JP2018182357A - 電流検出アンプ - Google Patents

電流検出アンプ Download PDF

Info

Publication number
JP2018182357A
JP2018182357A JP2017073521A JP2017073521A JP2018182357A JP 2018182357 A JP2018182357 A JP 2018182357A JP 2017073521 A JP2017073521 A JP 2017073521A JP 2017073521 A JP2017073521 A JP 2017073521A JP 2018182357 A JP2018182357 A JP 2018182357A
Authority
JP
Japan
Prior art keywords
current
resistor
type mos
input terminal
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017073521A
Other languages
English (en)
Other versions
JP6969884B2 (ja
Inventor
一之 宮島
Kazuyuki Miyajima
一之 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2017073521A priority Critical patent/JP6969884B2/ja
Publication of JP2018182357A publication Critical patent/JP2018182357A/ja
Priority to JP2021174500A priority patent/JP7192075B2/ja
Application granted granted Critical
Publication of JP6969884B2 publication Critical patent/JP6969884B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

【課題】簡素な回路構成で、かつ、従来回路と同等以上の動作特性の回路を提供する。【解決手段】電流検出用抵抗器20に生ずる電位差によって第2のダイオード16が導通状態となる一方、第1のダイオード15が非導通となり、第1のカレントミラー回路41の出力段からの第1のダイオード15への電流の流入が阻止される状態となる場合に、第1のカレントミラー回路41の出力段の電流を、分流用P型MOSトランジスタ7、及び、第2のカレントミラー回路42を介してグランドへバイパスせしめ、第2のN型MOSトランジスタ2のソース電流が電圧生成用抵抗器23に流入することにより生ずるゲインエラーを相殺可能に構成されたものとなっている。【選択図】図1

