側バルブV2を開放する(ステップS4)。なお、第1流量は、上流側圧力センサP1で測定される上流側圧力と、下流側圧力センサP2で測定される下流側圧力を入力として、流体抵抗Rを流れる流量である。
ここで、下流側バルブV2が開放されると下流側容積VLからガスが流出するので、下流側圧力は低下し、下流側圧力の時間変化量が発生する(ステップS5)。すなわち、ガスが流れ始める過渡応答状態では、第2流量は第1流量とは異なる値であり、下流側圧力の時間変化量が加味された値となっている。
第2流量に基づくフィードバック制御が行われると(ステップS6)、流量の測定点と制御点が一致しているので、下流側バルブV2における流量の変化が下流側バルブV2の開度制御に即座に反映される。したがって、短時間で第2流量が設定流量の所定値で安定することになる(ステップS7)。
第2流量が設定流量の所定値で安定している場合には、下流側容積VLに流出入するガスの量はつりあっている状態なので、下流側圧力の時間変化量はほぼゼロとなる(ステップS8)。つまり、第2流量は実質的に第1流量と等しく、流量制御部3は下流側バルブV2を第1流量によるフィードバック制御を行っていることになる(ステップS9)。このように流量制御部3は、流体抵抗Rの前後の差圧に基づいて算出される第1流量と、下流側圧力の時間変化量の差で算出される第2流量に基づいて下流側バルブV2の開度を制御しているので、下流側容積VL内に圧力変化が生じている場合と、下流側容積VL内の圧力が安定している場合とで自然にフィードバックされる流量が変化する。すなわち、流量制御部3による流量制御は、第2流量制御から第1流量制御へ自然に切り替わっているとも言える。
また、圧力制御部4は流量制御部3とは独立して上流側バルブV1の開度を制御しており、第2流量が設定流量の所定値で安定している間は、上流側バルブV1の開度変化により下流側バルブV2から流出する流量が一定に保たれるように制御されていることになる(ステップS10)。
このように構成された第1実施形態の流量制御装置100によれば、下流側バルブV2から流出する流量である第2流量を、実測している第1流量と下流側圧力の時間変化量から算出できる。そして、制御点である下流側バルブV2での流量である第2流量をフィードバックして下流側バルブV2を制御しているので、実際の流量とフィードバックされている流量との間に時間遅れが生じず、設定流量の変化に対する追従速度を従来よりも向上させることができる。すなわち、半導体製造プロセスにおいて求められている応答速度を実現できるようになる。
また、上流側バルブV1によって流体抵抗Rの上流側の圧力が常に設定圧力で保たれるように制御されるので、圧力変動が生じにくく、下流側バルブV2の制御によって第2流量が設定流量で安定した後はその流量を保ち続けやすい。つまり、下流側バルブV2から流出するガス流量の制御についてロバスト性を高めることができる。
次に本発明の第2実施形態について図3を参照しながら説明する。なお、第1実施形態で説明した部材には同じ符号を付すこととする。
第2実施形態では、流量制御装置100は、外部センサを付加することなく、自身の具備するセンサの情報から自身の状態を診断する機能である自己診断機能を有している。すなわち、図3に示すように、下流側バルブV2が閉鎖されている状態において、第1流量と第2流量とを比較して異常の有無を診断する診断部5をさらに備えている。下流側バルブV2が閉鎖されている状態であれば、下流側容積VLからのガスの流出は存在しないので、各センサに故障等が生じていなければ第1流量と第2流量には差がほとんど生じない。したがって、診断部5は第1流量と第2流量の差が所定閾値を超えている場合には、上流側圧力センサP1、下流側圧力センサP2、又は、下流側バルブV2のいずれかに故障が発生していると診断するように構成されている。
このように第2実施形態の流量制御装置100によれば、内部から得られる各種流量を比較することで流体機器に故障等の異常が発生しないかどうかを診断できる。
