WO2017057129A1 - 質量流量制御装置、及び差圧式流量計の診断方法 - Google Patents

質量流量制御装置、及び差圧式流量計の診断方法 Download PDF

Info

Publication number
WO2017057129A1
WO2017057129A1 PCT/JP2016/077837 JP2016077837W WO2017057129A1 WO 2017057129 A1 WO2017057129 A1 WO 2017057129A1 JP 2016077837 W JP2016077837 W JP 2016077837W WO 2017057129 A1 WO2017057129 A1 WO 2017057129A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
pressure
valve
flow rate
control
Prior art date
Application number
PCT/JP2016/077837
Other languages
English (en)
French (fr)
Inventor
後藤 崇夫
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020187008652A priority Critical patent/KR102339510B1/ko
Priority to CN201680056903.9A priority patent/CN108139761B/zh
Priority to JP2017543183A priority patent/JP6828687B2/ja
Priority to US15/760,136 priority patent/US10459458B2/en
Publication of WO2017057129A1 publication Critical patent/WO2017057129A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0623Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the set value given to the control element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication

Definitions

  • the present invention relates to a mass flow control device, and more particularly to a mass flow control device that controls a mass flow rate of a fluid based on a measured value of a fluid pressure or a differential pressure. Furthermore, the present invention relates to a method for diagnosing the occurrence of an abnormality in a differential pressure type flow meter, and also relates to a diagnostic method for a differential pressure type flow meter constituting a mass flow control device.
  • the mass flow controller is a control device configured by a flow meter that measures the flow rate of the fluid, a flow control valve that controls the flow rate of the fluid, a control circuit that controls these, and other components.
  • the mass flow control device is widely used, for example, for the purpose of controlling the mass flow rate of gas supplied into the chamber in a semiconductor manufacturing process.
  • a thermal flow meter or a pressure flow meter is mainly used.
  • a pressure type flow meter for example, the property that the flow rate of gas depends only on the gas pressure on the upstream side when the flow velocity of the gas flowing through a member called an orifice or a flow restrictor nozzle is a sonic velocity.
  • the flow rate is measured (hereinafter referred to as “orifice type flow meter”) and the flow rate based on the difference between the gas pressure value on the upstream side of the differential pressure generating means and the gas pressure value on the downstream side (hereinafter referred to as “the pressure flow meter”). “Differential pressure type flow meter”)).
  • Patent Document 1 in a mass flow control device using an orifice type flow meter, gas pressure attenuation data on the upstream side when a control valve provided on the upstream side of the orifice is closed is obtained under the same conditions.
  • An invention is disclosed for a method of detecting orifice clogging by contrasting with reference pressure decay data measured when the orifice is not clogged.
  • Patent Document 2 in the mass flow control device using an orifice type flow meter, the upstream side gas pressure when the flow rate adjustment valve provided on the upstream side of the flow restrictor is momentarily closed.
  • An invention of a nozzle diagnostic mechanism for diagnosing a flow path restriction nozzle by comparing a time-dependent change of a value with a reference value measured at the time of assembly of a mass flow controller is disclosed.
  • Patent Document 3 in the mass flow control device using a differential pressure type flow meter, the value of the fluid pressure on the upstream side when the valve provided on the upstream side of the differential pressure generating means is closed or By comparing the time integral value of the pressure of the fluid on the downstream side from the first pressure to the second pressure with the predetermined specified value, the clogging of the differential pressure generating means is reduced.
  • An invention of a diagnostic mechanism for diagnosing with high accuracy is disclosed.
  • Patent Documents 1 to 3 If the inventions disclosed in Patent Documents 1 to 3 are implemented, it is possible to detect a state in which clogging has occurred in the orifice of the pressure type flow meter, the differential pressure generating means, and the like. Therefore, these inventions have the effect of preventing the occurrence of errors in the measurement value of the pressure type flow meter due to such abnormalities and the abnormalities in the flow rate of the supplied gas, so that these inventions are reliable in mass flow rate. It contributes to improvement.
  • the time for performing the gas flow rate control operation which is the original purpose of the mass flow rate control device, apart from this time, the time only for diagnosing the occurrence of an abnormality It is necessary to provide. Since the flow rate of the gas flowing at this time is not controlled, for example, it cannot be used as a gas supplied into the chamber in the semiconductor manufacturing process, and must be discarded wastefully.
  • the present invention has been made in view of the above-mentioned problems of a mass flow control device using a conventional pressure type flow meter, and does not require a time just for diagnosing the occurrence of an abnormality.
  • An object of the present invention is to provide a mass flow controller capable of easily diagnosing the occurrence of an abnormality in a differential pressure type flow meter.
  • the present invention constitutes a mass flow rate control device that can easily diagnose the occurrence of an abnormality in the differential pressure type flow meter without requiring time only for diagnosing the occurrence of the abnormality. It aims at providing the diagnostic method of the differential pressure type flow meter.
  • the mass flow control device includes: Fluid based on the value of the first pressure that is the pressure of the fluid upstream of the differential pressure generating means interposed in the fluid flow path and the value of the second pressure that is the pressure of the fluid downstream of the differential pressure generating means
  • a flow meter configured to measure the flow rate of the fluid
  • a flow control valve configured to control the flow rate of the fluid
  • a measured flow rate that is the flow rate of the fluid measured by the flow meter is the target value of the fluid flow rate
  • a mass flow control device having a control means configured to output a control signal to the flow control valve so as to coincide with a set flow rate, wherein the flow control valve changes from a closed state to an open state.
  • the differential pressure type flow meter diagnosis method is a method for diagnosing the occurrence of an abnormality in the differential pressure type flow meter constituting the mass flow control device as described above.
  • the operation for diagnosing whether or not an abnormality has occurred in the flow meter is performed when the flow control valve is opened to start the flow control and when the flow control valve is closed to stop the flow control.
  • the orifice type flow meter is configured so that the gas flows through the orifice or the flow restricting nozzle. Since it is shorter than the period required to attenuate the pressure when passing, the execution of diagnosis can be completed in a short time. Therefore, the mass flow control device according to the present invention is not very suitable for diagnosing clogging of the differential pressure generating means with high accuracy as in the prior art disclosed in Patent Document 3, but in the differential pressure type flow meter. It is suitable for simply diagnosing the occurrence of abnormality.
  • the mass flow controller further includes a mechanical pressure regulating valve disposed adjacent to the upstream side of the flow meter.
  • a mechanical pressure regulating valve disposed adjacent to the upstream side of the flow meter.
  • the pressure value of the fluid on the upstream side of the flow meter is maintained at a constant value by the action of the mechanical pressure regulating valve. Therefore, the value of the fluid pressure (second pressure) on the downstream side is not affected by the fluctuation of the value of the fluid pressure (first pressure) on the upstream side, and is acquired based on the value of the fluid pressure on the downstream side. This is preferable because the diagnosis of the occurrence of abnormality based on the control value can be performed with high accuracy.
  • the diagnosis method of the mass flow control device and the differential pressure type flow meter According to the diagnosis method of the mass flow control device and the differential pressure type flow meter according to the present invention, it is not necessary to provide a time for diagnosis separately from the time for control of the flow rate, and therefore, gas is wasted. It can be used effectively without being discarded. Further, it is possible to quickly and easily diagnose the occurrence of an abnormality in the flow meter due to an abnormality in the pressure sensor and / or the differential pressure generating means.
  • FIG. 1 is a schematic diagram showing a configuration example of a mass flow controller according to the present invention.
  • the mass flow control device 1 includes a first pressure value (P1) that is the pressure of the fluid upstream of the differential pressure generating means 2c interposed in the fluid flow path 2d and the downstream of the differential pressure generating means.
  • a flow meter 2 configured to measure the flow rate of the fluid based on a second pressure value (P2) which is the pressure of the fluid on the side, and a flow control valve 3 configured to control the flow rate of the fluid
  • a control means 4 configured to output a control signal 4a to the flow control valve 3 so that the measured flow rate measured by the flow meter coincides with the set flow rate which is the target value of the fluid flow rate.
  • FIG. 1 shows a logical relationship between the components, and does not show the mounting state of the components of the mass flow control device 1.
  • the flow meter 2 includes a first pressure value (P1) that is a fluid pressure upstream of the differential pressure generating means 2c and a second pressure value (P2) that is a fluid pressure downstream of the differential pressure generating means 2c.
  • Means for detecting the difference between the two for example, a means for providing separate pressure sensors 2a and 2b on the upstream side and the downstream side of the differential pressure generating means 2c, respectively, and detecting the difference between the indicated values. Can be configured.
  • a conduit communicating with the upstream side of the differential pressure generating means 2c and a conduit communicating with the downstream side can be connected to one differential pressure sensor, and the differential pressure indicated by the differential pressure sensor can be detected.
  • the pressure of the fluid on the upstream side” or “the pressure of the fluid on the downstream side” means “the pressure of the fluid on the upstream side of the differential pressure generating means (first pressure)” or “difference” unless otherwise specified. It means the fluid pressure (second pressure) downstream of the pressure generating means.
  • upstream side or downstream side is determined based on the direction in which the fluid flows in the mass flow control device 1. For example, in FIG. 1, the fluid flows in the mass flow control device 1 from the left side to the right side, so the left side of the differential pressure generating means 2 c corresponds to the upstream side, and the right side of the differential pressure generating means 2 c corresponds to the downstream side. .
  • the pressure of the fluid upstream of the differential pressure generating means” or “the pressure of the fluid downstream of the differential pressure generating means” is not necessarily limited to the pressure at the portion adjacent to the differential pressure generating means. It may be a pressure at a portion that is different from the portion adjacent to the differential pressure generating means in the control device 1 or its surroundings and that shows a pressure equivalent to the pressure at the portion adjacent to the differential pressure generating means.
  • the differential pressure generating means 2c has any structure as long as it has a resistance to the flowing fluid and causes a pressure loss between the fluid pressure on the upstream side and the fluid pressure on the downstream side. There may be.
  • the differential pressure generating means for example, one having a known structure such as one having a structure in which many pipes having the same length are bundled and one having a honeycomb structure can be used.
  • the flow meter 2 has a first pressure value (P1) that is a fluid pressure upstream of the differential pressure generating means and a second pressure value (P2) that is a fluid pressure downstream of the differential pressure generating means.
  • the flow rate of the fluid is measured based on this, and is classified into the differential pressure type flow meter described above. Specifically, the flow meter 2 measures the flow rate of the fluid based on the difference between the first pressure value (P1) and the second pressure value (P2). For example, the flow meter 2 measures the flow rate of the fluid based on the difference (P1 ⁇ P2) between the first pressure value (P1) and the second pressure value (P2).
  • the flow rate of the fluid is a difference (P1) between the fluid pressure value (P1) on the upstream side of the differential pressure generating means 2c and the fluid pressure value (P2) on the downstream side under a certain condition.
  • P1 fluid pressure value
  • P2 fluid pressure value
  • the fluid flow rate is the difference between the fluid pressure value (P1) on the upstream side of the differential pressure generating means 2c and the fluid pressure value (P2) on the downstream side (P2) under a certain condition. Proportional to P1-P2). Utilizing this property, the flow meter 2 can measure the flow rate of the fluid.
  • the flow meter 2 When measuring the flow rate of the fluid, the flow meter 2 is a physical quantity other than the difference (P1 ⁇ P2) between the value of the fluid pressure on the upstream side (P1) and the value of the fluid pressure on the downstream side (P2), for example,
  • the flow rate may be corrected based on temperature and pressure.
  • the flow control valve 3 is configured to control the flow rate of the fluid based on a control signal 4a output from the control means 4 described later.
  • the flow control valve 3 can include an actuator 3a and a valve 3b for opening and closing the valve.
  • a piezoelectric element controlled by a voltage signal and a solenoid controlled by a current signal can be used as the actuator 3a.
  • the valve 3b for example, a diaphragm valve constituted by a diaphragm and a valve seat can be used.
  • the flow control valve 3 may be provided on the downstream side of the flow meter 2, or may be provided on the upstream side of the flow meter 2.
  • the control means 4 is configured to output a control signal 4a to the flow rate control valve 3 so that the measured flow rate which is the flow rate of the fluid measured by the flow meter 2 matches the set flow rate. For this reason, the control means 4 has means for inputting the measured flow rate measured by the flow meter 2.
  • the set flow rate is a target value of the flow rate of the fluid set in advance in the mass flow control device 1.
  • the control means 4 generates a control signal 4 a that is controlled so that the measured flow rate measured by the flow meter 2 matches the set flow rate, and outputs this to the flow rate control valve 3.
  • the value of the control signal 4a output by the control means 4 is determined by a known control method such as feedback control based on the measured flow rate.
  • the mass flow control device 1 further includes a recording means 5 and a diagnostic means 6.
  • the recording means 5 is configured to record both or one of the valve opening pressure value and the valve closing pressure value.
  • the pressure value at the time of valve opening means that the flow rate of the fluid on the downstream side in the period from when the flow rate control valve 3 changes from the closed state to the open state and the flow rate control is started until the measured flow rate becomes stable.