Description

本発明は、電流検出用抵抗器に流れる電流を検出、増幅する電流検出アンプに係り、特に、構成の簡素化等を図ったものに関する。
電子回路において、電流検出が必要とされる場合、例えば、電流検出用抵抗器を電流経路に設け、その抵抗器において発生する電位差を、電流検出アンプによって検出、増幅し電圧出力として得る方策があることは良く知られている通りである。
このような回路においては、電流検出用抵抗器の両端に接続された電流検出アンプの入力端子における同相入力電圧が、グランド電位以下から電流検出アンプに供給される電源電圧以上まで変動しても、予め設定された所望の増幅度で増幅動作がなされる必要がある。
従来、上述のような電圧変動の如何に関わらず安定した増幅動作を確保、実現する手段としては、例えば、特許文献1等に開示されたような技術がある。
図4には、特許文献1に開示された回路構成例が示されており、以下、同図を参照しつつ、この従来回路について説明する。
この従来回路は、第1及び第2のオペアンプ51A,51Bと、バッファアンプ52と、オフセット調整用増幅器53と、を主たる構成要素として構成されたものとなっている。
しかして、この従来回路は、まず、同相入力電圧Vin+が、回路の電源電圧であるV+よりも高い場合、第1のオペアンプ51Aが、電流制限素子であるトランジスタQ1のベース電圧を制御して、そのコレクタ電流を制御し、入力端子65に接続された入力抵抗器61に流れる電流を制御する。
その結果、この電流検出アンプの出力電圧であるVoutは、下記する式1により求められるように電流検出用抵抗器63に流れる電流に比例した電圧値となる。
Vout=(RL/Rin)×Rs×Is・・・式1
なお、ここで、RLは、バッファアンプ52の入力段とグランドとの間に設けられた抵抗器64の抵抗値、Rinは、入力抵抗器61の抵抗値、Rsは電流検出用抵抗器63の抵抗値、Isは、負荷(LOAD)60に流れる電流値である。
また、同相入力電圧Vin+が、グランド電位よりも低い場合、第2のオペアンプ51Bが、第2及び第3のトランジスタQ2,Q3のベース電圧を制御することで、第2のトランジスタQ2により入力抵抗器62に電流が流され、第3のトランジスタQ3により抵抗器64に電流が流される。
第2及び第3のトランジスタQ2,Q3は、カレントミラー回路を構成しており、そのため、それぞれのコレクタ電流は相等しく、入力抵抗器61,62の抵抗値が等しい場合、出力電圧Voutは、先の式1に求められる電圧値と同じとなる。
このように、第1のオペアンプ51Aと第2のオペアンプ51Bの制御動作は、同相入力電圧Vin+の電圧レベルに従って切り替わるが、停止状態にあった第1のオペアンプ51Aが動作を開始するまでには遅れが生じ、制御動作の切換時に出力電圧の一時的な低下が発生する。
図4に示された従来回路においては、上述の回路動作の遅延による出力電圧の一時的な低下を緩和するため、オフセット調整用増幅器53が設けられている。
すなわち、オフセット調整用増幅器53は、第1及び第2のオペアンプ51A,51Bのオフセット電圧を制御して、第1及び第2のオペアンプ51A,51Bの動作の切り替わり時に、第1のトランジスタQ1と第3のトランジスタQ3の各々の電流が近い値となるようにしている。
このように従来回路は、結局、バッファアンプ52も含めると4個のオペアンプを必要とする構成である。
米国特許第7196581号明細書
しかしながら、このような電流検出アンプを用いて、他のゲートドライバやスイッチング電源などと共に半導体製品を製造する場合、電流検出アンプだけで4個のオペアンプを必要とするため、半導体製品全体のチップ面積の増大に伴うパッケージの大型化を招くだけでなく、コスト上昇を招く等の問題がある。
本発明は、上記実状に鑑みてなされたもので、従来回路に比して簡素な回路構成で、かつ、従来回路と同等以上の動作特性を実現可能な電流検出アンプを提供するものである。
上記本発明の目的を達成するため、本発明に係る電流検出アンプは、
同相入力電圧の非反転入力端子となる第1の入力端子と、反転入力端子となる第2の入力端子と、前記第1の入力端子に一端を接続し、他端を前記第2の入力端子に接続する電流検出用抵抗器を備え、前記電流検出用抵抗器を流れる検出電流により当該電流検出用抵抗器に生ずる電位差を差動増幅して、前記検出電流に対応した電圧出力を可能に構成されてなる電流検出アンプであって、
前記差動増幅を行う第1の演算増幅器が設けられ、その出力端子には、第1及び第2のN型MOSトランジスタの各々のゲートが接続され、当該第1及び第2のN型MOSトランジスタのソースは、共にボルテージフォロアを構成する第2の演算増幅器の非反転入力端子に接続されると共に、電圧生成用抵抗器を介してグランドに接続される一方、
前記第2のN型MOSトランジスタのドレインは、第1のカレントミラー回路の入力段に、前記第1のN型MOSトランジスタのドレインは、第2のカレントミラー回路の出力段に、それぞれ接続され、
前記第1のカレントミラー回路の出力段は、第1のダイオード及び第2の入力抵抗器を介して、前記電流検出用抵抗器の前記他端に接続されると共に、分流用P型MOSトランジスタを介して前記第2のカレントミラー回路の入力段に接続され、
