JP2018184889A - エンジンの制御方法及びエンジンの制御装置 - Google Patents

エンジンの制御方法及びエンジンの制御装置 Download PDF

Info

Publication number
JP2018184889A
JP2018184889A JP2017086931A JP2017086931A JP2018184889A JP 2018184889 A JP2018184889 A JP 2018184889A JP 2017086931 A JP2017086931 A JP 2017086931A JP 2017086931 A JP2017086931 A JP 2017086931A JP 2018184889 A JP2018184889 A JP 2018184889A
Authority
JP
Japan
Prior art keywords
engine
deposit
fuel injection
accelerator
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017086931A
Other languages
English (en)
Other versions
JP6531779B2 (ja
Inventor
宏 菅野
Hiroshi Sugano
宏 菅野
祐児 松尾
Yuji Matsuo
祐児 松尾
小林 徹
Toru Kobayashi
徹 小林
壮太郎 吉田
Sotaro Yoshida
壮太郎 吉田
隆志 吉崎
Takashi Yoshizaki
隆志 吉崎
祐介 丸谷
Yusuke Marutani
祐介 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017086931A priority Critical patent/JP6531779B2/ja
Publication of JP2018184889A publication Critical patent/JP2018184889A/ja
Application granted granted Critical
Publication of JP6531779B2 publication Critical patent/JP6531779B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジン停止前に当該デポジットを除去することができ、良好な再始動性が確保可能なエンジンの制御方法及びエンジンの制御装置を提供する。【解決手段】アクセル開度は、タイミングt11以降、ゼロとなる。燃料噴射量は、タイミングt12以降、ゼロとなる、そして、燃料噴射量がゼロとされるとともに、デポジット付着の有無が判定される。デポジットの付着有りと判定され、フラグが“1”にセットされると、燃料噴射を復帰させるエンジン回転数が回転数RF0から回転数RF1に変更される。回転数RF1は、回転数RF0よりも高い回転数である。そして、タイミングt14において、エンジン回転数が回転数RF1まで低下すると、燃料噴射が復帰される。燃料噴射は、車速がゼロとなるタイミングt16まで継続される。【選択図】図8

Description

本発明は、エンジンの制御方法及びエンジンの制御装置に関し、特に、エンジンにおける吸排気バルブとバルブシートとの間に噛み込んだデポジットを除去するための技術に関する。
エンジンは、燃焼室内に燃料と空気とを送り込み、燃焼室内で生じる燃焼により駆動される。エンジンにおいては、吸気バルブとバルブシートとの間にデポジットが噛み込むことがある。例えば、特許文献1には、吸気通路に付着したデポジットが何らかの拍子に剥がれ、燃焼室方向に流れ、吸気バルブとバルブシートの間に噛み込むことがあるとの記載がなされている。
吸気バルブとバルブシートとの間にデポジットが噛み込んだ場合には、圧縮漏れを起こすことになり、着火不良の原因となる。
特許文献2では、吸気バルブとバルブシートとの間に噛み込んだデポジットを除去する技術が提案されている。具体的には、気筒休止する特定の気筒において、吸気バルブにおけるバルブ軸部の軸端部分にヒータを取り付け、当該気筒の気筒休止時において、ヒータを駆動して吸気バルブを加温し、これによりデポジットを除去するという技術が開示されている。
なお、デポジットの噛み込みは、ガソリンエンジンで生じた場合にも影響を及ぼすことになるが、特にディーゼルエンジンの場合には、影響が大きい。即ち、ディーゼルエンジンでは、圧縮着火を行うため、デポジットの噛み込みにより圧縮漏れを生じたままエンジンを停止した場合、エンジンの再始動が困難となるおそれがある。
特開2015−117661号公報 特開2017−002853号公報
しかしながら、従来においては、吸気バルブとバルブシートとの間に噛み込んだデポジットを効果的に除去する効果的な技術は未だ開発されていないのが現状である。なお、上記特許文献1には、吸気バルブとバルブシートとの間にデポジットが付着し易い運転条件を予め把握しておき、当該運転条件に該当する場合にはポートインジェクタの噴射量を少なくする、との技術は開示されているが、付着してしまった(噛み込んでしまった)デポジットを除去する技術については、何ら開示していない。
また、上記特許文献2の技術は、バルブ軸部の軸端部分に取り付けたヒータでデポジットの除去を図ろうとするものであるので、エンジンが大型化するとともに、製造コストの上昇にもつながる。また、上記特許文献2の技術では、気筒休止が実行される気筒においてのみ、デポジットの除去が可能であり、他の気筒でのデポジットを除去することはできない。よって、上記特許文献2の技術では、気筒休止する特定の気筒以外の気筒においてデポジットの噛み込みが生じた場合には、エンジンの再始動が困難となることが考えられる。
なお、上記では、吸気バルブとバルブシートとの間へのデポジットの噛み込みについて説明したが、排気バルブとバルブシートとの間についても、吸気バルブと同様に、デポジットが噛み込むことがあり、その場合には同様の問題を生じ得る。
本発明は、上記のような問題の解決を図ろうとなされたものであって、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好な再始動性が確保可能なエンジンの制御方法及びエンジンの制御装置を提供することを目的とする。
本発明の一態様に係るエンジンの制御方法は、吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込みの有無を判定するデポジット付着判定ステップと、燃料噴射弁の開閉動作により燃料噴射の制御を実行する噴射弁開閉ステップと、を備える。そして、本態様に係るエンジンの制御方法では、アクセルがオフ状態である期間中において、前記デポジットの噛み込み無しと判定した場合には、前記アクセルがオフ状態となった後、前記エンジンの回転数が第1回転数よりも高い回転数から該第1回転数に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第1回転数以下となった時に、前記燃料噴射を再開し、前記デポジットの噛み込み有りと判定した場合には、前記アクセルがオフ状態となった後、前記エンジンの回転数が第1回転数よりも高く設定された第2回転数よりも高い回転数から該第2回転に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第2回転数以下となった時に、前記燃料噴射を再開する。
上記態様に係るエンジンの制御方法では、デポジットの噛み込み有りと判定した場合、エンジンの回転数が第2回転数以下となった時に燃料噴射を再開する。これにより、上記態様に係るエンジンの制御方法では、燃料噴射を再開して以降、エンジンの回転数がゼロとなるまで(エンジンが停止するまで)の間、燃焼圧(筒内圧)を利用してデポジットを除去することが可能である。即ち、上記態様に係るエンジンの制御方法では、デポジットの噛み込み有りと判定の場合のフューエルカットからの復帰タイミングを、デポジットの噛み込みが無い場合よりも早くすることで、燃焼圧を利用したデポジットの押し潰しの機会を増やすことができる。
従って、上記態様に係るエンジンの制御方法では、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
なお、上記態様に係るエンジンの制御方法では、燃料噴射を一旦停止した(フューエルカットした)後、再開させるので、ドライバに対してある程度の減速感を与えることができ、ドライバの違和感を緩和することができる。
本発明の別態様に係るエンジンの制御方法は、上記態様において、前記デポジット付着判定ステップでは、クランク角センサからのクランク角速度情報に基づき、前記デポジットの噛み込みの有無の判定を実行するとともに、当該判定を、前記噴射弁開閉ステップにおける前記燃料噴射の停止状態の継続中に実行する。
上記態様に係るエンジンの制御方法では、デポジット付着判定ステップにおいて、クランク角センサからのクランク角速度情報に基づいてデポジットの噛み込みの有無を判定するので、高い精度でのデポジットの噛み込み判定が実行できる。即ち、気筒内に設けた圧力センサからの圧力情報に基づきデポジットの噛み込みの有無を判定する場合等に比べて、上記態様に係るエンジンの制御方法では、微小なデポジットが噛み込んだ場合にも高精度に判定がなされる。
また、上記態様に係るエンジンの制御方法では、燃料噴射の停止状態の継続中にデポジットの噛み込みの有無を判定するので、燃焼によるトルク変動の影響を受けず、微小量のデポジットであっても高精度に検出することができる。ここで、微小量のデポジットの有無を検出できれば、早期にデポジット除去を実行することにより、圧縮漏れによる着火不良を未然に防ぐことができる。このような微小量のデポジットを検出するためには、燃焼によるトルク変動の影響を抑えるか無くすことが重要となる。この点において、上記態様に係るエンジンの制御方法は、優れている。
本発明の別態様に係るエンジンの制御方法は、上記態様において、前記デポジット付着判定ステップは、前記クランク角センサからのクランク角速度情報に基づき、前記エンジンにおける圧縮行程中での所定のクランク角範囲の通過に要する第1通過時間を算出する第1通過時間算出サブステップと、前記クランク角センサからのクランク角速度情報に基づき、前記エンジンにおける前記圧縮行程後での所定のクランク角範囲の通過に要する第2通過時間を算出する第2通過時間算出サブステップと、前記第1通過時間と前記第2通過時間との比が、所定の閾値以下となった場合に、デポジットの噛み込み有りと判定する判定サブステップと、を有する。
上記態様に係るエンジンの制御方法では、第1通過時間と第2通過時間との比(クランク角速度比)に基づき、デポジットの噛み込みの有無を判定するので、エンジンの回転数が高い状態であっても高い精度を以ってデポジットの噛み込みの有無を検出することができる。
本発明の一態様に係るエンジンの制御方法は、吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込みの有無を判定するデポジット付着判定ステップと、燃料噴射弁の開閉動作により燃料噴射の制御を実行する噴射弁開閉ステップと、を備える。そして、本態様に係るエンジンの制御方法では、アクセルがオフ状態である期間中において、前記デポジットの噛み込み無しと判定した場合には、前記アクセルがオフ状態となった時に、前記燃料噴射を停止し、前記デポジットの噛み込み有りと判定した場合には、前記アクセルがオフ状態となった後の所定の期間中に、前記燃料噴射を実行する。