  • the valve-closing pressure value is the flow rate of the fluid on the downstream side in the period from when the flow rate control valve 3 changes from the open state to the closed state and the flow rate control is stopped until the measured flow rate becomes zero. This is the pressure (second pressure) value (P2).
  • the recording means 5 records the value (P2) of the pressure (second pressure) of the fluid on the downstream side.
  • the pressure value (P2) of the fluid on the downstream side may be recorded by directly inputting the output of the downstream pressure sensor (second sensor) 2b as illustrated in FIG.
  • the fluid pressure value (P2) on the downstream side processed by the means 4 may be indirectly input and recorded.
  • the value (P2) of the pressure of the fluid on the downstream side may be data converted by an analog / digital converter, for example.
  • the recording means 5 can be configured by, for example, a memory that records data indicating the pressure value (P2) of the fluid on the downstream side in time series.
  • the time interval for recording the pressure value (P2) of the fluid on the downstream side can be set to the same time as the clock cycle of the central processing element (CPU) constituting the control means 4, for example. This time is, for example, 10 ms (milliseconds).
  • the period during which the recording unit 5 records the pressure value (P2) of the fluid on the downstream side is when the flow rate control valve 3 is changed from the closed state to the open state and the flow rate control is started. And / or the period from when the flow rate control valve 3 changes from the open state to the closed state and the control of the flow rate is stopped until the measured flow rate becomes zero. It is. Under normal operating conditions of the mass flow controller, none of these periods significantly exceeds 0.5 s (seconds).
  • the timing at which the recording unit 5 starts recording or stops recording can be determined by, for example, a signal output from the control unit 4 to the recording unit 5.
  • FIG. 2 shows the time variation of the value (P1) of the fluid pressure (first pressure) on the upstream side and the value (P2) of the fluid pressure (second pressure) on the downstream side of the mass flow control device 1 according to the present invention. It is a graph which shows the example of (temporal transition). The time change of the fluid pressure value (P1) on the upstream side is indicated by a solid line, and the time change of the fluid pressure value (P2) on the downstream side is indicated by a broken line. On the horizontal axis, the symbol O indicates when the flow rate control valve 3 is changed from the closed state to the open state (Open) and the flow rate control is started.
  • Symbol C indicates when the flow rate control valve 3 is changed from an open state to a closed state (Close) and the control of the flow rate is stopped.
  • the flow control valve 3 is closed until the time indicated by the symbol O, and the fluid pressure value (P1) on the upstream side of the mass flow control device 1 and the fluid pressure value (P2) on the downstream side. ) Are constant at equal values.
  • the value (P1) of the fluid pressure on the upstream side and the value (P2) of the fluid pressure on the downstream side are, for example, values of 100 kPa or more and 300 kPa or less.
  • the flow control valve 3 When the time indicated by the symbol O is reached, the flow control valve 3 is opened and the flow control is started.
  • the value (P1) of the fluid pressure (first pressure) on the upstream side of the mass flow control device 1 does not change, but the value (P2) of the fluid pressure (second pressure) on the downstream side is the value of the differential pressure generating means 2c.
  • the pressure starts to decrease from the value (P1) of the fluid pressure on the upstream side.
  • the value (P2) of the fluid pressure on the downstream side is stabilized at a value lower than the value (P1) of the fluid pressure on the upstream side by the action of the control means 4, and the measured flow rate is stabilized.
  • the pressure value (P2) of the fluid on the downstream side is, for example, a value of 30 kPa or more and 100 kPa or less.
  • the recording means 5 opens the value of the second pressure during the period from when the flow rate control valve 3 changes from the closed state to the open state and control of the flow rate starts until the measured flow rate becomes stable. Record as hourly pressure value.
  • the flow control valve 3 is closed and the flow control is stopped.
  • the value (P2) of the fluid pressure on the downstream side of the mass flow control device 1 starts to increase. Thereafter, the value (P2) of the fluid pressure on the downstream side increases and stabilizes until it matches the value (P1) of the fluid pressure on the upstream side, and the measured flow rate becomes zero.
  • the recording means 5 closes the second pressure value during the period from when the flow rate control valve 3 changes from the open state to the closed state and the flow rate control is stopped until the measured flow rate becomes zero. Record as valve pressure value.
  • the diagnostic means 6 acquires a management value based on the value (P2) of the fluid pressure (second pressure) on the downstream side recorded by the recording means 5.
  • the value (P2) of the downstream fluid pressure sampled and recorded by the recording means 5 in the specific period is used.
  • the management value is acquired based on the valve opening pressure value and / or the valve closing pressure value recorded by the recording means 5.
  • the value (P2) of the fluid pressure on the downstream side decreases or increases in a short time.
  • the value (P2) of the pressure of the fluid on the downstream side shows a time change peculiar to the mass flow control device 1. Therefore, as long as there is no change in the state of the mass flow control device 1, when the flow rate of the same type of fluid is controlled under the same temperature, pressure and set flow rate conditions, the fluid pressure value (P2) on the downstream side is Shows the same time change.
  • the management value is a representative value reflecting the time change of the value (P2) of the fluid pressure (second pressure) on the downstream side recorded by the recording means 5.
  • any representative value may be selected as long as it is uniquely determined (acquired) based on the temporal change in the pressure value (P2) of the fluid on the downstream side.
  • one type of representative value can be selected, or two or more types of representative values can be selected.
  • the diagnostic means 6 is configured to diagnose that an abnormality has occurred in the flow meter 2 when the absolute value of the difference between the measurement management value and the initial management value exceeds a predetermined threshold (greater than the predetermined threshold). Yes.
  • the measurement management value is a management value acquired based on both or one of the valve opening pressure value and the valve closing pressure value during operation of the mass flow control device 1.
  • the initial management value is a management value acquired based on both or one of the valve opening pressure value and the valve closing pressure value when no abnormality has occurred in the flow meter 2.
  • the diagnostic means 6 has means for storing the initial management value. Even if time elapses after the use of the mass flow control device 1 is started, as long as there is no change in the state of the mass flow control device 1, the temporal change in the fluid pressure value (P2) on the downstream side is reproducible. The management value does not change (that is, the measurement management value does not deviate from the initial management value).
  • the state of the mass flow control device 1 changes, the time change of the fluid pressure (second pressure) value (P2) on the downstream side also changes, so the measured control value deviates from the initial control value.
  • changes in the state of the mass flow control device 1 include, for example, changes in pressure values due to pressure sensors 2a and 2b and changes in pressure loss due to foreign matter adhering to the differential pressure generating means 2c.
  • the occurrence of abnormality in the total 2 can be mentioned. Therefore, an abnormality occurs in the management value (measurement management value) acquired based on the downstream pressure value (P2) of the fluid recorded by the recording means 5 during the operation of the mass flow controller 1 and the flow meter 2.
  • a difference exceeding a predetermined threshold greater than the threshold
  • the “predetermined threshold value” is the maximum allowable value as the absolute value of the difference between the current management value (measurement management value) and the management value (initial management value) when no abnormality has occurred in the flowmeter 2. Value.
  • the diagnostic means 6 diagnoses that an abnormality has occurred in the flow meter 2 when the absolute value of the difference between these control values exceeds a threshold value. Therefore, if the threshold value is set to an excessively small value, even a slight change in the management value is regarded as abnormal, and there is a risk of making a wrong diagnosis. On the other hand, if the threshold is set to an excessively large value, there is a possibility that the occurrence of an abnormality cannot be detected despite the occurrence of the abnormality. Therefore, the threshold value needs to be set in an appropriate range.
  • the threshold value can be set for each management value. When a plurality of types of management values are used simultaneously, individual threshold values can be set for the respective management values.
  • the mass flow control device 1 always diagnoses whether there is an abnormality in the flow meter 2 using the timing of opening and closing the flow control valve 3 during operation of the mass flow control device 1. Can do. Therefore, it is not necessary to provide a time for diagnosis separately from the time for controlling the flow rate, and the fluid can be effectively used without being wasted. Moreover, it is possible to quickly and easily diagnose the occurrence of an abnormality in the flow meter 2 due to an abnormality in the pressure sensors 2a and 2b and an abnormality in the differential pressure generating means 2c.
  • FIG. 3 is a graph showing an example of a time change of a value obtained by differentiating a value (P2) of a fluid pressure (second pressure) on the downstream side of the mass flow control device according to the present invention.
  • a value (dP2 / dt) obtained by differentiating the pressure value (P2) of the fluid on the downstream side with respect to time is indicated by a broken line.
  • the value of dP2 / dt is obtained by, for example, dividing the difference between two adjacent values of the pressure values (P2) of the downstream fluid recorded in the recording means 5 at a certain time interval by those time intervals. Can be obtained.
  • the control value is recorded in the recording means 5 during a period from when the flow rate control valve 3 is changed from the closed state to the open state and the flow rate control is started until the measured flow rate is stabilized.
  • control value is both the maximum absolute value of the value obtained by differentiating the aforementioned valve opening pressure value with respect to time and the maximum absolute value of the value obtained by differentiating the aforementioned valve closing pressure value with respect to time. Or either one.
  • These control values correspond to the absolute values H1 and H2 of the peak height of the value of dP2 / dt illustrated in FIG. 3, respectively, and the time change of the flow rate when the flow control valve 3 is opened and closed It becomes an index indicating the size of. If the flow meter 2 is abnormal and does not indicate the correct flow rate of the fluid, these control values change.
  • control values measure control values
  • the flow meter 2 is diagnosed for abnormality by comparing it with the corresponding management value (initial management value) when the flow meter 2 is used for the first time after calibration (calibration) is performed. be able to.
  • the management value is the value (P2) (P2) of the fluid pressure (second pressure) on the downstream side recorded by the recording means 5 from when the flow control by the flow control valve 3 is started. That is, the recording means 5 recorded the time until the absolute value of the value (dP2 / dt) obtained by differentiating the valve-opening pressure value (dP2 / dt) and the flow rate control by the flow rate control valve 3 was stopped. This is both or one of the times until the absolute value of the value obtained by differentiating the value (P2) of the fluid pressure (second pressure) on the downstream side (that is, the valve closing pressure value) with respect to time becomes maximum.
  • control values correspond to times Ta1 and Ta2 from the time indicated by symbols O and C in FIG. 3 to the time when the value of dP2 / dt peaks, respectively, when the flow control valve 3 is opened and It becomes an index indicating the speed of time change of the flow rate when closed. If the flow meter 2 is abnormal and does not indicate the correct flow rate of the fluid, these control values change. Therefore, by comparing both or any one of these management values (measurement management values) with the corresponding management value (initial management value) when no abnormality has occurred in the flow meter 2, an abnormality in the flow meter 2 can be obtained. The presence or absence of can be diagnosed.
  • the management value is the absolute value of the value (dP2 / dt) obtained by differentiating the value (P2) of the downstream fluid pressure (second pressure) recorded by the recording means 5 with respect to time. This is the time from when the maximum value is reached until the absolute value becomes zero.
  • the control value is the time from when the absolute value of the value obtained by differentiating the valve-opening pressure value with respect to time becomes the maximum until the absolute value becomes zero, and when the valve is closed. The time from when the absolute value of the value obtained by differentiating the pressure value with respect to time becomes the maximum until the absolute value becomes zero is one or both of them.
  • control values correspond to the times Tb1 and Tb2 from the time when the peak of dP2 / dt shown in FIG. 3 to the time when the value of dP2 / dt becomes zero, respectively, when the flow control valve 3 is opened. Or it becomes the parameter
  • the management value is a half value width of a value (dP2 / dt) obtained by differentiating the value (P2) of the downstream fluid pressure (second pressure) recorded by the recording means 5 with respect to time.
  • the control value is either or either one of the half width of the value obtained by differentiating the aforementioned valve opening pressure value with respect to time and the half width of the value obtained by differentiating the aforementioned valve closing pressure value with respect to time. It is.
  • These control values correspond to the times W1 and W2 between two points where the value of dP2 / dt shows half the maximum value in the waveform of the peak of dP2 / dt shown in FIG.
  • the flow meter 2 includes a pressure sensor (first sensor) 2a for measuring the value (P1) of the fluid pressure (first pressure) on the upstream side and the fluid pressure (first sensor) on the downstream side.
  • Pressure sensor (second sensor) 2b for measuring a value (P2) of (2 pressure).
  • the flow meter 2 measures the fluid pressure value (P1) on the upstream side of the differential pressure generating means 2c and the fluid pressure value (P2) on the downstream side by the individual pressure sensors 2a and 2b, respectively. Then, the flow rate of the fluid is measured based on these values (for example, the difference between these values (P1 ⁇ P2)).
  • pressure sensors 2a and 2b pressure sensors having the same configuration can be used.
  • the flow meter 2 includes a pressure sensor (first sensor) 2a that measures the value (P1) of the pressure of the fluid on the upstream side (first pressure) and the pressure of the fluid on the downstream side. Any one of the pressure sensors (second sensors) 2b for measuring the (second pressure) value (P2), the fluid pressure value (P1) on the upstream side, and the fluid pressure value (P2) on the downstream side A differential pressure sensor (third sensor) that measures the difference between In this configuration, the flow meter 2 calculates the difference (P1 ⁇ P2) between the fluid pressure value (P1) upstream of the differential pressure generating means 2c and the fluid pressure value (P2) downstream (P1 ⁇ P2).