前記第1のN型MOSトランジスタのドレインと前記第2のカレントミラー回路の出力段は、第2のダイオード及び第1の入力抵抗器を介して前記電流検出用抵抗器の前記一端に接続され、
前記電流検出用抵抗器に生ずる電位差によって前記第2のダイオードが導通状態となる一方、前記第1のダイオードが非導通となり、前記第1のカレントミラー回路の出力段からの前記第1のダイオードへの電流の流入が阻止される状態となる場合に、前記第1のカレントミラー回路の出力段の電流を、前記分流用P型MOSトランジスタ、及び、前記第2のカレントミラー回路を介してグランドへバイパスせしめ、前記第2のN型MOSトランジスタのソース電流が前記電圧生成用抵抗器に流入することにより生ずるゲインエラーの相殺を可能に構成されてなるものである。
また、上記本発明の目的を達成するため、本発明に係る電流検出アンプは、
同相入力電圧の非反転入力端子となる第1の入力端子と、反転入力端子となる第2の入力端子と、前記第1の入力端子に一端を接続し、他端を前記第2の入力端子に接続する電流検出用抵抗器を備え、前記電流検出用抵抗器を流れる検出電流により当該電流検出用抵抗器に生ずる電位差を差動増幅して、前記検出電流に対応した電圧出力を可能に構成されてなる電流検出アンプであって、
前記差動増幅を行う第1の演算増幅器が設けられ、その出力端子には、第1及び第2のN型MOSトランジスタの各々のゲートが接続され、当該第1及び第2のN型MOSトランジスタのソースは、共に電圧生成用抵抗器を介してグランドに接続される一方、
前記第2のN型MOSトランジスタのドレインは、第1のカレントミラー回路の入力段に接続され、
前記第1のカレントミラー回路の出力段は、第1のダイオード及び第2の入力抵抗器を介して、前記電流検出用抵抗器の前記他端に接続されると共に、分流用P型MOSトランジスタを介して第2の演算増幅器の反転入力端子に接続され、
前記第2の演算増幅器は、出力端子と反転入力端子との間に、第1の非反転増幅用抵抗器が、反転入力端子とグランドとの間に、第2の非反転増幅用抵抗器が、それぞれ接続され、
前記第1のN型MOSトランジスタのドレインは、第2のダイオード及び第1の入力抵抗器を介して前記電流検出用抵抗器の前記一端に接続され、
前記電流検出用抵抗器に生ずる電位差によって前記第2のダイオードが導通状態となる一方、前記第1のダイオードが非導通となり、前記第1のカレントミラー回路の出力段からの前記第1のダイオードへの電流の流入が阻止される状態となる場合に、前記第1のカレントミラー回路の出力段の電流を、前記分流用P型MOSトランジスタ、及び、前記第2の非反転増幅用抵抗器を介してグランドへバイパスせしめ、前記第2のN型MOSトランジスタのソース電流が前記電圧生成用抵抗器に流入することにより生ずるゲインエラーの相殺を可能に構成されてなるものも好適である。
本発明によれば、従来と異なり、同相入力電圧に応じてフィードバックの経路を切り替えるようにして、入力電圧を増幅する演算増幅器を一つとして回路構成の簡素化を図りつつ、従来回路と同等の回路動作を確保することができ、さらに、製造コストの低減を図ることができるという効果を奏するものである。
本発明の実施の形態における電流検出アンプの第1の実施例における回路図である。 本発明の実施の形態における電流検出アンプの第2の実施例における回路図である。 本発明の実施の形態における電流検出アンプに設けられたカレントミラー回路の代替回路例を示す回路図である。 従来の電流検出アンプの回路構成例を示す回路図である。
以下、本発明の実施の形態について、図1乃至図3を参照しつつ説明する。
なお、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
最初に、本発明の実施の形態における電流検出アンプの第1の実施例について、図1を参照しつつ説明する。
この第1の実施例における電流検出アンプは、第1及び第2の演算増幅器(図1においては、それぞれ「OP1」、「OP2」と表記)11,12と、第1及び第2のカレントミラー回路41,42とを主たる構成要素として構成されたものとなっている。
電流検出アンプは、電流検出用抵抗器(図1においては「Rs」と表記)20により検出された負荷(図1においては「LOAD」と表記)26に流れる電流を、検出電流の大きさに対応した電圧出力VOUTとして得られるよう構成されてなるもので、かかる基本的な動作は従来回路と同様のものであるが、以下に説明するように、従来回路に比して回路構成の簡素化が図られたものとなっている。
まず、同相入力電圧の非反転入力端子となる第1の入力端子(図1においては「INP」と表記)35、及び、同相入力電圧の反転入力端子となる第2の入力端子(図1においては「INM」と表記)36の間には、電流検出用抵抗器20が接続されており、第1の入力端子35と電流検出用抵抗器20との接続点には、第1の電源31から第1の電源電圧V1が印加される一方、第2の入力端子36と電流検出用抵抗器20との接続点とグランドとの間には、負荷26が接続されている。
