JP2019026531A - リチウム化合物の溶解方法および、炭酸リチウムの製造方法 - Google Patents

リチウム化合物の溶解方法および、炭酸リチウムの製造方法 Download PDF

Info

Publication number
JP2019026531A
JP2019026531A JP2017150168A JP2017150168A JP2019026531A JP 2019026531 A JP2019026531 A JP 2019026531A JP 2017150168 A JP2017150168 A JP 2017150168A JP 2017150168 A JP2017150168 A JP 2017150168A JP 2019026531 A JP2019026531 A JP 2019026531A
Authority
JP
Japan
Prior art keywords
lithium
carbonate
water
lithium compound
hydrogen carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017150168A
Other languages
English (en)
Other versions
JP6682480B2 (ja
Inventor
裕貴 有吉
Yuki Ariyoshi
裕貴 有吉
功 富田
Isao Tomita
功 富田
阿部 洋
Hiroshi Abe
洋 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017150168A priority Critical patent/JP6682480B2/ja
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to TW107126720A priority patent/TWI718398B/zh
Priority to EP18841812.3A priority patent/EP3663262A4/en
Priority to US16/635,964 priority patent/US11718895B2/en
Priority to PCT/JP2018/028929 priority patent/WO2019026978A1/ja
Priority to KR1020207003255A priority patent/KR102354730B1/ko
Priority to CN201880050559.1A priority patent/CN110997568A/zh
Priority to EP20159892.7A priority patent/EP3689821A1/en
Priority to CN202211079551.2A priority patent/CN115433826A/zh
Publication of JP2019026531A publication Critical patent/JP2019026531A/ja
Application granted granted Critical
Publication of JP6682480B2 publication Critical patent/JP6682480B2/ja
Priority to US18/315,623 priority patent/US20230279522A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】リチウム化合物の水等への溶解を改善して、リチウム化合物を有効に溶解させることのできるリチウム化合物の溶解方法および、それを用いる炭酸リチウムの製造方法を提供する。【解決手段】この発明のリチウム化合物の溶解方法は、水もしくは酸性溶液にリチウム化合物を接触させるとともに、前記リチウム化合物とは別に前記水もしくは酸性溶液に炭酸イオンを供給して、炭酸を生じさせ、リチウム化合物を前記炭酸と反応させて炭酸水素リチウムを生成させる。【選択図】図1