  • the downstream fluid pressure value (P2) necessary for implementing the present invention is directly measured by the pressure sensor (second sensor) 2b that measures the downstream fluid pressure value, or the upstream fluid.
  • the pressure difference (P1 ⁇ P2) between the pressure of the fluid on the upstream side (P2) measured by the pressure sensor (first sensor) 2a that measures the pressure value of the pressure and the pressure measured by the differential pressure sensor (third sensor) Can be calculated based on the above.
  • FIG. 4 is a schematic diagram showing a configuration example of a mass flow control device according to a preferred embodiment of the present invention.
  • the mass flow control device 1 according to a preferred embodiment of the present invention further includes a mechanical pressure regulating valve 7 disposed adjacent to the upstream side of the flow meter 2 in the flow path 2d.
  • the mechanical pressure regulating valve 7 has a function of holding the fluid pressure at a constant value by a mechanical mechanism. This pressure control is executed independently of the flow rate control executed by the control means 4 and is not subject to interference from the flow rate control. Therefore, in this embodiment, the value (P1) of the fluid pressure (first pressure) on the upstream side of the differential pressure generating means 2c is always maintained at a constant value, so that the mass flow controller 1 controls the flow rate. Is stable. Moreover, the accuracy of diagnosis of the flow meter 2 by the diagnostic means 6 can be increased.
  • the flow control valve 3 is disposed downstream of the flow meter 2.
  • the flow control valve 3 By disposing the flow control valve 3 on the downstream side of the flow meter 2, the flow of the fluid when the flow control valve 3 is closed can be instantaneously interrupted, and it is not necessary to waste the fluid, which is preferable.
  • the mass flow control device 1 it is more preferable that the mass flow control device 1 has the mechanical pressure regulating valve 7 disposed adjacent to the upstream side of the flow meter 2 from the viewpoint of ensuring the stability of the flow control. .
  • the diagnostic means 6 is configured to output an abnormal signal 6a when diagnosing that an abnormality has occurred in the flow meter 2.
  • the abnormal signal 6a can be, for example, an electrical signal output to the outside of the mass flow controller 1 as illustrated in FIGS.
  • the mass flow control device 1 or another device installed outside the mass flow control device 1 generates a warning by display or sound that allows the operator to recognize that an abnormality has occurred in the flow meter 2. Can be made.
  • the operator can stop using the mass flow control device 1 for which the warning has been given, or can remove it for inspection or replacement.
  • the abnormality signal 6a is also output to a semiconductor manufacturing apparatus installed on the downstream side of the mass flow control device 1, warns the semiconductor manufacturing apparatus of the occurrence of an abnormality, and is used as a trigger for temporarily stopping the operation. be able to. According to this configuration, it is possible to prevent the fluid having a flow rate different from the set flow rate from being supplied to the semiconductor manufacturing apparatus due to the occurrence of an abnormality in the flow meter 2.
  • the present invention relates not only to a mass flow control device but also to a method for diagnosing a differential pressure type flow meter constituting the mass flow control device.
  • the differential pressure type flow meter diagnosis method according to the present invention is applied to and executed by the mass flow control devices according to various embodiments including the above-described embodiments of the present invention.
  • the diagnostic method of the differential pressure type flow meter includes the first pressure value which is the pressure of the fluid upstream of the differential pressure generating means interposed in the fluid flow path and the downstream side of the differential pressure generating means.
  • a flow meter configured to measure a flow rate of the fluid based on a value of a second pressure that is a pressure of the fluid in the fluid, a flow control valve configured to control the flow rate of the fluid, and a flow meter.
  • a control means configured to output a control signal to the flow control valve so that the measured flow rate that is the flow rate of the fluid matches the set flow rate that is the target value of the fluid flow rate. Is done.
  • the mass flow control device diagnoses that an abnormality has occurred in the flowmeter based on the recording means configured to record the value of the second pressure and the value of the second pressure recorded by the recording means. And configured diagnostic means.
  • the differential pressure type flow meter diagnosis method according to the present invention includes various mass flow control devices according to the embodiments of the present invention described with reference to FIGS. 1 and 4, for example.
  • the present invention can be applied to the mass flow control device according to the embodiment.
  • the flow meter includes a first sensor and a second sensor that are pressure sensors that measure the value of the first pressure. It may be configured to have a second sensor that is a pressure sensor that measures a pressure value.
  • the flow meter may include any one of a first sensor that is a pressure sensor that measures the value of the first pressure and a second sensor that is a pressure sensor that measures the value of the second pressure, And a third sensor that is a differential pressure sensor that measures a difference from the value of the two pressures.
  • the mass flow control device to which the differential pressure type flow meter diagnosis method according to the present invention is applied may be configured to further include a mechanical pressure regulating valve disposed adjacent to the upstream side of the flow meter. Furthermore, in the mass flow control device to which the differential pressure type flow meter diagnosis method according to the present invention is applied, the flow control valve can be arranged downstream of the flow meter.
  • a differential pressure type flow meter diagnostic method is a differential pressure type flow meter diagnostic method for determining whether or not an abnormality has occurred in the flow meter in the mass flow control device having the above-described configuration.
  • a valve-opening pressure value that is a value of the second pressure in a period from when the flow rate control valve is changed from a closed state to an open state and control of the flow rate is started until the measured flow rate is stabilized;
  • Both the valve-closing pressure value that is the value of the second pressure in the period from when the flow rate control valve changes from the open state to the closed state and the flow rate control is stopped until the measured flow rate becomes zero
  • the recording means records any one of them,
  • a measurement control value that is a control value based on one or both of the valve-opening pressure value and the valve-closing pressure value, and an initial control value that is the control value when no abnormality has occurred in the flow meter;
  • the diagnostic means diagnoses that an abnormality has occurred in the flowmeter when the absolute value of the difference exceeds
  • the method for diagnosing a differential pressure type flow meter it is always possible to check whether there is an abnormality in the flow meter 2 using the timing for opening and closing the flow control valve 3 during operation of the mass flow control device 1. Can be diagnosed. Therefore, it is not necessary to provide a time for diagnosis separately from the time for controlling the flow rate, and the fluid can be effectively used without being wasted. Moreover, it is possible to quickly and easily diagnose the occurrence of an abnormality in the flow meter 2 due to an abnormality in the pressure sensors 2a and 2b and an abnormality in the differential pressure generating means 2c.
  • the management value is the time of the value (P2) of the fluid pressure (second pressure) on the downstream side recorded by the recording means 5.
  • This is a representative value that reflects the change.
  • any representative value may be selected as long as it is uniquely determined (acquired) based on the temporal change in the pressure value (P2) of the fluid on the downstream side.
  • one type of representative value can be selected, or two or more types of representative values can be selected.
  • the management value is the maximum absolute value of the value obtained by differentiating the valve-opening pressure value with respect to time and the valve-closing pressure value with respect to time.
  • the absolute value of the differentiated value may be both and / or one of the maximum values.
  • the management value is the time from when the flow control by the flow control valve is started until the absolute value of the value obtained by differentiating the valve opening pressure value with respect to time and the flow control by the flow control valve are stopped. The time from when the valve is closed to when the absolute value of the value obtained by differentiating the valve closing pressure value with respect to time is maximized.
  • control value is a value obtained by differentiating the time when the absolute value of the value obtained by differentiating the valve opening pressure value from the maximum value until the absolute value becomes zero and the value obtained by differentiating the valve closing pressure value with respect to time.
  • the time from when the absolute value becomes maximum until the absolute value becomes zero may be both or either one.
  • control value can be either one or both of the half width of the value obtained by differentiating the valve opening pressure value with respect to time and the half width of the value obtained by differentiating the valve closing pressure value with respect to time.
  • FIG. 5 is a flowchart showing an example of a diagnostic algorithm in the differential pressure type flow meter diagnostic method executed in the mass flow controller 1 according to the present invention.
  • the diagnostic algorithm is configured to start using, for example, activation of the mass flow control device 1 or output of the control signal 4a to the flow control valve 3 as a trigger.
  • the diagnosis algorithm first determines whether or not the flow control valve 3 has changed from a closed state to an open state (step S11). When the state change is recognized, the diagnostic algorithm starts recording the value (P2) of the fluid pressure (second pressure) on the downstream side (that is, the valve opening pressure value) (step S12). Next, the diagnostic algorithm determines whether or not the measured flow rate is stable (step S13). When the measured flow rate is stable, the diagnostic algorithm stops recording the downstream fluid pressure value (P2) (step S14) and manages from the downstream fluid pressure value (P2) recorded in step S12. A value (that is, a measurement management value) is acquired (step S31).
  • step S11 determines that the flow rate control valve 3 has been closed from the open state. It is determined whether or not it has changed to (step S21).
  • the diagnostic algorithm starts recording the value (P2) of the fluid pressure (second pressure) on the downstream side (that is, the valve closing pressure value) (step S22).
  • step S23 the diagnostic algorithm determines whether or not the measured flow rate has become zero (step S23).
  • the diagnostic algorithm stops recording the downstream fluid pressure value (P2) (step S24) and, as described above, the downstream fluid pressure recorded in step S22.
  • a management value that is, a measurement management value
  • step S31 the difference between the measured management value acquired in step S31 and the initial management value, which is a management value acquired and recorded in advance based on the valve opening pressure value when no abnormality has occurred in the flowmeter. It is determined whether or not the absolute value exceeds a predetermined threshold (step S32). When the absolute value exceeds the threshold value, the diagnosis algorithm diagnoses that an abnormality has occurred in the flow meter 2 (step S33). If the absolute value does not exceed the threshold value, the diagnostic algorithm returns to step S11.
  • the mass flow control device according to the present invention and the differential pressure type flow meter diagnosis method according to the present invention are special in diagnosing the occurrence of an abnormality in the flow meter 2.
  • the diagnosis can be executed using the timing of the opening / closing operation of the flow control valve 3 in the normal operation without requiring a simple process. Therefore, the operation is simple compared with the conventional mass flow control device, and the chance of failure of the flow control valve 3 can be reduced. In addition, there is no fear that the fluid used only for diagnosis is not wasted without being used for its original purpose.
  • the differential pressure type flow meter diagnosis method may further include that the diagnostic means outputs an abnormal signal when it is diagnosed that an abnormality has occurred in the flow meter.
  • the diagnosis algorithm diagnoses that an abnormality has occurred in the flowmeter 2 in step S33, and then outputs an abnormality signal 6a (step S34). Since the effect achieved by the output of the abnormal signal in this preferred embodiment has already been described in detail in the above description of the mass flow control device 1 according to the present invention, the description will not be repeated here.
  • a mass flow controller according to the present invention was prepared.
  • the rated flow rate of the mass flow control device 1 is 300 sccm (standard cubic centimeter) in nitrogen gas, and the flow meter 2 has been calibrated in advance so as to show a correct flow rate.
  • nitrogen gas was supplied to the inlet side of the mass flow controller 1, and the pressure on the outlet side was vacuum.
  • the set flow rate is set to 100% of the rated flow rate, and the downstream side in the period from when the flow rate control valve 3 is changed from the closed state to the open state and the flow rate control is started until the measured flow rate is stabilized.
  • the value (P2) of the fluid pressure (second pressure) was measured at intervals of 10 ms and recorded in the recording means 5 as the valve opening pressure value.
  • the set flow rate is changed to 0%, and the flow rate control valve 3 is changed from the open state to the closed state, and the flow rate control is stopped.
  • the value (P2) of the fluid pressure (second pressure) on the downstream side during the period until the measured flow rate becomes zero was measured at intervals of 10 ms and recorded in the recording means 5 as the valve closing pressure value.
  • a value differentiated with respect to time (dP2 / dt) is calculated, and the maximum absolute value of dP2 / dt is used as a management value. Asked.
  • the management values at the time of opening and closing of the valve thus obtained correspond to the initial management values described above. Table 1 shows the obtained initial management values.
  • the value (P2) of the fluid pressure (second pressure) on the downstream side when the measured flow rate is stabilized is the flow rate. It became lower than before changing the span of 2 in total. Further, the same measurement was performed by adjusting the flow rate of nitrogen gas measured by the flow meter 2 so that an error of -10.0% was generated.
  • Table 1 shows the management values (measurement management values) obtained based on the pressure values (P2) of the fluid on the downstream side recorded in each measurement (that is, the pressure value at the time of opening and the pressure value at the time of closing). Show.
  • whether or not an abnormality has occurred in the flow meter 2 of the mass flow control device 1 can be determined by constantly monitoring the measured control value at the time of opening and / or closing the valve and comparing it with the initial control value. Diagnosis can be made quickly and easily.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