第1の演算増幅器11の非反転入力端子と第1の入力端子35との間には、第1の入力抵抗器(図1においては「R1」と表記)21が、反転入力端子と第2の入力端子36との間には、第2の入力抵抗器(図1においては「R2」と表記)22が、それぞれ接続されている。換言すれば、第2の入力抵抗器22の一端は、電流検出用抵抗器20の他端(第2の入力端子36が接続された一端)に接続される一方、第1の入力端子21の一端は、電流検出用抵抗器20の一端に接続されている。
第1の演算増幅器11の出力端子には、第1及び第2のN型MOSトランジスタ(図1においては、それぞれ「MN1」、「MN2」と表記)1,2のゲートが接続されている。
なお、以下、説明の便宜上、N型MOSトランジスタを「NMOS」と、P型MOSトランジスタを「PMOS」と、それぞれ称することとする。
第1及び第2のNMOS1,2のソースは、共に電圧生成用抵抗器である第3の抵抗器(図1においては「R3」と表記)23を介してグランドに接続されると共に、第2の演算増幅器12の非反転入力端子に接続されている。
第2の演算増幅器12は、出力端子と反転入力端子とが相互に接続されて、ボルテージフォロアとして動作するものとなっている。
また、第1のNMOS1のドレインは、第2のダイオード(図1においては「D2」と表記)16のアノード及び第4のNMOS(図1においては「MN4」と表記)4のドレインに接続されている。第2のダイオード16のアノードは、第1の演算増幅器11の非反転入力端子に接続されている。
さらに、第2のNMOS2のドレインは、第1のPMOS5のドレインに接続されている。
第1のカレントミラー回路41は、第1及び第2のPMOS(図1においては、それぞれ「MP1」、「MP2」と表記)5,6を有して構成されている。
すなわち、第1及び第2のPMOS5,6のゲートは、相互に接続されると共に、入力段をなす第1のPMOS5のドレインに接続されている。
また、第1及び第2のPMOS5,6のソースには、第2の電源32からの電源電圧V2が印加されるようになっている。
さらに、出力段をなす第2のPMOS6のドレインには、第3のPMOS(図1においては「MP3」と表記)7のソース及び第1のダイオード(図1においては「D1」と表記)15のアノード接続されている。そして、第1のダイオード15のカソードは、第1の演算増幅器11の反転入力端子に接続されている。
また、第3のPMOS(分流用P型MOSトランジスタ)7のゲートには、第3の電源33からの電源電圧V3が印加されるようになっている一方、ドレインは、第3のNMOS(図1においては「MN3」と表記)3のドレインに接続されている。
第2のカレントミラー回路42は、第3及び第4のNMOS3,4を有して構成されている。
すなわち、第3及び第4のNMOS3,4のゲートは、相互に接続されると共に、入力段をなす第3のNMOS3のドレインに接続されている一方、ソースは、共にグランドに接続されている。
そして、出力段をなす第4のNMOS4のドレインには、先に述べたように、第1のNMOS1のドレイン及び第2のダイオード16のカソードが接続されている。
次に、かかる構成における動作について説明する。
この電流検出アンプは、同相入力電圧であるV1とV2の相互の大小関係により以下に説明するように3つの電圧条件に応じた3つの動作状態を有している。
(1)第1の電圧条件
最初に、V1>V2−(VF1+V3−Vthp)の場合の動作について説明する。
ここで、VF1は、第1のダイオード15の順方向電圧、V3は、第3の電源33により供給される電源電圧、Vthpは、PMOSの閾値電圧である。
負荷26に流れる負荷電流ILによって電流検出用抵抗器20に発生する電位差VINは、第1及び第2の入力抵抗器21,22を介して差動増幅を行う第1の演算増幅器11に入力される。
これにより、第1及び第2のNMOS1,2は、そのゲート電圧が、第1の演算増幅器11の出力により制御される。第1のNMOS1のドレイン電流の増加により、第1の入力抵抗器21における電位差が増加し、オン状態(導通状態)の第2のダイオード16を介して第1の演算増幅器11はフィードバック制御を受ける。
第1の入力抵抗器21を流れる電流は、第3の抵抗器23に流入し、そこでの電圧降下分が第2の演算増幅器12を介して出力電圧VOUTとして出力されることとなる。
一方、この場合、第1のNMOS1同様、第2のNMOS2のドレイン電流も増加するが、このドレイン電流は、第1のカレントミラー回路41を介して、第1のダイオード15のアノードと第3のPMOS7のソースとの接続点にミラーされる。
しかしながら、第1のダイオード15は、V1>V2−Vbeであるためにオフ状態(非導通状態)となる。ここで、Vbeは、第1のダイオード15のアノードと第2の電源32との間の第1のカレントミラー回路41における電位差である。
そのため、第1のカレントミラー回路41によりミラーされた電流は、第3のPMOS7に流れ、さらに、第2のカレントミラー回路42によりミラーされて、第3の抵抗器23を介することなく、第1の入力抵抗器21から流れてきた電流をグランドへ流すこととなる。すなわち、第1の入力抵抗器21から流れてきた電流は、第4のNMOS4を介してグランドにバイパスされることとなる。