次に本発明の第3実施形態について図4を参照しながら説明する。
第3実施形態の流量制御装置100では、第1流量の算出原理が第1実施形態とは異なっている。具体的には、第3実施形態の流量制御装置100は、流体抵抗Rの前後に設けられた圧力センサの測定値を用いるのではなく、別途流量を測定するための流量検出機構Fを設け、第1流量算出部1はこの流量検出機構Fの出力に基づいて第1流量を算出するように構成してある。
すなわち、第3実施形態では流量検出機構Fとして、流体抵抗Rの前後を跨ぐように分岐させて設けられた細管F1と、当該細管F1に巻き回された2つの伝熱コイルF2と、各伝熱コイルF2を所定の温度に保つように構成されたブリッジ回路からなる流量検出器F3を具備している。各伝熱コイルF2に印加される電圧は細管F1を流れる流体の流量に応じて変化する。第1流量算出部1は、流量検出器F3から出力される電圧の差に基づいて第1流量を算出する。すなわち、第3実施形態では、流量検出機構Fと第1流量算出部1によって熱式の流量センサが構成されるようにしてある。
このようなものであっても、第1流量と、下流側圧力センサP2で測定される下流側圧力の時間変化量に基づいて下流側バルブV2において実際に流れている流量である第2流量を算出し、この第2流量に基づいて時間遅れを発生させずに流量制御を行うことができる。
その他の実施形態について説明する。
流量制御装置が、上流側バルブを備えておらず、上流側圧力センサ、流体抵抗、下流側圧力センサ、下流側バルブのみを流体機器として備えているものであってもよい。すなわち、流体抵抗の上流側の圧力を一定に保つ圧力制御を行わずに、第1実施形態で説明したような第2流量に基づく流量のフィードバック制御を下流側バルブで行うようにしてもよい。このようなものであっても、流量の測定点と制御点を一致させることにより、応答速度を向上させるという効果は得ることができる。
流量制御装置が制御する流体はガスに限られず、液体であっても構わない。
下流側バルブが、変位センサを備えており、弁座に対する弁体の位置、すなわち、開度を検出できるようにしてもよい。また、流量制御部は、例えば設定流量と、第2流量の偏差に基づいて現在達成すべき目標開度を算出し、変位センサで検出される検出開度が目標開度となるように下流側バルブを制御するように構成してもよい。このようなものであれば、第2流量によって時間遅れを発生させずに下流側バルブのある制御点での実際の流量を得て、かつ、変位センサの検出開度に基づいて下流側バルブの開度自体を高速で制御できるので、設定流量に対して実際に下流側バルブを通過する流量をさらに高速で追従させることが可能となる。
また、下流側バルブの現在の開度が検出でき、第2流量によって下流側バルブを実際に通過している流量を得られるので、開度と実際に流れている第2流量との関係も正確に把握することができる。したがって、例えば何らかの故障や詰まり等が発生して、ある開度において実現されるべき流量からごくわずかに変化しただけでも異常として検出することが可能となる。すなわち、診断部が、変位センサの検出開度と第2流量とに基づいて流量制御装置内の自己診断を行うように構成すれば、従来よりも高精度な診断が可能となる。
なお、上流側バルブも変位センサを備え、上流側バルブの開度を検出できるようにしてもよい。
また、本発明に係る流量制御装置によってごく短時間で実現される流量を例えばチャンバ等へそのまま供給できるようにするには、下流側バルブを流路においてチャンバの導入口の近傍に配置すればよい。
その他、本発明の趣旨に反しない限りにおいて、実施形態の変形を行っても良いし、各実施形態の一部又は全体をそれぞれ組み合わせても構わない。
100・・・流量制御装置
V1 ・・・上流側バルブ
V2 ・・・下流側バルブ
P1 ・・・上流側圧力センサ
P2 ・・・下流側圧力センサ
R ・・・流体抵抗
VL ・・・下流側容積
1 ・・・第1流量算出部
2 ・・・第2流量算出部
21 ・・・変化量算出部
22 ・・・流量演算部
3 ・・・流量制御部
4 ・・・圧力制御部
5 ・・・診断部