記録手段により流量制御弁が開いて流量の制御が開始されたとき又は流量制御弁が閉じて流量の制御が停止されたときから測定流量が安定するまでの期間における差圧発生手段の下流側における流体の圧力の値を記録し、診断手段により記録手段が記録した下流側における流体の圧力の値に基づいて取得される管理値を、流量計に異常が発生していないときの管理値と対比し、両者の差の絶対値が閾値を超えたときに前記流量計に異常が発生したと診断する。流量計の上流側に隣接して機械式調圧弁をさらに配置することが好ましい。これにより、専ら診断を実施するための時間を設けることなく差圧式の流量計の異常の発生を簡便に診断することができる質量流量制御装置及び差圧式流量計の診断方法を提供することができる。

Description

質量流量制御装置、及び差圧式流量計の診断方法
 この発明は、質量流量制御装置に関する発明であり、流体の圧力又は差圧の測定値に基づいて流体の質量流量を制御する質量流量制御装置に関する。更に、この発明は、差圧式流量計における異常の発生を診断する方法に関する発明であり、質量流量制御装置を構成する差圧式流量計の診断方法にも関する。
 質量流量制御装置(マスフローコントローラ)は、流体の流量を測定する流量計、流体の流量を制御する流量制御弁、これらを制御する制御回路及びその他の部品によって構成された制御機器である。質量流量制御装置は、例えば、半導体の製造プロセスにおいてチャンバー内に供給されるガスの質量流量を制御することなどを目的として、広く使用されている。
 質量流量制御装置に用いられる流量計にはさまざまな形式のものがある。半導体の製造プロセスにおいてガスの質量流量を制御することを目的として使用される質量流量制御装置においては、熱式流量計又は圧力式流量計が主に用いられている。これらのうち、圧力式流量計としては、例えば、オリフィス又は流路絞りノズルなどと呼ばれる部材を流れるガスの流速が音速であるときにガスの流量が上流側におけるガスの圧力のみに依存する性質を利用するもの(以下「オリフィス式流量計」という。)及び差圧発生手段の上流側におけるガスの圧力の値と下流側におけるガスの圧力の値との差に基づいて流量を測定するもの(以下「差圧式流量計」という。)などを挙げることができる。
 オリフィス式流量計においては、ガスが狭い流路を通過する。この狭い流路に異物が付着するなどして当該流路の断面積が変化した場合、流量計が正しい流量を測定することができなくなる。差圧式流量計においても、差圧発生手段に異物が付着するなどして流体への抵抗が変化した場合、同様の不具合が発生する。そこで、圧力式流量計を用いた質量流量制御装置において、このような異常が発生しているかどうかを診断する方法が提案されている。
 例えば、特許文献1には、オリフィス式流量計を用いた質量流量制御装置において、オリフィスの上流側に設けられたコントロール弁を閉じたときの上流側におけるガスの圧力減衰データを、同一条件下でオリフィスに目詰まりがないときに測定された基準圧力減衰データと対比することにより、オリフィスの目詰まりを検出する方法の発明が開示されている。
 また、例えば、特許文献2には、オリフィス式流量計を用いた質量流量制御装置において、流路絞りノズルの上流側に設けられた流量調整弁を瞬間的に閉じたときの上流側のガス圧力値の時間依存変化を、質量流量制御装置の組み立て時に測定された基準値と比較することにより、流路絞りノズルの診断を行うノズル診断機構の発明が開示されている。
 さらにまた、例えば、特許文献3には、差圧式流量計を用いた質量流量制御装置において、差圧発生手段の上流側に設けられたバルブを閉じたときの上流側における流体の圧力の値又は下流側における流体の圧力の値が第1圧力から第2圧力になるまでの期間における当該圧力の時間積分値を、予め定められた規定値と比較することにより、差圧発生手段の目詰まりを高精度に診断する診断機構の発明が開示されている。
特開2000-137528号公報 特開2000-214916号公報 特開2004-157719号公報
 上記特許文献1乃至3に開示された発明を実施すれば、圧力式流量計のオリフィス及び差圧発生手段などに目詰まりが発生した状態を検出することができる。したがって、そのような異常に起因する圧力式流量計の測定値の誤差の発生及び供給されるガスの流量の異常を未然に防止する効果を有する点において、これらの発明は質量流量の信頼性の向上に寄与するものである。
 また、これらの発明は、いずれも圧力センサが測定する圧力の値を利用するので、これらの発明の実施により圧力センサの故障及び誤動作などの異常も同時に検出することができる可能性を有している。
 しかしながら、これらの発明の実施に際しては、質量流量制御装置の本来の目的であるガスの流量制御動作を行う時間に加えて、この時間とは別に、もっぱら異常の発生の診断を行うためだけの時間を設ける必要がある。この時間に流れたガスは、流量が制御されていないので、例えば、半導体の製造プロセスにおいてチャンバー内に供給されるガスとして利用することはできず、無駄に廃棄しなければならない。
 また、差圧式流量計の差圧発生手段におけるガスの流路の断面積はオリフィス式流量計のオリフィスにおけるガスの流路の断面積に比べて大きいので、差圧発生手段に目詰まりが発生する確率はあまり高くない。したがって、差圧式流量計を用いた質量流量制御装置においては、差圧発生手段の目詰まりを高精度に診断することよりも、圧力センサによって測定される圧力の値が正しいかどうか(即ち、圧力センサ及び/又は差圧発生手段の異常が発生しているかどうか)を常時診断又は監視することの方が、質量流量制御装置の信頼性を高める上で有効であると考えられる。しかし、差圧式流量計の異常の発生を簡便に診断する方法は知られていない。
 本発明は、従来の圧力式流量計を用いた質量流量制御装置が有する上記諸課題に鑑みてなされたものであり、異常の発生の診断を実施するためだけの時間を設けることを要さず、差圧式流量計における異常の発生を簡便に診断することができる質量流量制御装置の提供を目的としている。更に、本発明は、異常の発生の診断を実施するためだけの時間を設けることを要さず、差圧式流量計における異常の発生を簡便に診断することができる、質量流量制御装置を構成する差圧式流量計の診断方法の提供をも目的としている。
 本発明に係る質量流量制御装置は、
 流体の流路に介装された差圧発生手段の上流側における流体の圧力である第1圧力の値及び差圧発生手段の下流側における流体の圧力である第2圧力の値に基づいて流体の流量を測定するように構成された流量計と、流体の流量を制御するように構成された流量制御弁と、流量計によって測定された流体の流量である測定流量が流体の流量の目標値である設定流量と一致するように流量制御弁に制御信号を出力するように構成された制御手段と、を有する質量流量制御装置であって、流量制御弁が閉じた状態から開いた状態に変化して流量の制御が開始されたときから測定流量が安定するまでの期間における第2圧力の値である開弁時圧力値及び流量制御弁が開いた状態から閉じた状態に変化して流量の制御が停止されたときから測定流量がゼロになるまでの期間における第2圧力の値である閉弁時圧力値の両方又はいずれか一方を記録するように構成された記録手段と、開弁時圧力値及び閉弁時圧力値の両方又はいずれか一方に基づいて取得される管理値である測定管理値と流量計に異常が発生していないときの当該管理値である初期管理値との差の絶対値が所定の閾値を超える場合に流量計に異常が発生したと診断するように構成された診断手段と、をさらに有することを特徴とする質量流量制御装置である。また、本発明に係る差圧式流量計の診断方法は、上記のようにして質量流量制御装置を構成する差圧式流量計における異常の発生を診断する方法である。
 上記構成において、流量計に異常が発生したかどうかを診断する動作は、流量の制御を開始するために流量制御弁を開いたとき及び流量の制御を停止するために流量制御弁を閉じたときの両方又はいずれか一方において実行される。したがって、従来技術のように、流量の制御のための時間とは別に診断のための時間を設ける必要はなく、診断を実施するためにガスを無駄に廃棄することもない。
 また、差圧式流量計において流量制御弁の開閉動作を行ってから差圧発生手段を通過するガスの流量が安定するまでの期間は、オリフィス式流量計においてオリフィス又は流路絞りノズルなどをガスが通過するときの圧力の減衰に要する期間に比べて短いので、診断の実行を短時間で完了することができる。したがって、本発明に係る質量流量制御装置は、特許文献3において開示された従来技術のように差圧発生手段の目詰まりを高精度に診断するのにはあまり適さない反面、差圧式流量計における異常の発生を簡便に診断するには好適である。
 本発明の好ましい実施の形態に係る質量流量制御装置は、流量計の上流側に隣接して配置される機械式調圧弁をさらに有する。この構成において、機械式調圧弁の作用により、流量計の上流側における流体の圧力の値が一定の値に保たれる。このため、下流側における流体の圧力(第2圧力)の値は上流側における流体の圧力(第1圧力)の値の変動の影響を受けず、下流側における流体の圧力の値に基づいて取得される管理値に基づく異常の発生の診断を高精度に行うことができるので、好ましい。
 本発明に係る質量流量制御装置及び本発明に係る差圧式流量計の診断方法によれば、流量の制御のための時間とは別に診断のための時間を設ける必要はないので、ガスを無駄に廃棄せず有効に利用することができる。また、圧力センサ及び/又は差圧発生手段の異常を原因とする流量計の異常の発生を迅速かつ簡便に診断することができる。
本発明に係る質量流量制御装置の構成例を示す模式図である。 本発明に係る質量流量制御装置の上流側における流体の圧力(第1圧力)の値(P1)及び下流側における流体の圧力(第2圧力)の値(P2)の時間変化の例を示すグラフである。 本発明に係る質量流量制御装置の下流側における流体の圧力(第2圧力)の値(P2)を時間について微分した値の時間変化の例を示すグラフである。 本発明の好ましい実施の形態に係る質量流量制御装置の構成例を示す模式図である。 本発明に係る差圧式流量計の診断方法における診断アルゴリズムの例を示すフローチャートである。 本発明の好ましい実施の形態に係る差圧式流量計の診断方法における診断アルゴリズムの例を示すフローチャートである。
 本発明を実施するための形態を、図を用いて詳細に説明する。なお、ここで説明する実施の形態は本発明の実施の形態を例示するものにすぎず、本発明の実施の形態はここに例示する形態に限られない。
 図1は、本発明に係る質量流量制御装置の構成例を示す模式図である。本発明に係る質量流量制御装置1は、流体の流路2dに介装された差圧発生手段2cの上流側における流体の圧力である第1圧力の値(P1)と差圧発生手段の下流側における流体の圧力である第2圧力の値(P2)とに基づいて流体の流量を測定するように構成された流量計2と、流体の流量を制御するように構成された流量制御弁3と、流量計によって測定された流体の流量である測定流量が流体の流量の目標値である設定流量と一致するように流量制御弁3に制御信号4aを出力するように構成された制御手段4とを有する。なお、図1は各構成要素間の論理的な関係を示すものであり、質量流量制御装置1の構成部品の実装状態を示すものではない。
 流量計2は、差圧発生手段2cの上流側における流体の圧力である第1圧力の値(P1)と差圧発生手段2cの下流側における流体の圧力である第2圧力の値(P2)との差を検知する手段を有する。圧力の差を検知する具体的な手段としては、例えば、差圧発生手段2cの上流側及び下流側にそれぞれ別個の圧力センサ2a及び2bを設けて、それらの指示値の差を検知する手段を構成することができる。あるいは、差圧発生手段2cの上流側と連通する導管及び下流側と連通する導管を1個の差圧センサに接続し、当該差圧センサが示す差圧を検知することができる。
 本発明において、「上流側における流体の圧力」又は「下流側における流体の圧力」とは、特に断らない限りそれぞれ「差圧発生手段の上流側における流体の圧力(第1圧力)」又は「差圧発生手段の下流側における流体の圧力(第2圧力)」を意味するものとする。ここで、「上流側」又は「下流側」とは、質量流量制御装置1の中で流体が流れる方向を基準として定められる。例えば、図1において、流体は、質量流量制御装置1の中を左側から右側に向かって流れるので、差圧発生手段2cの左側が上流側、差圧発生手段2cの右側が下流側に相当する。
 「差圧発生手段の上流側における流体の圧力」又は「差圧発生手段の下流側における流体の圧力」は、必ずしも差圧発生手段に隣接する部位における圧力に限定されるものではなく、質量流量制御装置1又はその周辺において差圧発生手段に隣接する部位とは異なる部位であって、差圧発生手段に隣接する部位における圧力と同等の圧力を示す部位における圧力であってもよい。
 差圧発生手段2cは、流動する流体に対する抵抗を有し、その上流側における流体の圧力と下流側における流体の圧力との間に圧力損失を生じさせるものであればどのような構造のものであってもよい。差圧発生手段としては、例えば、長さが同一のパイプを多数束ねた構造を有するもの及びハニカム構造を有するものなど、公知の構造を有するものを使用することができる。
 流量計2は、差圧発生手段の上流側における流体の圧力である第1圧力の値(P1)と差圧発生手段の下流側における流体の圧力である第2圧力の値(P2)とに基づいて流体の流量を測定するものであり、上述した差圧式流量計に分類されるものである。具体的には、流量計2は、第1圧力の値(P1)と第2圧力の値(P2)との違いに基づいて流体の流量を測定する。例えば、流量計2は、第1圧力の値(P1)と第2圧力の値(P2)との差(P1-P2)に基づいて流体の流量を測定する。具体的には、流体の流量は、一定の条件下において、差圧発生手段2cの上流側における流体の圧力の値(P1)と下流側における流体の圧力の値(P2)との差(P1-P2)に対する相関を示す。より具体的には、流体の流量は、一定の条件下において、差圧発生手段2cの上流側における流体の圧力の値(P1)と下流側における流体の圧力の値(P2)との差(P1-P2)に比例する。この性質を利用して、流量計2は、流体の流量を測定することができる。流量計2は、流体の流量の測定に際して、上流側における流体の圧力の値(P1)と下流側における流体の圧力の値(P2)との差(P1-P2)以外の物理量、例えば流体の温度及び圧力など、に基づいて流量の補正を行ってもよい。
 流量制御弁3は、後述する制御手段4から出力される制御信号4aに基づいて流体の流量を制御するように構成されている。流量制御弁3は、弁を開閉するアクチュエータ3a及び弁3bを備えることができる。アクチュエータ3aとしては、例えば、電圧信号により制御される圧電素子及び電流信号により制御されるソレノイドなどを用いることができる。弁3bとしては、例えば、ダイアフラムと弁座とによって構成されたダイアフラム弁などを用いることができる。流量制御弁3は、図1に例示されるように流量計2の下流側に設けてもよく、あるいは、流量計2の上流側に設けてもよい。
 制御手段4は、流量計2によって測定された流体の流量である測定流量が設定流量と一致するように流量制御弁3に制御信号4aを出力するように構成されている。このため、制御手段4は、流量計2によって測定された測定流量を入力する手段を有している。設定流量とは、質量流量制御装置1において予め設定される流体の流量の目標値である。制御手段4は、流量計2によって測定された測定流量が設定流量と一致するように制御された制御信号4aを発生し、これを流量制御弁3に対して出力する。制御手段4によって出力される制御信号4aの値は、例えば、測定流量に基づくフィードバック制御などの公知の制御方法によって決定される。