結局、第2のNMOS2のソース電流により発生する第3の抵抗器23に生ずる電圧は相殺されて、出力電圧VOUTは、下記する式2により表される電圧となる。
VOUT=VR3=(R3/R1)×VIN・・・式2
ここで、VR3は、第3の抵抗器23の電圧、R3は、第3の抵抗器23の抵抗値、R1は、第1の入力抵抗器21の抵抗値である。
(2)第2の電圧条件
次に、V1<VOUT+VF2の場合の動作について説明する。
ここで、VF2は、第2のダイオード16の順方向電圧である。
この場合、第2のダイオード16はオフ状態となり、第1のNMOS1からの電流は流れるなくなるが、その分、第2のNMOS2の電流が増加する。
第2のNMOS2のドレイン電流は、第1のカレントミラー回路41を介して第1のダイオード15のアノード側へミラーされる。
第1のダイオード15のアノード側へミラーされた電流は、第1のダイオード15を介して第2の入力抵抗器22へソースされることとなる。
その結果、出力電圧VOUTは、下記する式3により表される電圧となる。
この場合、第1及び第2の入力抵抗器21,22の抵抗値が同一であれば、出力電圧VOUTは、先の式2で求められる電圧値と同一となる。
VOUT=(R3/R2)×VIN・・・式3
なお、R2は、第2の入力抵抗器22の抵抗値である。
(3)第3の電圧条件
次に、V2−(VF1+V3−Vthp)>V1>VOUT+VF2の場合の動作について説明する。
この場合、第1及び第2のダイオード15,16共に、オン状態となる一方、第3のPMOS7は、オフ状態となる。
かかる状態において、電流検出用抵抗器20に発生する電位差VINは、下記する式4により、出力電圧VOUTは、下記する式5により表されるものとなる。
VIN=R1×I1−R2×I2・・・式4
VOUT=R3×(I1+IDN2)・・・式5
式4において、R1は、第1の入力抵抗器21の抵抗値、R2は、第2の入力抵抗器22の抵抗値、I1は、第1の入力抵抗器21を流れる電流、I2は、第2の入力抵抗器22を流れる電流である。
また、式5において、IDN2は、第2のNMOS2のドレイン電流である。
さらに、この場合、 第1及び第2の入力抵抗器21,22の抵抗値が同一である(R1=R2)で、第3のPMOS7がオフ状態において、第2のNMOS2のドレイン電流IDN2が、IDN2=−I2の条件を満たす際には、出力電圧VOUTは、下記する式6により表されるものとなる。
VOUT=R3/R1×VIN・・・式6
なお、V1>V2−Vbeの状態において、第2のNMOS2のドレインにスイッチ等を設けて第2のNMOS2を停止させても、電流検出アンプとしての動作は可能であるが、この場合、電源電圧V1が変化して第2のNMOS2の電流を流し始めるタイミングで第1のカレントミラー回路41の動作開始までの遅延が生ずるため、一時的に出力電圧VOUTが上昇してしまうという不都合がある。
本発明の実施の形態における電流検出アンプの場合、第1のカレントミラー回路41の動作が停止しないため、上述のような回路動作の切り替わり時の遅延時間が確実に短縮されるものとなっている。
次に、本発明の実施の形態における電流検出アンプの第2の実施例について、図2を参照しつつ説明する。
なお、図1に示された第1の実施例における構成要素と同一の構成要素については、同一の符号を付して、その詳細な説明を省略し、以下、異なる点を中心に説明することとする。
第2の実施例における電流検出アンプが第1の実施例における電流検出アンプと異なる主要な点は、カレントミラー回路が第1のカレントミラー回路41のみであることと、第2の演算増幅器12が所定の増幅度で増幅動作を行う構成とした点にある。
以下、具体的に説明すれば、まず、第3のPMOS7のドレインは、図1の回路例における第2のカレントミラー回路42に代えて、第2の演算増幅器12の反転入力端子に接続されている。
また、第2の演算増幅器12の出力端子と反転入力端子との間には、第1の非反転増幅用抵抗器としての第4の抵抗器(図2においては「R4」と表記)24が接続される一方、反転入力端子とグランドとの間には、第2の非反転増幅用抵抗器としての第5の抵抗器(図2においては「R5」と表記)25が接続されている。
次に、かかる構成における動作について説明する。
この第2の実施例における電流検出アンプも、先の第1の実施例と同様、同相入力電圧であるV1とV2の相互の大小関係により以下に説明するように3つのの電圧条件に応じた3つの動作状態を有している。
(1)第1の電圧条件
最初に、V1>V2−(VF1+V3−Vthp)の場合の動作について説明する。
先の第1の実施例と同様、第1のダイオード16は、オフ状態であるため、第2のPMOS6のドレイン電流は、第1のカレントミラー回路41によりミラーされて第3のPMOS7に同一の電流で流れる。
第3のPMOS7は、そのドレインが第2の演算増幅器11の反転入力端子に接続されているため、ドレイン電流は、第5の抵抗器25を介してグランドへ流れることとなる。
