WO2019150744A1 - 補正電流出力回路及び補正機能付き基準電圧回路 - Google Patents
補正電流出力回路及び補正機能付き基準電圧回路 Download PDFInfo
- Publication number
- WO2019150744A1 WO2019150744A1 PCT/JP2018/044232 JP2018044232W WO2019150744A1 WO 2019150744 A1 WO2019150744 A1 WO 2019150744A1 JP 2018044232 W JP2018044232 W JP 2018044232W WO 2019150744 A1 WO2019150744 A1 WO 2019150744A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- reference voltage
- current
- voltage
- correction
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/267—Current mirrors using both bipolar and field-effect technology
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/468—Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/567—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/30—Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
Definitions
- the present disclosure relates to a circuit that generates and outputs a current that corrects a temperature characteristic of a reference voltage circuit.
- the output voltage of the bandgap reference voltage circuit generally has a positive temperature characteristic, and various conventional techniques for correcting the temperature characteristic have been proposed as disclosed in Patent Documents 1 to 3, for example.
- Patent Documents 2 and 3 are technologies derived from Patent Document 1 as a basic configuration, and both correct temperature characteristics by using two differential pairs.
- the present disclosure relates to a correction current output circuit in which a current for correcting a voltage output from a reference voltage circuit can be easily adjusted in accordance with a non-linear temperature characteristic, and a reference voltage with a correction function including the circuit.
- An object is to provide a circuit.
- the first voltage dividing circuit that generates a voltage obtained by dividing the output voltage of the bandgap reference voltage circuit in multiple stages, and the first and second connected between the power source and the ground.
- a correction circuit and a second voltage dividing circuit that divides the voltage in multiple stages are provided in a path for generating a positive temperature special voltage having a positive temperature characteristic in the band gap reference voltage circuit.
- the control terminal of the first transistor constituting the first differential pair of the first correction circuit is connected to any node in the first voltage dividing circuit, and the first differential pair constituting the second differential pair of the second correction circuit.
- the control terminal of the transistor is connected to a node having a potential different from that of the node.
- the “control terminal” corresponds to the base in the case of a bipolar transistor, and corresponds to the gate in the case of a MOSFET.
- control terminal of the second transistor constituting the second differential pair is connected to a node indicating an arbitrary potential in the path for generating the positive temperature special voltage, and the control of the second transistor constituting the first differential pair.
- the terminal is connected to a node having a potential different from that of the node.
- the current output terminal of the first transistor constituting the first differential pair and the current output terminal of the second transistor constituting the second differential pair are connected in common, and the temperature characteristics of the reference voltage generating circuit are connected from the terminals.
- the “current output terminal” corresponds to a collector in the case of a bipolar transistor, and corresponds to a drain in the case of a MOSFET.
- a current for correcting the temperature characteristic of the reference voltage generation circuit is output from the commonly connected current output terminals as a combination of the above different temperature characteristics. Therefore, when correcting the temperature characteristic of the reference voltage generation circuit, the degree of freedom of adjustment can be increased as compared with the conventional case.
- the first and second transistors are controlled in a path that includes the correction current output circuit of the present disclosure and that has a commonly connected current output terminal that generates a positive temperature special voltage. It is connected to a node having a different potential from the node to which the terminal is connected.
- the output voltage of the band gap reference voltage circuit included in the correction current output circuit can be corrected, so that the configuration of the correction current output circuit can be used as it is as a reference voltage circuit with a correction function.
- FIG. 1 is a circuit diagram showing a configuration of a reference voltage circuit in the first embodiment.
- FIG. 2 is a diagram for explaining voltages applied to the gates of the FETs constituting the correction circuit for the conventional configuration and the configuration of the present embodiment.
- FIG. 3 is a diagram for explaining that the temperature characteristic of the output voltage VBG is corrected by the correction current.
- FIG. 4 is a circuit diagram showing a configuration of a reference voltage circuit in the second embodiment.
- FIG. 5 is a circuit diagram showing a configuration of a reference voltage circuit in the third embodiment.
- FIG. 6 is a circuit diagram showing a configuration of a reference voltage circuit in the fourth embodiment.
- FIG. 7 is a circuit diagram showing a configuration of a reference voltage circuit in the fifth embodiment.
- FIG. 8 is a circuit diagram showing a configuration of a reference voltage circuit in the sixth embodiment.
- FIG. 9 is a circuit diagram showing a configuration of a reference voltage circuit in the seventh embodiment.
- FIG. 10 is a circuit diagram showing a configuration of a reference voltage circuit in the eighth embodiment.
- FIG. 11 is a circuit diagram showing a configuration of a reference voltage circuit in the ninth embodiment.
- the reference voltage circuit 1 As shown in FIG. 1, the reference voltage circuit 1 according to the present embodiment has a basic structure of a Browcrow cell type. One ends of the resistance elements 2 and 3 are connected to the power source Vcc, and the other ends are connected to the collectors of the NPN transistors 4 and 5, respectively.
- the emitter of the transistor 4 is directly connected to the upper end of the second voltage dividing circuit 10 formed by connecting the four resistance elements 6 to 9 in series.
- the emitter of the transistor 5 is connected to the second voltage divider via the emitter resistor 11. It is connected to the upper end of the pressure circuit 10.
- the lower end of the second voltage dividing circuit 10 is connected to the ground.
- the collectors of the transistors 4 and 5 are connected to the non-inverting input terminal and the inverting input terminal of the operational amplifier 12, respectively.
- a series circuit of an N-channel MOSFET 13 and a first voltage dividing circuit 17 formed by connecting three resistance elements 14 to 16 in series is connected between the power supply Vcc and the ground.
- the output terminal of the operational amplifier 12 is connected to the gate of the FET 13.
- the first correction circuit 18 and the second correction circuit 19 are connected between the power source Vcc and the ground.
- the first correction circuit 18 is configured by a series circuit of a current source 20 and a first differential pair 21, and the second correction circuit 19 is configured by a series circuit of a current source 22 and a second differential pair 23.
- the first differential pair 21 includes P-channel MOSFETs 24 and 25 having sources connected in common.
- the second differential pair 23 includes P-channel MOSFETs 26 and 27 having sources connected in common.
- the gate of the FET 24 is connected to the common connection point of the resistance elements 6 and 7, and the gate of the FET 27 is connected to the common connection point of the resistance elements 7 and 8.
- the gate of the FET 25 is connected to the common connection point of the resistance elements 14 and 15, and the gate of the FET 26 is connected to the common connection point of the resistance elements 15 and 16.
- the drains of the FETs 25 and 27 are connected to the ground, and the drains of the FETs 24 and 26 are connected to a common connection point of the resistance elements 8 and 9.
- the FETs 25 and 26 correspond to the first transistor, and the FETs 24 and 27 correspond to the second transistor.
- the band gap reference voltage circuit 28 is configured by removing the first voltage dividing circuit 17, the first correction circuit 18, and the second correction circuit 19.