 本発明に係る質量流量制御装置1は、記録手段5と診断手段6とをさらに有することを特徴とする。記録手段5は、開弁時圧力値及び閉弁時圧力値の両方またはいずれか一方を記録するように構成されている。ここで、開弁時圧力値とは、流量制御弁3が閉じた状態から開いた状態に変化して流量の制御が開始されたときから測定流量が安定するまでの期間における下流側における流体の圧力(第2圧力)の値(P2)である。一方、閉弁時圧力値とは、流量制御弁3が開いた状態から閉じた状態に変化して流量の制御が停止されたときから測定流量がゼロになるまでの期間における下流側における流体の圧力(第2圧力)の値(P2)である。
 記録手段5は、下流側における流体の圧力(第2圧力)の値(P2)を記録する。下流側における流体の圧力の値(P2)は、図1に例示されているように下流側の圧力センサ(第2センサ)2bの出力を直接入力して記録してもよいし、あるいは、制御手段4によって処理がなされた下流側における流体の圧力の値(P2)を間接的に入力して記録してもよい。下流側における流体の圧力の値(P2)は、例えばアナログ/デジタルコンバーターによって変換されたデータであってもよい。記録手段5は、例えば、下流側における流体の圧力の値(P2)を示すデータを時系列的に記録するメモリなどによって構成することができる。下流側における流体の圧力の値(P2)を記録する時間間隔は、例えば、制御手段4を構成する中央演算素子(CPU)のクロックの周期と同じ時間とすることができる。この時間は、例えば10ms(ミリ秒)である。
 上述したように、記録手段5が下流側における流体の圧力の値(P2)を記録する期間は、流量制御弁3が閉じた状態から開いた状態に変化して流量の制御が開始されたときから測定流量が安定するまでの期間及び流量制御弁3が開いた状態から閉じた状態に変化して流量の制御が停止されたときから測定流量がゼロになるまでの期間の両方又はいずれか一方である。質量流量制御装置の通常の動作条件において、これらの期間はいずれも0.5s(秒)を大きく超えることはない。記録手段5が記録を開始したり記録を停止したりするタイミングは、例えば、制御手段4から記録手段5に対して出力される信号によって決定することができる。
 図2は、本発明に係る質量流量制御装置1の上流側における流体の圧力(第1圧力)の値(P1)及び下流側における流体の圧力(第2圧力)の値(P2)の時間変化(時間的推移)の例を示すグラフである。上流側における流体の圧力の値(P1)の時間変化は実線により、下流側における流体の圧力の値(P2)の時間変化は破線により、それぞれ示されている。横軸において、記号Oは、流量制御弁3が閉じた状態から開いた状態(Open)に変化して流量の制御が開始されたときを示す。また、記号Cは、流量制御弁3が開いた状態から閉じた状態(Close)に変化して流量の制御が停止されたときを示す。この例において、記号Oによって示された時刻までは流量制御弁3が閉じており、質量流量制御装置1の上流側における流体の圧力の値(P1)及び下流側における流体の圧力の値(P2)は共に等しい値において一定である。このときの上流側における流体の圧力の値(P1)及び下流側における流体の圧力の値(P2)の値は、例えば、100kPa以上、300kPa以下の値である。
 記号Oによって示された時刻に到達すると、流量制御弁3が開いて流量の制御が開始される。質量流量制御装置1の上流側における流体の圧力(第1圧力)の値(P1)は変わらないが、下流側における流体の圧力(第2圧力)の値(P2)は差圧発生手段2cの作用により上流側における流体の圧力の値(P1)から低下を開始する。その後、下流側における流体の圧力の値(P2)は制御手段4の作用により上流側における流体の圧力の値(P1)よりも低い値において安定し、測定流量が安定する。このときの下流側における流体の圧力の値(P2)は、例えば、30kPa以上、100kPa以下の値である。記録手段5は、このように流量制御弁3が閉じた状態から開いた状態に変化して流量の制御が開始されたときから測定流量が安定するまでの期間における第2圧力の値を開弁時圧力値として記録する。
 次に、記号Cによって示された時刻に到達すると、流量制御弁3が閉じて流量の制御が停止される。質量流量制御装置1の下流側における流体の圧力の値(P2)は増加を開始する。その後、下流側における流体の圧力の値(P2)は上流側における流体の圧力の値(P1)と一致するまで増加して安定し、測定流量がゼロになる。記録手段5は、このように流量制御弁3が開いた状態から閉じた状態に変化して流量の制御が停止されたときから測定流量がゼロになるまでの期間における第2圧力の値を閉弁時圧力値として記録する。
 診断手段6は、記録手段5によって記録された下流側における流体の圧力(第2圧力)の値(P2)に基づいて管理値を取得する。管理値の取得においては、上記特定の期間においてサンプリングされ記録手段5によって記録された下流側における流体の圧力の値(P2)が使用される。即ち、管理値は、記録手段5によって記録された開弁時圧力値及び閉弁時圧力値の両方又はいずれか一方に基づいて取得される。これらの期間において、下流側における流体の圧力の値(P2)は短時間のうちに減少又は増加する。このとき、下流側における流体の圧力の値(P2)は、質量流量制御装置1に特有の時間変化を示す。したがって、質量流量制御装置1の状態に変化がない限り、同一の種類の流体の流量を同一の温度、圧力及び設定流量の条件において制御する場合、下流側における流体の圧力の値(P2)は同一の時間変化を示す。
 管理値は、記録手段5によって記録された下流側における流体の圧力(第2圧力)の値(P2)の時間変化を反映する代表値である。管理値は、下流側における流体の圧力の値(P2)の時間変化に基づいて一意的に定まる(取得される)代表値であれば、どのような代表値を選択してもよい。管理値としては、1種類の代表値を選択することができるし、或いは、2種類以上の複数の代表値を選択することもできる。
 診断手段6は、測定管理値と初期管理値との差の絶対値が所定の閾値を超える(所定の閾値より大きい)場合に、流量計2に異常が発生したと診断するように構成されている。ここで、測定管理値とは、質量流量制御装置1の運転時に開弁時圧力値及び閉弁時圧力値の両方またはいずれか一方に基づいて取得される管理値である。一方、初期管理値とは、流量計2に異常が発生していないときに開弁時圧力値及び閉弁時圧力値の両方またはいずれか一方に基づいて取得される管理値である。なお、「流量計2に異常が発生していないとき」とは、例えば、流量計2が製造後に質量流量制御装置1に組み込まれて初めて使用されるとき及び流量計2の較正(キャリブレーション)が行われた後に初めて使用されるときなどを指す。したがって、診断手段6は、初期管理値を記憶する手段を有する。質量流量制御装置1の使用を開始してから時間が経過しても、質量流量制御装置1の状態に変化がない限り、下流側における流体の圧力の値(P2)の時間変化には再現性があり、管理値は変化しない(即ち、測定管理値は初期管理値から乖離しない)。
 一方、質量流量制御装置1の状態が変化したときは、下流側における流体の圧力(第2圧力)の値(P2)の時間変化にも変化が生じるので、測定管理値が初期管理値から乖離する。質量流量制御装置1の状態の変化の具体例としては、例えば、圧力センサ2a及び2bが示す圧力の値の経時変化及び差圧発生手段2cに異物が付着することによる圧力損失の変化など、流量計2における異常の発生を挙げることができる。したがって、質量流量制御装置1の運転時に記録手段5によって記録された下流側における流体の圧力の値(P2)に基づいて取得される管理値(測定管理値)と、流量計2に異常が発生していないときの下流側における流体の圧力の値(P2)に基づいて取得される管理値(初期管理値)との間に所定の閾値を超える(閾値よりも大きい)差が生じた場合、流量計2に何らかの異常が発生したと考えられる。
 なお、上記「所定の閾値」は、現在の管理値(測定管理値)と流量計2に異常が発生していないときの管理値(初期管理値)との差の絶対値として許容される最大値である。診断手段6は、これらの管理値の差の絶対値が閾値を超えたときに流量計2に異常が発生したと診断する。したがって、閾値を過度に小さな値に設定すると、管理値のわずかな変化でも異常とみなされるので、誤った診断をするおそれがある。一方、閾値を過度に大きな値に設定すると、異常が発生しているにもかかわらず異常の発生を検知することができないおそれがある。したがって、閾値は、適切な範囲に設定する必要がある。閾値は、管理値ごとに設定することができる。複数の種類の管理値を同時に使用するときは、それぞれの管理値に対して個別の閾値を設定することができる。
 以上説明したように、本発明に係る質量流量制御装置1は、質量流量制御装置1の運転時における流量制御弁3を開閉するタイミングを利用して流量計2の異常の有無を常時診断することができる。したがって、流量の制御のための時間とは別に診断のための時間を設ける必要はなく、流体を無駄に廃棄することなく有効に利用することができる。また、圧力センサ2a及び2bの異常並びに差圧発生手段2cの異常などを原因とする流量計2の異常の発生を迅速かつ簡便に診断することができる。
 図3は、本発明に係る質量流量制御装置の下流側における流体の圧力(第2圧力)の値(P2)を時間について微分した値の時間変化の例を示すグラフである。下流側における流体の圧力の値(P2)を時間について微分した値(dP2/dt)が破線によって示されている。dP2/dtの値は、例えば、一定の時間間隔にて記録手段5に記録された下流側における流体の圧力の値(P2)のうち隣り合う2つの値の差をそれらの時間間隔によって割ることによって求めることができる。
 横軸に記号Oによって示された時刻において、流量制御弁3が閉じた状態から開いた状態に変化して流量の制御が開始されると、下流側における流体の圧力の値(P2)は急減に減少し、dP2/dtの値はマイナスの方向にピークを持つ波形を示す。横軸に記号Cによって示された時刻において、流量制御弁3が開いた状態から閉じた状態に変化して流量の制御が停止されると、下流側における流体の圧力の値(P2)は急減に増加し、dP2/dtの値はプラスの方向にピークを持つ波形を示す。
 本発明の好ましい実施の形態において、管理値は、流量制御弁3が閉じた状態から開いた状態に変化して流量の制御が開始されたときから測定流量が安定するまでの期間において記録手段5が記録した下流側における流体の圧力(第2圧力)の値(P2)を時間について微分した値(dP2/dt)の絶対値の最大値及び流量制御弁3が開いた状態から閉じた状態に変化して流量の制御が停止されたときから測定流量がゼロになるまでの期間において記録手段5が記録した下流側における流体の圧力(第2圧力)の値(P2)を時間について微分した値(dP2/dt)の絶対値の最大値の両方又はいずれか一方である。即ち、この場合、管理値は、前述した開弁時圧力値を時間について微分した値の絶対値の最大値及び前述した閉弁時圧力値を時間について微分した値の絶対値の最大値の両方又はいずれか一方である。これらの管理値は、図3に例示されたdP2/dtの値のピークの高さの絶対値H1及びH2にそれぞれ相当し、流量制御弁3が開いたとき及び閉じたときの流量の時間変化の大きさを示す指標となる。流量計2に異常があり流体の正しい流量を示さない場合は、これらの管理値に変化が生じる。したがって、これらの管理値(測定管理値)の両方又はいずれか一方を流量計2に異常が発生していないとき(例えば、流量計2が製造後に質量流量制御装置1に組み込まれて初めて使用されるとき及び流量計2の較正(キャリブレーション)が行われた後に初めて使用されるときなど)の対応する管理値(初期管理値)と対比することにより、流量計2における異常の有無を診断することができる。
 本発明の好ましい実施の形態において、管理値は、流量制御弁3による流量の制御が開始されたときから記録手段5が記録した下流側における流体の圧力(第2圧力)の値(P2)(即ち、開弁時圧力値)を時間について微分した値(dP2/dt)の絶対値が最大となるまでの時間及び流量制御弁3による流量の制御が停止されたときから記録手段5が記録した下流側における流体の圧力(第2圧力)の値(P2)(即ち、閉弁時圧力値)を時間について微分した値の絶対値が最大となるまでの時間の両方又はいずれか一方である。これらの管理値は、図3に記号O及びCによって示された各時刻からdP2/dtの値がピークを示す時刻までの時間Ta1及びTa2にそれぞれ相当し、流量制御弁3が開いたとき及び閉じたときの流量の時間変化の速さを示す指標となる。流量計2に異常があり流体の正しい流量を示さない場合は、これらの管理値に変化が生じる。したがって、これらの管理値(測定管理値)の両方又はいずれか一方を流量計2に異常が発生していないときの対応する管理値(初期管理値)と対比することにより、流量計2における異常の有無を診断することができる。
 本発明の好ましい実施の形態において、管理値は、記録手段5が記録した下流側における流体の圧力(第2圧力)の値(P2)を時間について微分した値(dP2/dt)の絶対値が最大となったときからその絶対値がゼロとなるまでの時間である。換言すれは、この場合、管理値は、前述した開弁時圧力値を時間について微分した値の絶対値が最大となったときから当該絶対値がゼロとなるまでの時間及び前述した閉弁時圧力値を時間について微分した値の絶対値が最大となったときから当該絶対値がゼロとなるまでの時間の両方又はいずれか一方である。これらの管理値は、図3に示されたdP2/dtがピークを示す時刻からdP2/dtの値がゼロとなる時刻までの時間Tb1及びTb2にそれぞれ相当し、流量制御弁3が開いたとき又は閉じたときの流量の時間変化の速さを示す指標となる。流量計2に異常があり流体の正しい流量を示さない場合は、これらの管理値に変化が生じる。したがって、これらの管理値(測定管理値)の両方又はいずれか一方を流量計2に異常が発生していないときの対応する管理値(初期管理値)と対比することにより、流量計2における異常の有無を診断することができる。
 本発明の好ましい実施の形態において、管理値は、記録手段5が記録した下流側における流体の圧力(第2圧力)の値(P2)を時間について微分した値(dP2/dt)の半値幅である。換言すれは、この場合、管理値は、前述した開弁時圧力値を時間について微分した値の半値幅及び前述した閉弁時圧力値を時間について微分した値の半値幅の両方又はいずれか一方である。これらの管理値は、図3に示されたdP2/dtのピークの波形において、dP2/dtの値が最大値の半分の値を示す2点間の時間W1及びW2にそれぞれ相当し、流量制御弁3が開いたとき又は閉じたときの流量の時間変化の速さを示す指標となる。流量計2に異常があり流体の正しい流量を示さない場合は、これらの管理値に変化が生じる。したがって、これらの管理値(測定管理値)の両方又はいずれか一方を流量計2に異常が発生していないときの対応する管理値(初期管理値)と対比することにより、流量計2における異常の有無を診断することができる。
 本発明の好ましい実施の形態において、流量計2は、上流側における流体の圧力(第1圧力)の値(P1)を測定する圧力センサ(第1センサ)2a及び下流側における流体の圧力(第2圧力)の値(P2)を測定する圧力センサ(第2センサ)2bを有する。この構成において、流量計2は、差圧発生手段2cの上流側における流体の圧力の値(P1)及び下流側における流体の圧力の値(P2)をそれぞれ個別の圧力センサ2a及び2bによって測定し、これらの値(例えば、これらの値の差(P1-P2)など)に基づいて流体の流量を測定する。2個の圧力センサ2a及び2bとして、同じ構成を有する圧力センサを用いることができる。