この第3のPMOS7のドレイン電流をIPM3とすると、第3の抵抗器23に発生する電圧VR3と出力電圧VOUTとの関係は、下記する式7により表される関係となる。
VOUT=−R4×IPM3+(R4+R5)/R5×VR3・・・式7
ここで、R4は、第4の抵抗器24の抵抗値、R5は、第5の抵抗器25の抵抗値である。
一方、VR3については、下記する式8A及び式8Bが成立する。
VR3=(I1+IPM3)×R3・・・式8A
IPM3=VR3/R3−I1・・・式8B
これらの式より、VOUTは、下記する式9により表される。
VOUT=R4×I1−{(R4+R5)/R5−R4/R3}×VR3・・・式9
ここで、R3、R4、及び、R5を以下のように設定する。
R3=(R4×R5)/(R4+R5)・・・式10
これにより、式9は、下記する式11のように表される。
VOUT=R3×(R4×R5)/R5×I1・・・式11
ここで、VIN=I1×R1であるため、出力電圧VOUTと電流検出用抵抗器20に発生する電位差VINは、下記する式12の関係となる。
VOUT=(R3/R1)×(R4×R5)/R5×VIN・・・式12
このように、R3、R4、及び、R5の抵抗値を適切に設定することにより、第1の実施例の場合と同様のゲインを得ることができる。
(2)第2の電圧条件
次に、V1<VOUT+VF2の場合の動作について説明する。
この場合、第1のダイオード15はオン状態、第2のダイオード16はオフ状態となる。
第2のPMOS6のドレイン電流は、全て第2の入力抵抗器22に流れ、出力電VOUTは、下記する式13により表され、R1=R2であれば、式11と同一となる。
VOUT=(R3/R2)×(R4×R5)/R5×VIN・・・式13
(3)第3の電圧条件
次に、V2−(VF1+V3−Vthp)>V1>VOUT+VF2の場合の動作について説明する。
この場合、第1及び第2のダイオード15,16は、共にオン状態となる。
このため、第2のPMOS6のドレイン電流は、第2の入力抵抗器22に流れる電流I2と、第3のPMOS7のドレイン電流IPM3とに、それぞれ分流することとなる。その結果、第3の抵抗器23に生ずる電圧VR3と、電流検出用抵抗器20に発生する電位差VINについて、下記する式14及び式15で表される関係が成立する。
VR3=(I1−I2+IPM3)×R3・・・式14
VIN=(I1−I2)×R1・・・式15
これら式14、及び、式15を、先の式6に代入すると、下記する式16を得ることができ、先に説明した第1及び第2の電圧条件における出力電圧VOUTと同一となる。
VOUT=(R3/R1)×(R4×R5)/R5×VIN・・・式16
このように、この第2の実施例にあっても、図1に示された第1の実施例の回路と同様のゲインが得られる。
但し、図1に示された回路にあっては、第3及び第4のNMOS3,4で構成された第2のカレントミラー回路42を用いており、回路の制御電流としての第3のNMOS3のドレイン電流と、出力電流としての第4のNMOS4のドレイン電流は、双方のトランジスタの特性にばらつきがあると、差異を生じるため、これが、電流検出アンプとしてのゲインエラーとなって表れる。
これに対して、図2に示された第2の実施例においては、図1の回路における第2のカレントミラー回路42に相当するものを用いておらず、R3、R4、及び、R5の抵抗値の比によってゲインエラーが定まる。したがって、製造工程において、レーザー照射等によってその抵抗値を調整することで、ゲインエラーの補正が可能であり、第1の実施例の回路に比して、ゲインエラーの補正が容易である。
上述した第1及び第2の実施例のいずれにおいても、第1のカレントミラー回路41が用いられているが、これを図3に示された構成に代えても好適である。
以下、図3を参照しつつ、この代替回路(以下、説明の便宜上「等価カレントミラー回路」と称する)について説明する。
この等価カレントミラー回路43は、等価回路用演算増幅器13と等価回路用PMOS8とを有して構成されものとなっている。
等価回路用演算増幅器13は、その非反転入力端子に等価回路用第1の抵抗器(図3においては「R11」と表記)27を介して電源電圧V2が印加されると共に、第2のNMOS2のドレインに接続されるものとなっている(図3においては、その接続部分の図示は省略)。
また、等価回路用演算増幅器13の反転入力端子は、等価回路用第2の抵抗器(図3においては「R12」と表記)28を介して電源電圧V2が印加されると共に、等価回路用PMOS8のソースに接続されている。
等価回路用PMOS8は、そのゲートが等価回路用演算増幅器13の出力端子に接続される一方、ドレインは、第3のPMOS7のソース及び第1のダイオード15のアノードに接続されるものとなっている(図3においては、その接続部分の図示は省略)。
なお、かかる構成における回路動作は、第1のカレントミラー回路41と同様であるので、ここでの再度の説明は省略することとする。
従来回路と同等以上の動作特性を維持しつつ、回路構成の簡素化が所望される電流検出アンプに適用できる。
11…第1の演算増幅器
12…第2の演算増幅器
20…電流検出用抵抗器
41…第1のカレントミラー回路
42…第2のカレントミラー回路