上記態様に係るエンジンの制御方法では、デポジットの噛み込み有りと判定した場合、その直後から燃料噴射を実行する(フューエルカットを中断する)ので、デポジットの噛み込み無しと判定した場合に比べて、燃焼室での燃焼時間を長くすることができる。よって、上記態様に係るエンジンの制御方法では、デポジットの噛み込みの有無の判定を行った直後から、燃焼圧(筒内圧)を利用してデポジットを押し潰す機会を増やすことができる。
従って、上記態様に係るエンジンの制御方法では、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
本発明の別態様に係るエンジンの制御方法は、上記態様において、前記アクセルがオフ状態である第1期間中に、前記デポジットの噛み込み有りとの判定がなされ、前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中に、前記アクセルがオン状態とされ、再び前記アクセルがオフ状態となった第2期間中では、当該期間中、継続的に前記燃料噴射を実行する。
上記態様に係るエンジンの制御方法では、第2期間中において、継続的に燃料噴射を実行する(フューエルカットを中断する)ので、燃焼圧(筒内圧)を利用してデポジットを押し潰す機会を増やすことができる。よって、上記態様に係るエンジンの制御方法では、エンジンが停止する前に、デポジットをより確実に除去することができる。
本発明の一態様に係るエンジンの制御方法は、吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込みの有無を判定するデポジット付着判定ステップと、燃料噴射弁の開閉動作により燃料噴射の制御を実行する噴射弁開閉ステップと、を備える。そして、本態様に係るエンジンの制御方法では、アクセルがオフ状態であって、前記デポジットの噛み込み有りとの判定がなされた第1期間と、前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中において、前記アクセルがオン状態とされたアクセルオン期間と、前記アクセルオン期間の後、前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中において、再び前記アクセルがオフ状態とされた第2期間と、が順に設定され、前記第2期間では、当該期間中、継続的に前記燃料噴射を実行する。
上記態様に係るエンジンの制御方法では、第2期間中において、継続的に燃料噴射を実行する(フューエルカットを中断する)ので、燃焼圧(筒内圧)を利用してデポジットを押し潰す機会を増やすことができる。よって、上記態様に係るエンジンの制御方法では、エンジンが停止する前に、デポジットをより確実に除去することができる。
従って、上記態様に係るエンジンの制御方法では、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
本発明の一態様に係るエンジンの制御装置は、開閉動作により前記エンジンの燃焼室への燃料噴射量を調節する燃料噴射弁と、アクセルのオン・オフ状態に関するアクセル開度情報の入力を受け付けるとともに、前記燃料噴射弁の開閉制御により燃料噴射の制御を実行する制御部と、を備える。そして、本態様に係るエンジンの制御装置では、前記制御部は、前記アクセルがオフ状態である期間中において、吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込み無しと判定した場合には、前記アクセルがオフ状態となった後、前記エンジンの回転数が第1回転数よりも高い回転数から該第1回転数に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第1回転数以下となった時に、前記燃料噴射を再開し、前記デポジットの噛み込み有りと判定した場合には、前記アクセルがオフ状態となった後、前記エンジンの回転数が前記第1回転数よりも高く設定された第2回転数よりも高い回転数から該第2回転数に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第2回転数以下となった時に、前記燃料噴射を再開する。
上記態様に係るエンジンの制御装置では、制御部は、デポジットの噛み込み有りと判定した場合、エンジンの回転数が第2回転数以下となった時に、燃料噴射弁を開状態として燃料噴射を再開する。これにより、上記態様に係るエンジンの制御装置では、燃料噴射を再開して以降、エンジンの回転数がゼロとなるまで(エンジンが停止するまで)の間、燃焼圧(筒内圧)を利用してデポジットを除去することが可能である。即ち、上記態様に係るエンジンの制御装置では、制御部がデポジットの噛み込み有りと判定の場合のフューエルカットからの復帰タイミングを、デポジットの噛み込みが無い場合よりも早くすることで、燃焼圧を利用したデポジットの押し潰しの機会を増やすことができる。
従って、上記態様に係るエンジンの制御装置では、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
なお、上記態様に係るエンジンの制御装置では、制御部が、燃料噴射を一旦停止状態とした(フューエルカットした)後、再開させるので、ドライバに対してある程度の減速感を与えることができ、ドライバの違和感を緩和することができる。
本発明の別態様に係るエンジンの制御装置は、上記態様において、前記エンジンのクランク角速度を検出するクランク角センサを、さらに備え、前記制御部は、前記クランク角センサからのクランク角速度情報に基づくとともに、前記燃料噴射の停止状態の継続中に、前記デポジットの噛み込みの有無の判定を実行する。
上記態様に係るエンジンの制御装置では、制御部は、デポジット付着判定に際して、クランク角センサからのクランク角速度情報に基づいてデポジットの噛み込みの有無を判定するので、高い精度でのデポジットの噛み込み判定が実行できる。即ち、気筒内に設けた圧力センサからの圧力情報に基づきデポジットの噛み込みの有無を判定する場合等に比べて、上記態様に係るエンジンの制御装置では、微小なデポジットが噛み込んだ場合にも高精度に判定がなされる。
また、上記態様に係るエンジンの制御装置では、制御部は、燃料噴射の停止状態が継続中にデポジットの噛み込みの有無を判定するので、燃焼によるトルク変動の影響を受けず、微小量のデポジットであっても高精度に検出することができる。
本発明の別態様に係るエンジンの制御装置は、上記態様において、前記制御部は、前記クランク角センサからのクランク角速度情報に基づき、前記エンジンにおける圧縮行程中での所定のクランク角範囲の通過に要する第1通過時間を算出し、前記クランク角センサからのクランク角速度情報に基づき、前記エンジンにおける前記圧縮行程後での所定のクランク角範囲の通過に要する第2通過時間を算出し、前記第1通過時間と前記第2通過時間との比を算出し、前記第1通過時間と前記第2通過時間との比が所定の閾値以下であると判断した場合に、デポジットの噛み込み有りと判定する。
上記態様に係るエンジンの制御装置では、制御部は、第1通過時間と第2通過時間との比(クランク角速度比)に基づき、デポジットの噛み込みの有無を判定するので、エンジンの回転数が高い状態であっても高い精度を以ってデポジットの噛み込みの有無を検出することができる。
本発明の一態様に係るエンジンの制御装置は、開閉動作により前記エンジンの燃焼室への燃料噴射量を調節する燃料噴射弁と、アクセルのオン・オフ状態に関するアクセル開度情報の入力を受け付けるとともに、前記燃料噴射弁の開閉制御により燃料噴射の制御を実行する制御部と、を備える。そして、本態様に係るエンジンの制御装置では、前記制御部は、前記アクセルがオフ状態である期間中において、吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込み無しと判定した場合には、前記アクセルがオフ状態となった時に、前記燃料噴射を停止し、前記デポジットの噛み込み有りと判定した場合には、前記アクセルがオフ状態となった後の所定の期間中に、前記燃料噴射を実行する。
上記態様に係るエンジンの制御装置では、制御部は、デポジットの噛み込み有りと判定した場合、その直後から燃料噴射を実行する(フューエルカットを中断する)ので、デポジットの噛み込み無しと判定した場合に比べて、燃焼室での燃焼時間を長くすることができる。よって、上記態様に係るエンジンの制御装置では、制御部がデポジットの噛み込みの有無の判定を行った直後から、燃焼圧(筒内圧)を利用してデポジットを押し潰す機会を増やすことができる。
従って、上記態様に係るエンジンの制御装置では、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
本発明の別態様に係るエンジンの制御装置は、上記態様において、前記制御部は、前記アクセルがオフ状態である第1期間中に、前記デポジットの噛み込み有りと判定し、前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中に、前記アクセルがオン状態とされ、再び前記アクセルがオフ状態となった第2期間中では、継続的に前記燃料噴射を実行する。
上記態様に係るエンジンの制御装置では、第2期間中において、制御部が継続的に燃料噴射を実行する(フューエルカットを中断する)ので、燃焼圧(筒内圧)を利用してデポジットを押し潰す機会を増やすことができる。よって、上記態様に係るエンジンの制御装置では、エンジンが停止する前に、デポジットをより確実に除去することができる。
本発明の一態様に係るエンジンの制御装置は、開閉動作により前記エンジンの燃焼室への燃料噴射量を調節する燃料噴射弁と、アクセルのオン・オフ状態に関するアクセル開度情報の入力を受け付けるとともに、前記燃料噴射弁の開閉制御により燃料噴射の制御を実行する制御部と、を備える。そして、本態様に係るエンジンの制御装置では、前記アクセルがオフ状態であって、前記制御部が、吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込み有りと判定した第1期間と、前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中において、前記アクセルがオン状態とされたアクセルオン期間と、前記アクセルオン期間の後、前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中において、再び前記アクセルがオフ状態とされた第2期間と、が順に設定され、前記制御部は、前記第2期間において、継続的に前記燃料噴射を実行する。
上記態様に係るエンジンの制御装置では、第2期間中において、制御部が継続的に燃料噴射を実行する(フューエルカットを中断する)ので、燃焼圧(筒内圧)を利用してデポジットを押し潰す機会を増やすことができる。よって、上記態様に係るエンジンの制御装置では、エンジンが停止する前に、デポジットをより確実に除去することができる。
従って、上記態様に係るエンジンの制御装置では、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