 本発明の好ましい実施の形態において、流量計2は、上流側における流体の圧力の値(第1圧力)の値(P1)を測定する圧力センサ(第1センサ)2a及び下流側における流体の圧力(第2圧力)の値(P2)を測定する圧力センサ(第2センサ)2bのいずれか一方と、上流側における流体の圧力の値(P1)と下流側における流体の圧力の値(P2)との差を測定する差圧センサ(第3センサ)と、を有する。この構成において、流量計2は、差圧発生手段2cの上流側における流体の圧力の値(P1)及び下流側における流体の圧力の値(P2)の差(P1-P2)を1台の差圧センサ(第3センサ)によって測定し、その値に基づいて流体の流量を測定する。本発明の実施に必要な下流側における流体の圧力の値(P2)は、下流側における流体の圧力の値を測定する圧力センサ(第2センサ)2bによって直接測定するか、又は上流側における流体の圧力の値を測定する圧力センサ(第1センサ)2aによって測定された上流側における流体の圧力(P2)と差圧センサ(第3センサ)によって測定された圧力の差(P1-P2)とに基づいて計算により求めることができる。
 図4は、本発明の好ましい実施の形態に係る質量流量制御装置の構成例を示す模式図である。本発明の好ましい実施の形態に係る質量流量制御装置1は、流路2dにおいて流量計2の上流側に隣接して配置される機械式調圧弁7をさらに有する。機械式調圧弁7は、機械的な機構によって流体の圧力を一定の値に保持する機能を有する。この圧力の制御は、制御手段4によって実行される流量の制御とは独立して実行され、流量の制御からの干渉を受けない。したがって、この実施の形態においては差圧発生手段2cの上流側における流体の圧力(第1圧力)の値(P1)は常に一定の値に保持されるので、質量流量制御装置1による流量の制御が安定する。また、診断手段6による流量計2の診断の精度を高めることができる。
 本発明の好ましい実施の形態において、流量制御弁3は、流量計2の下流側に配置される。流量制御弁3を流量計2の下流側に配置することにより、流量制御弁3を閉じたときの流体の流れを瞬時に遮断することができ、流体を無駄に廃棄する必要がないので好ましい。この実施の形態において、質量流量制御装置1は、流量計2の上流側に隣接して配置される機械式調圧弁7を有することが、流量の制御の安定性を確保する観点から、より好ましい。
 本発明の好ましい実施の形態において、診断手段6は、流量計2に異常が発生したと診断したときに異常信号6aを出力するように構成されている。異常信号6aは、例えば、図1及び図4に例示されるように、質量流量制御装置1の外部に出力される電気信号とすることができる。異常信号6aが出力されたとき、質量流量制御装置1又はその外部に設置された他の機器によって、流量計2に異常が発生したことをオペレータに認識させることができる表示又は音声による警告を発生させることができる。これにより、オペレータは、警告がなされた質量流量制御装置1の使用を停止したり、検査又は交換のために取り外したりすることができる。
 異常信号6aは、また、質量流量制御装置1の下流側に設置された半導体製造装置に出力され、半導体製造装置に異常の発生を警告し、運転を一時的に中止するためのトリガーとして使用することができる。この構成によれば、流量計2の異常の発生に起因して設定流量とは異なる流量の流体が半導体製造装置に供給されることを未然に防止することができる。
 本明細書の冒頭において述べたように、本発明は、質量流量制御装置のみならず、質量流量制御装置を構成する差圧式流量計の診断方法にも関する。本発明に係る差圧式流量計の診断方法は、本発明の上述した実施の形態を始めとする種々の実施の形態に係る質量流量制御装置に適用され、当該質量流量制御装置によって実行される。
 即ち、本発明に係る差圧式流量計の診断方法は、流体の流路に介装された差圧発生手段の上流側における流体の圧力である第1圧力の値及び差圧発生手段の下流側における流体の圧力である第2圧力の値に基づいて流体の流量を測定するように構成された流量計と、流体の流量を制御するように構成された流量制御弁と、流量計によって測定された流体の流量である測定流量が流体の流量の目標値である設定流量と一致するように流量制御弁に制御信号を出力するように構成された制御手段と、を有する質量流量制御装置に適用される。
 上記質量流量制御装置は、第2圧力の値を記録するように構成された記録手段と、記録手段によって記録された第2圧力の値に基づいて流量計に異常が発生したと診断するように構成された診断手段と、をさらに有する。
 上記のような質量流量制御装置の構成については、本発明に係る質量流量制御装置1について上述した説明において既に詳細に述べたので、ここでは説明を繰り返さない。しかしながら、本発明に係る差圧式流量計の診断方法は、例えば、図1及び図4を参照しながら説明した本発明の実施の形態に係る質量流量制御装置を始めとする、本発明の種々の実施の形態に係る質量流量制御装置に適用され得る。
 即ち、本発明の好ましい実施の形態に係る差圧式流量計の診断方法が適用される質量流量制御装置において、流量計は、第1圧力の値を測定する圧力センサである第1センサ及び第2圧力の値を測定する圧力センサである第2センサを有するように構成され得る。或いは、流量計は、第1圧力の値を測定する圧力センサである第1センサ及び第2圧力の値を測定する圧力センサである第2センサのいずれか一方と、第1圧力の値と第2圧力の値との差を測定する差圧センサである第3センサと、を有するようにも構成され得る。
 また、本発明に係る差圧式流量計の診断方法が適用される質量流量制御装置は、流量計の上流側に隣接して配置される機械式調圧弁をさらに有するように構成され得る。更に、本発明に係る差圧式流量計の診断方法が適用される質量流量制御装置において、流量制御弁は流量計の下流側に配置され得る。
 本発明に係る差圧式流量計の診断方法は、上記のような構成を有する質量流量制御装置において、前記流量計に異常が発生したか否かを判定する、差圧式流量計の診断方法であって、
 前記流量制御弁が閉じた状態から開いた状態に変化して流量の制御が開始されたときから前記測定流量が安定するまでの期間における前記第2圧力の値である開弁時圧力値及び前記流量制御弁が開いた状態から閉じた状態に変化して流量の制御が停止されたときから前記測定流量がゼロになるまでの期間における前記第2圧力の値である閉弁時圧力値の両方又はいずれか一方を前記記録手段が記録すること、
 前記開弁時圧力値及び前記閉弁時圧力値の両方又はいずれか一方に基づく管理値である測定管理値と前記流量計に異常が発生していないときの前記管理値である初期管理値との差の絶対値が所定の閾値を超える場合に前記流量計に異常が発生したと前記診断手段が診断すること、
を含む、差圧式流量計の診断方法である。
 上記のように、本発明に係る差圧式流量計の診断方法によれば、質量流量制御装置1の運転時における流量制御弁3を開閉するタイミングを利用して流量計2の異常の有無を常時診断することができる。したがって、流量の制御のための時間とは別に診断のための時間を設ける必要はなく、流体を無駄に廃棄することなく有効に利用することができる。また、圧力センサ2a及び2bの異常並びに差圧発生手段2cの異常などを原因とする流量計2の異常の発生を迅速かつ簡便に診断することができる。
 尚、本発明に係る質量流量制御装置1について上述した説明において述べたように、管理値は、記録手段5によって記録された下流側における流体の圧力(第2圧力)の値(P2)の時間変化を反映する代表値である。管理値は、下流側における流体の圧力の値(P2)の時間変化に基づいて一意的に定まる(取得される)代表値であれば、どのような代表値を選択してもよい。管理値としては、1種類の代表値を選択することができるし、或いは、2種類以上の複数の代表値を選択することもできる。
 即ち、本発明の好ましい実施の形態に係る差圧式流量計の診断方法において、管理値は、開弁時圧力値を時間について微分した値の絶対値の最大値及び閉弁時圧力値を時間について微分した値の絶対値の最大値の両方又はいずれか一方であり得る。
 或いは、管理値は、流量制御弁による流量の制御が開始されたときから開弁時圧力値を時間について微分した値の絶対値が最大となるまでの時間及び流量制御弁による流量の制御が停止されたときから閉弁時圧力値を時間について微分した値の絶対値が最大となるまでの時間の両方又はいずれか一方であり得る。
 或いは、管理値は、開弁時圧力値を時間について微分した値の絶対値が最大となったときから当該絶対値がゼロとなるまでの時間及び閉弁時圧力値を時間について微分した値の絶対値が最大となったときから当該絶対値がゼロとなるまでの時間の両方又はいずれか一方であり得る。
 或いは、管理値は、開弁時圧力値を時間について微分した値の半値幅及び閉弁時圧力値を時間について微分した値の半値幅の両方又はいずれか一方であり得る。
 これらの好ましい実施の形態における種々の管理値についての詳細及びそれらの管理値によって達成される効果については、本発明に係る質量流量制御装置1について上述した説明において既に詳細に述べたので、ここでは説明を繰り返さない。
 図5は、本発明に係る質量流量制御装置1において実行される差圧式流量計の診断方法における診断アルゴリズムの例を示すフローチャートである。この例において、診断アルゴリズムは、例えば、質量流量制御装置1の起動または流量制御弁3への制御信号4aの出力をトリガーとして開始するように構成されている。診断アルゴリズムは、まず、流量制御弁3が閉じた状態から開いた状態に変化したか否かを判断する(ステップS11)。上記状態変化が認められたときは、診断アルゴリズムは下流側における流体の圧力(第2圧力)の値(P2)(即ち、開弁時圧力値)の記録を開始する(ステップS12)。次に、診断アルゴリズムは、測定流量が安定したか否かを判断する(ステップS13)。測定流量が安定したとき、診断アルゴリズムは下流側における流体の圧力の値(P2)の記録を停止し(ステップS14)、ステップS12において記録された下流側における流体の圧力の値(P2)から管理値(即ち、測定管理値)を取得する(ステップS31)。
 一方、上記ステップS11において流量制御弁3が閉じた状態から開いた状態に変化していないと判断した場合(ステップS11:No)、診断アルゴリズムは、流量制御弁3が開いた状態から閉じた状態に変化したかを判断する(ステップS21)。上記状態変化が認められたときは、診断アルゴリズムは下流側における流体の圧力(第2圧力)の値(P2)(即ち、閉弁時圧力値)の記録を開始する(ステップS22)。次に、診断アルゴリズムは、測定流量がゼロになったか否かを判断する(ステップS23)。測定流量がゼロになったとき、診断アルゴリズムは下流側における流体の圧力の値(P2)の記録を停止し(ステップS24)、上述したように、ステップS22において記録された下流側における流体の圧力の値(P2)から管理値(即ち、測定管理値)を取得する(ステップS31)。
 そして、ステップS31において取得された測定管理値と、流量計に異常が発生していないときに開弁時圧力値に基づいて予め取得され記録されていた管理値である初期管理値との差の絶対値が所定の閾値を超えているか否かを判断する(ステップS32)。上記絶対値が閾値を超えていたときは、診断アルゴリズムは流量計2に異常が発生したと診断する(ステップS33)。上記絶対値が閾値を超えていなかったときは、診断アルゴリズムはステップS11に戻る。
 上記診断アルゴリズムの例からも明らかなように、本発明に係る質量流量制御装置及び本発明に係る差圧式流量計の診断方法によれば、流量計2の異常の発生の有無を診断するに際して特別なプロセスを要することなく、通常の運転における流量制御弁3の開閉動作のタイミングを利用して診断を実行することができる。したがって、従来の質量流量制御装置に比べて動作が単純であり、流量制御弁3の故障の機会を減らすことができる。また、診断のためのみに使用した流体を本来の目的に利用することなく無駄に廃棄するおそれがない。
 更に、本発明の好ましい実施の形態に係る差圧式流量計の診断方法は、流量計に異常が発生したと診断したときに診断手段が異常信号を出力することをさらに含み得る。この場合、診断アルゴリズムは、例えば、図6のフローチャートに示すように、ステップS33において流量計2に異常が発生したと診断した後、異常信号6aを出力する(ステップS34)。この好ましい実施の形態における異常信号の出力によって達成される効果については、本発明に係る質量流量制御装置1について上述した説明において既に詳細に述べたので、ここでは説明を繰り返さない。
 本発明に係る質量流量制御装置を1台準備した。この質量流量制御装置1の定格流量は、窒素ガスにおいて300sccm(standard cubic centimeter)であり、流量計2は正しい流量を示すように予め較正されていた。周囲温度を24℃に保持した環境において、質量流量制御装置1の入口側に窒素ガスを供給し、出口側の圧力は真空とした。そして、設定流量を定格流量の100%に設定し、流量制御弁3が閉じた状態から開いた状態に変化して流量の制御が開始されたときから測定流量が安定するまでの期間における下流側における流体の圧力(第2圧力)の値(P2)を10msの間隔にて測定し、開弁時圧力値として記録手段5に記録した。
 次に、上記条件のまま窒素ガスを20秒間流した後、設定流量を0%に変更し、流量制御弁3が開いた状態から閉じた状態に変化して流量の制御が停止されたときから測定流量がゼロになるまでの期間における下流側における流体の圧力(第2圧力)の値(P2)を10msの間隔にて測定し、閉弁時圧力値として記録手段5に記録した。記録手段5に記録された開弁時圧力値及び閉弁時圧力値のそれぞれにつき、時間について微分した値(dP2/dt)を計算し、dP2/dtの絶対値の最大値を管理値としてそれぞれ求めた。このようにして取得された開弁時及び閉弁時における管理値は上述した初期管理値に相当する。求められた初期管理値を表1に示す。
 次に、流量計2のスパンを変更し、流量計2によって測定される窒素ガスの流量に-5.0%の誤差が生じるように調整を行うことにより、流量計2に異常が発生した状態を人為的に作り出した。この状態において、上記と同様の手順に従って質量流量制御装置1に窒素ガスを流したり停止したりしたとき(即ち、開弁時及び閉弁時)の下流側における流体の圧力の値(P2)を10msの間隔にて測定し、開弁時圧力値及び閉弁時圧力値として記録手段5にそれぞれ記録した。制御手段4は、流量計2の測定流量に基づいて窒素ガスをより多く流そうとしたので、測定流量が安定したときの下流側における流体の圧力(第2圧力)の値(P2)は流量計2のスパンを変更する前よりも低くなった。さらに、流量計2によって測定される窒素ガスの流量に-10.0%の誤差が生じるように調整を行って同様の測定を行った。それぞれの測定において記録された下流側における流体の圧力の値(P2)(即ち、開弁時圧力値及び閉弁時圧力値)に基づいて取得された管理値(測定管理値)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した実施例から、本発明に係る質量流量制御装置1及び本発明に係る差圧式流量計の判定方法によれば、流量計2に異常が発生すると、流量制御弁3を開いたとき(開弁時)又は閉じたとき(閉弁時)における下流側における流体の圧力(第2圧力)の値(P2)の時間変化に基づいて取得された管理値(測定管理値)が流量計2に異常が発生していないときの管理値(初期管理値)とは異なる値を示すことが判った。したがって、開弁時及び閉弁時の両方又はいずれか一方における測定管理値を常時監視して初期管理値と比較することにより、質量流量制御装置1の流量計2に異常が発生したかどうかを迅速かつ簡便に診断することができる。
 1 質量流量制御装置
 2 差圧式流量計
  2a 上流側の圧力センサ(第1センサ)
  2b 下流側の圧力センサ(第2センサ)
  2c 差圧発生手段
  2d 流路
 3 流量制御弁
  3a アクチュエータ
  3b 弁
 4 制御手段
  4a 制御信号
 5 記録手段
 6 診断手段
  6a 異常信号
 7 機械式調圧弁