Claims (3)

  1. 同相入力電圧の非反転入力端子となる第1の入力端子と、反転入力端子となる第2の入力端子と、前記第1の入力端子に一端を接続し、他端を前記第2の入力端子に接続する電流検出用抵抗器を備え、前記電流検出用抵抗器を流れる検出電流により当該電流検出用抵抗器に生ずる電位差を差動増幅して、前記検出電流に対応した電圧出力を可能に構成されてなる電流検出アンプであって、
    前記差動増幅を行う第1の演算増幅器が設けられ、その出力端子には、第1及び第2のN型MOSトランジスタの各々のゲートが接続され、当該第1及び第2のN型MOSトランジスタのソースは、共にボルテージフォロアを構成する第2の演算増幅器の非反転入力端子に接続されると共に、電圧生成用抵抗器を介してグランドに接続される一方、
    前記第2のN型MOSトランジスタのドレインは、第1のカレントミラー回路の入力段に、前記第1のN型MOSトランジスタのドレインは、第2のカレントミラー回路の出力段に、それぞれ接続され、
    前記第1のカレントミラー回路の出力段は、第1のダイオード及び第2の入力抵抗器を介して、前記電流検出用抵抗器の前記他端に接続されると共に、分流用P型MOSトランジスタを介して前記第2のカレントミラー回路の入力段に接続され、
    前記第1のN型MOSトランジスタのドレインと前記第2のカレントミラー回路の出力段は、第2のダイオード及び第1の入力抵抗器を介して前記電流検出用抵抗器の前記一端に接続され、
    前記電流検出用抵抗器に生ずる電位差によって前記第2のダイオードが導通状態となる一方、前記第1のダイオードが非導通となり、前記第1のカレントミラー回路の出力段からの前記第1のダイオードへの電流の流入が阻止される状態となる場合に、前記第1のカレントミラー回路の出力段の電流を、前記分流用P型MOSトランジスタ、及び、前記第2のカレントミラー回路を介してグランドへバイパスせしめ、前記第2のN型MOSトランジスタのソース電流が前記電圧生成用抵抗器に流入することにより生ずるゲインエラーの相殺を可能に構成されてなることを特徴とする電流検出アンプ。
  2. 同相入力電圧の非反転入力端子となる第1の入力端子と、反転入力端子となる第2の入力端子と、前記第1の入力端子に一端を接続し、他端を前記第2の入力端子に接続する電流検出用抵抗器を備え、前記電流検出用抵抗器を流れる検出電流により当該電流検出用抵抗器に生ずる電位差を差動増幅して、前記検出電流に対応した電圧出力を可能に構成されてなる電流検出アンプであって、
    前記差動増幅を行う第1の演算増幅器が設けられ、その出力端子には、第1及び第2のN型MOSトランジスタの各々のゲートが接続され、当該第1及び第2のN型MOSトランジスタのソースは、共に電圧生成用抵抗器を介してグランドに接続される一方、
    前記第2のN型MOSトランジスタのドレインは、第1のカレントミラー回路の入力段に接続され、
    前記第1のカレントミラー回路の出力段は、第1のダイオード及び第2の入力抵抗器を介して、前記電流検出用抵抗器の前記他端に接続されると共に、分流用P型MOSトランジスタを介して第2の演算増幅器の反転入力端子に接続され、
    前記第2の演算増幅器は、出力端子と反転入力端子との間に、第1の非反転増幅用抵抗器が、反転入力端子とグランドとの間に、第2の非反転増幅用抵抗器が、それぞれ接続され、
    前記第1のN型MOSトランジスタのドレインは、第2のダイオード及び第1の入力抵抗器を介して前記電流検出用抵抗器の前記一端に接続され、
    前記電流検出用抵抗器に生ずる電位差によって前記第2のダイオードが導通状態となる一方、前記第1のダイオードが非導通となり、前記第1のカレントミラー回路の出力段からの前記第1のダイオードへの電流の流入が阻止される状態となる場合に、前記第1のカレントミラー回路の出力段の電流を、前記分流用P型MOSトランジスタ、及び、前記第2の非反転増幅用抵抗器を介してグランドへバイパスせしめ、前記第2のN型MOSトランジスタのソース電流が前記電圧生成用抵抗器に流入することにより生ずるゲインエラーの相殺を可能に構成されてなることを特徴とする電流検出アンプ。
  3. 前記第1のカレントミラー回路は、演算増幅器とP型MOSトランジスタを有し、前記演算増幅器の非反転入力端子は、等価回路用第1の抵抗器を介して電源電圧が印加されると共に、入力段を形成する一方、
    前記演算増幅器の反転入力端子は、等価回路用第2の抵抗器を介して、前記電源電圧が印加されると共に、前記P型MOSトランジスタのソースに接続され、
    前記P型MOSトランジスタのゲートは、前記演算増幅器の出力端子に接続される一方、前記P型MOSトランジスタのドレインは、出力段を形成するよう構成されてなることを特徴とする請求項1、又は、請求項2記載の電流検出アンプ。
JP2017073521A 2017-04-03 2017-04-03 電流検出アンプ Active JP6969884B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017073521A JP6969884B2 (ja) 2017-04-03 2017-04-03 電流検出アンプ
JP2021174500A JP7192075B2 (ja) 2017-04-03 2021-10-26 電流検出アンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073521A JP6969884B2 (ja) 2017-04-03 2017-04-03 電流検出アンプ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021174500A Division JP7192075B2 (ja) 2017-04-03 2021-10-26 電流検出アンプ