Claims (8)

  1. 流路に設けられた流体抵抗と、
    流体抵抗の下流側に設けられた下流側バルブと、
    前記流体抵抗、及び、前記下流側バルブの間における前記流路の容積中の圧力を測定する下流側圧力センサと、
    前記流体抵抗を流れる第1流量を算出する第1流量算出部と、
    第1流量、及び、前記下流側圧力センサで測定される下流側圧力の時間変化量に基づいて、前記下流側バルブから流出する第2流量を算出する第2流量算出部と、
    設定流量と、第2流量とに基づいて前記下流側バルブを制御する流量制御部と、を備えたことを特徴とする流量制御装置。
  2. 前記第2流量算出部が、
    下流側圧力の時間変化量を算出する変化量算出部と、
    第1流量と下流側圧力の時間変化量から算出される換算流量の差に基づいて、第2流量を算出する流量演算部と、を備えた請求項1記載の流量制御装置。
  3. 前記流体抵抗よりも上流側に設けられた上流側バルブと、
    前記上流側バルブ、及び、前記流体抵抗の間における前記流路の容積中の圧力を測定する上流側圧力センサと、
    設定圧力と、前記上流側圧力センサで測定される上流側圧力とに基づいて前記上流側バルブを制御する圧力制御部と、をさらに備えた請求項1記載の流量制御装置。
  4. 前記第1流量算出部が、上流側圧力、及び、下流側圧力に基づいて前記流体抵抗を流れる第1流量を算出するように構成された請求項3記載の流量制御装置。
  5. 前記下流側バルブが閉鎖されている状態において、第1流量と第2流量とを比較して異常の有無を診断する診断部をさらに備えた請求項1記載の流量制御装置。
  6. 前記流体抵抗を流れる第1流量に応じた検出信号を出力する流量検出機構をさらに備え、
    前記第1流量算出部が、前記流量検出機構の出力する検出信号に基づいて第1流量を算出するように構成された請求項1記載の流量制御装置。
  7. 流路に設けられた流体抵抗と、流体抵抗の下流側に設けられた下流側バルブと、前記流体抵抗、及び、前記下流側バルブの間における前記流路の容積中の圧力を測定する下流側圧力センサと、を備えた流量制御装置を用いた流量制御方法であって、
    前記流体抵抗を流れる第1流量を算出する第1流量算出ステップと、
    第1流量、及び、前記下流側圧力センサで測定される下流側圧力の時間変化量に基づいて、前記下流側バルブから流出する第2流量を算出する第2流量算出ステップと、
    設定流量と、第2流量とに基づいて前記下流側バルブを制御する流量制御ステップと、を備えたことを特徴とする流量制御方法。
  8. 流路に設けられた流体抵抗と、流体抵抗の下流側に設けられた下流側バルブと、前記流体抵抗、及び、前記下流側バルブの間における前記流路の容積中の圧力を測定する下流側圧力センサと、を備えた流量制御装置に用いられるプログラムであって、
    前記流体抵抗を流れる第1流量を算出する第1流量算出部と、
    第1流量、及び、前記下流側圧力センサで測定される下流側圧力の時間変化量に基づいて、前記下流側バルブから流出する第2流量を算出する第2流量算出部と、
    設定流量と、第2流量とに基づいて前記下流側バルブを制御する流量制御部と、としての機能をコンピュータに発揮させることを特徴とする流量制御装置用プログラム。
JP2017147801A 2017-07-31 2017-07-31 流量制御装置、流量制御方法、及び、流量制御装置用プログラム Active JP7164938B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017147801A JP7164938B2 (ja) 2017-07-31 2017-07-31 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
KR1020180080692A KR102483417B1 (ko) 2017-07-31 2018-07-11 유량 제어 장치, 유량 제어 방법, 및, 프로그램 기록 매체
CN201810762767.6A CN109324641B (zh) 2017-07-31 2018-07-12 流量控制装置、流量控制方法和程序存储介质
TW107125734A TWI815814B (zh) 2017-07-31 2018-07-25 流量控制裝置、流量控制方法和程式存儲介質
US16/048,750 US10545514B2 (en) 2017-07-31 2018-07-30 Flow rate control apparatus, flow rate control method, and program recording medium
JP2021183490A JP2022010221A (ja) 2017-07-31 2021-11-10 流量制御装置、流量制御方法、及び、流量制御装置用プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147801A JP7164938B2 (ja) 2017-07-31 2017-07-31 流量制御装置、流量制御方法、及び、流量制御装置用プログラム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2021023575A Division JP2021093182A (ja) 2021-02-17 2021-02-17 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP2021183490A Division JP2022010221A (ja) 2017-07-31 2021-11-10 流量制御装置、流量制御方法、及び、流量制御装置用プログラム