Claims (20)

  1.  流体の流路に介装された差圧発生手段の上流側における前記流体の圧力である第1圧力の値及び前記差圧発生手段の下流側における前記流体の圧力である第2圧力の値に基づいて前記流体の流量を測定するように構成された流量計と、
     前記流体の流量を制御するように構成された流量制御弁と、
     前記流量計によって測定された前記流体の流量である測定流量が前記流体の流量の目標値である設定流量と一致するように前記流量制御弁に制御信号を出力するように構成された制御手段と、
    を有する質量流量制御装置であって、
     前記流量制御弁が閉じた状態から開いた状態に変化して流量の制御が開始されたときから前記測定流量が安定するまでの期間における前記第2圧力の値である開弁時圧力値及び前記流量制御弁が開いた状態から閉じた状態に変化して流量の制御が停止されたときから前記測定流量がゼロになるまでの期間における前記第2圧力の値である閉弁時圧力値の両方又はいずれか一方を記録するように構成された記録手段と、
     前記開弁時圧力値及び前記閉弁時圧力値の両方又はいずれか一方に基づいて取得される管理値である測定管理値と前記流量計に異常が発生していないときの前記管理値である初期管理値との差の絶対値が所定の閾値を超える場合に前記流量計に異常が発生したと診断するように構成された診断手段と、
    をさらに有することを特徴とする質量流量制御装置。
  2.  前記管理値は、前記開弁時圧力値を時間について微分した値の絶対値の最大値及び前記閉弁時圧力値を時間について微分した値の絶対値の最大値の両方又はいずれか一方である、請求項1に記載の質量流量制御装置。
  3.  前記管理値は、前記流量制御弁による流量の制御が開始されたときから前記開弁時圧力値を時間について微分した値の絶対値が最大となるまでの時間及び前記流量制御弁による流量の制御が停止されたときから前記閉弁時圧力値を時間について微分した値の絶対値が最大となるまでの時間の両方又はいずれか一方である、請求項1に記載の質量流量制御装置。
  4.  前記管理値は、前記開弁時圧力値を時間について微分した値の絶対値が最大となったときから当該絶対値がゼロとなるまでの時間及び前記閉弁時圧力値を時間について微分した値の絶対値が最大となったときから当該絶対値がゼロとなるまでの時間の両方又はいずれか一方である、請求項1に記載の質量流量制御装置。
  5.  前記管理値は、前記開弁時圧力値を時間について微分した値の半値幅及び前記閉弁時圧力値を時間について微分した値の半値幅の両方又はいずれか一方である、請求項1に記載の質量流量制御装置。
  6.  前記流量計は、前記第1圧力の値を測定する圧力センサである第1センサ及び前記第2圧力の値を測定する圧力センサである第2センサを有する、請求項1から請求項5までのいずれかに記載の質量流量制御装置。
  7.  前記流量計は、前記第1圧力の値を測定する圧力センサである第1センサ及び前記第2圧力の値を測定する圧力センサである第2センサのいずれか一方と、前記第1圧力の値と前記第2圧力の値との差を測定する差圧センサである第3センサと、を有する、請求項1から請求項5までのいずれかに記載の質量流量制御装置。
  8.  前記流量計の上流側に隣接して配置される機械式調圧弁をさらに有する、請求項1から請求項7までのいずれかに記載の質量流量制御装置。
  9.  前記流量制御弁は前記流量計の下流側に配置される、請求項1から請求項8までのいずれかに記載の質量流量制御装置。
  10.  前記診断手段は、前記流量計に異常が発生したと診断したときに異常信号を出力するように構成された、請求項1から請求項9までのいずれかに記載の質量流量制御装置。
  11.  流体の流路に介装された差圧発生手段の上流側における前記流体の圧力である第1圧力の値及び前記差圧発生手段の下流側における前記流体の圧力である第2圧力の値に基づいて前記流体の流量を測定するように構成された流量計と、
     前記流体の流量を制御するように構成された流量制御弁と、
     前記流量計によって測定された前記流体の流量である測定流量が前記流体の流量の目標値である設定流量と一致するように前記流量制御弁に制御信号を出力するように構成された制御手段と、
    を有する質量流量制御装置において、前記流量計に異常が発生したか否かを判定する、差圧式流量計の診断方法であって、
     前記質量流量制御装置は、
     前記第2圧力の値を記録するように構成された記録手段と、
     前記記録手段によって記録された前記第2圧力の値に基づいて前記流量計に異常が発生したと診断するように構成された診断手段と、
    をさらに有し、
     前記流量制御弁が閉じた状態から開いた状態に変化して流量の制御が開始されたときから前記測定流量が安定するまでの期間における前記第2圧力の値である開弁時圧力値及び前記流量制御弁が開いた状態から閉じた状態に変化して流量の制御が停止されたときから前記測定流量がゼロになるまでの期間における前記第2圧力の値である閉弁時圧力値の両方又はいずれか一方を前記記録手段が記録すること、
     前記開弁時圧力値及び前記閉弁時圧力値の両方又はいずれか一方に基づく管理値である測定管理値と前記流量計に異常が発生していないときの前記管理値である初期管理値との差の絶対値が所定の閾値を超える場合に前記流量計に異常が発生したと前記診断手段が診断すること、
    を含む、差圧式流量計の診断方法。
  12.  前記管理値は、前記開弁時圧力値を時間について微分した値の絶対値の最大値及び前記閉弁時圧力値を時間について微分した値の絶対値の最大値の両方又はいずれか一方である、請求項11に記載の差圧式流量計の診断方法。
  13.  前記管理値は、前記流量制御弁による流量の制御が開始されたときから前記開弁時圧力値を時間について微分した値の絶対値が最大となるまでの時間及び前記流量制御弁による流量の制御が停止されたときから前記閉弁時圧力値を時間について微分した値の絶対値が最大となるまでの時間の両方又はいずれか一方である、請求項11に記載の差圧式流量計の診断方法。
  14.  前記管理値は、前記開弁時圧力値を時間について微分した値の絶対値が最大となったときから当該絶対値がゼロとなるまでの時間及び前記閉弁時圧力値を時間について微分した値の絶対値が最大となったときから当該絶対値がゼロとなるまでの時間の両方又はいずれか一方である、請求項11に記載の差圧式流量計の診断方法。
  15.  前記管理値は、前記開弁時圧力値を時間について微分した値の半値幅及び前記閉弁時圧力値を時間について微分した値の半値幅の両方又はいずれか一方である、請求項1に記載の差圧式流量計の診断方法。
  16.  前記流量計は、前記第1圧力の値を測定する圧力センサである第1センサ及び前記第2圧力の値を測定する圧力センサである第2センサを有する、請求項11から請求項15までのいずれかに記載の差圧式流量計の診断方法。
  17.  前記流量計は、前記第1圧力の値を測定する圧力センサである第1センサ及び前記第2圧力の値を測定する圧力センサである第2センサのいずれか一方と、前記第1圧力の値と前記第2圧力の値との差を測定する差圧センサである第3センサと、を有する、請求項11から請求項15までのいずれかに記載の差圧式流量計の診断方法。
  18.  前記質量流量制御装置は、前記流量計の上流側に隣接して配置される機械式調圧弁をさらに有する、請求項11から請求項17までのいずれかに記載の差圧式流量計の診断方法。
  19.  前記流量制御弁は前記流量計の下流側に配置される、請求項11から請求項18までのいずれかに記載の差圧式流量計の診断方法。
  20.  前記流量計に異常が発生したと診断したときに前記診断手段が異常信号を出力することをさらに含む、請求項11から請求項19までのいずれかに記載の差圧式流量計の診断方法。
PCT/JP2016/077837 2015-09-30 2016-09-21 質量流量制御装置、及び差圧式流量計の診断方法 WO2017057129A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187008652A KR102339510B1 (ko) 2015-09-30 2016-09-21 질량 유량 제어 장치 및 차압식 유량계의 진단 방법
CN201680056903.9A CN108139761B (zh) 2015-09-30 2016-09-21 质量流量控制装置和压差式流量计的诊断方法
JP2017543183A JP6828687B2 (ja) 2015-09-30 2016-09-21 質量流量制御装置、及び流量計の診断方法
US15/760,136 US10459458B2 (en) 2015-09-30 2016-09-21 Mass flow controller and diagnostic method for differential pressure type flow meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-192680 2015-09-30
JP2015192680 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057129A1 true WO2017057129A1 (ja) 2017-04-06