Publications (2)

Publication Number Publication Date
JP2018182357A true JP2018182357A (ja) 2018-11-15
JP6969884B2 JP6969884B2 (ja) 2021-11-24

Family

ID=64275961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073521A Active JP6969884B2 (ja) 2017-04-03 2017-04-03 電流検出アンプ

Country Status (1)

Country Link
JP (1) JP6969884B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116338297A (zh) * 2023-05-29 2023-06-27 苏州贝克微电子股份有限公司 一种可减小芯片版图面积的高精度检流电路

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311147A (ja) * 1996-05-24 1997-12-02 Matsushita Electric Ind Co Ltd 充放電電流測定装置
JPH1054851A (ja) * 1996-05-23 1998-02-24 Hewlett Packard Co <Hp> 電源出力電流測定装置
JP2000112541A (ja) * 1998-10-08 2000-04-21 Fujitsu Ten Ltd 負荷電流検出回路および電流検出用増幅回路
US20020180489A1 (en) * 2001-04-05 2002-12-05 Stmicroelectronics, Inc. Low voltage current sense amplifier circuit
US20060261884A1 (en) * 2005-05-20 2006-11-23 Texas Instruments Incorporated Amplifier switching control circuit and method for current shunt instrumentation amplifier having extended position and negative input common mode range
JP2014049975A (ja) * 2012-08-31 2014-03-17 Hitachi Automotive Systems Ltd 電流検出回路及びそれを用いた電流制御装置
JP2014239332A (ja) * 2013-06-07 2014-12-18 株式会社デンソー 電流検出装置
US20150219690A1 (en) * 2014-02-06 2015-08-06 Texas Instruments Incorporated Current sensor
CN105675958A (zh) * 2016-01-27 2016-06-15 佛山市南海区联合广东新光源产业创新中心 一种用于led芯片内电流检测的电路
JP2016201646A (ja) * 2015-04-09 2016-12-01 ルネサスエレクトロニクス株式会社 半導体装置、車載用バルブシステム及びソレノイドドライバ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054851A (ja) * 1996-05-23 1998-02-24 Hewlett Packard Co <Hp> 電源出力電流測定装置
JPH09311147A (ja) * 1996-05-24 1997-12-02 Matsushita Electric Ind Co Ltd 充放電電流測定装置
JP2000112541A (ja) * 1998-10-08 2000-04-21 Fujitsu Ten Ltd 負荷電流検出回路および電流検出用増幅回路
US20020180489A1 (en) * 2001-04-05 2002-12-05 Stmicroelectronics, Inc. Low voltage current sense amplifier circuit
US20060261884A1 (en) * 2005-05-20 2006-11-23 Texas Instruments Incorporated Amplifier switching control circuit and method for current shunt instrumentation amplifier having extended position and negative input common mode range
JP2014049975A (ja) * 2012-08-31 2014-03-17 Hitachi Automotive Systems Ltd 電流検出回路及びそれを用いた電流制御装置
JP2014239332A (ja) * 2013-06-07 2014-12-18 株式会社デンソー 電流検出装置
US20150219690A1 (en) * 2014-02-06 2015-08-06 Texas Instruments Incorporated Current sensor
JP2016201646A (ja) * 2015-04-09 2016-12-01 ルネサスエレクトロニクス株式会社 半導体装置、車載用バルブシステム及びソレノイドドライバ
CN105675958A (zh) * 2016-01-27 2016-06-15 佛山市南海区联合广东新光源产业创新中心 一种用于led芯片内电流检测的电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116338297A (zh) * 2023-05-29 2023-06-27 苏州贝克微电子股份有限公司 一种可减小芯片版图面积的高精度检流电路
CN116338297B (zh) * 2023-05-29 2023-08-08 苏州贝克微电子股份有限公司 一种可减小芯片版图面积的高精度检流电路

Also Published As

Publication number Publication date
JP6969884B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
JP5690469B2 (ja) 差動増幅器、基準電圧発生回路、差動増幅方法及び基準電圧発生方法
US20140084994A1 (en) Current Limiting Circuitry and Method for Pass Elements and Output Stages
WO2019150744A1 (ja) 補正電流出力回路及び補正機能付き基準電圧回路
KR20120003799A (ko) 차동 증폭 회로 및 시리즈 레귤레이터
US7317358B2 (en) Differential amplifier circuit
JP2008276611A (ja) 過電流保護回路
JP2006109349A (ja) 定電流回路及びその定電流回路を使用したシステム電源装置
US8866554B2 (en) Translinear slew boost circuit for operational amplifier
US10236843B2 (en) High gain differential amplifier with common-mode feedback
TW201640126A (zh) 電流檢測電路
KR102483031B1 (ko) 전류 생성 회로
US7057445B2 (en) Bias voltage generating circuit and differential amplifier
JP2018182357A (ja) 電流検出アンプ
KR101068189B1 (ko) 차동 증폭 회로
US11695377B2 (en) Amplifier with low component count and accurate gain
JP7192075B2 (ja) 電流検出アンプ
US11114981B2 (en) Differential amplifier
US10720890B1 (en) High-speed high-accuracy amplifier and method thereof
US7583148B2 (en) Transconductance control circuit, method of controlling transconductance, and a power amplifier
JP7438694B2 (ja) 増幅回路
JP7081886B2 (ja) 半導体装置
JP5410305B2 (ja) 電源回路
TWI573391B (zh) 可變增益放大電路
JP4445916B2 (ja) バンドギャップ回路
TWI587626B (zh) 運算放大器電路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211028

R150 Certificate of patent or registration of utility model

Ref document number: 6969884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150