- the second voltage dividing circuit 10 is arranged on a path for generating a positive temperature special voltage having a positive temperature characteristic.
- the reference voltage circuit 1 corresponds to a reference voltage circuit with a correction function.
- the gate potentials of the FETs 24 and 25 are set to Vptat1 and Vbg1, respectively, and the gate potentials of the FETs 27 and 26 are set to Vptat2 and Vbg2, respectively.
- ptat is an abbreviation for “proportional to absolute temperature”.
- the gate potentials of the FETs 24 and 27 are common, whereas in the configuration of the present embodiment, the gate potentials are different potentials Vptat1 and Vptat2.
- the output voltage VBG in a state where correction is not performed is, for example, FIG.
- the temperature characteristic is such that a convex curve is drawn upward.
- the current for correcting this characteristic is uniquely determined in the conventional configuration, but in this embodiment, as shown in FIG. 2, each potential Vptat1, Vptat2, Vbg1, Vbg2 is easily changed by trimming or wiring correction. Therefore, the non-linear temperature characteristic of the correction current can be adjusted. That is, an optimal correction current can be easily generated.
- the reference voltage circuit 1 includes the first voltage dividing circuit 17 that generates a voltage obtained by dividing the output voltage of the bandgap reference voltage circuit 28 in multiple stages, the power supply Vcc, the ground, The first and second correction circuits 18 and 19 connected between the second voltage dividing circuit 10 and the second voltage dividing circuit 10 that divides the voltage in multiple stages in a path for generating the positive temperature special voltage in the band gap reference voltage circuit 28. Is provided.
- the emitter of the transistor 4 is directly connected to the other end of the second voltage dividing circuit 10, and the emitter of the transistor 5 is connected to the other end via the emitter resistor 11.
- the bases of the transistors 4 and 5 are given a band gap voltage generated by feeding back a voltage corresponding to the potential difference between the collectors of the transistors 4 and 5.
- the gate of the FET 25 constituting the first differential pair 21 is connected to the common connection point of the resistance elements 14 and 15 of the first voltage dividing circuit 17, and the gate of the FET 26 constituting the second differential pair 23 is the resistance element Connected to 15 and 16 common connection points.
- the gate of the FET 27 constituting the second differential pair 23 is connected to the common connection point of the resistance elements 7 and 8 of the second voltage dividing circuit 10, and the gate of the FET 24 constituting the first differential pair 21 is a resistor. Connected to a common connection point of elements 6 and 7.
- the drains of the FETs 24 and 26 are commonly connected to the common connection point of the resistance elements 8 and 9, and a current for correcting the temperature characteristics of the band gap reference voltage generation circuit 28 is output from the drain.
- the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described.
- the gate of the FET 24 is connected to the upper end of the second voltage dividing circuit 10, that is, the emitter of the transistor 4.
- Other configurations are the same as those of the first embodiment.
- the reference voltage circuit 41 of the third embodiment includes a series resistance circuit 42 instead of the second voltage dividing circuit 10.
- the portion corresponding to the resistance element 7 is formed of a series circuit of resistance elements 7a to 7d.
- switches 43, 44, 45 having one end connected in common are inserted between the gate of the FET 27 and the common connection points of the resistance elements 7a and 7b, the resistance elements 7b and 7c, and the resistance elements 7c and 7d. ing.
- switches 43, 44, and 45 are analog switches, for example, and the on / off is selected by setting the voltage applied to the gates of the FETs constituting the switches to high and low binary levels. This constitutes a so-called tap type trimming resistor.
- the node connected to the gate of the FET 24 is similarly configured.
- the third embodiment it is possible to easily correct the temperature characteristics by configuring the series resistance circuit 42 with a tap-type trimming resistor.
- the first voltage dividing circuit 17 may be configured using a tap-type trimming resistor.
- the reference voltage circuit 51 of the fourth embodiment has a configuration in which a regulator 52 is arranged at the output stage of the reference voltage circuit 1 of the first embodiment.
- a series circuit of an N-channel MOSFET 53 and resistance elements 54 to 56 is connected between the power supply Vcc and the ground.
- the non-inverting input terminal of the operational amplifier 57 is connected to the source of the FET 13, and the inverting input terminal is connected to the common connection point of the resistance elements 55 and 56.
- the drains of the FETs 24 and 26 are connected to the drain of the N-channel MOSFET 58 instead of the common connection point of the resistance elements 8 and 9.
- the FET 58 forms a current mirror circuit 60 together with the N-channel MOSFET 59, and the sources of the FETs 58 and 59 are connected to the ground.
- the gates of the FETs 58 and 59 are commonly connected to the drain of the FET 58, and the drain of the FET 59 is connected to a common connection point of the resistance elements 54 and 55.
- a series circuit of the operational amplifier 57, the FET 53, and the resistance elements 54 to 56 constitutes a differential amplifier circuit 61.
- the regulator 52 outputs a voltage Vout obtained by amplifying the output voltage VBG of the band gap reference voltage circuit 28 from the source of the FET 53.
- a current corresponding to the temperature characteristic of the output voltage Vout of the regulator 52 flows through the series circuit of the resistance elements 54 to 56.
- the current mirror circuit 60 mirrors the correction current output from the drains of the FETs 24 and 26 and draws it from the common connection point of the resistance elements 54 and 55. Thereby, the temperature characteristic of the output voltage of the regulator 52 is corrected.
- the drains of the FETs 24 and 26 connected in common correspond to the current output terminal of the correction current output circuit.
- the reference voltage circuit 51 includes the regulator 52 that amplifies the output voltage VBG of the bandgap reference voltage circuit 28, and the current mirror that mirrors the current output from the drains of the FETs 24 and 26. Circuit 60.
- the regulator 52 includes a differential amplifier 61 and resistance elements 54 to 56 connected in series between the output terminal of the differential amplifier 61 and the ground.
- the reference voltage VBG output from the bandgap reference voltage circuit 28 is applied to the non-inverting input terminal of the operational amplifier 57 constituting the differential amplifier 61, and the non-inverting input terminal is connected to the common connection point of the resistance elements 55 and 56.
- the drain of the FET 59 which is a path through which the current mirror circuit 60 flows the mirror current, is connected to the common connection point of the resistance elements 54 and 55.
- the reference voltage circuit 62 of the fifth embodiment shown in FIG. 7 is different from the fourth embodiment in that the regulator 52 amplifies the reference voltage output from the independently configured reference power supply 63 instead of the reference voltage VBG. It is different. In this case, the component corresponding to the reference voltage circuit 1 constitutes the correction current output circuit 64.
- a reference voltage circuit 101 according to the sixth embodiment illustrated in FIG. 8 includes a band gap reference voltage circuit 102 having a different configuration.
- the current mirror circuit 103 constituting the band gap reference voltage circuit 102 has a power supply side terminal directly connected to the power supply Vcc, and includes a main power supply path and one mirror current path.