Publications (2)

Publication Number Publication Date
JP2019028747A true JP2019028747A (ja) 2019-02-21
JP7164938B2 JP7164938B2 (ja) 2022-11-02

Family

ID=65038611

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017147801A Active JP7164938B2 (ja) 2017-07-31 2017-07-31 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP2021183490A Pending JP2022010221A (ja) 2017-07-31 2021-11-10 流量制御装置、流量制御方法、及び、流量制御装置用プログラム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021183490A Pending JP2022010221A (ja) 2017-07-31 2021-11-10 流量制御装置、流量制御方法、及び、流量制御装置用プログラム

Country Status (5)

Country Link
US (1) US10545514B2 (ja)
JP (2) JP7164938B2 (ja)
KR (1) KR102483417B1 (ja)
CN (1) CN109324641B (ja)
TW (1) TWI815814B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019001621A1 (de) 2018-03-16 2019-09-19 NGK lnsulators, Ltd. Verfahren zur Herstellung einer Wabenstruktur

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437980B2 (ja) * 2019-03-12 2024-02-26 株式会社堀場エステック 流体制御装置、流体制御システム、診断方法、及び、流体制御装置用プログラム
US11512998B2 (en) * 2019-09-18 2022-11-29 GE Precision Healthcare LLC Systems and method for an air flow sensor in a medical gas flow device
CN111579013B (zh) * 2020-05-26 2022-07-15 北京七星华创流量计有限公司 气体质量流量控制器及其流量标定方法
US11860018B2 (en) * 2020-08-14 2024-01-02 Horiba Stec, Co., Ltd. Rate-of-change flow measurement device
JP2022047815A (ja) * 2020-09-14 2022-03-25 アズビル株式会社 マスフローコントローラ
CN113983224A (zh) * 2021-10-12 2022-01-28 康赛特自动化集团有限公司 一种用于物联网的电动执行器装置及其使用方法
JP2023080611A (ja) * 2021-11-30 2023-06-09 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP7144126B1 (ja) * 2022-05-16 2022-09-29 東フロコーポレーション株式会社 流量制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084840A (ja) * 2001-09-14 2003-03-19 Ckd Corp 圧力操作式流量制御方法及び圧力操作式流量制御装置
JP2005024421A (ja) * 2003-07-03 2005-01-27 Tadahiro Omi 差圧式流量計及び差圧式流量制御装置
WO2008053839A1 (fr) * 2006-11-02 2008-05-08 Horiba Stec, Co., Ltd. Mécanisme de diagnostic dans un régulateur de débit massique à pression différentielle
JP2010186234A (ja) * 2009-02-10 2010-08-26 Surpass Kogyo Kk 流量コントローラ
WO2013179550A1 (ja) * 2012-05-31 2013-12-05 株式会社フジキン ビルドダウン方式流量モニタ付流量制御装置
WO2017057129A1 (ja) * 2015-09-30 2017-04-06 日立金属株式会社 質量流量制御装置、及び差圧式流量計の診断方法
WO2017110066A1 (ja) * 2015-12-25 2017-06-29 株式会社フジキン 流量制御装置および流量制御装置を用いる異常検知方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323402A (ja) * 2001-04-26 2002-11-08 Tomoe Tech Res Co バルブの漏れ検出装置,方法,バルブ駆動用アクチュエータ,プログラム
WO2004001516A1 (en) 2002-06-24 2003-12-31 Mks Instruments, Inc. Apparatus and method for pressure fluctuation insensitive mass flow control
JP4146746B2 (ja) 2003-03-18 2008-09-10 株式会社堀場エステック マスフローコントローラ
JP2004302914A (ja) * 2003-03-31 2004-10-28 Advanced Energy Japan Kk 一次側圧力のセンサを具えたマスフローコントローラ
US7740024B2 (en) * 2004-02-12 2010-06-22 Entegris, Inc. System and method for flow monitoring and control
WO2006014508A2 (en) * 2004-07-07 2006-02-09 Parker Hannifin Corporation Flow control apparatus and method with internally isothermal control volume for flow verification
US7757554B2 (en) * 2005-03-25 2010-07-20 Mks Instruments, Inc. High accuracy mass flow verifier with multiple inlets
US7621290B2 (en) * 2005-04-21 2009-11-24 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using antisymmetric optimal control
US20090250116A1 (en) * 2006-07-10 2009-10-08 Hong Sa-Mun Flow rate controlling apparatus
US8079383B2 (en) * 2006-12-07 2011-12-20 Mks Instruments, Inc. Controller gain scheduling for mass flow controllers