本発明の一態様に係るエンジンの制御装置は、開閉動作により前記エンジンの燃焼室への燃料噴射量を調節する燃料噴射弁と、前記エンジンのクランク角速度を検出するクランク角センサと、アクセルのオン・オフ状態に関するアクセル開度情報、及び前記クランク角センサからのクランク角速度情報の入力を受け付けるとともに、前記燃料噴射弁の開閉制御により燃焼噴射の制御を実行する制御部と、を備える。そして、本態様に係るエンジンの制御装置では、前記制御部は、前記アクセルがオフ状態である期間中において、前記クランク角速度情報を基とする、前記エンジンにおける圧縮行程中での所定のクランク角範囲の通過に要する第1通過時間と、前記エンジンにおける前記圧縮行程後での所定のクランク角範囲の通過に要する第2通過時間との比が、所定の閾値よりも大きい場合には、前記エンジンの回転数が第1回転数よりも高い回転数から該第1回転数に低下するまでの期間中、前記燃料噴射を停止し、前記エンジンの回転数が前記第1回転数以下となった時に、前記燃料噴射を再開し、前記比が前記所定の閾値以下である場合には、前記エンジンの回転数が前記第1回転数よりも高く設定された第2回転数よりも高い回転数から該第2回転数に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第2回転数以下となった時に、前記燃料噴射を再開する。
上記態様に係るエンジンの制御装置では、制御部は、前記比が前記所定の閾値以下である場合、エンジンの回転数が第2回転数以下となった時に、燃料噴射弁を開状態として燃料噴射を再開する。これにより、上記態様に係るエンジンの制御装置では、上記比が上記所定の閾値以下の場合のフューエルカットからの復帰タイミングを、上記比が上記所定の閾値より大きい場合に比べて早くすることで、燃焼圧を利用したデポジットの押し潰しの機会を増やすことができる。
従って、上記態様に係るエンジンの制御装置では、吸排気バルブとバルブシートとの間にデポジットが噛み込んだと推定される場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
上記の各態様では、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジンの停止前に当該デポジットを除去することができ、良好なエンジンの再始動性を確保することができる。
実施形態1に係るエンジン1の構成とPCM2とを示す模式図である。 制御システムの構成を示す模式図である。 エンジン本体10の一部構成を示す模式断面図である。 クランクプレート19の構成を示す模式斜視図である。 クランク角センサSNS1から入力されるパルス信号をクランク角の変化軸上で示す図である。 PCM2が実行するデポジット付着判定及びデポジット除去の各制御方法を示すフローチャートである。 実施例1に係るエンジンの制御において、エンジン回転数とフューエルカット状態からの復帰タイミングとの関係を示すタイミングチャートである。 実施例2に係るエンジンの制御において、エンジン回転数とフューエルカット状態からの復帰タイミングとの関係を示すタイミングチャートである。 実施形態2における実施例3に係るエンジンの制御において、デポジット付着判定とフューエルカット実行期間との関係を示すタイミングチャートである。 実施形態2における実施例4に係るエンジンの制御において、デポジット付着判定とフューエルカット状態からの復帰タイミングとの関係を示すタイミングチャートである。 実施形態3に係るエンジンの制御において、PCMが実行するデポジット付着判定及びデポジット除去の各制御方法を示すフローチャートである。 図11のステップS30における実行内容を示すフローチャートである。
以下では、本発明の実施形態について、図面を参酌しながら説明する。なお、以下で説明の形態は、本発明の一態様であって、本発明は、その本質的な構成を除き何ら以下の形態に限定を受けるものではない。
[実施形態1]
1.エンジン1の全体構成
本実施形態に係るエンジン1の全体構成について、図1を用い説明する。
図1に示すように、エンジン1は、エンジン本体10を備える。本実施形態において、エンジン本体10として多気筒(例えば、4気筒)のディーゼルエンジン(圧縮着火式エンジン)を採用している。エンジン本体10は、複数の気筒11aを有するシリンダブロック11と、当該シリンダブロック11上に配設されたシリンダヘッド12と、シリンダブロック11下に配設されたオイルパン13と、を有している。なお、図1では、エンジン本体10における複数の気筒11aの内、1つの気筒11aのみを図示している。
エンジン本体11の各気筒11aには、ピストン14が上下方向に往復動可能なように設けられている。そして、各ピストン14の冠面には、下方に向けて凹入したキャビティが形成されている。
各ピストン14は、下部において、コンロッド14bを介してクランクシャフト15に連結されている。クランクシャフト15は、各ピストン14の上下方向への往復動により、図1の紙面に垂直な方向に延伸する中心軸回りに回転する。
クランクシャフト15には、当該クランクシャフト15と一体に回転するクランクプレート19が取り付けられている。そして、エンジン本体10には、クランクプレート19の回転角を検出するためのクランク角センサ(エンジン回転数センサ)SNS1が設けられている。これらについては、後述する。
シリンダヘッド12には、各気筒11aの燃焼室14aに開口する吸気ポート16及び排気ポート17が形成されている。また、シリンダヘッド12には、吸気ポート16の開閉を行う吸気バルブ21と、排気ポート17の開閉を行う排気バルブ22と、が設けられている。
また、シリンダヘッド12には、燃焼室14aに対して燃料を噴射するインジェクタ18が各気筒11aごとに設けられている。本実施形態では、エンジン本体10としてディーゼルエンジンを採用しているので、インジェクタ18からは、燃焼室14aに対して軽油を主成分とする燃料が噴射される。
インジェクタ18は、その先端に備わる噴口(燃料の噴射口)がピストン14の冠面のキャビティに臨むように配置されており、圧縮上死点(圧縮行程の終了点)の前後にわたる所定の期間中のタイミングに、燃焼室14aに対して燃料を噴射する。
図1に示すように、エンジン本体10の吸気ポート16には、吸気通路30が接続されている。また、エンジン本体10の排気ポート17には、排気通路40が接続されている。吸気通路30及び排気通路40は、それぞれエンジン本体10の側壁部分に接合されている。
エンジン本体10の燃焼室14aに対しては、外部から取り込まれた吸入空気が吸気通路30及び吸気ポート16を通して導入される。また、燃焼室14aからは、当該燃焼室14aで生成された燃焼ガス(排気ガス)が排気ポート17及び排気通路40を通して排出される。
吸気通路30中及び排気通路40中には、第1ターボ過給機61及び第2ターボ過給機62が介設されている。
第1ターボ過給機61は、吸気通路30中に配設されたコンプレッサ61aと、当該コンプレッサ61aと同軸で連結され、排気通路40中に配設されたタービン61bと、を有している。同様に、第2ターボ過給機62は、吸気通路30中に配設されたコンプレッサ62aと、当該コンプレッサ62aと同軸で連結され、排気通路40中に配設されたタービン62bと、を有している。
第1ターボ過給機61は、そのコンプレッサ61a及びタービン61bが、第2ターボ過給機62のコンプレッサ62a及びタービン62bよりも大きなサイズとなっている。即ち、吸気上流側に配置されている第1ターボ過給機61は、吸気下流側に配置されている第2ターボ過給機62よりも大型の過給機が採用されている。
第1ターボ過給機61及び第2ターボ過給機62は、排気エネルギーにより駆動され、吸入空気を圧縮する。即ち、エンジン1の運転中において、排気通路40を高温・高速の排気ガスが通過した場合には、その排気ガスのエネルギーにより各ターボ過給機61,62のタービン61b,62bが回転し、これにより同軸で連結されたコンプレッサ61a,62aが回転する。吸気通路30を通り導入される空気は、タービン61a,62aの回転に伴って圧縮されて高圧化される。そして、高圧化された空気がエンジン本体10の燃焼室14aへと送り込まれる。
吸気通路30は、吸気バイパス通路63を有している。吸気バイパス通路63は、第2ターボ過給機62のコンプレッサ62aをバイパスするための経路である。吸気バイパス通路63には、開閉可能な吸気バイパスバルブ63aが設けられている。
吸気通路30の上流端部には、エアクリーナー31が設けられている。エアクリーナー31は、吸気通路30に取り込む空気を濾過するものである。
吸気通路30には、第2ターボ過給機62よりも吸気下流側に、インタークーラー35及び吸気シャッターバルブ36が順に設けられている。インタークーラー35は、第1ターボ過給機61及び第2ターボ過給機62により圧縮された空気を冷却するためのものである。吸気シャッターバルブ36は、エンジン本体10の運転中には基本的に全開若しくはそれに近い開度に維持され、エンジン本体10の停止時等の必要時にのみ閉弁される。
吸気通路30は、吸気下流端部にサージタンク33を有する。なお、詳細な図示をしていないが、吸気通路30において、サージタンク33よりも吸気下流側は、気筒11aごとに分岐した独立通路となっており、各独立通路の下流端が各気筒11aの吸気ポート16にそれぞれ接続されている。
排気通路40は、第1排気バイパス通路65と、第2排気バイパス通路66と、を有する。第1排気バイパス通路65は、第2ターボ過給機62のタービン62bをバイパスするための通路である。第2排気バイパス通路66は、第1ターボ過給機61のタービン61bをバイパスするための通路である。
第1排気バイパス通路65には、開閉可能なレギュレートバルブ65aが設けられている。第2排気バイパス通路66には、同じく開閉可能なウェストゲートバルブ66aが設けられている。
排気通路40には、第1ターボ過給機61のタービン61bよりも排気下流側に排気浄化装置41が設けられている。排気浄化装置41よりも排気下流側には、図示を省略している排気サイレンサが設けられている。
排気浄化装置41は、DOC(Diesel Oxidation Catalyst)41aと、DPF(Diesel Particulate Filter)41bとの組み合わせにより構成されている。DOC41aとDPF41bとは、排気の流れ方向に直列に配置されており、DOC41aがDPF41bに対して排気上流側に配置されている。DOC41aは、通過する排気ガス中の一酸化炭素(CO)や炭化水素(HC)を酸化するものであり、DPF41bは、通過する排気ガス中に含まれる煤等の粒子状物質を捕集するものである。
詳細な図示をしていないが、排気通路40において、第1排気バイパス通路65の排気上流側の分岐点よりも上流側は、排気マニホールドとなっている。排気マニホールドは、各気筒11aの排気ポート17に接続される独立通路部と、各独立通路部が集合する集合部とを含み構成されている。
吸気通路30におけるサージタンク30の吸気上流側の箇所と、排気通路40における第2ターボ過給機62のタービン62bの排気上流側の箇所と、の間には、EGR通路51が設けられている。EGR通路51には、当該EGR通路51内を流通するEGRガスを冷却するためのEGRクーラ52と、EGR通路51内のEGRガスの流通量(排気ガスの還流量)を調整するためのEGRバルブ51aが設けられている。
また、EGR通路51に対しては、EGRバイパス通路53が並列に設けられている。EGRバイパス通路53は、EGRクーラ52をバイパスするための通路であって、EGRバイパスバルブ53aが設けられている。