- a P-channel MOSFET 104 is inserted in the main power supply path, and the drain of the FET 104 is connected to the upper ends of the resistance elements 105 and 106.
- the lower ends of the resistance elements 105 and 106 are connected to the inverting input terminal and the non-inverting input terminal of the operational amplifier 82, respectively, and the output terminal of the operational amplifier 82 is connected to the gate of the FET 104.
- the mirror current path of the current mirror circuit 103 is connected to the ground via a second voltage dividing circuit 81 composed of resistance elements 78-80.
- the upper end of the resistance element 75 is connected to the inverting input terminal of the operational amplifier 82, and the anode of the diode 77 is connected to the non-inverting input terminal.
- the operational amplifier 82 outputs a voltage corresponding to the difference between the potential of the main current path of the current mirror circuit 103 and the potential of the mirror current path to the gate of the FET 104.
- the reference voltage VBG corresponding to the band gap reference voltage is output to the drain of the FET 104.
- the reference voltage VBG is amplified by the regulator 52 of the fourth embodiment and output as the voltage Vout.
- a first voltage dividing circuit 86 composed of resistance elements 83 to 85 is connected between the drain of the FET 104 and the ground.
- the gate of the FET 25 constituting the first correction circuit 18 is connected to the common connection point of the resistance elements 83 and 84, and the gate of the FET 26 constituting the second correction circuit 19 is connected to the common connection point of the resistance elements 84 and 85.
- the gate of the FET 24 is connected to the common connection point of the resistance elements 78 and 79, and the gate of the FET 27 is connected to the common connection point of the resistance elements 79 and 80.
- the first voltage dividing circuit 86 that generates a voltage obtained by dividing the output voltage of the band gap reference voltage circuit 102 in multiple stages, the current mirror circuit 103, An operational amplifier 82.
- the operational amplifier 82 has a non-inverting input terminal and an inverting input terminal connected to a path that shunts the main current path of the current mirror circuit 103 through the FET 104 and the resistance elements 105 and 106, respectively, and an output terminal connected to the gate of the FET 104. Is done.
- the second voltage dividing circuit 81 is connected between the mirror current path of the current mirror circuit 103 and the ground.
- the gates of the FETs 25 and 26 are connected to the respective nodes of the first voltage dividing circuit 86, and the gates of the FETs 26 and 24 are connected to the respective nodes of the second voltage dividing circuit 81. Therefore, the temperature characteristic of the output voltage Vout can also be corrected for the configuration in which the reference voltage VBG output from the bandgap reference voltage circuit 102 is amplified by the regulator 52.
- the reference voltage circuit 111 of the seventh embodiment shown in FIG. 9 is obtained by replacing the bandgap reference voltage circuit 102 of the sixth embodiment with a bandgap reference voltage circuit 112.
- the band gap reference voltage circuit 112 includes a current mirror circuit 113.
- the current mirror circuit 113 has a main current path and two mirror current paths.
- the main current path of the current mirror circuit 113 is connected to the ground via a series circuit of a resistance element 75 and a forward diode 76, and one of the mirror current paths is connected to the ground via a forward diode 77. ing. The other one of the mirror current paths is connected to the ground via the second voltage dividing circuit 81.
- the inverting input terminal and the non-inverting input terminal of the operational amplifier 82 are connected to the upper end of the resistance element 75 and the anode of the diode 77, respectively, as in the sixth embodiment.