US20080250854A1 (en) * 2007-04-12 2008-10-16 Junhua Ding Mass flow device using a flow equalizer for improving the output response
JP2010055500A (ja) * 2008-08-29 2010-03-11 Mitsumi Electric Co Ltd 流量制御装置及び流量制御方法
US7826986B2 (en) * 2008-09-26 2010-11-02 Advanced Energy Industries, Inc. Method and system for operating a mass flow controller
JP2010169657A (ja) * 2008-12-25 2010-08-05 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
US8131400B2 (en) * 2010-06-10 2012-03-06 Hitachi Metals, Ltd. Adaptive on-tool mass flow controller tuning
JP2012168824A (ja) * 2011-02-15 2012-09-06 Horiba Stec Co Ltd 流体制御装置
US10353408B2 (en) * 2011-02-25 2019-07-16 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US8849466B2 (en) * 2011-10-04 2014-09-30 Mks Instruments, Inc. Method of and apparatus for multiple channel flow ratio controller system
US9557744B2 (en) * 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9846074B2 (en) * 2012-01-20 2017-12-19 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
JP5754853B2 (ja) * 2012-01-30 2015-07-29 株式会社フジキン 半導体製造装置のガス分流供給装置
WO2013115298A1 (ja) * 2012-02-03 2013-08-08 日立金属株式会社 流量制御装置及びプログラム
JP5960614B2 (ja) * 2012-03-29 2016-08-02 Ckd株式会社 流体制御システム、流体制御方法
JP5665794B2 (ja) * 2012-04-27 2015-02-04 株式会社フジキン 半導体製造装置のガス分流供給装置
JP5868796B2 (ja) * 2012-07-03 2016-02-24 株式会社堀場エステック 圧力制御装置、流量制御装置、及び、圧力制御装置用プログラム、流量制御装置用プログラム
US10031005B2 (en) * 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers
JP5934412B2 (ja) * 2014-06-20 2016-06-15 株式会社堀場エステック 中継器
JP6415889B2 (ja) * 2014-08-01 2018-10-31 株式会社堀場エステック 流量制御装置、流量制御装置用プログラム、及び、流量制御方法
JP6516666B2 (ja) * 2015-04-08 2019-05-22 東京エレクトロン株式会社 ガス供給制御方法
EP3320408A1 (en) * 2015-07-10 2018-05-16 Pivotal Systems Corporation Method and apparatus for gas flow control
CN108027618B (zh) * 2015-09-24 2021-01-29 株式会社富士金 压力式流量控制装置及其异常检测方法
JP6804874B2 (ja) * 2016-05-31 2020-12-23 株式会社堀場エステック 流量制御装置、流量制御装置に用いられるプログラム、及び、流量制御方法
JP6600854B2 (ja) * 2016-08-24 2019-11-06 株式会社フジキン 圧力式流量制御装置、その流量算出方法および流量制御方法
JP7245600B2 (ja) * 2016-12-15 2023-03-24 株式会社堀場エステック 流量制御装置、及び、流量制御装置用プログラム
US10983538B2 (en) * 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
JP7008499B2 (ja) * 2017-12-27 2022-01-25 株式会社堀場エステック 校正データ作成装置及び校正データ作成方法、並びに、流量制御装置
US10649471B2 (en) * 2018-02-02 2020-05-12 Mks Instruments, Inc. Method and apparatus for pulse gas delivery with isolation valves
JP7059053B2 (ja) * 2018-03-12 2022-04-25 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
US11209298B2 (en) * 2018-04-27 2021-12-28 Hitachi Metals, Ltd. Thermal mass flow sensor with improved accuracy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084840A (ja) * 2001-09-14 2003-03-19 Ckd Corp 圧力操作式流量制御方法及び圧力操作式流量制御装置
JP2005024421A (ja) * 2003-07-03 2005-01-27 Tadahiro Omi 差圧式流量計及び差圧式流量制御装置
WO2008053839A1 (fr) * 2006-11-02 2008-05-08 Horiba Stec, Co., Ltd. Mécanisme de diagnostic dans un régulateur de débit massique à pression différentielle
JP2010186234A (ja) * 2009-02-10 2010-08-26 Surpass Kogyo Kk 流量コントローラ
WO2013179550A1 (ja) * 2012-05-31 2013-12-05 株式会社フジキン ビルドダウン方式流量モニタ付流量制御装置
WO2017057129A1 (ja) * 2015-09-30 2017-04-06 日立金属株式会社 質量流量制御装置、及び差圧式流量計の診断方法
WO2017110066A1 (ja) * 2015-12-25 2017-06-29 株式会社フジキン 流量制御装置および流量制御装置を用いる異常検知方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019001621A1 (de) 2018-03-16 2019-09-19 NGK lnsulators, Ltd. Verfahren zur Herstellung einer Wabenstruktur