図1に示すように、エンジン1には、当該エンジン1から各種センサ情報を取得し、各バルブ等を制御するPCM(Powertrain Control Module)2が付設されている。PCM2は、CPU、メモリ、カウンタタイマ類、及びI/F等を有するマイクロプロセッサにより構成されている。
2.制御システム
本実施形態に係るエンジン1を制御するための制御システムについて、図2を用い説明する。
図2に示すように、エンジン1の制御部であるPCM2には、クランク角センサ(エンジン回転数センサ)SNS1からのクランク角速度情報、吸気圧センサSNS2からの吸気圧情報、車速センサSNS3からの車速情報、ブレーキ圧センサSNS4からのブレーキ圧情報、ギヤポジションセンサSNS5からのギヤポジション情報、水温センサSNS6からの水温情報、油圧センサSNS7からの油圧情報、吸気シャッターバルブポジションセンサSNS8からのシャッターバルブポジション情報、EGRバルブポジションセンサSNS9からのEGRバルブポジション情報を取得する。
なお、図2では、図示を省略しているが、PCM2は、アクセル開度に関する情報についても取得するようになっている。
PCM2は、取得した上記各センサ情報に基づいて、燃料噴射弁37の弁開度、吸気シャッターバルブ36の弁開度、トルクコンバータを含む変速機3、及びEGRバルブ51aを含むエンジン1の各種制御を実行する。
3.エンジン本体10における吸気バルブ21周りの構成
エンジン本体10における吸気バルブ21周りの構成について、図3を用い説明する。
図3に示すように、エンジン本体10の燃焼室14aに対しては、吸気ポート16と排気ポート17とが連通されている。吸気ポート16と燃焼室14aとの間には、その間の開閉を行う吸気バルブ21が設けられている。また、排気ポート17と燃焼室14aとの間には、その間の開閉を行う排気バルブ22が設けられている。
図3の拡大部分に示すように、吸気バルブ21は、弁体であるバルブ傘部21aと、軸体であるバルブ軸部21bとが一体形成されている。そして、吸気バルブ21が閉じた状態では、バルブ傘部21aの外周部がシリンダヘッド12のバルブシート12aに気密に当接することとなる。
ところで、吸気通路30の内壁面に付着したデポジットが、何らかの拍子に剥がれ、燃焼室14a方向に流れることがある。流れてきたデポジットは、その一部が吸気バルブ21のバルブ傘部21aとバルブシート12aとの間に噛み込むことが生じ得る。また、同様に、排気バルブ22とバルブシートとの間にデポジットが噛み込むことも生じ得る。
上記のように、吸気バルブ21や排気バルブ22とバルブシート12aとの間にデポジットが噛み込んだ場合には、圧縮漏れが生じ、着火不良の原因となる。そして、圧縮漏れが生じた状態でエンジンを停止した場合には、再始動が困難となる場合も生じ得る。
4.クランクプレート19の構成とクランク角速度情報の検出
クランクプレート19の構成とクランク角速度情報の検出について、図4及び図5を用い説明する。図4は、クランクプレート19の構成を示す模式斜視図である。図5は、クランク角センサSNS1から入力されるパルス信号をクランク角の変化軸上で示す図である。
先ず、図4に示すように、クランクプレート19は、円環状のプレートであって、クランクシャフト15と一体に軸芯Ax15回りに回転する。クランクプレート19の外周部分には、径方向外向きに複数の歯部19aが突出形成されている。ただし、周方向の一部には、歯部19aが形成されていない歯欠け部19bが設けられている(矢印Aで指し示す部分)。
なお、本実施形態に係るクランクプレート19においては、歯部19aが6°間隔で設けられている。即ち、クランク角センサSNS1が5つの歯部19aを検出することにより、クランクシャフト15が30°CAを検出することになる。
次に、図5に示すように、クランク角センサSNS1から入力されるパルス信号は、30°CAごとに、区間(クランク角範囲)Int1〜Int7,・・に区切られる。そして、各期間Int1〜Int7,・・の通過に要する時間T1〜T7,・・がPCM2で演算される。
なお、図5に示すように、本実施形態では、区間Int5中に圧縮上死点(TDC;Top Dead Center)が含まれている。また、図5では図示していないが、圧縮下死点(BDC;Bottom Dead Center)は、圧縮上死点TDCに対して180°CAずれた位置に設定されている。
ここで、PCM2において、燃料噴射量の算出は、区間Int1の終了タイミング(区間Int2の開始タイミング)で行われるようになっている。
また、吸気バルブ21や排気バルブ22とバルブシート12aとの間へのデポジットの噛み込みがなく、圧縮漏れがない状態では、圧縮上死点TDCを含む区間Int5の通過に要する時間T5は、その後の区間、例えば、区間Int7の通過に要する時間T7よりも長くなる。即ち、[数1]の関係を満たす。
[数1]T5>T7
これは、区間Int5においては、圧縮漏れがなく気筒11aの筒内圧が高くなるためにピストン14の上昇速度が遅くなることによるものである。
一方、吸気バルブ21や排気バルブ22とバルブシート12aとの間へのデポジットの噛み込みが発生し、圧縮漏れが生じている状態では、時間T5と時間T7との比が“1”に近付くこととなる。
本実施形態において、PCM2は、クランク角センサSNS1からのクランク角速度情報に基づき、時間T5と時間T7との比率が、予め設定された閾値(通常時よりも“1”に近い値)に近付いた場合に、吸気バルブ21や排気バルブ22とバルブシート12aとの間へのデポジットの噛み込みが発生していると判定する。
5.PCM2によるデポジット付着判定とデポジット除去制御
PCM2によるデポジット付着判定及びデポジット除去の具体的な方法について、図6を用い説明する。図6は、PCM2が実行するデポジット付着判定及びデポジット除去の各制御方法を示すフローチャートである。
図6に示すように、PCM2は、先ず、上記のように各センサSNS1〜SNS9からのセンサ情報を含む複数のセンサ情報を逐次取得する(ステップS1)。次に、PCM2は、車両の走行中において、アクセルオフに伴うフューエルカット(燃料噴射を停止)中か否かを判断する(ステップS2)。
なお、平坦路においては、車両の走行中にフューエルカットが実行されると、車両は減速することになる。ただし、下り坂などでは、必ずしも減速しない場合もあるが、ステップS2では、車両が必ずしも減速していない場合も含めてフューエルカットが実行されているか否かを判断する。
次に、PCM2は、ステップS2の判断において、フューエルカット中であると判断した場合には(ステップS2;Yes)、気筒11aにおける筒内圧縮状態を検出する(ステップS3)。この検出は、上記のように、クランク角速度情報に基づき、区間Int5の通過に要する時間T5と区間Int7の通過に要する時間T7との比を用い実行される。さらに具体的には、値(T5/T7)を算出することで筒内圧縮状態を検出する。
PCM2は、上記ステップS3で求めた値(T5/T7)を、予め設定された閾値と比較する(ステップS4)。そして、PCM2は、ステップS4での比較により吸気バルブ21及び排気バルブ22とバルブシート12aとの間へのデポジットの噛み込みがあると判定した場合には(ステップS5;Yes)、“デポジットの付着あり“とのカウント(m←m+1)を行う(ステップS6)。
PCM2は、ステップS6の後に、カウント値mが予め設定された所定の回数M以上であるか否かを判定する(ステップS7)。なお、所定の回数Mは、エンジン1の構成などを考慮の上、実験的あるいは経験的に設定された値である。
PCM2は、ステップS7において、“m≧M”であると判定した場合には(ステップS7;Yes)、デポジット除去実行フラグをセットし(ステップS8)、デポジット除去制御を実行する(ステップS8〜ステップS13)。
PCM2は、デポジット除去制御の1つとして、ロックアップ解除回転数をRL0からRL1に変更する(ステップS9)。通常のロックアップ解除回転数RL0よりも低い回転数RL1までロックアップ状態を維持し、これにより車輪の回転を利用してエンジン本体10の運転(クランクシャフト15の回転)を維持することで、噛み込んだデポジットを押し潰す(除去する)機会を増大させることができる。
なお、RLOは、例えば1200rpm程度であり、それに対して、RL1は、例えば、900rpm程度である。
また、PCM2は、デポジット除去制御の他の方法として、フューエルカット復帰回転数をRF0からRF1に変更する(ステップS10)。このように、通常のフューエルカット復帰回転数RF0よりも高いRF1とすることにより、フューエルカットの実行可能な時間を短くすることができ、これによって燃焼室14aにおける燃焼圧を利用してデポジットを押し潰す(除去する)機会を増大させることができる。ステップS10におけるフューエルカット復帰回転数の制御の詳細については、後述する。
なお、RF0は、例えば900rpm程度であり、RF1は、例えば、1200rpm程度である。
また、PCM2は、デポジット除去制御の他の方法として、アイドルストップを禁止する(ステップS11)。これにより、アイドルストップを禁止することにより、圧縮漏れに起因するエンジン1の再始動失敗を抑制できるとともに、燃焼室14aにおける燃焼圧を利用してデポジットの除去を行うことができる。
また、PCM2は、デポジット除去制御の他の方法として、吸気シャッターバルブ36の開度を、通常の開度OV0よりも大きいOV1に変更する(ステップS12)。このように、吸気シャッターバルブ36の開度を通常よりも大きいOV1に変更することで、気筒11aにおける筒内圧を高めることができ、デポジットを押し潰す(除去する)ことができる可能性を高めることができる。
また、PCM2は、デポジット除去制御の他の方法として、EGRバルブ51aの弁開度を、通常の開度OE0よりも小さいOE1に変更する(ステップS13)。このように、EGRバルブ51aの弁開度を通常よりも小さいOE1に変更することで、吸気圧を高め吸気流速を利用して付着したデポジットを剥すことができる。また、EGRバルブ51aの弁開度をOE1とすることにより、気筒11aにおける筒内圧を高めることもでき、吸気バルブ21の閉弁中においてもデポジットを押し潰す(除去する)ことが可能となる。
なお、図1を用い説明したように、本実施形態に係るエンジン1では、EGRバイパス通路53も設けられているため、当該EGRバイパス通路53に設けられたEGRバイパスバルブ53aについても、その開度を小さくすることが望ましい。これにより、より一層効果的にデポジットを押し潰すことができる。
図6のフローチャートにおいては、ステップS9〜ステップS13を順序付けて図示しているが、実際には、PCM2がステップS7で“Yes”と判定すれば、ステップS9〜ステップS13の各デポジット除去制御を同時並行的に実施する。
次に、PCM2は、ステップS7で“No”と判定した場合には、リターンする。
また、PCM2は、ステップS5で“No”と判定した場合、即ち、吸気バルブ21及び排気バルブ22とバルブシート12aとの間へのデポジットの噛み込みが無いと判定した場合には、“デポジットの付着なし“とのカウント(n←n+1)を行う(ステップS14)。
PCM2は、ステップS14の後に、カウント値nが予め設定された所定の回数N以上であるか否かを判定する(ステップS15)。なお、所定の回数Nについても、エンジン1の構成などを考慮の上、実験的あるいは経験的に設定された値である。