- the output terminal of the operational amplifier 82 is connected to the power supply side terminal of the current mirror circuit 113. In this case, the potential of the power supply side terminal becomes the reference voltage VBG.
- a reference voltage circuit 121 of the eighth embodiment shown in FIG. 10 is a modification of the sixth embodiment.
- a reference voltage generated by the reference power source 63 is applied to the non-inverting input terminal of the operational amplifier 57 constituting the regulator 52, as in the fifth embodiment, instead of the band gap reference voltage.
- the temperature characteristic of the output voltage Vout can be corrected for the correction current supplied from the bandgap reference voltage circuit 102.
- the reference voltage circuit 131 of the ninth embodiment shown in FIG. 11 is a combination of the band gap reference voltage circuit 112 of the seventh embodiment and the regulator 52 that amplifies the reference voltage output from the reference power supply 63 of the fifth embodiment. Is.
- the first voltage dividing circuit may be configured by a resistance element capable of laser trimming.
- the number of resistance elements constituting the voltage dividing circuit may be “2” or “4” or more.
- the differential pair may be composed of bipolar transistors.
- a bipolar transistor may be used in place of the FET 13.
- the configuration of the third embodiment may be applied to the fourth to eleventh embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Power Engineering (AREA)
- Control Of Electrical Variables (AREA)
Abstract
バンドギャップ基準電圧回路の出力電圧を多段階に分圧した電圧を発生する第1分圧回路,電源-グランド間に接続される第1及び第2補正回路,バンドギャップ基準電圧回路で正温特電圧を発生する経路に前記電圧を多段階に分圧する第2分圧回路を備える。第1補正回路の第1差動対を構成する第1トランジスタの制御端子は第1分圧回路の何れかのノードに、第2補正回路の第2差動対を構成する第1トランジスタの制御端子は前記ノードと異なる電位のノードに接続される。第2差動対を構成する第2トランジスタの制御端子は正温特電圧を発生する経路で任意の電位を示すノードに、第1差動対を構成する第2トランジスタの制御端子は前記ノードと異なる電位のノードに接続される。第1差動対を構成する第1トランジスタ及び第2差動対を構成する第2トランジスタ双方の電流出力端子は共通接続され、当該端子より基準電圧発生回路の温度特性を補正する電流を出力する。
Description
本出願は、2018年2月2日に出願された日本出願番号2018-17264号に基づくもので、ここにその記載内容を援用する。
本開示は、基準電圧回路の温度特性を補正する電流を生成して出力する回路に関する。
バンドギャップ基準電圧回路の出力電圧は一般に正の温度特性を有しており、その温度特性を補正することを目的とした従来技術が、例えば特許文献1~3に開示されているように種々提案されている。特許文献2,3は、特許文献1を基本構成として派生した技術であり、何れも2組の差動対を用いることで温度特性を補正している。
しかしながら、上述した温度特性は非線形であるため、その非線形性を事前に見積もることは困難であり、実際に回路を試作してみると精度良く補正できないことが多い。そして、上記の特許文献1~3では何れも、2組の差動対を構成するトランジスタの一方のゲートに、正の温度特性を有する同レベルの電圧を与えている。そのため、調整を行う範囲に制限があり、トランジスタのサイズを変更する等回路の試作をやり直したり、特許文献2のように補正回路を追加する必要があった。
本開示は、基準電圧回路が出力する電圧を補正するための電流を、非線形な温度特性に対応させて容易に調整可能とした補正電流出力回路,及び当該回路を備えてなる補正機能付き基準電圧回路を提供することを目的とする。
本開示の一態様によれば、バンドギャップ基準電圧回路の出力電圧を多段階に分圧した電圧を発生する第1分圧回路と、電源とグランドとの間に接続される第1及び第2補正回路と、バンドギャップ基準電圧回路において正の温度特性を有する正温特電圧を発生する経路に、前記電圧を多段階に分圧する第2分圧回路とを備える。
第1補正回路の第1差動対を構成する第1トランジスタの制御端子は、第1分圧回路における何れかのノードに接続され、第2補正回路の第2差動対を構成する第1トランジスタの制御端子は、前記ノードと異なる電位のノードに接続される。ここで「制御端子」は、バイポーラトランジスタであればベースに相当し、MOSFETであればゲートに相当する。
また、第2差動対を構成する第2トランジスタの制御端子は、正温特電圧を発生する経路において任意の電位を示すノードに接続され、第1差動対を構成する第2トランジスタの制御端子は、前記ノードと異なる電位のノードに接続される。そして、第1差動対を構成する第1トランジスタの電流出力端子,及び第2差動対を構成する第2トランジスタの電流出力端子は共通に接続され、当該端子より基準電圧発生回路の温度特性を補正する電流を出力する。ここで「電流出力端子」は、バイポーラトランジスタであればコレクタに相当し、MOSFETであればドレインに相当する。
すなわち、従来構成とは異なり、第1,第2差動対を構成する第2トランジスタの制御端子には、正温特電圧を発生する経路においてそれぞれ異なる電位が付与される。これにより、第1差動対を構成する第1トランジスタの電流出力端子,及び第2差動対を構成する第2トランジスタの電流出力端子より出力される電流には、それぞれ異なる電位に応じた異なる温度特性が付与されることになる。
したがって、共通に接続された電流出力端子からは、上記の異なる温度特性が合成されたものとして、基準電圧発生回路の温度特性を補正する電流が出力される。これにより、基準電圧発生回路の温度特性の補正を行う際に、従来よりも調整の自由度を高めることができる。
また、本開示の一態様によれば、本開示の補正電流出力回路を備え、共通に接続されている電流出力端子が、正温特電圧を発生する経路において、第1及び第2トランジスタの制御端子が接続されているノードと異なる電位のノードに接続される。これにより、補正電流出力回路が備えるバンドギャップ基準電圧回路の出力電圧を補正できるので、補正電流出力回路の構成を、そのまま補正機能付き基準電圧回路として利用することができる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態において、基準電圧回路の構成を示す回路図であり、
図2は、従来構成と、本実施形態の構成とについて、補正回路を構成する各FETのゲートに与えられる電圧を説明する図であり、
図3は、補正電流によって出力電圧VBGの温度特性が補正されることを説明する図であり、
図4は、第2実施形態において、基準電圧回路の構成を示す回路図であり、
図5は、第3実施形態において、基準電圧回路の構成を示す回路図であり、
図6は、第4実施形態において、基準電圧回路の構成を示す回路図であり、