Description

この発明は、リチウム化合物の溶解方法および、それを用いる炭酸リチウムの製造方法に関するものであり、特には、リチウム化合物を有効に溶解させ、高品位の炭酸リチウムの製造に寄与することのできる技術を提案するものである。
たとえば、所定の電気・電子機器その他の廃棄物から金属を回収する湿式プロセス等では、炭酸リチウム等のリチウム化合物が得られることがあるが、そのリチウム化合物のリチウム品位が低い場合、リチウム品位を高めるため、リチウム化合物に対して精製処理を施す場合がある。
この精製処理は具体的には、リチウム化合物に対してリパルプ洗浄を行うとともに、そこに炭酸ガスを吹き込み、次いで、固液分離によりリチウムが溶解した溶液から、不純物であるカルシウムやマグネシウム等を分離させる。その後、脱酸・濃縮を行った後、固液分離により、精製炭酸リチウムと濾液とに分離させる。これにより得られた精製炭酸リチウム中の溶解性不純物の品位が高い場合は、さらに洗浄を繰り返し行うこともある。
しかるに、一般に炭酸リチウム等のリチウム化合物の水への溶解度は低いことから、精製処理におけるリパルプ洗浄で十分多くのリチウム化合物が溶解するとは言い難く、それにより、従来は、精製によるリチウム化合物のリチウム品位の向上については改善の余地があった。
また、リチウムイオン二次電池スクラップを焙焼して得られる電池粉末は、これまで、そこに含まれる種々の金属成分の多くを浸出させる酸浸出を行った後、溶媒抽出や中和等を施すことにより最終的に炭酸リチウムを得ていたが、電池粉末からリチウムのみを水等による溶解で予め回収することができれば、リチウムの回収プロセスの飛躍的な簡略化につながると考えられる。しかしながら、従来は、水に対するリチウム化合物の低い溶解度の故に、電池粉末に含まれるリチウム化合物を有効に溶解させることができなかった。
この発明は、このような問題を解決することを課題とするものであり、その目的とするところは、リチウム化合物の水等への溶解を改善して、リチウム化合物を有効に溶解させることのできるリチウム化合物の溶解方法および、それを用いる炭酸リチウムの製造方法を提供することにある。
発明者は鋭意検討の結果、リチウム化合物と接触させる水もしくは酸性溶液に、リチウム化合物とは別に炭酸イオンを供給して炭酸を生じさせ、そしてその炭酸とリチウム化合物との反応により炭酸水素リチウムを生成させることで、リチウム化合物の溶解量が大きく増大することを見出した。なお、水もしくは酸性溶液への炭酸イオンの供給の時期は特に問わず、水もしくは酸性溶液中にリチウム化合物を添加する場合は、水もしくは酸性溶液とリチウム化合物との添加前、添加中及び/又は添加後のいずれであってもよい。
このような知見の下、この発明のリチウム化合物の溶解方法は、水もしくは酸性溶液にリチウム化合物を接触させるとともに、前記リチウム化合物とは別に前記水もしくは酸性溶液に炭酸イオンを供給して、炭酸を生じさせ、リチウム化合物を前記炭酸と反応させて炭酸水素リチウムを生成させることにある。
この発明のリチウム化合物の溶解方法では、水もしくは酸性溶液中の炭酸の飽和状態が維持されるように、炭酸イオンを供給することが好適である。
また、この発明のリチウム化合物の溶解方法では、リチウム化合物が、水酸化リチウム、酸化リチウム及び炭酸リチウムのなかから選択される少なくとも一種であることが好ましい。
そしてまた、この発明のリチウム化合物の溶解方法では、前記水もしくは酸性溶液への炭酸イオンの供給を、炭酸ガスの吹込みにより行うことが好ましい。
この発明のリチウム化合物の溶解方法では、炭酸水素リチウムを生成させる際の前記水もしくは酸性溶液の液温は、5℃〜25℃とすることが好ましい。
この発明の炭酸リチウムの製造方法は、上記のいずれかのリチウム化合物の溶解方法を用いるものであって、前記炭酸水素リチウムを生成させた後、当該炭酸水素リチウム溶液から炭酸を脱離させ、該炭酸水素リチウム溶液中のリチウムイオンを炭酸リチウムとして析出させることにある。
この発明の炭酸リチウムの製造方法では、炭酸水素リチウムを生成させた後、前記炭酸水素リチウム溶液を加熱して、当該炭酸水素リチウム溶液から炭酸を炭酸ガスとして脱離させることが好ましい。