PCM2は、ステップS15において、“n≧N”であると判定した場合には(ステップS15;Yes)、デポジット除去実行フラグをリセットし(ステップS16)、デポジット除去制御を停止し、各種変更条件を元の条件へと復帰させる(ステップS17〜ステップS21)。
具体的には、ロックアップ解除回転数をRL1からRL0へと戻し(ステップS17)、フューエルカット復帰回転数をRF1からRF0へと戻し(ステップS18)、アイドルストップ禁止を解除し(ステップS19)、吸気シャッターバルブ開度をOV1からOV0へと戻し(ステップS20)、EGRバルブ開度をOE1からOE0へと戻す(ステップS21)。
なお、デポジット除去制御の実行により、EGRバイパスバルブ53aの弁開度を小さくしていた場合には、当該EGRバイパスバルブ53aの弁開度も元の開度へと復帰させる。
PCM2は、ステップS15で“No”と判定した場合には、リターンする。
また、PCM2は、ステップS2で“No”と判定した場合、即ち、エンジン1がフューエルカット中ではないと判定した場合には、デポジット除去制御が実行中であるか否かを判定する(ステップS22)。デポジット除去制御の実行中であると判定した場合には(ステップS22;Yes)、車両の車速vが予め設定された閾値以上であるか否かを判定する(ステップS23)。
PCM2は、ステップS23において、“v≧V”であると判定した場合には、ステップS16からステップS21を実行する。即ち、ステップS23で“Yes”と判定した場合には、既にデポジットの除去がなされたものとみなし、デポジット除去実行フラグをリセットし(ステップS16)、デポジット除去制御を停止し、各種変更条件を元の条件へと復帰させる(ステップS17〜ステップS21)。
これは、エンジン1がフューエルカット中ではなく、且つ、車速vが予め設定された所定の速度V以上である場合には、燃焼走行によりデポジットは除去されたものとみなせるためである。なお、所定の速度Vは、実験的又は経験的に設定された値であり、例えば、40km/h程度とすることができる。ただし、エンジン1の種類などにより、適宜の変更が可能である。
PCM2は、ステップS22及びステップS23で“No”と判定した場合には、リターンする。
6.デポジット除去制御の具体例
本実施形態に係るPCM2によるデポジット除去制御の具体例について、図7及び図8を用い説明する。図7は、実施例1に係るエンジンの制御において、エンジン回転数とフューエルカット制御との関係を示すタイミングチャートである。図8は、実施例2に係るエンジン1の制御において、エンジン回転数とフューエルカット制御との関係を示すタイミングチャートである。
《実施例1》
先ず、実施例1に係るタイムチャートについて、図7を用い説明する。実施例1は、吸気バルブ21及び排気バルブ22とバルブシート12aとの間にデポジットが噛み込んでいない場合を想定している。
図7に示すように、タイミングtにおいて、ドライバがアクセルオフし、アクセル開度が略ゼロまで低下する。それとともに燃料噴射量がタイミングtに向かって漸減してゆく。燃料噴射は、タイミングtにおいてカット(停止)される。即ち、タイミングtにおいて、燃料噴射量がゼロとなる。燃料噴射量がゼロになると、クランク角速度比(T5/T7)が安定するようになる。そして、燃料噴射量がゼロとなったタイミングtから、PCM2は、デポジット付着判定を開始する。即ち、本実施形態に係るPCM2は、燃料噴射量がゼロの状態が継続している期間中、デポジット付着判定を実行する。
タイミングtにおいて、PCM2は、デポジットが噛み込んでいないと判定する。ここで、タイミングtからタイミングtの間におけるPCM2によるデポジット付着の有無の判定は、上述のように、クランク角速度比(T5/T7)が、予め設定された閾値RAth以下であるか否かにより行われる。即ち、クランク角速度比(T5/T7)が、予め設定された閾値RAth以下である場合には、デポジットが付着していると判定し、閾値RAthよりも大きい場合には、デポジットが付着していないと判定する。図7に示すように、デポジットが付着していない実施例1では、クランク角速度比(T5/T7)は、閾値RAthよりも大きい。
なお、上述のように、閾値RAthは、“1”よりも少し大きい値とすることができる。詳細な値については、エンジンの特性等を考慮して規定することが可能である。
図7に示す実施例1では、デポジットの噛み込みの有無を判定し、その結果、噛み込みがないと判定しているので、デポジット付着判定に係るフラグは“0”のままである。このため、実施例1では、燃料噴射弁の開閉制御(フューエルカット制御)について、フューエルカット復帰に係るエンジン回転数が“RF0”のまま維持される。
次に、エンジン回転数が所定の回転数RF0以下になったタイミングtにおいて、エンジンストール防止のために一旦燃料噴射が再開される(矢印Bで指し示す部分を参照)。なお、回転数RF0は、例えば、900rpm程度である。
そして、タイミングtにおいて、車速が“0”になると(車両が停車すると)、燃料噴射が停止され、エンジン回転数も“0”となる。そして、タイミングt以降、ドライバのアクセルオンに備える。
《実施例2》
次に、実施例2に係るタイムチャートについて、図8を用い説明する。実施例2では、吸気バルブ21及び排気バルブ22の少なくとも一方と、バルブシート12aとの間にデポジットが噛み込んでいる場合を想定している。
図8に示すように、実施例2では、タイミングt10において、既にデポジットの噛み込みが発生している。
次に、タイミングt11において、ドライバがアクセルオフすると、アクセル開度が略ゼロまで低下し、上記実施例1と同様に、燃料噴射量がタイミングt12に向かって漸減してゆく。そして、燃料噴射は、タイミングt12においてカットされ、燃料噴射量がゼロとなる(燃料噴射が停止される)。上記同様に、PCM2は、タイミングt12からデポジット付着判定を開始し、タイミングt13でデポジットの噛み込み有りと判定する。なお、上記同様に、本実施例でも、燃料噴射量がゼロ(フューエルカット)の状態でデポジットの噛み込みの有無を判定するので、トルク変動の影響を受けず、高い精度での判定が可能である。
タイミングt12からタイミングt13に期間においてPCM2が実行するデポジット付着判定は、上記実施例1と同様に、クランク角速度比(T5/T7)が、予め設定された閾値RAth以下であるか否かにより行われる。図8に示すように、デポジットが付着している本例では、クランク角速度比(T5/T7)は、閾値RAth以下となっている。
図8に示すように、PCM2は、デポジットの噛み込み有りと判定した場合に、デポジット付着判定に係るフラグを“1”にセットし、フューエルカット制御に係るエンジン1の回転数を“RF0”から“RF1”へと変更する。なお、回転数RF1は、例えば、1200rpmであって、回転数RF0よりも高い回転数である(RF1>RF0)。
次に、エンジン回転数が所定の回転数RF1以下になったタイミングt14において、一旦燃料噴射を再開させる(矢印Cで指し示す部分を参照)。換言すると、一旦フューエルカットを中断する。
タイミングt15において、PCM2は、デポジットの噛み込みが無くなった(除去された)と判断し、フラグを“1”から“0”にリセットし、これとともにフューエルカット制御に係るエンジン1の回転数を“RF1”から“RF0”に戻す。
そして、タイミングt16において、車両が停車し、車速が“0”となる。タイミングt16において、PCM2は、燃料噴射弁37の燃料噴射を停止する。これにより、その後、直ぐにエンジン回転数がゼロとなる。
7.効果
本実施形態では、制御部であるPCM2は、デポジットの噛み込み有りと判定した場合、フューエルカットの復帰に係るエンジンの回転数をRF0からRF1へと変更する。RF1は、RF0よりも高い回転数である。これより、本実施形態では、アクセルオフされてから車両停止までの間において、デポジットの噛み込み無しの場合に比べて、デポジットの噛み込み有りと判定した場合には、より長い期間中、燃焼室に燃料が供給され、燃焼圧(筒内圧)を利用してデポジットを確実に除去することが可能である。即ち、本実施形態では、制御部がデポジットの噛み込み有りと判定の場合のフューエルカットからの復帰タイミング(タイミングt14)を、デポジットの噛み込みが無い場合よりも早くすることで、燃焼圧を利用したデポジットの押し潰しの機会を増やすことができる。
従って、本実施形態では、吸気バルブ21及び排気バルブ22の少なくとも一方と、バルブシート12aとの間にデポジットが噛み込んだ場合にあっても、エンジン1の停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
なお、本実施形態では、PCM2が、燃料噴射弁37による燃料噴射を一旦停止した(フューエルカットした)後、再開させるので、ドライバに対してある程度の減速感を与えることができ、ドライバの違和感を緩和することができる。
また、本実施形態では、PCM2は、デポジット付着判定に際して、クランク角センサSNS1からのクランク角速度情報に基づいてデポジットの噛み込みの有無を判定するので、高い精度でのデポジットの噛み込み判定が実行できる。即ち、気筒内に設けた圧力センサからの圧力情報に基づきデポジットの噛み込みの有無を判定する場合等に比べて、本実施形態に係るPCM2は、微小なデポジットが噛み込んだ場合にも高精度に判定が実行可能である。
また、本実施形態では、PCM2は、区間Int5を通過するのに要する時間T5と、区間Int7を通過するのに要する時間T7との比(クランク角速度比T5/T7)に基づき、デポジットの噛み込みの有無を判定するので、エンジン本体10の回転数が高い状態であっても高い精度を以ってデポジットの噛み込みの有無を検出することができる。
[実施形態2]
実施形態2に係るPCMによるデポジット除去制御の具体例について、図9及び図10を用い説明する。図9は、実施例3に係るエンジンの制御において、エンジン回転数とフューエルカット制御との関係を示すタイミングチャートである。図10は、実施例4に係るエンジン1の制御において、エンジン回転数とフューエルカット制御との関係を示すタイミングチャートである。
なお、本実施形態に係るエンジンの基本的な構成、及びシステム構成については、上記実施形態1と同じであるので、重ねての説明を省略する。
《実施例3》
実施例3に係るタイムチャートについて、図9を用い説明する。実施例3についても、上記実施例1と同様に、吸気バルブ21及び排気バルブ22とバルブシート12aとの間にデポジットが噛み込んでいない場合を想定している。
図9に示すように、タイミングt21において、ドライバがアクセルオフし、アクセル開度が略ゼロまで低下する。それとともに燃料噴射量がタイミングt22に向かって漸減してゆく。燃料噴射は、タイミングt22においてカットされ、燃料噴射量がゼロとなる。
タイミングt22において、燃料噴射がカット(フューエルカット)されることにより、クランク角速度比(T5/T7)が安定するようになる。そして、燃料噴射量がゼロとなったタイミングt22からデポジット付着判定を開始し、PCMは、タイミングt23において、デポジットの噛み込み無しとの判定を下す。
なお、タイミングt22からタイミングt23の期間にPCMが実行するデポジット付着判定は、上述のように、クランク角速度比(T5/T7)が、予め設定された閾値RAth以下であるか否かにより行われる。