図7は、第5実施形態において、基準電圧回路の構成を示す回路図であり、
図8は、第6実施形態において、基準電圧回路の構成を示す回路図である。
図9は、第7実施形態において、基準電圧回路の構成を示す回路図であり、
図10は、第8実施形態において、基準電圧回路の構成を示す回路図であり、
図11は、第9実施形態において、基準電圧回路の構成を示す回路図である。
(第1実施形態)
図1に示すように、本実施形態の基準電圧回路1は、ブロウコウセル型を基本構成としている。抵抗素子2,3の一端は電源Vccに接続されており、他端はNPNトランジスタ4,5のコレクタにそれぞれ接続されている。トランジスタ4のエミッタは、4つの抵抗素子6~9を直列に接続してなる第2分圧回路10の上端に直接接続されており、トランジスタ5のエミッタは、エミッタ抵抗11を介して第2分圧回路10の上端に接続されている。第2分圧回路10の下端は、グランドに接続されている。
図1に示すように、本実施形態の基準電圧回路1は、ブロウコウセル型を基本構成としている。抵抗素子2,3の一端は電源Vccに接続されており、他端はNPNトランジスタ4,5のコレクタにそれぞれ接続されている。トランジスタ4のエミッタは、4つの抵抗素子6~9を直列に接続してなる第2分圧回路10の上端に直接接続されており、トランジスタ5のエミッタは、エミッタ抵抗11を介して第2分圧回路10の上端に接続されている。第2分圧回路10の下端は、グランドに接続されている。
トランジスタ4,5のコレクタは、それぞれオペアンプ12の非反転入力端子,反転入力端子に接続されている。電源Vccとグランドとの間には、NチャネルMOSFET13と、3つの抵抗素子14~16を直列に接続してなる第1分圧回路17との直列回路が接続されている。オペアンプ12の出力端子は、FET13のゲートに接続されている。
また、電源Vccとグランドとの間には、第1補正回路18及び第2補正回路19が接続されている。第1補正回路18は、電流源20及び第1差動対21の直列回路で構成され、第2補正回路19は、電流源22及び第2差動対23の直列回路で構成されている。第1差動対21は、ソースが共通に接続されたPチャネルMOSFET24及び25で構成されている。第2差動対23は、同じくソースが共通に接続されたPチャネルMOSFET26及び27で構成されている。
FET24のゲートは抵抗素子6及び7の共通接続点に接続され、FET27のゲートは抵抗素子7及び8の共通接続点に接続されている。FET25のゲートは抵抗素子14及び15の共通接続点に接続され、FET26のゲートは抵抗素子15及び16の共通接続点に接続されている。FET25及び27のドレインはグランドに接続され、FET24及び26のドレインは抵抗素子8及び9の共通接続点に接続されている。FET25及び26は第1トランジスタに相当し、FET24及び27は第2トランジスタに相当する。
また、以上の構成において、第1分圧回路17,第1補正回路18及び第2補正回路19を除いたものがバンドギャップ基準電圧回路28を構成している。第2分圧回路10は、バンドギャップ基準電圧回路28において、正の温度特性を有する正温特電圧を発生する経路に配置されている。そして、基準電圧回路1は、補正機能付き基準電圧回路に相当する。
次に、本実施形態の作用について説明する。FET24,25のゲート電位をそれぞれVptat1,Vbg1とし、FET27,26のゲート電位をそれぞれVptat2,Vbg2とする。尚、ptatは“proportional to absolute temperature”の略である。従来技術の構成では、FET24,27のゲート電位が共通であるのに対し、本実施形態の構成では、上記ゲート電位がそれぞれ異なる電位Vptat1,Vptat2である点が相違している。
図2に示すように、従来構成のように電位Vptat1,Vptat2が共通であれば、それらの正の温度特性が等しくなる。一方、本実施形態の構成では、電位Vptat1,Vptat2が異なるため、同図に示すように各電位の温度特性は若干異なる。FET24及び26のドレインからは、抵抗素子8及び9の共通接続点に対し、基準電圧回路1の出力電圧VBGの温度特性を補正する電流が供給される。
図3に示すように、補正が行われない状態の出力電圧VBGは、例えば特許文献1のFig.7Aにも示されているように上に凸の曲線を描くような温度特性を示す。この特性を補正する電流は、従来構成では一意に決まってしまうが、本実施形態では図2に示すように、トリミング又は配線の修正によって容易に各電位Vptat1,Vptat2,Vbg1,Vbg2を変化させることが可能になるため、補正電流の非線形な温度特性を調整できる。すなわち、容易に最適な補正電流を生成することができる。
以上のように本実施形態によれば、基準電圧回路1は、バンドギャップ基準電圧回路28の出力電圧を多段階に分圧した電圧を発生する第1分圧回路17と、電源Vccとグランドとの間に接続される第1及び第2補正回路18及び19と、バンドギャップ基準電圧回路28において正温特電圧を発生する経路に、前記電圧を多段階に分圧する第2分圧回路10とを備える。
トランジスタ4のエミッタは第2分圧回路10の他端に直接接続され、トランジスタ5のエミッタは、エミッタ抵抗11を介して前記他端に接続される。トランジスタ4及び5のベースには、両者のコレクタの電位差に応じた電圧がフィードバックされて生成されたバンドギャップ電圧が付与される。
第1差動対21を構成するFET25のゲートは、第1分圧回路17の抵抗素子14及び15の共通接続点に接続され、第2差動対23を構成するFET26のゲートは、抵抗素子15及び16の共通接続点に接続される。また、第2差動対23を構成するFET27のゲートは、第2分圧回路10の抵抗素子7及び8の共通接続点に接続され、第1差動対21を構成するFET24のゲートは抵抗素子6及び7の共通接続点に接続される。そして、FET24及び26のドレインは共通に抵抗素子8及び9の共通接続点に接続され、そのドレインよりバンドギャップ基準電圧発生回路28の温度特性を補正する電流を出力する。
すなわち、従来構成とは異なり、FET24,27のゲートには、第2分圧回路10においてそれぞれ異なる電位が付与される。これにより、FET24,26のドレインより出力される電流には、それぞれ異なる電位に応じた異なる温度特性が付与される。したがって、共通に接続されたドレインからは、上記の異なる温度特性が合成されたものとして、バンドギャップ基準電圧発生回路28の温度特性を補正する電流が出力される。これにより、バンドギャップ基準電圧発生回路28の温度特性の補正を行う際に、従来よりも調整の自由度を高めることができる。
(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図4に示すように、第4実施形態の基準電圧回路31は、FET24のゲートが、第2分圧回路10の上端,つまりトランジスタ4のエミッタに接続されている。その他の構成は第1実施形態と同様である。
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図4に示すように、第4実施形態の基準電圧回路31は、FET24のゲートが、第2分圧回路10の上端,つまりトランジスタ4のエミッタに接続されている。その他の構成は第1実施形態と同様である。
(第3実施形態)
図5に示すように、第3実施形態の基準電圧回路41は、第2分圧回路10に替えて直列抵抗回路42を備えている。直列抵抗回路42は、同図においてFET27のゲートが接続されるノードについて示すように、抵抗素子7に相当する部分が抵抗素子7a~7dの直列回路で構成されている。そして、FET27のゲートと、抵抗素子7a及び7b,抵抗素子7b及び7c,抵抗素子7c及び7dの各共通接続点との間に、一端が共通に接続されたスイッチ43,44,45が挿入されている。
図5に示すように、第3実施形態の基準電圧回路41は、第2分圧回路10に替えて直列抵抗回路42を備えている。直列抵抗回路42は、同図においてFET27のゲートが接続されるノードについて示すように、抵抗素子7に相当する部分が抵抗素子7a~7dの直列回路で構成されている。そして、FET27のゲートと、抵抗素子7a及び7b,抵抗素子7b及び7c,抵抗素子7c及び7dの各共通接続点との間に、一端が共通に接続されたスイッチ43,44,45が挿入されている。
これらのスイッチ43,44,45は例えばアナログスイッチ等であり、当該スイッチを構成するFETのゲートに付与する電圧を、ハイ,ローの二値レベルに設定することでオンオフを選択する。これは、所謂タップ型のトリミング抵抗を構成している。尚、FET24のゲートが接続されるノードについても、同様に構成されている。
以上のように第3実施形態によれば、直列抵抗回路42を、タップ型のトリミング抵抗により構成することで、温度特性の補正を容易に行うことができる。尚、第1分圧回路17についても同様に、タップ型のトリミング抵抗を用いて構成しても良い。
(第4実施形態)