この場合、炭酸水素リチウムを生成させた後、前記炭酸水素リチウム溶液を、50℃〜90℃の温度に加熱することが好ましい。
この発明の炭酸リチウムの製造方法では、前記リチウム化合物が粗炭酸リチウムを含み、前記粗炭酸リチウムよりリチウム品位の高い炭酸リチウムを製造することができる。
この発明によれば、リチウム化合物とは別に水もしくは酸性溶液に炭酸イオンを供給して炭酸を生じさせ、リチウム化合物を前記炭酸と反応させて炭酸水素リチウムを生成させることにより、リチウム化合物の溶解度が増加することから、リチウム化合物を有効に溶解させることができる。
この発明の一の実施形態に係るリチウムの溶解方法を示すフロー図である。 実施例の所定の各温度における液中のリチウム濃度を示すグラフである。
以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態に係るリチウムの溶解方法は、水もしくは酸性溶液にリチウム化合物を接触させるとともに、前記リチウム化合物とは別に前記水もしくは酸性溶液に炭酸イオンを供給して、炭酸を生じさせ、リチウム化合物を前記炭酸と反応させて炭酸水素リチウムを生成させるものである。
(リチウム化合物)
この発明では、様々な固体のリチウム化合物を対象とすることができる。たとえば、典型的には、リチウムイオン二次電池スクラップから有価金属を回収する際に得られる炭酸リチウムその他のリチウム化合物等がある。
リチウムイオン二次電池スクラップから有価金属を回収するには一般に、リチウムイオン二次電池スクラップを焙焼して有害な電解液を除去し、その後に破砕、篩別を順に行い、次いで、篩別の篩下に得られる電池粉末を酸浸出液に添加して浸出し、そこに含まれ得るリチウム、ニッケル、コバルト、マンガン、鉄、銅、アルミニウム等を液中に溶解させる。そしてその後、浸出後液に溶解している各金属元素のうち、鉄、銅及びアルミニウム等を順次に又は同時に除去し、コバルト、マンガン及びニッケル等の有価金属を回収する。具体的には、浸出後液に対し、分離させる金属に応じた複数段階の溶媒抽出もしくは中和等を施し、さらには、各段階で得られたそれぞれの溶液に対して、逆抽出、電解、炭酸化その他の処理を施す。それにより、リチウムイオンを含むリチウム含有溶液が得られる。このようにして得られたリチウム含有溶液に対しては、炭酸塩の添加や炭酸ガスの吹込み等により炭酸化を行うことにより、リチウム品位が比較的低い炭酸リチウムである粗炭酸リチウムが得られる。この粗炭酸リチウムを含むリチウム化合物を対象とすることができる。
また、上記の電池粉末には、炭酸リチウム、水酸化リチウムおよび酸化リチウムのうちの少なくとも一種が含まれることがある。このような電池粉末からリチウムを溶解させるため、かかる電池粉末中のリチウム化合物を対象とすることができる。
上記のようなリチウム化合物を対象とすることは、携帯電話その他の種々の電子機器等で使用されて電池製品の寿命や製造不良またはその他の理由によって廃棄されたリチウムイオン二次電池スクラップに含まれる金属を再利用することにつながり、資源の有効活用の観点から好ましい。
(リチウム化合物の溶解)
上述したようなリチウム化合物を溶解させるには、当該リチウム化合物を水もしくは酸性溶液に接触させるとともに、前記リチウム化合物とは別に前記水もしくは酸性溶液に炭酸イオンを供給して、炭酸を生じさせ、リチウム化合物を前記炭酸と反応させて炭酸水素リチウムを生成させる。
リチウム化合物が、たとえば、水酸化リチウム、酸化リチウム及び炭酸リチウムのなかから選択される少なくとも一種を含むものである場合、これを水もしくは酸性溶液中に、炭酸ガスの吹き込みや炭酸塩の添加等による炭酸イオンの供給とともに添加すると、炭酸リチウムについては、まずH2O+CO2→H2CO3の反応により炭酸が生じ、次いで、Li2CO3+H2CO3→2LiHoCO3の想定反応式の下で、炭酸水素リチウムが生じると考えられる。それにより、水もしくは酸性溶液への炭酸リチウムの溶解が促進される。また水酸化リチウムや酸化リチウムについては、2LiOH→Li2O+H2O及びLi2O+H2CO3+CO2→2LiHCO3、Li2O+CO2→Li2CO3及びLi2CO3+H2CO3→2LiHCO3の反応で炭酸水素リチウムが生じると推測される。したがって、これらの水酸化リチウムや酸化リチウムも容易に溶解させることができる。