Family

ID=58427550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077837 WO2017057129A1 (ja) 2015-09-30 2016-09-21 質量流量制御装置、及び差圧式流量計の診断方法

Country Status (5)

Country Link
US (1) US10459458B2 (ja)
JP (1) JP6828687B2 (ja)
KR (1) KR102339510B1 (ja)
CN (1) CN108139761B (ja)
WO (1) WO2017057129A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028747A (ja) * 2017-07-31 2019-02-21 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
WO2019202959A1 (ja) * 2018-04-19 2019-10-24 株式会社堀場エステック 流量制御装置、診断方法、及び、流量制御装置用プログラム
WO2020218138A1 (ja) * 2019-04-25 2020-10-29 株式会社フジキン 流量制御装置
JP2021513147A (ja) * 2018-01-30 2021-05-20 イリノイ トゥール ワークス インコーポレイティド 絶対圧及び差圧トランスデューサーを有する質量流量コントローラー
KR20220044555A (ko) * 2019-08-05 2022-04-08 아이커 시스템즈, 인크. 층류 제한기

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219536B4 (de) * 2016-10-07 2018-04-19 Continental Automotive Gmbh Verfahren und Vorrichtung zur Überwachung eines Drucksensors in einem hydraulischen System eines Kraftfahrzeugs
US10444044B2 (en) * 2017-01-31 2019-10-15 Joel David Bell Flow measurement systems and methods
JP7068062B2 (ja) * 2018-06-18 2022-05-16 株式会社堀場製作所 流体制御装置、及び、流量比率制御装置
KR102101426B1 (ko) 2018-12-05 2020-04-16 엠케이피 주식회사 압력식 유량 제어 장치 및 이를 이용한 유량 제어 방법
JP7376307B2 (ja) * 2019-10-08 2023-11-08 アズビル株式会社 不調判定装置および方法
JP2022029854A (ja) * 2020-08-05 2022-02-18 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御プログラム
US11815388B2 (en) * 2020-12-01 2023-11-14 Honeywell International Inc. Method and system for timely detecting gas pressure irregularities using a gas meter in a power efficient manner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534110A (ja) * 2002-07-19 2005-11-10 セレリティー グループ,インコーポレイテッド マスフローコントローラにおける圧力補償のための方法および装置
JP2010091320A (ja) * 2008-10-06 2010-04-22 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
JP2012226627A (ja) * 2011-04-21 2012-11-15 Hitachi Metals Ltd 流量制御装置および流量センサユニット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546153B2 (ja) 1998-08-24 2004-07-21 忠弘 大見 圧力式流量制御装置におけるオリフィス目詰検出方法およびその検出装置
JP4308356B2 (ja) 1999-01-25 2009-08-05 株式会社堀場エステック 圧力式流量コントローラのノズル診断機構および圧力式流量コントローラのノズル診断方法
JP2004157719A (ja) * 2002-11-06 2004-06-03 Stec Inc マスフローコントローラ
US8744784B2 (en) * 2006-11-02 2014-06-03 Horiba Stec, Co., Ltd. Diagnostic mechanism in differential pressure type mass flow controller
JP5082989B2 (ja) * 2008-03-31 2012-11-28 日立金属株式会社 流量制御装置、その検定方法及び流量制御方法
JP5962668B2 (ja) * 2011-01-20 2016-08-03 日立金属株式会社 オンボードでの診断、予測及びデータ収集を行うマスフローコントローラ
JP5873681B2 (ja) * 2011-10-14 2016-03-01 株式会社堀場エステック 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
JP6163112B2 (ja) * 2014-01-22 2017-07-12 アズビル株式会社 ポジショナ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534110A (ja) * 2002-07-19 2005-11-10 セレリティー グループ,インコーポレイテッド マスフローコントローラにおける圧力補償のための方法および装置
JP2010091320A (ja) * 2008-10-06 2010-04-22 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
JP2012226627A (ja) * 2011-04-21 2012-11-15 Hitachi Metals Ltd 流量制御装置および流量センサユニット

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028747A (ja) * 2017-07-31 2019-02-21 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP2021513147A (ja) * 2018-01-30 2021-05-20 イリノイ トゥール ワークス インコーポレイティド 絶対圧及び差圧トランスデューサーを有する質量流量コントローラー
JP7216736B2 (ja) 2018-01-30 2023-02-01 イリノイ トゥール ワークス インコーポレイティド 絶対圧及び差圧トランスデューサーを有する質量流量コントローラー
EP3746860B1 (en) * 2018-01-30 2023-01-04 Illinois Tool Works INC. Mass flow controller with absolute and differential pressure transducer
US11526181B2 (en) 2018-01-30 2022-12-13 Illinois Tool Works Inc. Mass flow controller with absolute and differential pressure transducer
JPWO2019202959A1 (ja) * 2018-04-19 2021-04-22 株式会社堀場エステック 流量制御装置、診断方法、及び、流量制御装置用プログラム
KR20210003098A (ko) * 2018-04-19 2021-01-11 가부시키가이샤 호리바 에스텍 유량 제어 장치, 진단 방법, 및 유량 제어 장치용 프로그램이 저장된 기록매체
WO2019202959A1 (ja) * 2018-04-19 2019-10-24 株式会社堀場エステック 流量制御装置、診断方法、及び、流量制御装置用プログラム
JP7217742B2 (ja) 2018-04-19 2023-02-03 株式会社堀場エステック 流量制御装置、診断方法、及び、流量制御装置用プログラム
KR102569945B1 (ko) 2018-04-19 2023-08-24 가부시키가이샤 호리바 에스텍 유량 제어 장치, 진단 방법, 및 유량 제어 장치용 프로그램이 저장된 기록매체
US11789435B2 (en) 2018-04-19 2023-10-17 Horiba Stec, Co., Ltd. Flow control device, diagnostic method, and program for flow control device
WO2020218138A1 (ja) * 2019-04-25 2020-10-29 株式会社フジキン 流量制御装置
US11914407B2 (en) 2019-04-25 2024-02-27 Fujikin Incorporated Flow rate control device
JP7495742B2 (ja) 2019-04-25 2024-06-05 株式会社フジキン 流量制御装置および流量制御方法
KR20220044555A (ko) * 2019-08-05 2022-04-08 아이커 시스템즈, 인크. 층류 제한기
JP7413505B2 (ja) 2019-08-05 2024-01-15 アイコール・システムズ・インク 層流制限器
KR102667577B1 (ko) 2019-08-05 2024-05-22 아이커 시스템즈, 인크. 층류 제한기

Also Published As

Publication number Publication date
US20180253111A1 (en) 2018-09-06
JP6828687B2 (ja) 2021-02-10
JPWO2017057129A1 (ja) 2018-07-26
CN108139761B (zh) 2021-02-19
CN108139761A (zh) 2018-06-08
KR102339510B1 (ko) 2021-12-16
KR20180059786A (ko) 2018-06-05
US10459458B2 (en) 2019-10-29

Similar Documents

Publication Publication Date Title
WO2017057129A1 (ja) 質量流量制御装置、及び差圧式流量計の診断方法
JP6926168B2 (ja) 質量流量コントローラ
JP5873681B2 (ja) 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
CN108369425B (zh) 流量控制装置以及使用流量控制装置的异常检测方法
JP5809012B2 (ja) 流量制御装置、流量測定機構、又は、当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラム
US9870006B2 (en) Pressure type flow control system with flow monitoring
TWI450063B (zh) 差壓式質量流量控制器中之診斷機構及診斷方法
JP5058358B2 (ja) 診断機構
TWI521190B (zh) 質流控制器
CN109324641B (zh) 流量控制装置、流量控制方法和程序存储介质
JP2013088944A (ja) 流量制御装置、流量測定機構、又は、当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラム
CN108572023B (zh) 诊断系统、诊断方法和存储介质
JP5752521B2 (ja) 診断装置及びその診断装置を備えた流量制御装置
JP7457455B2 (ja) 流体制御弁用診断装置、流体制御装置、及び流体制御弁用診断プログラム
JP6528120B2 (ja) ガスメータ評価システム及びこれに用いられるガスメータ
JP2007192775A (ja) 流量計
JP7111408B2 (ja) 流量制御装置の異常検知方法および流量監視方法
JP2021093182A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP2023109268A (ja) 圧力式流量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543183

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760136

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187008652

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851303

Country of ref document: EP

Kind code of ref document: A1