図6に示すように、第4実施形態の基準電圧回路51は、第1実施形態の基準電圧回路1の出力段に、レギュレータ52を配置した構成である。電源Vccとグランドとの間には、NチャネルMOSFET53,抵抗素子54~56の直列回路が接続されている。オペアンプ57の非反転入力端子はFET13のソースに接続されており、反転入力端子は抵抗素子55及び56の共通接続点に接続されている。
図6に示すように、第4実施形態の基準電圧回路51は、第1実施形態の基準電圧回路1の出力段に、レギュレータ52を配置した構成である。電源Vccとグランドとの間には、NチャネルMOSFET53,抵抗素子54~56の直列回路が接続されている。オペアンプ57の非反転入力端子はFET13のソースに接続されており、反転入力端子は抵抗素子55及び56の共通接続点に接続されている。
FET24及び26のドレインは、抵抗素子8及び9の共通接続点に替えて、NチャネルMOSFET58のドレインに接続されている。FET58は、NチャネルMOSFET59と共にカレントミラー回路60を構成しており、FET58及び59のソースはグランドに接続されている。FET58及び59のゲートはFET58のドレインに共通に接続されており、FET59のドレインは、抵抗素子54及び55の共通接続点に接続されている。オペアンプ57,FET53及び抵抗素子54~56の直列回路は、差動増幅回路61を構成している。
次に、第4実施形態の作用について説明する。レギュレータ52は、バンドギャップ基準電圧回路28の出力電圧VBGを増幅した電圧VoutをFET53のソースより出力する。抵抗素子54~56の直列回路には、レギュレータ52の出力電圧Voutが有する温度特性に応じた電流が流れる。そして、カレントミラー回路60は、FET24及び26のドレインより出力される補正電流をミラーさせて、抵抗素子54及び55の共通接続点より引き出す。これにより、レギュレータ52の出力電圧が有する温度特性を補正する。ここで、共通に接続されているFET24及び26のドレインは、補正電流出力回路の電流出力端子に相当する。
以上のように第4実施形態によれば、基準電圧回路51は、バンドギャップ基準電圧回路28の出力電圧VBGを増幅するレギュレータ52と、FET24及び26のドレインより出力される電流をミラーするカレントミラー回路60とを備える。レギュレータ52は、差動増幅器61と、差動増幅器61の出力端子とグランドとの間に直列に接続された抵抗素子54~56とを有する。
差動増幅器61を構成するオペアンプ57の非反転入力端子にはバンドギャップ基準電圧回路28より出力される基準電圧VBGが与えられ、非反転入力端子は抵抗素子55及び56の共通接続点に接続される。そして、カレントミラー回路60がミラー電流を流す経路であるFET59のドレインが、抵抗素子54及び55の共通接続点に接続される。このように構成すれば、基準電圧VBGを増幅するレギュレータ52を備える構成についても、出力電圧Voutの温度特性を補正できる。
(第5実施形態)
図7に示す第5実施形態の基準電圧回路62は、レギュレータ52が基準電圧VBGに替えて、独立して構成される基準電源63より出力される基準電圧を増幅する点が第4実施形態と相違している。この場合、基準電圧回路1に相当する構成部分は、補正電流出力回路64を構成する。
図7に示す第5実施形態の基準電圧回路62は、レギュレータ52が基準電圧VBGに替えて、独立して構成される基準電源63より出力される基準電圧を増幅する点が第4実施形態と相違している。この場合、基準電圧回路1に相当する構成部分は、補正電流出力回路64を構成する。
(第6実施形態)
図8に示す第6実施形態の基準電圧回路101は、構成が異なるバンドギャップ基準電圧回路102を備えている。バンドギャップ基準電圧回路102を構成するカレントミラー回路103は、電源側端子が電源Vccに直接接続されており、主電源経路及び1つのミラー電流経路を備えている。主電源経路にはPチャネルMOSFET104が挿入されており、FET104のドレインは、抵抗素子105及び106の上端に接続されている。
図8に示す第6実施形態の基準電圧回路101は、構成が異なるバンドギャップ基準電圧回路102を備えている。バンドギャップ基準電圧回路102を構成するカレントミラー回路103は、電源側端子が電源Vccに直接接続されており、主電源経路及び1つのミラー電流経路を備えている。主電源経路にはPチャネルMOSFET104が挿入されており、FET104のドレインは、抵抗素子105及び106の上端に接続されている。
抵抗素子105,106の下端は、それぞれオペアンプ82の反転入力端子,非反転入力端子に接続されており、オペアンプ82の出力端子はFET104のゲートに接続されている。カレントミラー回路103のミラー電流経路は、抵抗素子78~80からなる第2分圧回路81を介してグランドに接続されている。
抵抗素子75の上端は、オペアンプ82の反転入力端子に接続され、ダイオード77のアノードは、同非反転入力端子に接続されている。オペアンプ82は、カレントミラー回路103の主電流経路の電位とミラー電流経路の電位との差に応じた電圧を、FET104のゲートに出力する。これにより、FET104のドレインには、バンドギャップ基準電圧に応じた基準電圧VBGが出力される。
基準電圧VBGは、第4実施形態のレギュレータ52により増幅されて、電圧Voutとして出力される。FET104のドレインとグランドとの間には、抵抗素子83~85からなる第1分圧回路86が接続されている。第1補正回路18を構成するFET25のゲートは、抵抗素子83及び84の共通接続点に接続され、第2補正回路19を構成するFET26のゲートは、抵抗素子84及び85の共通接続点に接続されている。FET24のゲートは、抵抗素子78及び79の共通接続点に接続され、FET27のゲートは、抵抗素子79及び80の共通接続点に接続されている。
以上のように構成される第6実施形態によれば、バンドギャップ基準電圧回路102の出力電圧を、多段階に分圧した電圧を発生する第1分圧回路86と、カレントミラー回路103と、オペアンプ82とを備える。オペアンプ82は、非反転入力端子,反転入力端子が、カレントミラー回路103の主電流経路をFET104及び抵抗素子105,106を介して分流させた経路にそれぞれ接続され、出力端子がFET104のゲートに接続される。
第2分圧回路81は、カレントミラー回路103のミラー電流経路とグランドとの間に接続される。FET25,26のゲートはそれぞれ第1分圧回路86の各ノードに接続され、FET26,24のゲートはそれぞれ第2分圧回路81の各ノードに接続される。したがって、バンドギャップ基準電圧回路102が出力する基準電圧VBGをレギュレータ52により増幅する構成についても、出力電圧Voutの温度特性を補正できる。
(第7実施形態)
図9に示す第7実施形態の基準電圧回路111は、第6実施形態のバンドギャップ基準電圧回路102をバンドギャップ基準電圧回路112に置き換えたものである。バンドギャップ基準電圧回路112は、カレントミラー回路113を備えている。カレントミラー回路113は、主電流経路及び2つのミラー電流経路を有している。
図9に示す第7実施形態の基準電圧回路111は、第6実施形態のバンドギャップ基準電圧回路102をバンドギャップ基準電圧回路112に置き換えたものである。バンドギャップ基準電圧回路112は、カレントミラー回路113を備えている。カレントミラー回路113は、主電流経路及び2つのミラー電流経路を有している。
カレントミラー回路113の主電流経路は、抵抗素子75及び順方向のダイオード76の直列回路を介してグランドに接続され、ミラー電流経路の1つは、順方向のダイオード77を介してグランドに接続されている。ミラー電流経路の他の1つは、第2分圧回路81を介してグランドに接続されている。オペアンプ82の反転入力端子,非反転入力端子は、第6実施形態と同様にそれぞれ、抵抗素子75の上端,ダイオード77のアノードに接続されている。オペアンプ82の出力端子は、カレントミラー回路113の電源側端子に接続されている。この場合、前記電源側端子の電位が基準電圧VBGとなる。以上のように構成される第7実施形態によれば、第6実施形態と同様の効果が得られる。
(第8実施形態)
図10に示す第8実施形態の基準電圧回路121は、第6実施形態の変形である。レギュレータ52を構成するオペアンプ57の非反転入力端子には、バンドギャップ基準電圧に替えて、第5実施形態と同様に基準電源63により生成される基準電圧が与えられている。以上のように構成される第8実施形態によれば、構成について、バンドギャップ基準電圧回路102より供給される補正電流にとって出力電圧Voutの温度特性を補正できる。
図10に示す第8実施形態の基準電圧回路121は、第6実施形態の変形である。レギュレータ52を構成するオペアンプ57の非反転入力端子には、バンドギャップ基準電圧に替えて、第5実施形態と同様に基準電源63により生成される基準電圧が与えられている。以上のように構成される第8実施形態によれば、構成について、バンドギャップ基準電圧回路102より供給される補正電流にとって出力電圧Voutの温度特性を補正できる。
(第9実施形態)
図11に示す第9実施形態の基準電圧回路131は、第7実施形態のバンドギャップ基準電圧回路112と、第5実施形態の基準電源63より出力される基準電圧を増幅するレギュレータ52を組み合わせたものである。