よって、リチウム化合物を溶解させるに当っては、リチウム化合物を水もしくは酸性溶液に添加する前、添加している間、及び、添加した後のうちの少なくとも一つの時期に、水もしくは酸性溶液に炭酸イオンを供給することが肝要である。
炭酸イオンの供給方法としては、水もしくは酸性溶液に、炭酸ガスを吹き込んだり、炭酸塩や炭酸水(炭酸溶存溶液)を添加したりすること等が挙げられるが、なかでも、炭酸ガスの吹き込みは、不純物の混入が抑えられるうえ、液量増加を抑制出来ることから、リチウム濃度の希釈が起こらない点で好ましい。なお、炭酸塩を添加する場合における炭酸塩の具体例としては、炭酸ナトリウム等を挙げることができ、この場合の炭酸塩の添加量は、たとえば1.0〜2.0倍モル当量、好ましくは1.0〜1.2倍モル当量とすることができる。
上述した反応式により炭酸水素リチウムを有効に生じさせるとの観点から、水もしくは酸性溶液中の炭酸の飽和状態が維持されるように、炭酸イオンを供給することが好適である。それにより、炭酸水素リチウムの生成が促進されて、より多くのリチウム化合物を効果的に溶解させることができる。
ここで用いる水もしくは酸性溶液は、水道水、工業用水、蒸留水、精製水、イオン交換水、純水、超純水等や、それに硫酸等の酸を添加したものとすることができる。
酸を添加した酸性溶液とする場合、リチウム化合物を溶解して得られる炭酸水素リチウム溶液のpHが7〜10となるように酸の添加量を調整することが好適である。炭酸水素リチウム溶液のpHが7未満になると、リチウム化合物とともに電池粉末等に含まれ得るコバルト等の金属が溶けだすおそれがあり、pHが10を超えると、同様に含まれ得るアルミニウムが溶けだすおそれがあるからである。なお酸の添加の時期は、リチウムの溶解前、溶解中および/または溶解後のいずれであってもよい。
リチウム化合物と水もしくは酸性溶液との接触方法としては、撒布や浸漬、通液等といった様々な方法があるが、反応効率の観点から、水中にリチウム化合物を浸漬させて撹拌する方法が好ましい。
リチウム化合物と水もしくは酸性溶液との接触時の液温は、5℃〜25℃とすることが好ましい。接触時の水もしくは酸性溶液の液温をこの程度の比較的低い温度とすることにより、温度が低いほど溶解度が大きい炭酸水素リチウムを液中により効果的に生成することができる。水もしくは酸性溶液のリチウム濃度を、所定の液温における炭酸水素リチウムの溶解度にできる限り近づくようにリチウム化合物を溶解させることが好適である。
なおここで、パルプ濃度は、50g/L〜500g/Lとすることができる。このパルプ濃度は、リチウム化合物と接触させる水もしくは酸性溶液の量(L)に対するリチウム化合物の乾燥重量(g)の比を意味する。
リチウム化合物の溶解により、水もしくは酸性溶液へのリチウムの溶解率は、30%〜70%であることが好ましく、または45%〜75%であることが好ましい。
炭酸水素リチウム溶液のリチウム濃度は、7.0g/L〜10.0g/Lであることが好ましく、特に8.0g/L〜9.0g/Lあることがより一層好ましい。なお、炭酸水素リチウム溶液には、ナトリウムが0mg/L〜1000mg/L、アルミニウムが0mg/L〜500mg/Lで含まれることがある。
リチウム化合物を含む電池粉末を水もしくは酸性溶液に接触させた場合、当該電池粉末のうち、水もしくは酸性溶液に溶けずに残った残渣は、固液分離により取り出した後、これに対して、公知の方法にて、酸浸出、溶媒抽出、電解採取その他の処理を施して、そこに含まれる各種金属を回収することができる。ここでは、当該残渣についての詳細な説明は省略する。
(炭酸リチウムの製造)
上述したリチウム化合物の溶解の後、それにより得られた炭酸水素リチウム溶液から炭酸を脱離させ、炭酸水素リチウム溶液中のリチウムイオンを炭酸リチウムとして析出させるリチウム析出工程を行うことができる。
ここでは、炭酸水素リチウム溶液を、好ましくは50℃〜90℃の温度に加熱して濃縮し、炭酸水素リチウム溶液から炭酸を炭酸ガスとして脱離させることができる。炭酸水素リチウムは温度の上昇に伴い、溶解度が低下するという新たな知見の下、このリチウム析出工程では、加熱により、炭酸水素リチウムの生成によって炭酸水素リチウム溶液に十分に溶解しているリチウムを、炭酸リチウムとして効果的に析出させることができる。
炭酸水素リチウム溶液の加熱温度が50℃未満では、炭酸が有効に脱離しないことが懸念されるので、この加熱温度は50℃以上とすることが好適である。一方、当該加熱温度が90℃を超えると、沸騰による不具合が生じる可能性があるので、90℃を上限とすることができる。この観点より、炭酸水素リチウム溶液の加熱温度は、70℃〜80℃とすることがより一層好ましい。
あるいは、炭酸水素リチウム溶液に、メタノールやエタノール等を添加して、そのような非水溶媒による炭酸の脱離を行うことも可能である。なかでも、メタノールやエタノールは安価であることから非水溶媒として用いることが好ましい。ここで添加方法として具体的には、炭酸水素リチウム溶液に対して非水溶媒を混合攪拌することを挙げることができる。
(炭酸リチウムの精製)
以上のようにして得られた炭酸リチウムのリチウム品位が、目標とする品位より低い場合、必要に応じて、高品位の炭酸リチウムを得るため、炭酸リチウムの精製を行うことができる。なおここで、炭酸リチウムの目標とするリチウム品位は、たとえば16%以上、好ましくは17%以上とすることができる。但し、このリチウム精製工程は必ずしも必要ではない。
炭酸リチウムの精製は具体的には、炭酸水素リチウム溶液からの炭酸の脱離により得られた炭酸リチウムに対してリパルプ洗浄を行うとともに、そこに炭酸ガスを吹き込んで、液中に炭酸を溶解させ、次いで、固液分離により、炭酸水素リチウム液と、カルシウムやマグネシウムなどを分離させる。その後、脱酸・濃縮を行った後、固液分離により、精製炭酸リチウムと濾液とに分離させる。この精製炭酸リチウム中の不純物品位が高い場合は、さらに洗浄を行うことができる。
次に、この発明のリチウム化合物の溶解方法を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。
(試験例1)
乾燥質量が30gの試薬グレードの炭酸リチウムを、300mLの純水に添加してスラリー化した。このスラリーを、20℃、30℃、40℃、50℃、60℃、70℃、80℃のそれぞれの温度に昇温し、各温度到達時に、想定反応式:Li2CO3+H2CO3→2LiHoCO3に対し、大過剰の炭酸ガスを吹き込んだ。炭酸ガスを吹き込んだ後、スラリーに対して固液分離を行い、濾液の量と液中のリチウム濃度を測定した。その結果を表1及び図2に示す。また、炭酸ガスを吹き込まなかったことを除いて同様に試験を行い、リチウム濃度を測定した。その結果も図2に「炭酸Li」としてプロットしている。なおここで、リチウム濃度は、濾液に対して高周波誘導結合プラズマ発光分光分析法(ICP−AES)による定量分析を行って測定した。
40℃で得られたリチウム濃度が7.0g/Lの濾液を、60℃で2時間にわたって攪拌しながら加熱し、炭酸を脱離させた。その後、固液分離を行い、液量を測定したところ、揮発による液量の低下はほぼ無く、低下した液量は、生じた析出物へ付着した水分のみであった。炭酸を脱離させた後の濾液中のリチウム濃度は5.0g/Lであり、炭酸脱離の前後で液中からのリチウムの減少量は0.65gであった。析出物について乾燥後にX線回折法(XRD)により同定したところ、炭酸リチウムであることが判明し、そのリチウム量は0.48gであった。
(試験例2)
試験例1と同様の30gの炭酸リチウムを純水に溶かすに当たり、炭酸ガスを供給する場合と炭酸ガスを供給しない場合のそれぞれについて、純水の液温を変化させた複数の試験を行った。その結果を表2に示す。表2に示す溶解率は、純水へのリチウムの溶解率を意味し、浸出後の残渣重量から算出したものである。
表2に示すところから、炭酸ガスを供給することにより、リチウムの溶解率が大幅に増加することが明らかであり、この傾向は特に液温が低い場合に顕著になることが解かる。
以上より、この発明によれば、炭酸リチウムを有効に溶解させることができるとともに、比較的高品位の炭酸リチウムが得られることが解った。また、炭酸溶解する際は凝固が起こらない範囲でできる限り低温とし、また炭酸脱離時はできる限り高温とすることにより、さらにリチウムの回収率を向上できることが解った。

Claims (9)

  1. 水もしくは酸性溶液にリチウム化合物を接触させるとともに、前記リチウム化合物とは別に前記水もしくは酸性溶液に炭酸イオンを供給して、炭酸を生じさせ、リチウム化合物を前記炭酸と反応させて炭酸水素リチウムを生成させる、リチウム化合物の溶解方法。
  2. 水もしくは酸性溶液中の炭酸の飽和状態が維持されるように、炭酸イオンを供給する、請求項1に記載のリチウム化合物の溶解方法。
  3. リチウム化合物が、水酸化リチウム、酸化リチウム及び炭酸リチウムのなかから選択される少なくとも一種である、請求項1又は2に記載のリチウム化合物の溶解方法。
  4. 前記水もしくは酸性溶液への炭酸イオンの供給を、炭酸ガスの吹込みにより行う、請求項1〜3のいずれか一項に記載のリチウム化合物の溶解方法。
  5. 炭酸水素リチウムを生成させる際の前記水もしくは酸性溶液の液温を、5℃〜25℃とする、請求項1〜4のいずれか一項に記載のリチウム化合物の溶解方法。
  6. 請求項1〜5のいずれか一項に記載のリチウム化合物の溶解方法を用いて、炭酸リチウムを製造する方法であって、
    前記炭酸水素リチウムを生成させた後、当該炭酸水素リチウム溶液から炭酸を脱離させ、該炭酸水素リチウム溶液中のリチウムイオンを炭酸リチウムとして析出させる、炭酸リチウムの製造方法。
  7. 炭酸水素リチウムを生成させた後、前記炭酸水素リチウム溶液を加熱して、当該炭酸水素リチウム溶液から炭酸を炭酸ガスとして脱離させる、請求項6に記載の炭酸リチウムの製造方法。
  8. 炭酸水素リチウムを生成させた後、前記炭酸水素リチウム溶液を、50℃〜90℃の温度に加熱する、請求項7に記載の炭酸リチウムの製造方法。
  9. 前記リチウム化合物が粗炭酸リチウムを含み、前記粗炭酸リチウムよりリチウム品位の高い炭酸リチウムを製造する、請求項6〜8のいずれか一項に記載の炭酸リチウムの製造方法。
JP2017150168A 2017-08-02 2017-08-02 リチウム化合物の溶解方法および、炭酸リチウムの製造方法 Active JP6682480B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2017150168A JP6682480B2 (ja) 2017-08-02 2017-08-02 リチウム化合物の溶解方法および、炭酸リチウムの製造方法
CN202211079551.2A CN115433826A (zh) 2017-08-02 2018-08-01 锂化合物的溶解方法及碳酸锂的制造方法、以及由锂离子二次电池废料回收锂的方法
US16/635,964 US11718895B2 (en) 2017-08-02 2018-08-01 Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
PCT/JP2018/028929 WO2019026978A1 (ja) 2017-08-02 2018-08-01 リチウム化合物の溶解方法および、炭酸リチウムの製造方法、ならびに、リチウムイオン二次電池スクラップからのリチウムの回収方法
KR1020207003255A KR102354730B1 (ko) 2017-08-02 2018-08-01 리튬 화합물의 용해 방법 및, 탄산리튬의 제조 방법, 그리고, 리튬 이온 이차 전지 스크랩으로부터의 리튬의 회수 방법
CN201880050559.1A CN110997568A (zh) 2017-08-02 2018-08-01 锂化合物的溶解方法及碳酸锂的制造方法、以及由锂离子二次电池废料回收锂的方法
TW107126720A TWI718398B (zh) 2017-08-02 2018-08-01 自鋰離子二次電池廢料回收鋰之方法
EP18841812.3A EP3663262A4 (en) 2017-08-02 2018-08-01 METHOD FOR DISCLOSURE OF A LITHIUM COMPOUND, METHOD FOR MANUFACTURING LITHIUM CARBONATE AND METHOD FOR RECOVERING LITHIUM FROM SEPARATED LITHIUM-ION SECONDARY CELLS
EP20159892.7A EP3689821A1 (en) 2017-08-02 2018-08-01 Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
US18/315,623 US20230279522A1 (en) 2017-08-02 2023-05-11 Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150168A JP6682480B2 (ja) 2017-08-02 2017-08-02 リチウム化合物の溶解方法および、炭酸リチウムの製造方法

Publications (2)

Publication Number Publication Date
JP2019026531A true JP2019026531A (ja) 2019-02-21
JP6682480B2 JP6682480B2 (ja) 2020-04-15

Family

ID=65477598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150168A Active JP6682480B2 (ja) 2017-08-02 2017-08-02 リチウム化合物の溶解方法および、炭酸リチウムの製造方法

Country Status (1)

Country Link
JP (1) JP6682480B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014391A (ja) * 2019-07-16 2021-02-12 太平洋セメント株式会社 炭酸リチウムの製造方法
WO2021215486A1 (ja) 2020-04-21 2021-10-28 Jx金属株式会社 水酸化リチウムの製造方法
KR20220139651A (ko) * 2021-04-08 2022-10-17 주식회사 지엠텍 저급 탄산리튬 재결정화를 통한 고순도 탄산리튬 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310414A (ja) * 1998-04-27 1999-11-09 Mitsui Chem Inc 高純度炭酸リチウムの製造法
JP2009057278A (ja) * 2008-10-24 2009-03-19 Nippon Chem Ind Co Ltd 高純度炭酸リチウムの製造方法
JP2011011961A (ja) * 2009-07-06 2011-01-20 Jx Nippon Mining & Metals Corp リチウムイオン2次電池回収物からの炭酸リチウムの製造方法
JP2012091999A (ja) * 2010-09-27 2012-05-17 Jx Nippon Mining & Metals Corp 炭酸リチウムの精製方法
JP2016194105A (ja) * 2015-03-31 2016-11-17 Jx金属株式会社 金属混合水溶液からの金属の除去方法
JP2018145473A (ja) * 2017-03-03 2018-09-20 Jx金属株式会社 リチウム回収方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310414A (ja) * 1998-04-27 1999-11-09 Mitsui Chem Inc 高純度炭酸リチウムの製造法
JP2009057278A (ja) * 2008-10-24 2009-03-19 Nippon Chem Ind Co Ltd 高純度炭酸リチウムの製造方法
JP2011011961A (ja) * 2009-07-06 2011-01-20 Jx Nippon Mining & Metals Corp リチウムイオン2次電池回収物からの炭酸リチウムの製造方法
JP2012091999A (ja) * 2010-09-27 2012-05-17 Jx Nippon Mining & Metals Corp 炭酸リチウムの精製方法
JP2016194105A (ja) * 2015-03-31 2016-11-17 Jx金属株式会社 金属混合水溶液からの金属の除去方法
JP2018145473A (ja) * 2017-03-03 2018-09-20 Jx金属株式会社 リチウム回収方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014391A (ja) * 2019-07-16 2021-02-12 太平洋セメント株式会社 炭酸リチウムの製造方法
JP7462201B2 (ja) 2019-07-16 2024-04-05 太平洋セメント株式会社 炭酸リチウムの製造方法
WO2021215486A1 (ja) 2020-04-21 2021-10-28 Jx金属株式会社 水酸化リチウムの製造方法
KR20220132578A (ko) 2020-04-21 2022-09-30 제이엑스금속주식회사 수산화리튬의 제조 방법
KR20220139651A (ko) * 2021-04-08 2022-10-17 주식회사 지엠텍 저급 탄산리튬 재결정화를 통한 고순도 탄산리튬 제조 방법
KR102493295B1 (ko) 2021-04-08 2023-01-31 주식회사 지엠텍 저급 탄산리튬 재결정화를 통한 고순도 탄산리튬 제조 방법

Also Published As

Publication number Publication date
JP6682480B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
KR102354730B1 (ko) 리튬 화합물의 용해 방법 및, 탄산리튬의 제조 방법, 그리고, 리튬 이온 이차 전지 스크랩으로부터의 리튬의 회수 방법
JP6766014B2 (ja) リチウムイオン二次電池スクラップからのリチウムの回収方法
CN111370800B (zh) 一种废旧磷酸铁锂正极材料的回收方法
US20220045375A1 (en) Processing method of positive electrode active substance waste of lithium ion secondary battery
JP6640783B2 (ja) リチウム回収方法
JP2019178395A (ja) リチウムイオン電池スクラップからのリチウムの回収方法
US20230080556A1 (en) A process for recovering metals from recycled rechargeable batteries
JP6448684B2 (ja) リチウム回収方法
JP6946223B2 (ja) リチウム回収方法
JP6986997B2 (ja) 炭酸リチウムの製造方法及び、炭酸リチウム
JP2011168461A (ja) リチウム含有液からの高濃度リチウム液の製造方法および炭酸リチウムの製造方法
JP2011168858A (ja) リチウム含有液からの高濃度リチウム溶液の製造方法および炭酸リチウムの製造方法
CN113896211A (zh) 一种废旧磷酸铁锂电池资源化的处理方法
JP6921791B2 (ja) 炭酸リチウムの製造方法
JP6682480B2 (ja) リチウム化合物の溶解方法および、炭酸リチウムの製造方法
CN113249574A (zh) 利用选择性浸出回收废正极片中铝的方法及其应用
JP2013112859A (ja) 硫酸マンガンの製造方法
JP2010229534A (ja) ニッケルとリチウムの分離回収方法
KR102282701B1 (ko) 리튬 회수 방법
JP2019011518A (ja) リチウム回収方法
WO2016194659A1 (ja) 塩化コバルト水溶液の精製方法
JP6298002B2 (ja) リチウムイオン電池スクラップの浸出方法及び、有価金属の回収方法
JP6914314B2 (ja) リチウム回収方法
JP2016222977A5 (ja)
JP2013209267A (ja) 硫酸マンガンの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6682480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250