図9に示す実施例3では、上記実施例1と同様に、デポジットの噛み込みの有無の判定の結果、タイミングt23で噛み込み無しと判定し、デポジット付着判定に係るフラグは“0”のままである。このため、実施例3では、アイドルストップ制御について、エンジン回転数がゼロとなるまでフューエルカット許可“CUT”状態を維持する。
図9に示すように、本実施例では、タイミングt23以降において、フューエルカットを維持するので、矢印Dで指し示すように、燃料噴射量がゼロのまま(燃料噴射が停止されたまま)であり、エンジン回転数が漸減してゆく。
そして、タイミングt24において、車速がが“0”となり、車両が停止する。この後、PCMは、ドライバのアクセルオンに備える。
《実施例4》
次に、実施例4に係るタイムチャートについて、図10を用い説明する。実施例4では、吸気バルブ21及び排気バルブ22の少なくとも一方と、バルブシート12aとの間にデポジットが噛み込んでいる場合を想定している。
図10に示すように、実施例4では、タイミングt30において、既にデポジットの噛み込みが発生している。
タイミングt31において、ドライバがアクセルオフすると、アクセル開度が略ゼロまで低下し、上記実施例3と同様に、燃料噴射量がタイミングt32に向かって漸減してゆく。そして、燃料噴射は、タイミングt32においてカット(停止)され、燃料噴射量がゼロとなる。本実施例でも、当該タイミングt32からデポジットの噛み込みの有無の判定がなされる。
タイミングt32において、燃料噴射がカットされることにより、クランク角速度比(T5/T7)が安定するようになるので、当該タイミングt32からデポジット付着判定を実行する。そして、PCMは、タイミングt33において、デポジットの噛み込み有りと判定する。
タイミングt32からタイミングt33までの期間においてPCMが実行するデポジット付着判定は、上記実施例3等と同様に、クランク角速度比(T5/T7)が、予め設定された閾値RAth以下であるか否かにより行われる。図10に示すように、デポジットが付着している本例では、クランク角速度比(T5/T7)は、閾値RAth以下となっている。
図10に示すように、PCMは、デポジットの噛み込み有りと判定した場合に、デポジット付着判定に係るフラグを“1”にセットし、フューエルカット制御について、フューエルカット許可“CUT”からフューエルカット禁止“CUT禁止”へと変更する。これより、デポジット噛み込みの有無を判定したタイミングt33の後であるタイミングt34から、燃料噴射を再開し(フューエルカットを中断し)、タイミングt35まで当該状態を維持する(矢印Eで指し示す部分を参照)。
なお、図10においては、タイミングt33とタイミングt35との間に所定の期間を設けた形態としているが、フューエルカットを禁止するタイミングt34については、タイミングt33と略同時であってもよい。
そして、タイミングt35において、デポジットの除去が完了するので、PCMは、デポジット付着判定のフラグを“0”にリセットし、フューエルカット制御について、フューエルカット許可“CUT”にリセットする。これにより、燃料噴射が再度停止され、エンジン回転数が漸減してゆく。そして、フューエルカット状態のまま、タイミングt36において、エンジン回転数及び車速がゼロとなり、車両が停止する。この後、PCMは、ドライバのアクセルオンに備える。
本実施形態においても、上記実施形態1と同様に、吸気バルブ21及び排気バルブ22の少なくとも一方と、バルブシート12aとの間にデポジットが噛み込んだ場合にあっても、エンジン本体10の停止前に当該デポジットを除去することができる。
本実施形態では、PCMは、タイミングt33においてデポジットの噛み込み有りと判定した場合、その直後(タイミングt34)から燃料噴射弁を開状態とする(フューエルカットを中断する)ので、デポジットの噛み込み無しと判定した場合に比べて、燃焼室での燃焼時間を長くすることができる。即ち、図9の矢印Dで指し示す部分に対して、図10の矢印Eで指し示す部分のように、燃料噴射を実行するので、当該燃料噴射により筒内圧の上昇を図ることができ、これにより噛み込んだデポジットを押し潰すことができる。
従って、本実施形態では、吸排気バルブ21とバルブシート12aとの間にデポジットが噛み込んだ場合にあっても、エンジン本体10の停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
なお、上記実施例4では、タイミングt35において、フューエルカット状態へとリセットすることとしたが、これについては、必ずしも必要ない。即ち、車速がゼロとなるまで燃料噴射を続けてもよい。ただし、燃費の向上や環境負荷の低減などの目的から、デポジット除去後においては、再度、燃料噴射を停止することが望ましい。
[実施形態3]
実施形態3に係るエンジンの制御方法について、図11及び図12を用い説明する。図11は、上記実施形態1における図6に対応するローチャートであり、図12は、図11のステップS30における実行内容を示すフローチャートである。
図11に示すように、本実施形態に係るエンジンの制御方法において、上記実施形態1と異なる点は、ステップS30、ステップS31、ステップS32、ステップS33、ステップS34、ステップS35である。ステップS30及びステップS35については、後述する。
ステップS31は、PCMがステップS5でデポジットの噛み込み有りと判定し、ステップS8,S9,S30,S11,S12,S13を実行した際に、デポジット除去のカウントを行うステップである(j←j+1)。
ステップS33は、PCMが実行する内容は図6のステップS22と同様である。即ち、ステップS33において、PCMは、デポジット除去制御が実行中であるか否かを判定する。
ステップS34は、ステップS33が“Yes”であり、ステップS23が“No”の場合、即ち、デポジットの噛み込み有りの状態のままアクセルオンされた場合において、未だデポジットが除去されていないとみなせる状態の場合に、繰り越しカウントを実行するステップである(k←k+1)。
ステップS32は、ステップS17,S35,S19〜S21の各リセットを実行した場合に、カウントj,kをリセットするステップである(j←0、k←0)。
図12に示すように、ステップS30のフューエルカット制御では、先ず、カウントjが“1以上”であるか否かを判定する(ステップS301)。判定結果が“Yes”の場合には、ステップS302へと進み、判定結果が“No”の場合には、ステップS304へと進む。
ステップS302では、カウントkが“1以上”であるか否かを判定する。判定結果が“Yes”の場合にはステップS303へと進み、判定結果が“No”の場合には、ステップS304へと進む。
ステップS303では、上記実施形態2の図10で示したように、フューエルカットを禁止する制御を実行する。即ち、デポジットの噛み込み有りとの判定が有効である状態のまま、一旦アクセルオンされた後、再びアクセルオフされた際(フラグ“1”の状態が持ち越された際)には、アクセルオフの期間中、継続的にフューエルカットを中断する。
一方、ステップS304は、図6のステップS10と同様の制御を実行するものであり、上記のようなフラグ“1”の状態が持ち越されていない場合には、上記実施形態1の図8で示したように、フューエルカットからの復帰回転数の変更(RF0→RF1)を行う。
PCMは、ステップS303及びステップS304の何れかを実行の後、リターンする。
図11におけるステップS35は、図12に示したようなフューエルカット制御の各設定を初期値に戻すステップである。
本実施形態では、アクセルオフの期間において、デポジットの噛み込み有りと判定した後、当該デポジットの噛み込み有りとの判定の継続中において、アクセルがオン状態とされ、さらにその後、デポジットの噛み込み有りとの判定の継続中において、再びアクセルオフとされた場合に、PCMは、再度アクセルオフされた期間において、上記実施形態2の図10と同様に、継続的に燃料噴射弁を開状態とする(フューエルカットを中断する)。
なお、デポジットの噛み込み状態が持ち越された状態で3回目以降のアクセルオフ期間においても、同様にアクセルオフの直ぐ後にフューエルカットを中断する。
本実施形態では、上記のように、デポジットの噛み込み有りの状態が持ち越された場合において、アクセルオフの直ぐ後からフューエルカットを中断するので、燃焼圧(筒内圧)を利用してデポジットを押し潰す機会を増やすことができる。よって、本実施形態では、エンジンが停止する前に、デポジットをより確実に除去することができ、吸排気バルブとバルブシートとの間にデポジットが噛み込んだ場合にあっても、エンジン本体10の停止前に当該デポジットを除去することができ、良好な再始動性が確保可能である。
[変形例]
上記実施形態1,2,3では、2つのターボ過給機61,62を備えるエンジン1を一例としたが、本発明は、これに限定を受けるものではない。例えば、1つのターボ過給機を備える構成を採用することもできるし、ターボ過給機を備えない、所謂、自然吸気エンジンを採用することもできる。
また、上記実施形態1,2,3では、EGR通路51やEGRバイパス通路53を備えるエンジン1を一例としたが、本発明は、これに限定を受けるものではない。即ち、EGR通路やEGRバイパス通路は、必須の構成ではない。
また、上記実施形態1,2,3では、エンジン本体10としてディーゼルエンジンを一例としたが、本発明は、これに限定を受けるものではない。即ち、ガソリンエンジンを採用することもできる。
また、上記実施形態1,2,3では、PCM2によるデポジット付着判定において、クランク角速度情報に基づく区間Int1〜Int7,・・の内、区間Int5を通過する時間T5と区間Int7を通過する時間T7とを用いてクランク角速度比(T5/T7)を算出することとしたが、本発明は、これに限定を受けるものではない。例えば、区間Int3や区間Int4などを通過する時間T3,T4と、区間Int6や区間Int7などを通過する時間T6,T7と、の比を採用することとしてもよい。
また、上記実施形態1等では、図6に示すフローチャートにおいて、ステップS2で「減速フューエルカット中」か否かを判定することとしたが、本発明は、これに限定を受けるものではない。アクセルオフに伴うフューエルカット中であれば、「減速中」か否かは必須の要件ではない。例えば、下り坂を走行中などにもデポジット付着判定を実行することとする場合には、ステップ2として、「アクセルオフに伴うフューエルカット中」か否かを判定要件とすることができる。
また、上記実施形態1等では、図6に示すフローチャートにおいて、ステップS13で「EGRバルブ開度」を小さくする(又はゼロとする)こととしたが、本発明は、これに限定を受けるものではない。即ち、上記実施形態1等のようにEGRバイパス通路53を備える場合には、EGRバルブ51aに加え、EGRバイパスバルブ53aについても開度を小さくする(又はゼロとする)ことが望ましい。これにより、排気ガスの略全量がターボ過給機61,62のタービン61b,62bが設けられた箇所を経由して排出されることとなり、より高圧の空気が吸気ポート16に供給されることとなる。よって、デポジット除去を行う上でより望ましい。
また、上記実施形態1等では、図6、11に示すフローチャートにおいて、ステップS9〜ステップS13,S30のデポジット除去制御を実行することとしたが、本発明は、これら全てを実行することは必須ではなく、あるいは、他のデポジット除去を促進できる制御を付加して実行することも可能である。