図11に示す第9実施形態の基準電圧回路131は、第7実施形態のバンドギャップ基準電圧回路112と、第5実施形態の基準電源63より出力される基準電圧を増幅するレギュレータ52を組み合わせたものである。
(その他の実施形態)
第1分圧回路を、レーザトリミング可能な抵抗素子で構成しても良い。
分圧回路を構成する抵抗素子数は、「2」又は「4」以上でも良い。
第1分圧回路を、レーザトリミング可能な抵抗素子で構成しても良い。
分圧回路を構成する抵抗素子数は、「2」又は「4」以上でも良い。
差動対を、バイポーラトランジスタで構成しても良い。
FET13に替えて、バイポーラトランジスタを用いても良い。
第3実施形態の構成を、第4~第11実施形態に適用しても良い。
FET13に替えて、バイポーラトランジスタを用いても良い。
第3実施形態の構成を、第4~第11実施形態に適用しても良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (13)
- バンドギャップ基準電圧回路(28)と、
このバンドギャップ基準電圧回路の出力電圧を、多段階に分圧した電圧を発生する第1分圧回路(17)と、
電源とグランドとの間に接続され、第1電流源(20)と第1差動対(21)との直列回路で構成される第1補正回路(18),及び第2電流源(22)と第2差動対(23)との直列回路で構成される第2補正回路(19)と、
前記バンドギャップ基準電圧回路において、正の温度特性を有する正温特電圧を発生する経路に、前記正温特電圧を多段階に分圧する第2分圧回路(10)とを備え、
前記第1差動対を構成する第1トランジスタ(25)の制御端子は、前記第1分圧回路における何れかのノードに接続され、
前記第2差動対を構成する第1トランジスタ(26)の制御端子は、前記ノードと異なる電位のノードに接続され、
前記第2差動対を構成する第2トランジスタ(27)の制御端子は、前記正温特電圧を発生する経路において任意の電位を示すノードに接続され、
前記第1差動対を構成する第2トランジスタ(24)の制御端子は、前記ノードと異なる電位のノードに接続され、
前記第1差動対を構成する第1トランジスタの電流出力端子,及び前記第2差動対を構成する第2トランジスタの電流出力端子は共通に接続され、当該端子より基準電圧発生回路の温度特性を補正する電流を出力する補正電流出力回路。 - 前記第1分圧回路及び/又は前記第2分圧回路を、トリミングが可能な抵抗素子で構成した請求項1記載の補正電流出力回路。
- 前記第1分圧回路及び/又は前記第2分圧回路を、複数のスイッチ(43~45)のオンオフ切替えによりトリミング可能に構成した請求項2記載の補正電流出力回路。
- 請求項1から3の何れか一項に記載の補正電流出力回路を備え、
前記共通に接続されている電流出力端子が、前記正温特電圧を発生する経路において、前記第1差動対を構成する第2トランジスタの制御端子が接続されているノードと、前記第2差動対を構成する第2トランジスタの制御端子が接続されているノードとは、異なる電位のノードに接続されている補正機能付き基準電圧回路。 - 請求項1から3の何れか一項に記載の補正電流出力回路と、
基準電圧回路(28,63)と、
この基準電圧回路の出力電圧を増幅するレギュレータ(52)と、
前記補正電流出力回路の電流出力端子より出力される電流をミラーするカレントミラー回路(60)とを備え、
前記レギュレータは、差動増幅器と(61)、
この差動増幅器の出力端子とグランドとの間に直列に接続された第1~第3抵抗素子(54~56)とを有し、
前記差動増幅器の入力端子の一方には、前記基準電圧回路より出力される基準電圧が与えられ、同入力端子の他方は前記第2及び第3抵抗素子の共通接続点に接続され、
前記カレントミラー回路においてミラー電流を流す経路が、前記第1及び第2抵抗素子の共通接続点に接続されている補正機能付き基準電圧回路。 - バンドギャップ基準電圧の供給点に流れる電流をミラーさせる1つ以上のミラー電流経路を有するカレントミラー回路(103,113)と、
前記ミラー電流経路の1つとグランドとの間に接続される、3つ以上の抵抗素子(78~80)からなる第1分圧回路(81)と、
前記バンドギャップ基準電圧を、多段階に分圧した電圧を発生する第2分圧回路(86)と、
電源とグランドとの間に接続され、第1電流源(20)と第1差動対(21)との直列回路で構成される第1補正回路(18),及び第2電流源(22)と第2差動対(23)との直列回路で構成される第2補正回路(19)とを備え、
前記第1差動対を構成する第1トランジスタ(25)の制御端子と、前記第2差動対を構成する第1トランジスタ(26)の制御端子とは、前記バンドギャップ基準電圧の供給点を含む電圧経路においてそれぞれ異なるノードに接続され、
前記第1差動対を構成する第2トランジスタ(24)の制御端子は、前記第1分圧回路における任意の電位を示すノードに接続され、
前記第2差動対を構成する第2トランジスタ(27)の制御端子は、前記ノードと異なる電位のノードに接続され、
前記第1差動対を構成する第1トランジスタの電流出力端子,及び前記第2差動対を構成する第2トランジスタの電流出力端子は共通に接続され、当該端子より基準電圧発生回路の温度特性を補正する電流を出力する補正電流出力回路。 - 前記第1及び第2分圧回路を、トリミングが可能な抵抗素子で構成した請求項6記載の補正電流出力回路。
- 前記第1及び第2分圧回路を、複数のスイッチのオンオフ切替えによりトリミング可能に構成した請求項6記載の補正電流出力回路。
- 前記カレントミラー回路(103)は、電源側端子が電源に直接接続されて、主電流経路及びミラー電流経路を有し、
前記主電流経路において、前記バンドギャップ基準電圧の供給点との間に接続されるトランジスタ(104)と、
2つの入力端子が、前記トランジスタに流れる電流を分流させた2つの電流経路にそれぞれ接続され、出力端子がトランジスタの制御端子に接続されるオペアンプ(82)とを有するバンドギャップ基準電圧回路(102)とを備え、
前記第1分圧回路は、前記カレントミラー回路のミラー電流経路において、グランドとの間に接続される請求項6から8の何れか一項に記載の補正電流出力回路。 - 前記カレントミラー回路(113)は、電源側端子が前記バンドギャップ基準電圧の供給点に接続され、主電流経路及び2つのミラー電流経路を有し、
2つの入力端子が前記主電流経路と前記ミラー電流経路の1つとにそれぞれ接続され、出力端子が前記バンドギャップ基準電圧の供給点に接続されるオペアンプ(82)とを有するバンドギャップ基準電圧回路(112)を備え、
前記第1分圧回路は、前記カレントミラー回路の残りのミラー電流経路において、グランドとの間に接続される請求項6から8の何れか一項に記載の補正電流出力回路。 - 請求項6から10の何れか一項に記載の補正電流出力回路(102,112)と、
基準電圧を増幅するレギュレータ(52)と、
前記補正電流出力回路の電流出力端子より出力される電流をミラーするカレントミラー回路(60)とを備え、
前記レギュレータは、差動増幅器(53,57)と、
この差動増幅器の出力端子とグランドとの間に直列に接続された第1~第3抵抗素子(54~56)とを有し、
前記差動増幅器の入力端子の一方には前記基準電圧が与えられ、同入力端子の他方は、前記第2及び第3抵抗素子の共通接続点に接続され、
前記カレントミラー回路においてミラー電流を流す経路が、前記第1及び第2抵抗素子の共通接続点に接続されている補正機能付き基準電圧回路。 - 前記基準電圧は、前記バンドギャップ基準電圧である請求項11記載の補正機能付き基準電圧回路。
- 基準電圧回路(63)を備え、
前記基準電圧は、前記基準電圧回路が出力する基準電圧である請求項11記載の補正機能付き基準電圧回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/922,161 US11181937B2 (en) | 2018-02-02 | 2020-07-07 | Correction current output circuit and reference voltage circuit with correction function |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-017264 | 2018-02-02 | ||
JP2018017264A JP6927070B2 (ja) | 2018-02-02 | 2018-02-02 | 補正電流出力回路及び補正機能付き基準電圧回路 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/922,161 Continuation US11181937B2 (en) | 2018-02-02 | 2020-07-07 | Correction current output circuit and reference voltage circuit with correction function |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019150744A1 true WO2019150744A1 (ja) | 2019-08-08 |