Also Published As

Publication number Publication date
KR20190013490A (ko) 2019-02-11
JP2022010221A (ja) 2022-01-14
TWI815814B (zh) 2023-09-21
KR102483417B1 (ko) 2022-12-30
CN109324641B (zh) 2023-07-25
US20190033896A1 (en) 2019-01-31
US10545514B2 (en) 2020-01-28
TW201910955A (zh) 2019-03-16
JP7164938B2 (ja) 2022-11-02
CN109324641A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
KR102483417B1 (ko) 유량 제어 장치, 유량 제어 방법, 및, 프로그램 기록 매체
US10503179B2 (en) Flow rate control apparatus and program recording medium having recorded therein program for flow rate control apparatus
US10323771B2 (en) Fluid control valve and recording medium with control program thereof recorded therein
JP5873681B2 (ja) 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
US10401202B2 (en) Method and apparatus for gas flow control
JP7059053B2 (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
KR20130040740A (ko) 유량 제어 장치, 유량 측정 기구, 또는 당해 유량 측정 기구를 구비한 유량 제어 장치에 이용되는 진단 장치 및 진단용 프로그램이 기록된 기록 매체
WO2017057129A1 (ja) 質量流量制御装置、及び差圧式流量計の診断方法
KR20130040742A (ko) 유량 제어 장치, 유량 측정 기구, 또는 당해 유량 측정 기구를 구비한 유량 제어 장치에 이용되는 진단 장치 및 진단용 프로그램이 기록된 기록 매체
JP7148302B2 (ja) 流量制御装置
KR102250969B1 (ko) 유체 제어 시스템 및 유량 측정 방법
JP2021093182A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP7217742B2 (ja) 流量制御装置、診断方法、及び、流量制御装置用プログラム
KR20220103623A (ko) 압력 제어 시스템, 압력 제어 방법, 및 기록 매체에 저장된 압력 제어 프로그램

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211118

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211125

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211210

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211214

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220426

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220427

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220517

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220714

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220922

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221018

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221021

R150 Certificate of patent or registration of utility model

Ref document number: 7164938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150