また、上記実施形態1等では、PCM2が、燃料噴射弁37の閉状態が継続中にデポジットの噛み込みの有無を判定することとしたが、本発明は、これに限定を受けるものではない。即ち、燃料噴射弁37の閉状態が継続中である時に取得したクランク角速度情報を用いデポジットの噛み込みの有無を判定すればよく、判定そのものについては、燃料噴射弁37が開状態である期間に実行してもよい。
また、上記実施形態1等では、PCM2がデポジットの噛み込みの有無を判定し、その結果に基づいて、フューエルカットからの復帰に係るエンジン回転数を規定することとしたが、本発明は、デポジットの噛み込みの有無を必ずしも判定することを要しない。即ち、PCM2は、クランク角速度比が所定の閾値以下になったタイミングで、デポジットの噛み込みの有無を判定することなく、フューエルカットからの復帰に係るエンジン回転数を変更することとしてもよい。
1 エンジン
2 PCM
10 エンジン本体
12a バルブシート
19 クランクプレート
21 吸気バルブ
21a バルブ傘部
22 排気バルブ
30 吸気通路
33 サージタンク
36 吸気シャッターバルブ
51a EGRバルブ
61 第1ターボ過給機
62 第2ターボ過給機

Claims (13)

  1. エンジンの制御方法において、
    吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込みの有無を判定するデポジット付着判定ステップと、
    燃料噴射弁の開閉動作により燃料噴射の制御を実行する噴射弁開閉ステップと、
    を備え、
    アクセルがオフ状態である期間中において、
    前記デポジットの噛み込み無しと判定した場合には、前記アクセルがオフ状態となった後、前記エンジンの回転数が第1回転数よりも高い回転数から該第1回転数に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第1回転数以下となった時に、前記燃料噴射を再開し、
    前記デポジットの噛み込み有りと判定した場合には、前記アクセルがオフ状態となった後、前記エンジンの回転数が前記第1回転数よりも高く設定された第2回転数よりも高い回転数から該第2回転数に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第2回転数以下となった時に、前記燃料噴射を再開する、
    エンジンの制御方法。
  2. 請求項1記載のエンジンの制御方法であって、
    前記デポジット付着判定ステップでは、クランク角センサからのクランク角速度情報に基づき、前記デポジットの噛み込みの有無の判定を実行するとともに、当該判定を、前記噴射弁開閉ステップにおいて前記燃料噴射弁の閉状態が継続中であるときに取得した前記クランク角速度情報を用い実行する、
    エンジンの制御方法。
  3. 請求項2記載のエンジンの制御方法であって、
    前記デポジット付着判定ステップは、
    前記クランク角センサからのクランク角速度情報に基づき、前記エンジンにおける圧縮行程中での所定のクランク角範囲の通過に要する第1通過時間を算出する第1通過時間算出サブステップと、
    前記クランク角センサからのクランク角速度情報に基づき、前記エンジンにおける前記圧縮行程後での所定のクランク角範囲の通過に要する第2通過時間を算出する第2通過時間算出サブステップと、
    前記第1通過時間と前記第2通過時間との比が、所定の閾値以下となった場合に、デポジットの噛み込み有りと判定する判定サブステップと、
    を有する、
    エンジンの制御方法。
  4. エンジンの制御方法において、
    吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込みの有無を判定するデポジット付着判定ステップと、
    燃料噴射弁の開閉動作により燃料噴射の制御を実行する噴射弁開閉ステップと、
    を備え、
    アクセルがオフ状態である期間中において、
    前記デポジットの噛み込み無しと判定した場合には、前記アクセルがオフ状態となった時に、前記燃料噴射を停止し、
    前記デポジットの噛み込み有りと判定した場合には、前記アクセルがオフ状態となった後の所定の期間中に、前記燃料噴射を実行する、
    エンジンの制御方法。
  5. 請求項1から請求項4の何れか記載のエンジンの制御方法であって、
    前記アクセルがオフ状態である第1期間中に、前記デポジットの噛み込み有りとの判定がなされ、
    前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中に、前記アクセルがオン状態とされ、再び前記アクセルがオフ状態となった第2期間中では、継続的に前記燃料噴射を実行する、
    エンジンの制御方法。
  6. エンジンの制御方法において、
    吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込みの有無を判定するデポジット付着判定ステップと、
    燃料噴射弁の開閉動作により燃料噴射の制御を実行する噴射弁開閉ステップと、
    を備え、
    アクセルがオフ状態であって、前記デポジットの噛み込み有りとの判定がなされた第1期間と、
    前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中において、前記アクセルがオン状態とされたアクセルオン期間と、
    前記アクセルオン期間の後、前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中において、再び前記アクセルがオフ状態とされた第2期間と、
    が順に設定され、
    前記第2期間では、継続的に前記燃料噴射を実行する、
    エンジンの制御方法。
  7. エンジンの制御装置において、
    開閉動作により前記エンジンの燃焼室への燃料噴射量を調節する燃料噴射弁と、
    アクセルのオン・オフ状態に関するアクセル開度情報の入力を受け付けるとともに、前記燃料噴射弁の開閉制御により燃料噴射の制御を実行する制御部と、
    を備え、
    前記制御部は、前記アクセルがオフ状態である期間中において、
    吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込み無しと判定した場合には、前記アクセルがオフ状態となった後、前記エンジンの回転数が第1回転数よりも高い回転数から該第1回転数に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第1回転数以下となった時に、前記燃料噴射を再開し、
    前記デポジットの噛み込み有りと判定した場合には、前記アクセルがオフ状態となった後、前記エンジンの回転数が前記第1回転数よりも高く設定された第2回転数よりも高い回転数から該第2回転に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第2回転数以下となった時に、前記燃料を再開する、
    エンジンの制御装置。
  8. 請求項7記載のエンジンの制御装置であって、
    前記エンジンのクランク角速度を検出するクランク角センサを、さらに備え、
    前記制御部は、前記クランク角センサからのクランク角速度情報に基づくとともに、前記燃料噴射の停止状態の継続中であるときに取得したクランク角センサからのクランク角速度情報を用い、前記デポジットの噛み込みの有無の判定を実行する、
    エンジンの制御装置。
  9. 請求項8記載のエンジンの制御装置であって、
    前記制御部は、
    前記クランク角センサからのクランク角速度情報に基づき、前記エンジンにおける圧縮行程中での所定のクランク角範囲の通過に要する第1通過時間を算出し、
    前記クランク角センサからのクランク角速度情報に基づき、前記エンジンにおける前記圧縮行程後での所定のクランク角範囲の通過に要する第2通過時間を算出し、
    前記第1通過時間と前記第2通過時間との比を算出し、
    前記第1通過時間と前記第2通過時間との比が所定の閾値以下であると判断した場合に、デポジットの噛み込み有りと判定する、
    エンジンの制御装置。
  10. エンジンの制御装置において、
    開閉動作により前記エンジンの燃焼室への燃料噴射量を調節する燃料噴射弁と、
    アクセルのオン・オフ状態に関するアクセル開度情報の入力を受け付けるとともに、前記燃料噴射弁の開閉制御により燃料噴射の制御を実行する制御部と、
    を備え、
    前記制御部は、前記アクセルがオフ状態である期間中において、
    吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込み無しと判定した場合には、前記アクセルがオフ状態となった時に、前記燃料噴射を停止し、
    前記デポジットの噛み込み有りと判定した場合には、前記アクセルがオフ状態となった後の所定の期間中に、前記燃料噴射を実行する、
    エンジンの制御装置。
  11. 請求項7から請求項10の何れか記載のエンジンの制御装置であって、
    前記制御部は、
    前記アクセルがオフ状態である第1期間中に、前記デポジットの噛み込み有りと判定し、
    前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中に、前記アクセルがオン状態とされ、再び前記アクセルがオフ状態となった第2期間中では、継続的に前記燃料噴射を実行する、
    エンジンの制御装置。
  12. エンジンの制御装置において、
    開閉動作により前記エンジンの燃焼室への燃料噴射量を調節する燃料噴射弁と、
    アクセルのオン・オフ状態に関するアクセル開度情報の入力を受け付けるとともに、前記燃料噴射弁の開閉制御により燃料噴射の制御を実行する制御部と、
    を備え、
    前記アクセルがオフ状態であって、前記制御部が、吸気バルブ及び排気バルブの少なくとも一方と、バルブシートとの間へのデポジットの噛み込み有りと判定した第1期間と、
    前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中において、前記アクセルがオン状態とされたアクセルオン期間と、
    前記アクセルオン期間の後、前記第1期間中になされた前記デポジットの噛み込み有りとの判定の継続中において、再び前記アクセルがオフ状態とされた第2期間と、
    が順に設定され、
    前記制御部は、前記第2期間において、継続的に前記燃料噴射を実行する、
    エンジンの制御装置。
  13. エンジンの制御装置において、
    開閉動作により前記エンジンの燃焼室への燃料噴射量を調節する燃料噴射弁と、
    前記エンジンのクランク角速度を検出するクランク角センサと、
    アクセルのオン・オフ状態に関するアクセル開度情報、及び前記クランク角センサからのクランク角速度情報の入力を受け付けるとともに、前記燃料噴射弁の開閉制御により燃焼噴射の制御を実行する制御部と、
    を備え、
    前記制御部は、前記アクセルがオフ状態である期間中において、