Family
ID=67479650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/044232 WO2019150744A1 (ja) | 2018-02-02 | 2018-11-30 | 補正電流出力回路及び補正機能付き基準電圧回路 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11181937B2 (ja) |
JP (1) | JP6927070B2 (ja) |
WO (1) | WO2019150744A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3812873A1 (en) * | 2019-10-24 | 2021-04-28 | NXP USA, Inc. | Voltage reference generation with compensation for temperature variation |
CN113934252B (zh) * | 2020-07-13 | 2022-10-11 | 瑞昱半导体股份有限公司 | 用于能隙参考电压电路的降压电路 |
JP7479765B2 (ja) | 2020-08-21 | 2024-05-09 | エイブリック株式会社 | 基準電圧回路 |
JP7199580B1 (ja) * | 2021-05-31 | 2023-01-05 | 日清紡マイクロデバイス株式会社 | 基準電圧発生回路及び方法 |
US12026001B2 (en) * | 2021-06-25 | 2024-07-02 | University Of Florida Research Foundation, Incorporated | LDO-based odometer to combat ic recycling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02285408A (ja) * | 1989-03-30 | 1990-11-22 | Texas Instr Inc <Ti> | 基準電圧を発生する回路 |
US5767664A (en) * | 1996-10-29 | 1998-06-16 | Unitrode Corporation | Bandgap voltage reference based temperature compensation circuit |
US7420359B1 (en) * | 2006-03-17 | 2008-09-02 | Linear Technology Corporation | Bandgap curvature correction and post-package trim implemented therewith |
JP2013033400A (ja) * | 2011-08-02 | 2013-02-14 | Renesas Electronics Corp | 基準電圧発生回路 |
JP2014063431A (ja) * | 2012-09-24 | 2014-04-10 | Toshiba Corp | 基準電圧生成回路 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3440305B2 (ja) | 1997-04-02 | 2003-08-25 | 高砂香料工業株式会社 | 7−(n−置換アミノ)−2−フェニルヘプタン酸 エステル誘導体及び該誘導体の製造方法 |
JP2019090703A (ja) * | 2017-11-15 | 2019-06-13 | 株式会社デンソー | 電圧検出装置 |
-
2018
- 2018-02-02 JP JP2018017264A patent/JP6927070B2/ja active Active
- 2018-11-30 WO PCT/JP2018/044232 patent/WO2019150744A1/ja active Application Filing
-
2020
- 2020-07-07 US US16/922,161 patent/US11181937B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02285408A (ja) * | 1989-03-30 | 1990-11-22 | Texas Instr Inc <Ti> | 基準電圧を発生する回路 |
US5767664A (en) * | 1996-10-29 | 1998-06-16 | Unitrode Corporation | Bandgap voltage reference based temperature compensation circuit |
US7420359B1 (en) * | 2006-03-17 | 2008-09-02 | Linear Technology Corporation | Bandgap curvature correction and post-package trim implemented therewith |
JP2013033400A (ja) * | 2011-08-02 | 2013-02-14 | Renesas Electronics Corp | 基準電圧発生回路 |
JP2014063431A (ja) * | 2012-09-24 | 2014-04-10 | Toshiba Corp | 基準電圧生成回路 |
Also Published As
Publication number | Publication date |
---|---|
JP2019133569A (ja) | 2019-08-08 |
JP6927070B2 (ja) | 2021-08-25 |
US20200333821A1 (en) | 2020-10-22 |
US11181937B2 (en) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019150744A1 (ja) | 補正電流出力回路及び補正機能付き基準電圧回路 | |
JP4817825B2 (ja) | 基準電圧発生回路 | |
JP4616281B2 (ja) | 低オフセット・バンドギャップ電圧基準 | |
JP4834347B2 (ja) | 定電流回路 | |
US7323857B2 (en) | Current source with adjustable temperature coefficient | |
JP4638481B2 (ja) | 差動段電圧オフセットトリム回路 | |
US7109697B1 (en) | Temperature-independent amplifier offset trim circuit | |
US7636016B2 (en) | Current mirror circuit | |
CN112558675B (zh) | 带隙参考电压产生电路 | |
US7317358B2 (en) | Differential amplifier circuit | |
JP7316116B2 (ja) | 半導体装置 | |
JP2014086000A (ja) | 基準電圧発生回路 | |
US20130249525A1 (en) | Voltage reference circuit | |
KR20190049551A (ko) | 밴드갭 레퍼런스 회로 | |
CN109960309B (zh) | 电流生成电路 | |
US7638996B2 (en) | Reference current generator circuit | |
JP5884234B2 (ja) | 基準電圧回路 | |
JP2005122277A (ja) | バンドギャップ定電圧回路 | |
JP4607482B2 (ja) | 定電流回路 | |
US10310539B2 (en) | Proportional to absolute temperature reference circuit and a voltage reference circuit | |
US9690316B2 (en) | Integrated circuit and method for driving the same | |
JP5974998B2 (ja) | 演算増幅器 | |
JP7192075B2 (ja) | 電流検出アンプ | |
JP2018182357A (ja) | 電流検出アンプ | |
JP4445916B2 (ja) | バンドギャップ回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18904370 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18904370 Country of ref document: EP Kind code of ref document: A1 |