    前記クランク角速度情報を基とする、前記エンジンにおける圧縮行程中での所定のクランク角範囲の通過に要する第1通過時間と、前記エンジンにおける前記圧縮行程後での所定のクランク角範囲の通過に要する第2通過時間との比が、所定の閾値よりも大きい場合には、前記エンジンの回転数が第1回転数よりも高い回転数から該第1回転数に低下するまでの期間中、前記燃料噴射を停止し、前記エンジンの回転数が前記第1回転数以下となった時に、前記燃料噴射を再開し、
    前記比が前記所定の閾値以下である場合には、前記エンジンの回転数が前記第1回転数よりも高く設定された第2回転数よりも高い回転数から該第2回転数に低下するまでの期間中に、前記燃料噴射を停止し、前記エンジンの回転数が前記第2回転数以下となった時に、前記燃料噴射を再開する、
    エンジンの制御装置。
JP2017086931A 2017-04-26 2017-04-26 エンジンの制御方法及びエンジンの制御装置 Expired - Fee Related JP6531779B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017086931A JP6531779B2 (ja) 2017-04-26 2017-04-26 エンジンの制御方法及びエンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017086931A JP6531779B2 (ja) 2017-04-26 2017-04-26 エンジンの制御方法及びエンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2018184889A true JP2018184889A (ja) 2018-11-22
JP6531779B2 JP6531779B2 (ja) 2019-06-19

Family

ID=64355606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017086931A Expired - Fee Related JP6531779B2 (ja) 2017-04-26 2017-04-26 エンジンの制御方法及びエンジンの制御装置

Country Status (1)

Country Link
JP (1) JP6531779B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184886A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184888A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184891A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184892A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184081A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184890A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184887A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240479A (ja) * 1999-02-19 2000-09-05 Nippon Soken Inc 吸排気弁の異物噛み込みを検出し得る内燃機関
JP2005264853A (ja) * 2004-03-19 2005-09-29 Toyota Motor Corp 内燃機関
JP2005264852A (ja) * 2004-03-19 2005-09-29 Toyota Motor Corp 内燃機関
JP2008088918A (ja) * 2006-10-03 2008-04-17 Toyota Motor Corp 内燃機関の制御装置、制御方法、その方法をコンピュータに実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2014066208A (ja) * 2012-09-26 2014-04-17 Daihatsu Motor Co Ltd 内燃機関の制御装置
JP2017066903A (ja) * 2015-09-28 2017-04-06 ダイハツ工業株式会社 内燃機関の制御装置
JP2018184888A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184892A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184081A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184887A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184891A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184886A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184890A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240479A (ja) * 1999-02-19 2000-09-05 Nippon Soken Inc 吸排気弁の異物噛み込みを検出し得る内燃機関
JP2005264853A (ja) * 2004-03-19 2005-09-29 Toyota Motor Corp 内燃機関
JP2005264852A (ja) * 2004-03-19 2005-09-29 Toyota Motor Corp 内燃機関
JP2008088918A (ja) * 2006-10-03 2008-04-17 Toyota Motor Corp 内燃機関の制御装置、制御方法、その方法をコンピュータに実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2014066208A (ja) * 2012-09-26 2014-04-17 Daihatsu Motor Co Ltd 内燃機関の制御装置
JP2017066903A (ja) * 2015-09-28 2017-04-06 ダイハツ工業株式会社 内燃機関の制御装置
JP2018184888A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184892A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184081A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184887A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184891A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184886A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184890A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184886A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184888A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184891A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184892A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184081A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184890A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置
JP2018184887A (ja) * 2017-04-26 2018-11-22 マツダ株式会社 エンジンの制御方法及びエンジンの制御装置

Also Published As

Publication number Publication date
JP6531779B2 (ja) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6531779B2 (ja) エンジンの制御方法及びエンジンの制御装置
JP6593384B2 (ja) 変速装置のロックアップ状態制御方法
JP6531780B2 (ja) エンジンの制御方法及びエンジンの制御装置
JP6593383B2 (ja) エンジンの制御方法及びエンジンの制御装置
JP6531778B2 (ja) エンジンの制御方法及びエンジンの制御装置
JP6531777B2 (ja) エンジンの制御方法及びエンジンの制御装置
JP6593382B2 (ja) エンジンの制御方法及びエンジンの制御装置
JP6531781B2 (ja) エンジンの制御方法及びエンジンの制御装置
US6978602B2 (en) Engine exhaust cleaning device
US20070022745A1 (en) Fuel supply system and fuel supply method for exhaust purifying catalyst device in internal combustion engine
JP6163914B2 (ja) ディーゼルエンジン及びその制御方法
US20220356851A1 (en) Engine controls for exhaust aftertreatment thermal management
AU2014372293A1 (en) Exhaust gas control device for internal combustion engine mounted on vehicle
US9771858B2 (en) Engine system control apparatus and vehicle
JP6421797B2 (ja) エンジンの制御装置
WO2018088341A1 (ja) 排気浄化装置の再生制御装置
JP2013164053A (ja) 内燃機関の制御装置
JP6421798B2 (ja) エンジンの制御装置
JP6421796B2 (ja) エンジンの制御装置
JP2006242170A (ja) 内燃機関の排ガス浄化装置
JP4935426B2 (ja) 内燃機関の制御装置
JP2010116895A (ja) 内燃機関の制御装置
JP2023059675A (ja) エンジンの制御装置及び制御方法
JP2009257235A (ja) 内燃機関
JP2023059677A (ja) エンジンの制御装置及び制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees