JP2018117490A - ロータ及びそれを用いたモータ - Google Patents

ロータ及びそれを用いたモータ Download PDF

Info

Publication number
JP2018117490A
JP2018117490A JP2017008445A JP2017008445A JP2018117490A JP 2018117490 A JP2018117490 A JP 2018117490A JP 2017008445 A JP2017008445 A JP 2017008445A JP 2017008445 A JP2017008445 A JP 2017008445A JP 2018117490 A JP2018117490 A JP 2018117490A
Authority
JP
Japan
Prior art keywords
rotor
salient pole
magnetic pole
cross
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017008445A
Other languages
English (en)
Inventor
智哉 上田
Tomoya Ueda
智哉 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2017008445A priority Critical patent/JP2018117490A/ja
Priority to CN201880007282.4A priority patent/CN110192330A/zh
Priority to DE112018000465.1T priority patent/DE112018000465T5/de
Priority to US16/469,687 priority patent/US20190363595A1/en
Priority to PCT/JP2018/000627 priority patent/WO2018135405A1/ja
Publication of JP2018117490A publication Critical patent/JP2018117490A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Abstract

【課題】ロータの突極部及び磁極部とステータコイルとの間で生じる磁気的なアンバランスを改善して前記ステータコイルに生じる逆起電圧の波形を互いに近づけることにより、モータに生じるトルクリップルを低減可能な構成を実現する。【解決手段】ロータ2は、外周面に複数の突極部23を有し、且つ、中心軸Pに沿って延びる円筒状のロータコア11と、ロータコア11の外周面上または径方向の内部にロータコア11の周方向に突極部23と交互に並んで配置されたロータ磁石12を有する複数の磁極部35と、を備える。突極部23及び磁極部35は、ロータ2の磁極である。突極部23及び磁極部35は、中心軸Pに直交する断面において、径方向外側に突出する円弧状の突極外周面23a及び磁極外周面12aを有する。突極外周面23aは、前記断面において、磁極外周面12aよりも曲率半径が大きい。【選択図】図1

Description

本発明は、ロータ及びそれを用いたモータに関する。
従来より、モータに用いられるロータとして、ロータコア及びロータ磁石を有する構成が知られている。近年のレアアースの価格高騰に伴うロータ磁石の価格上昇により、ロータ磁石の使用量を減らしたロータの構成の検討が進められている。ロータ磁石の使用量を減らしたモータとして、例えば特許文献1に開示されるように、ロータコアの一部を擬似極として使用するコンシクエント型モータが提案されている。
一般的に、ロータコアの一部を擬似極として使用するコンシクエント型モータでは、全ての磁極がロータ磁石によって構成されている通常のモータに比べて、磁極毎の磁気特性のアンバランスが大きい。すなわち、コンシクエント型モータのロータでは、ロータコアの一部を磁極として使用しているため、ロータ磁石によって構成された磁極とロータコアの一部によって構成された磁極とに、磁気的なアンバランスが生じる。このようにロータに磁気的なアンバランスが生じた場合、モータにトルクリップル(モータ通電時に生じるトルクの変動)が生じる。
コンシクエント型モータにおいて、磁極毎に磁気的なアンバランスが生じる理由は、以下のとおりである。
ロータコアの一部(突極部)によって構成された磁極は、磁束を誘導する強制力を有しないため、ロータ磁石の背面側に生じた磁束が、ロータコアにおいて磁気抵抗の小さい部分を流れる。よって、ロータコアの突極部の形状によっては、複数の突極部に対して均等に磁束が流れない場合がある。すなわち、ロータコアの突極部を流れる磁束の方向や磁束量が、前記突極部の形状に依存するため、ロータに磁気的なアンバランスを生じる。
これに対し、前記特許文献1には、ロータコアの突極の外側面を、各マグネットの外側面を繋いだ円周よりも曲率が大きく(曲率半径が小さく)形成し、外側面の周方向中央部から端部に向かうほど、ステータから次第に離間させる構成が開示されている。
具体的には、前記特許文献1に開示されている構成では、ロータコアの突極の外側面は、周方向中央部の突出長さが大きく、周方向端部に向かうほどその突出長さが小さくなる断面円弧状である。
特許第5524674号公報
しかしながら、上述の特許文献1に開示されるように、ロータコアの突極(突極部)を断面円弧状にした場合でも、ロータの磁極部からステータコイルに鎖交する磁束の磁束密度と、ロータの突極部からステータコイルに鎖交する磁束の磁束密度とに差が生じる。そのため、上述のような従来の構成では、ロータの磁極部及びステータコイルの間と、ロータの突極部及びステータコイルの間とに、磁気的なアンバランスが生じる。このような磁気的なアンバランスが生じている状態で、ロータが回転した場合、ステータコイルにそれぞれ生じる逆起電圧の波形が合致しない場合がある。このようにステータコイルにそれぞれ生じる逆起電圧の波形が異なると、モータにトルクリップルが生じる。
本発明の目的は、ロータの突極部及び磁極部とステータコイルとの間で生じる磁気的なアンバランスを改善して前記ステータコイルに生じる逆起電圧の波形を互いに近づけることにより、モータに生じるトルクリップルを低減可能な構成を実現することにある。
本発明の一実施形態に係るロータは、径方向に突出する複数の突極部を有し、且つ、中心軸に沿って延びる円筒状のロータコアと、前記ロータコアの表面上または径方向の内部に該ロータコアの周方向に前記突極部と交互に並んで配置されたロータ磁石を有する複数の磁極部と、を備えたロータである。前記突極部は、前記ロータの一方の磁極である。前記磁極部は、前記ロータの他方の磁極である。前記突極部は、前記中心軸に直交する断面において、径方向に突出する円弧状の突極外表面を有する。前記磁極部は、前記断面において、径方向に突出する円弧状の磁極外表面を有する。前記突極外表面は、前記断面において、前記磁極外表面よりも曲率半径が大きい。
本発明の一実施形態に係るロータによれば、ロータの突極部及び磁極部とステータコイルとの間で生じる磁気的なアンバランスを改善して前記ステータコイルに生じる逆起電圧の波形を近づけることにより、モータに生じるトルクリップルを低減することができる。
図1は、実施形態に係るモータの概略構成を示す図である。 図2は、ステータコイルの配置の一例を示す図である。 図3は、ステータコイルの結線の状態を示す図である。 図4は、モータの部分拡大図である。 図5は、ロータの突極部における突極外周面の曲率半径と磁極部の磁極外周面の曲率半径とが同じ場合において、ロータの回転時にステータコイルに生じる逆起電圧の波形の一例を示す図である。 図6は、ロータの突極部における突極外周面の曲率半径が磁極部の磁極外周面の曲率半径よりも大きい場合において、ロータの回転時にステータコイルに生じる逆起電圧の波形の一例を示す図である。 図7は、ロータの突極部に突極テーパ部が設けられていない場合において、ロータの回転時にステータコイルに生じる逆起電圧の波形の一例を示す図である。 図8は、IPMモータの場合の図4相当図である。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
なお、以下の説明では、ロータの中心軸と平行な方向を「軸線方向」、中心軸に直交する方向を「径方向」、中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。ただし、この方向の定義により、本発明に係るロータ及びモータの使用時の向きを限定する意図はない。
(全体構成)
図1に、本発明の実施形態に係るモータ1の概略構成を示す。モータ1は、ロータ2と、ステータ3とを備える。モータ1は、後述するように、ロータ2の磁極の一部が、ロータコア11によって構成された、いわゆるコンシクエント型モータである。モータ1は、ステータ3に対して、ロータ2が中心軸Pを中心として回転する。本実施形態では、モータ1は、円筒状のステータ3内に、円柱状のロータ2が回転可能に配置された、いわゆるインナーロータ型のモータである。
ロータ2は、ロータコア11と、ロータ磁石12と、回転軸13とを備える。
ロータコア11は、中心軸Pに沿って延びる円筒状である。ロータコア11は、所定の形状に形成された電磁鋼板を、厚み方向に複数枚、積層することによって構成されている。
ロータコア11は、コア部21とリング部31とを有する。コア部21及びリング部31は、それぞれ円筒状である。リング部31は、中心軸Pに沿って延びるとともに、回転軸13が貫通する貫通孔11aを有する。すなわち、回転軸13は、貫通孔11a内に配置されている。貫通孔11aは、ロータコア11を軸方向に貫通している。リング部31は、ロータコア11の周方向に繋がった断面円環状である。リング部31は、コア部21に設けられた後述の第一空間24及び第二空間25よりも、ロータコア11の径方向内方に位置する。
コア部21は、中心軸Pに沿って延び、且つ、リング部31の径方向外方に位置する円筒状である。すなわち、コア部21は、リング部31と同心状に配置されている。コア部21及びリング部31は、一体に形成されていて、ロータコア11を構成する。
コア部21は、外周面に、複数のロータ磁石取付部22及び複数の突極部23を有する。複数のロータ磁石取付部22及び複数の突極部23は、それぞれ、コア部21の径方向の外側に突出している。ロータ磁石取付部22及び突極部23は、コア部21の周方向、すなわちロータコア11の周方向に、交互に並んで配置されている。
ロータ磁石取付部22には、ロータ磁石12が固定されている。具体的には、ロータ磁石取付部22は、コア部21の径方向の外側に突出しており、先端部分が平面状である。ロータ磁石12は、ロータ磁石取付部22の先端部分に固定されている。すなわち、本実施形態におけるモータ1は、ロータ磁石12がロータコア11の外周面(表面)上に配置された、いわゆるSPMモータ(Surface Permanent Magnet Motor)である。ロータ磁石12及びコア部21のロータ磁石取付部22が、磁極部35を構成する。磁極部35は、コア部21の径方向の外側に突出している。磁極部35は、ロータ2における他方の磁極である。
ロータ磁石12は、ネオジウム焼結磁石である。すなわち、ロータ磁石12は、ネオジウムを含む。ロータ磁石12は、中心軸Pに直交する断面において、ロータコア11の径方向の外側に突出する円弧状の磁極外周面12a(磁極外表面)を有する。すなわち、磁極部35は、前記断面において、径方向の外側に突出する円弧状の磁極外周面12aを有する。磁極外周面12aの曲率半径r1は、前記断面において、突極部23の後述の突極外周面23a(突極外表面)における曲率半径r2よりも小さい(図4参照)。
図1及び図4に示すように、ロータ磁石12は、前記断面において、ロータコア11の周方向における両端部に、前記周方向においてロータ磁石12の中心から外側に離れるにしたがってロータ磁石12の外表面がロータコア11の径方向の内側(磁極部35の基端側)に傾斜する磁極テーパ部12bを有する。なお、磁極部35の基端側とは、コア部21から径方向の外側に突出する磁極部35において、コア部21側の部分を意味する。
磁極テーパ部12bは、図4に示すように、中心軸Pに直交する断面において、磁極部35における前記周方向の外端(周方向の最も外側に位置する部分)を通過し且つロータコア11の径方向に延びる基準線Xに対し、角度αで傾いている。
図1及び図4に示すように、突極部23は、中心軸Pに直交する断面において、ロータコア11の周方向における両端部に、前記周方向において突極部23の中心から外側に離れるにしたがって突極部23の外周面23a(外表面)がロータコア11の径方向の内側(突極部23の基端側)に直線状に傾斜する突極テーパ部23bを有する。すなわち、突極部23は、ロータコア11の径方向において外側に位置する先端部分が、前記径方向の外側に向かうほど前記周方向の長さが小さいテーパ状である。突極部23の詳しい構成については後述する。突極部23が、ロータ2における一方の磁極である。なお、突極部23の基端側とは、コア部21から径方向の外側に突出する突極部23において、コア部21側の部分を意味する。
すなわち、ロータ2は、それぞれ磁極として機能する複数の磁極部35と複数の突極部23とを有する。磁極部35及び突極部23は、ロータコア11の周方向に交互に並んで配置されている。本実施形態のロータ2は、磁極数が10である。
なお、ロータコア11の周方向において、ロータ磁石取付部22と突極部23との間には、スリット11bが構成されている。
ロータコア11は、コア部21に囲まれた複数の第一空間24及び複数の第二空間25を有する。複数の第一空間24及び複数の第二空間25は、それぞれ、円筒状のコア部21を、軸方向に貫通している。すなわち、複数の第一空間24および複数の第二空間25は、それぞれ、コア部21の一部によって区画されている。各第一空間24及び各第二空間25は、それぞれ、中心軸Pに直交する断面において、五角形状の空間である。複数の第一空間24及び複数の第二空間25は、ロータコア11の周方向に、交互に等間隔に並んで配置されている。
第一空間24は、ロータコア11の中心軸Pに直交する断面において、突極部23に対してコア部21の径方向内方に位置する。第一空間24は、前記断面において、頂点24aが、コア部21の周方向における突極部23の中央部に対してコア部21の径方向内方に位置する五角形状である。
第二空間25は、ロータコア11の中心軸Pに直交する断面において、ロータ磁石12に対してコア部21の径方向内方に位置する。第二空間25は、前記断面において、頂点25aが、コア部21の周方向におけるロータ磁石12の中央部に対してコア部21の径方向内方に位置する五角形状である。
すなわち、第一空間24及び第二空間25は、ロータコア11の中心軸Pに直交する断面において、それらの頂点24a,25aが、第一空間24及び第二空間25におけるロータコア11の径方向外側に位置する。
本実施形態では、第一空間24と第二空間25とは、ロータコア11の中心軸Pに直交する断面において、同じ形状及び大きさである。また、上述のように、複数の第一空間24及び複数の第二空間25は、ロータコア11の周方向に、交互に等間隔に並んで配置されている。すなわち、複数の第一空間24及び複数の第二空間25は、前記断面において、ロータコア11の周方向における第一空間24の中心と、ロータコア11の周方向における第二空間25の中心とが、ロータコア11の周方向に等間隔である。
ロータコア11の中心軸Pに直交する断面において、ロータコア11の径方向における第一空間24の外端及び第二空間25の外端は、前記径方向の位置が同じである。ここで、ロータコア11の径方向における第一空間24及び第二空間25の外端とは、ロータコア11の径方向において、最も外側に位置する部分、すなわち頂点24a,25aを意味する。
前記径方向の位置は、ロータコア11の中心軸Pに直交する断面において、中心軸Pを基準とした場合のロータコア11の径方向における位置を意味する。すなわち、径方向位置が同じとは、前記断面において、ロータコア11の径方向における中心軸Pからの距離が同じであることを意味する。
ここで、第一空間24及び第二空間25は、それぞれ、空気層を有する。空気層は、ロータコア11よりも透磁率が低いため、第一空間24及び第二空間25によって磁束の流れが妨げられる。第一空間24及び第二空間25は、必ずしも空気が存在する必要はなく、ロータコア11において、他の部分よりも磁気抵抗が大きい領域であればよい。例えば、空間内に、空気以外の物質が存在してもよい。
ステータ3は、円筒状である。ステータ3の内方に、ロータ2が中心軸Pを中心として回転可能に配置されている。すなわち、ステータ3は、径方向にロータ2と対向して配置される。ステータ3は、ステータコア51と、複数のステータコイル52(コイル)とを備える。ステータコア51は、中心軸Pに直交する断面において、円筒状のヨーク51aと、ヨーク51aの内面から径方向内方に延びる複数(本実施形態では、12本)のティース51bとを有する。ステータコア51は、隣り合うティース51bの間に、それぞれ、スロット53を有する。複数のティース51bには、それぞれ、ステータコイル52が巻かれている。すなわち、複数のスロット53内には、ティース51bに巻かれたステータコイル52が位置付けられている。なお、本実施形態のスロットの数は、12である。
図2に、ステータコア51のティース51bにステータコイル52が巻かれた状態を模式的に示す。複数のティース51bにそれぞれ巻かれたステータコイル52は、モータ1の各相のステータコイルとして機能する。具体的には、ステータコイル52は、U相のステータコイル52a(図2においてU1からU4)と、V相のステータコイル52b(図2においてV1からV4)と、W相のステータコイル52c(図2においてW1からW4)とを含む。U相のステータコイル52a、V相のステータコイル52b及びW相のステータコイル52cは、図2に示すように、ステータコア51の複数のティース51bに対し、周方向に、U相、V相及びW相の順に巻かれている。
本実施形態の場合、U相のステータコイル52aは、ステータコア51の複数のティース51bのうち4つのティース51bにそれぞれ巻かれている。各ティース51bに巻かれたU相のステータコイル52aを、図2及び図3では、それぞれ、U1,U2,U3,U4で示す。なお、図3は、ステータコイル52の結線を模式的に示した図である。
図2に示すように、U1とU2とは、ステータ2の中心軸Pに直交する断面において、ステータ2の周方向に並んでいる。すなわち、U1とU2とは、ステータ2の周方向に隣り合うティース51bに巻かれたステータコイル52aによって構成されている。U3とU4とは、前記断面において、ステータ2の周方向に並んでいる。すなわち、U3とU4とは、ステータ2の周方向に隣り合うティース51bに巻かれたステータコイル52aによって構成されている。U1とU3とは、前記断面において、中心軸Pを挟んでステータ2の径方向反対側に位置する。U2とU4とは、前記断面において、中心軸Pを挟んでステータ2の径方向反対側に位置する。図3に示すように、U1とU2とは直列に接続されている。U3とU4とは直列に接続されている。U1及びU2によって、U相の同相コイル群54が構成される。U3及びU4によって、U相の同相コイル群55が構成される。U相の同相コイル群54とU相の同相コイル群55とは並列に接続されている。
V相のステータコイル52bは、ステータコア51の複数のティース51bのうち4つのティース51bにそれぞれ巻かれている。各ティース51bに巻かれたV相のステータコイル52bを、図2及び図3では、それぞれ、V1,V2,V3,V4で示す。
図2に示すように、V1とV2とは、ステータ2の中心軸Pに直交する断面において、ステータ2の周方向に並んでいる。すなわち、V1とV2とは、ステータ2の周方向に隣り合うティース51bに巻かれたステータコイル52bによって構成されている。V3とV4とは、前記断面において、ステータ2の周方向に並んでいる。すなわち、V3とV4とは、ステータ2の周方向に隣り合うティース51bに巻かれたステータコイル52bによって構成されている。V1とV3とは、前記断面において、中心軸Pを挟んでステータ2の径方向反対側に位置する。V2とV4とは、前記断面において、中心軸Pを挟んでステータ2の径方向反対側に位置する。図3に示すように、V1とV2とは直列に接続されている。V3とV4とは直列に接続されている。V1及びV2によって、V相の同相コイル群56が構成される。V3及びV4によって、V相の同相コイル群57が構成される。V相の同相コイル群56とV相の同相コイル群57とは並列に接続されている。
W相のステータコイル52cは、ステータコア51の複数のティース51bのうち4つのティース51bにそれぞれ巻かれている。各ティース51bに巻かれたW相のステータコイル52cを、図2及び図3では、それぞれ、W1,W2,W3,W4で示す。
図2に示すように、W1とW2とは、ステータ2の中心軸Pに直交する断面において、ステータ2の周方向に並んでいる。すなわち、W1とW2とは、ステータ2の周方向に隣り合うティース51bに巻かれたステータコイル52cによって構成されている。W3とW4とは、前記断面において、ステータ2の周方向に並んでいる。すなわち、W3とW4とは、ステータ2の周方向に隣り合うティース51bに巻かれたステータコイル52cによって構成されている。W1とW3とは、前記断面において、中心軸Pを挟んでステータ2の径方向反対側に位置する。W2とW4とは、前記断面において、中心軸Pを挟んでステータ2の径方向反対側に位置する。図3に示すように、W1とW2とは直列に接続されている。W3とW4とは直列に接続されている。W1及びW2によって、W相の同相コイル群58が構成される。W3及びW4によって、W相の同相コイル群59が構成される。W相の同相コイル群58とW相の同相コイル群59とは並列に接続されている。
なお、本実施形態では、ステータコイル52a,52b,52cは、U1,U4,V1,V4,W2,W3と、U2,U3,V2,V3,W1,W4とで、ティース51bの先端側から見て、ティース51bに対する巻き方向が逆である。すなわち、ステータコイル52a,52b,52cは、U1,U4,V1,V4,W2,W3において、ティース51bの先端側から見て、ティース51bに対して時計方向に巻かれている場合には、U2,U3,V2,V3,W1,W4において、ティース51bの先端側から見て、ティース51bに対して反時計方向に巻かれている。または、ステータコイル52a,52b,52cは、U1,U4,V1,V4,W2,W3において、ティース51bの先端側から見て、ティース51bに対して反時計方向に巻かれている場合には、U2,U3,V2,V3,W1,W4において、ティース51bの先端側から見て、ティース51bに対して時計方向に巻かれている。
ロータ2及びステータ3の位置関係が図2に示す場合には、U相の同相コイル群54のU1は、ロータコア11の径方向において、ロータコア11の突極部23に対向している。一方、U相の同相コイル群55のU3は、前記径方向において、ロータ2のロータ磁石12に対向している。また、U相の同相コイル群54のU2は、ロータコア11の径方向において、ロータコア11のロータ磁石12に対向している。一方、U相の同相コイル群55のU4は、前記径方向において、ロータコア11の突極部23に対向している。
また、図2において、V相の同相コイル群56のV1,V2及び同相コイル群57のV3,V4は、ロータコア11の径方向において、突極部23の一部及びロータ磁石12の一部に対向している。
また、図2において、W相の同相コイル群58のW2は、ロータコア11の径方向において、ロータ2のロータ磁石12に対向している。一方、W相の同相コイル群59のW4は、前記径方向において、ロータコア11の突極部23に対向している。また、W相の同相コイル群58のW1は、ロータコア11の径方向において、ロータコア11の突極部23に対向している。一方、W相の同相コイル群59のW3は、前記径方向において、ロータ2のロータ磁石12に対向している。
(ロータコアの突極部の構成)
次に、図1及び図4を用いて、ロータコア11の突極部23の構成について詳しく説明する。
図1及び図4に示すように、突極部23は、中心軸Pに直交する断面において、ロータコア11の径方向の外側に突出する円弧状の突極外周面23a(突極外表面)を有する。突極部23の突極外周面23aの曲率半径r2は、磁極部35の磁極外周面12aの曲率半径r1よりも大きい。なお、突極外周面23aの曲率半径r2は、r1<r2<2×r1を満たすことが好ましい。例えば、突極外周面23aの曲率半径は16mmであり、磁極外周面12aの曲率半径は12mmである。
また、ロータコア11の周方向において、突極外周面23aの長さは、磁極外周面12aよりも長い。
突極外周面23を上述のような構成にすることにより、突極外周面23のより広い範囲をステータコイル52に対してより近づけることができる。
突極部23は、中心軸Pに直交する断面において、ロータコア11の周方向における両端部に、突極部23の前記周方向の中心から前記周方向の外側に離れるにしたがって突極部23の外表面がロータコア11の径方向の内側に直線状に傾斜する突極テーパ部23bを有する。突極テーパ部23bを突極部23に設けることによって、突極部23と前記周方向の隣りに位置するロータ磁石12との前記周方向の間隔が、前記径方向の外側に向かうほど大きくなる。突極テーパ部23bは、突極部23における前記周方向の両端部で且つ前記径方向の外周側に設けられた平面を有する。
図4に示すように、突極テーパ部23bは、中心軸Pに直交する断面において、突極部23における前記周方向の外端(周方向の最も外側に位置する部分)を通過し且つロータコア11の径方向に延びる基準線Yに対し、角度βで傾いている。突極テーパ部23bの角度βは、ロータ磁石12に設けられた磁極テーパ部12bの角度αよりも大きい。すなわち、突極テーパ部23bの基準線Yに対する傾きは、磁極テーパ部12bの基準線Xに対する傾きよりも大きい。
ここで、既述のように、本実施形態のモータ1では、ロータ2及びステータ3が図2に示す位置関係の場合、U相の同相コイル群55、V相の同相コイル群56,57及びW相の同相コイル群58は、ロータコア11の径方向において、U1,U4,W1,W4が主にロータ2の突極部23と対向し、U2,U3,W2,W4が主にロータ磁石12と対向している。
そのため、ロータ磁石12と突極部23とでそれぞれ生じる磁束が異なる場合、例えば、ロータ2が図2において時計方向に回転すると、U2に対してロータ磁石12及び突極部23の順に通過するU相の同相コイル群54に生じる逆起電圧は、U4に対して突極部23及びロータ磁石12の順に通過するU相の同相コイル群55に生じる逆起電圧とは異なる。同様に、ロータ2が図2において時計方向に回転した場合、V2に対して突極部23及びロータ磁石12の順に通過するV相の同相コイル群56に生じる逆起電圧は、V4に対してロータ磁石12及び突極部23の順に通過するV相の同相コイル群57に生じる逆起電圧とは異なる。同様に、ロータ2が図2において時計方向に回転した場合、W2に対してロータ磁石12及び突極部23の順に通過するV相の同相コイル群58に生じる逆起電圧は、W4に対して突極部23及びロータ磁石12の順に通過するW相の同相コイル群59に生じる逆起電圧とは異なる。
この場合の逆起電圧の波形の一例を、図5に模式的に示す。図5は、U相の同相コイル群54,55について、ロータ2の回転時にステータコイル52aに生じる逆起電圧を示す図である。なお、図5は、突極部23の突極外周面23aの曲率半径と磁極部35の磁極外周面12aの曲率半径とが同じ場合について求めた結果である。また、突極部23には突極テーパ部23bが設けられているとともに、ロータ磁石12には磁極テーパ部12bが設けられている。本実施形態では、一例として、U相について説明するが、V相及びW相についても同様である。
図5に示すように、U相の同相コイル群55に生じる逆起電圧の波形(図中の破線)と、U相の同相コイル群54に生じる逆起電圧の波形(図中の実線)とは、異なる。
図5に示すように、逆起電圧の波形が、同相のコイルを有する同相コイル群54,55で異なると、並列に接続された同相コイル群54,55の回路内で循環電流が流れる。そうすると、モータ2にトルクリップル(モータ通電時に生じるトルクの変動)が発生する。
これに対し、上述のように、突極部23の突極外周面23aの曲率半径を、磁極部35の磁極外周面12aの曲率半径よりも大きくすることにより、突極外周面23aとステータコイル52との距離が近くなるため、突極部23からステータコイル52に鎖交する磁束の磁束密度が大きくなる。これにより、突極部23からステータコイル52に鎖交する磁束の磁束密度と、ロータ磁石12からステータコイル52に鎖交する磁束密度との差を小さくすることができる。よって、ロータ2の突極部23及びステータコイル52の間と、ロータ磁石12及びステータコイル52の間とに生じる磁気的なアンバランスを小さくすることができる。
図6に、本実施形態の構成において、U相の同相コイル群54,55について、ロータ2の回転時にステータコイル52aに生じる逆起電圧の波形を示す。
図6に示すように、本実施形態の構成を適用することにより、U相の同相コイル群55に生じる逆起電圧の波形(図中の破線)と、U相の同相コイル群54に生じる逆起電圧の波形(図中の実線)とのずれが小さくなる。これは、上述のように、突極部23からステータコイル52に鎖交する磁束の磁束密度と、ロータ磁石12からステータコイル52に鎖交する磁束密度との差を小さくすることにより、U相の同相コイル群54で生じる逆起電圧の波形と、U相の同相コイル群55で生じる逆起電圧の波形とを近づけることができたためと考えられる。
よって、本実施形態の構成により、ロータ2の回転時に、並列に接続されたU相の同相コイル群54,55の回路内で循環電流が流れることを抑制することができる。したがって、モータ1に生じるトルクリップルを低減することができる。
特に、突極外周面23aの曲率半径r2は、r1<r2<2×r1の範囲内であれば、ロータ2とステータコイル52との間の磁気的なアンバランスをより小さくすることができる。したがって、突極外周面23aの曲率半径r2を上述の範囲内にすることで、モータ1に生じるトルクリップルをより低減することができる。
加えて、本実施形態のように突極部23に突極テーパ部23bを設けることにより、突極部23において、磁束がロータコア11の周方向の中央部分により集中して流れるため、突極部23の磁束密度を大きくすることができる。これにより、ロータ2において、突極部23とロータ磁石12とに生じる磁束密度の差をより小さくすることができる。
図7に、突極テーパ部23bを突極部23に設けなかった場合において、ロータ2の回転時にU相の同相コイル群54,55のステータコイル52aに生じる逆起電圧の波形を示す。なお、図7に示す逆起電圧の波形は、図5の場合と同様、突極部23の突極外周面23aの曲率半径と磁極部35の磁極外周面12aの曲率半径とが同じ場合について求めた結果である。
図7に示すように、突極テーパ部23bを突極部23に設けなかった場合、U相の同相コイル群55に生じる逆起電圧の波形(図中の破線)と、U相の同相コイル群54に生じる逆起電圧の波形(図中の実線)とは、大きく異なる。
これに対し、本実施形態のように突極部23に突極テーパ部23bを設けることにより、ロータ2において、突極部23とロータ磁石12とに生じる磁束密度の差をより小さくすることができる。これにより、図5に示すように、U相の同相コイル群54に生じる逆起電圧の波形とU相の同相コイル群55に生じる逆起電圧の波形とを近づけることができる。
したがって、本実施形態のように突極部23に突極テーパ部23bを設けることにより、ロータ2の回転時に、並列に接続されたU相の同相コイル群54,55の回路内で循環電流が流れることをより確実に抑制することができる。よって、モータ1に生じるトルクリップルをより低減することができる。
以上より、本実施形態に係るモータ1では、ロータ2は、外周面に複数の突極部23を有し、且つ、中心軸Pに沿って延びる円筒状のロータコア11と、ロータコア11の外周面上にロータコア11の周方向に突極部23と交互に並んで配置されたロータ磁石12を有する磁極部35と、を備える。突極部23は、ロータ2の一方の磁極であり、磁極部35は、ロータ2の他方の磁極である。突極部23は、中心軸Pに直交する断面において、径方向外側に突出する円弧状の突極外周面23aを有する。磁極部35は、前記断面において、径方向外側に突出する円弧状の磁極外周面12aを有する。突極外周面23aは、前記断面において、磁極外周面12aよりも曲率半径が大きい。
以上の構成により、ロータコア11に設けられた突極部23に対してロータ磁石12が交互に並んで配置された、いわゆるコンシクエント型モータにおいて、突極部23からステータコイル52に鎖交する磁束の磁束密度と、ロータ磁石12からステータコイル52に鎖交する磁束の磁束密度との差を小さくすることができる。よって、突極部23及びステータコイル52の間と、ロータ磁石12及びステータコイル52の間とで生じる磁気的なアンバランスを小さくすることができる。
したがって、モータ1が駆動した際に同相のステータコイル52に生じる逆起電圧の波形を、互いに近づけることができる。よって、モータ1に生じるトルクリップルを低減することができる
上述の構成では、突極外周面23aの周方向長さは、磁極外周面12aの周方向長さよりも長い。これにより、突極外周面23aをステータコイル52に対してより広い範囲で近づけることができるため、突極部23からステータコイル52に鎖交する磁束の磁束密度をより高めることができる。したがって、突極部23及びステータコイル52の間と、ロータ磁石12及びステータコイル52の間とで生じる磁気的なアンバランスを小さくすることができる。
上述の構成では、突極部23は、中心軸Pに直交する断面において、前記周方向の少なくとも一方の端部に、前記周方向において突極部23の中心から外側に離れるにしたがって突極部23の外周面が前記径方向の内側に直線状に傾斜する突極テーパ部23bを有する。
以上の構成により、突極部23において周方向の中央部分で生じる磁束密度を大きくすることができる。これにより、突極部23に生じる磁束密度を、ロータ磁石12に生じる磁束密度に近づけることができる。よって、突極部23及びロータ磁石12でそれぞれ生じる磁束密度のばらつきを低減することができる。
したがって、モータ1が駆動した際に同相のステータコイル52に生じる逆起電圧の波形を、互いに近づけることができる。よって、ステータコイル52を含む回路内に循環電流が流れることを抑制することができる。これにより、モータ1に生じるトルクリップルを低減することができる。
なお、本実施形態では、突極部23は、中心軸Pに直交する断面において、ロータコア11の周方向における両端部に突極テーパ部23bを有するため、突極部23において前記周方向の中央部分で生じる磁束密度をより大きくすることができる。よって、突極部23及びロータ磁石12でそれぞれ生じる磁束密度のばらつきをより低減することができる。したがって、モータ1に生じるトルクリップルをより低減することができる。
上述の構成では、ロータ磁石12は、中心軸Pに直交する断面において、ロータコア11の周方向の両端部に、前記周方向においてロータ磁石12の中心から外側に離れるにしたがってロータ磁石12の外表面がロータコア11径方向の内側に傾斜する磁極テーパ部12bを有する。突極テーパ部23bは、突極部23の端部において前記周方向の外端を通過し且つ前記径方向に延びる基準線Yに対する傾きが、ロータ磁石12の端部において前記周方向の外端を通過し且つ前記径方向に延びる基準線Xに対する磁極テーパ部12bの傾きよりも大きい。
これにより、突極部23に生じる磁束密度を、ロータ磁石12に生じる磁束密度により近づけることができる。よって、突極部23及びロータ磁石12にそれぞれ生じる磁束密度のばらつきをより確実に低減することができる。したがって、モータ1に生じるトルクリップルをより確実に低減することができる。
上述の構成では、ロータ磁石12は、前記断面において、前記径方向の外周側が磁極外周面12aを構成する円弧状である。これにより、ロータ磁石12とステータコイル52との間隔を、より狭くすることができる。したがって、ロータ磁石12からステータコイル52に鎖交する磁束の磁束密度を高くすることができる。よって、モータの出力特性を向上することができる。
上述の構成では、ロータ磁石12は、ネオジウムを含む。ネオジウムを含むロータ磁石12の場合に、上述の各構成は、特に効果的である。
上述の構成では、スタータ3のステータコイル52は、中心軸Pに直交する断面において、同相で且つ直列に接続された複数のステータコイル52aがステータ3の周方向に配置された同相コイル群54,55を複数、含む。複数の同相コイル群54,55は、同相のステータコイル52aを含む同相コイル群54,55同士が並列結線されている。
コンシクエント型モータにおいて、ステータ3における複数の同相のステータコイル52aが周方向に配置された同相コイル群54,55が並列結線されている場合、ロータ2が回転した際に、複数の同相のステータコイル52aに対して突極部23または磁極部35が通過する。複数の同相のステータコイル52aに対して、ロータ2から出力される磁力が突極部23とロータ磁石12とで異なる場合、ロータ2が回転した際に複数の同相のステータコイル52aに生じる逆起電圧は、ステータ3におけるステータコイル52aの位置によって異なる。そうすると、同相コイル群54,55同士が並列結線された構成では、回路内に循環電流が生じる。これにより、モータ1には、トルクリップルが発生する。
これに対し、上述の各構成を適用して、突極部23で生じる磁束密度をロータ磁石12で生じる磁束の磁束密度に近づけることにより、複数の同相のステータコイル52aに生じる逆起電力の波形のずれを抑制することができる。よって、モータ1にトルクリップルが発生することを抑制することができる。
(その他の実施形態)
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
前記実施形態では、モータ1は、ロータコア11の外周面上にロータ磁石12が配置された、いわゆるSPMモータである。しかしながら、モータは、ロータコアの内部にロータ磁石が配置された、いわゆるIPMモータ(Interior Permanent Magnet Motor)であってもよい。
IPMモータのステータは、図1に示すモータ1のステータ3と同様の構成を有するため、以下では、IPMモータのロータの構成について説明する。図8に、IPMモータにおけるロータ102の構成の一例を示す。なお、以下では、図1に示すモータ1と同様の構成については、同一の符号を付して説明を省略する。
図8に示すように、ロータ102は、ロータコア111と、ロータ磁石112と、回転軸13とを備える。
ロータコア111は、図1に示すロータコア11と同様、中心軸Pに沿って延びる円筒状である。また、ロータコア111も、所定の形状に形成された電磁鋼板を、厚み方向に複数枚、積層することによって構成されている。
ロータコア111は、コア部121とリング部31とを有する。コア部121及びリング部31は、それぞれ円筒状である。リング部31は、回転軸13が貫通している。コア部121によって、図1に示す構成と同様の第一空間24及び第二空間25が区画されている。すなわち、ロータコア111は、図1に示すロータコア11と同様、第一空間24及び第二空間25を有する。
コア部121は、外周面に、複数の突出部122及び複数の突極部123を有する。複数の突出部122及び複数の突極部123は、中心軸Pに直交する断面において、それぞれ、コア部121の外周面の周方向に所定の範囲で、コア部121の径方向の外側に突出している。突出部122及び突極部123は、コア部121の周方向に交互に並んで配置されている。
コア部121は、中心軸Pに直交する断面において、突出部122に対してコア部121の径方向内方に、ロータ磁石112を収納する収納空間121aを有する。収納空間121aは、前記断面において、コア部121の周方向に長い長方形状の断面を有する。ロータ磁石112は、収納空間121a内に配置可能な直方体状である。
なお、ロータ磁石112は、ロータコア111内に配置された状態で、前記断面において、ロータコア111の径方向の外側の面が円弧状であってもよい。また、ロータ磁石112は、前記断面において、ロータコア111の径方向の外側及び内側の面がそれぞれ円弧状である湾曲形状であってよい。前記断面における収納空間121aの断面形状は、ロータ磁石112の断面形状に合わせることが好ましい。
ロータ磁石112がロータコア111の収納空間121a内に配置された状態で、ロータ磁石112及び突出部122が、磁極部135を構成する。
なお、第一空間24は、中心軸Pに直交する断面において、突極部123に対してコア部121の径方向内方に位置する。第二空間25は、前記断面において、ロータ磁石112に対してコア部121の径方向内方に位置する。
突出部122及び突極部123は、中心軸Pに直交する断面において、それぞれ、ロータコア111の径方向の外側に突出する円弧状の磁極外周面122a及び突極外周面123aを有する。なお、突極外周面123aの曲率半径r2は、磁極外周面122aの曲率半径r1よりも大きい。
突極部123は、中心軸Pに直交する断面において、ロータコア111の周方向における両端部に、突極部123の前記周方向の中心から前記周方向の外側に離れるにしたがって突極部123の外表面がロータコア11の径方向の内側に直線状に傾斜する突極テーパ部123bを有する。突極テーパ部123bを突極部123に設けることによって、突極部123と前記周方向の隣りに位置する突出部122との前記周方向の間隔が、前記径方向の外側に向かうほど大きくなる。突極テーパ部123bは、突極部123における前記周方向の両端部で且つ前記径方向の外周側に設けられた平面を有する。
図8に示す例では、突出部122にも、突極部123と同様に、前記断面において、ロータコア111の周方向における両端部に、突極部123の前記周方向の中心から前記周方向の外側に離れるにしたがって突極部123の外表面がロータコア11の径方向の内側に傾斜する磁極テーパ部122bを有する。
磁極テーパ部122bは、中心軸Pを直交する断面において、磁極部35における前記周方向の外端(周方向の最も外側に位置する部分)を通過し且つロータコア11の径方向に延びる基準線Xに対し、角度αで傾いている。
突極テーパ部123bは、前記断面において、突極部123における前記周方向の外端を通過し且つロータコア111の径方向に延びる基準線Yに対し、角度βで傾いている。突極テーパ部123bの角度βは、突出部122に設けられた磁極テーパ部122bの角度αよりも大きい。すなわち、突極テーパ部123bの基準線Yに対する傾きは、磁極テーパ部122bの基準線Xに対する傾きよりも大きい。
上述の構成を有するIPMモータにおいても、突極部123に、磁極部135の磁極外周面122aの曲率半径r1よりも大きい曲率半径r2を有する突極外周面123aを設けることにより、ロータ102とステータコア52との間の磁気的なアンバランスを小さくすることができる。したがって、ロータ102が回転した際に同相のステータコイルに生じる逆起電圧の波形を、互いに近づけることができる。よって、モータに生じるトルクリップルを低減することができる。
しかも、突極部123に突極テーパ部123bを設けることにより、突極部123の周方向の中央部分で生じる磁束密度を大きくすることができる。これにより、突極部123に生じる磁束の磁束密度と磁極部135に生じる磁束の磁束密度とを近づけることができる。よって、ロータ102が回転した際に同相のステータコイルに生じる逆起電圧の波形を、より近づけることができる。したがって、モータに生じるトルクリップルをより低減することができる。
前記実施形態では、モータ1は、ロータ2の磁極数が10であり、ステータ3のスロット数が12である。しかしながら、前記実施形態の構成を適用するモータは、上述の構成に限らず、他の構成であってもよい。例えば、ロータの磁極数が14で且つステータのスロット数が12のモータ、ロータの磁極数が14で且つステータのスロット数が18のモータ、ロータの磁極数が16で且つステータのスロット数が18のモータなどに、前記実施形態の構成を適用することが好ましい。すなわち、同相で且つ直列に接続された複数のコイルがステータの周方向に配置された同相コイル群を複数、含むとともに、同相のコイルを含む同相コイル群同士が並列結線されているモータに、前記実施形態の構成を適用することが好ましい。
前記実施形態では、突極部23は、中心軸Pに直交する断面において、ロータコア11の周方向における両端部に、突極テーパ部23bを有する。しかしながら、突極部23は、前記断面において、ロータコア11の周方向における両端部のうち一方の端部に、突極テーパ部23bを有していてもよい。この場合、基準線Yは、前記断面において、突極部23の前記周方向の両端部のうち突極テーパ部23bが設けられている端部側の外端を通過し、且つロータコア11の径方向に延びる線である。
前記実施形態では、ロータ磁石12には、中心軸Pに直交する断面において、ロータコア11の周方向における両端部に、磁極テーパ部12bを有する。しかしながら、ロータ磁石12は、前記断面において、ロータコア11の周方向における両端部のうち一方の端部に、磁極テーパ部12bを有していてもよい。また、ロータ磁石12は、磁極テーパ部12bを有していなくてもよい。前記断面において、ロータコア11の周方向における両端部のうち一方の端部に磁極テーパ部12bを設ける場合、基準線Xは、突極部23の前記周方向の両端部のうち磁極テーパ部12bが設けられている端部側の外端を通過し、且つロータコア11の径方向に延びる線である。
前記実施形態では、ステータコイル52は、図3に示すように結線されている。しかしながら、図3以外の組み合わせで同相のステータコイル同士を直列接続することにより同相コイル群を構成し、且つ、同相コイル群同士を並列に接続してもよい。
前記実施形態では、ロータコア11の第一空間24及び第二空間25は、ロータコア11の中心軸Pに直交する断面において、コア部21に囲まれた五角形状の空間である。しかしながら、第一空間及び第二空間は、前記断面において、五角形状以外の形状であってもよい。第一空間及び第二空間は、例えば、曲面によって囲まれていてもよい。また、第一空間及び第二空間は、前記断面において、異なる形状及び大きさであってもよい。第一空間及び第二空間は、連結されていてもよい。
前記実施形態では、ロータコア11の第一空間24及び第二空間25は、ロータコア11の周方向に交互に並び、且つ、周方向に第一空間24の中心と第二空間25の中心とが等間隔である。しかしながら、第一空間24及び第二空間25は、第一空間24の中心と第二空間25の中心とが等間隔でなくてもよい。
前記実施形態では、ロータコア11は、第一空間24及び第二空間25を有する。しかしながら、ロータコア11は、突極部23内に、第一空間24からロータコア11の径方向に延びるスリットをさらに有していてもよい。スリットは、ロータコア11の中心軸Pに直交する断面において、第一空間24から突極部23の外周面に延び、且つ、該外周面で開口していてもよい。
前記実施形態では、モータ1は、円筒状のステータ3内に、円柱状のロータ2が回転可能に配置されたインナーロータ型のモータである。しかしながら、モータは、円筒状のロータ内に、円柱状のステータが配置されたアウターロータ型のモータであってもよい。この場合にも、モータの中心軸に直交する断面において、円筒状のロータコアのコア部から径方向内側に突出する突極部における円弧状の突極外表面の曲率半径を、前記コア部から径方向内側に突出する磁極部における円弧状の磁極外表面の曲率半径よりも大きくすることにより、前記実施形態と同様の作用効果が得られる。なお、上述の構成において前記突極部に突極テーパ部が設けられている場合、該突極テーパ部は、前記突極部の中心軸に直交する断面において、前記突極部の周方向の少なくとも一方の端部に設けられている。そして、前記突極テーパ部は、前記断面において、前記周方向における前記突極部の中心から外側に離れるにしたがって前記突極部の外表面が前記ロータコアの径方向の外側(突極部の基端側)に直線状に傾斜している。
本発明は、外表面にロータ磁石と突極部とが交互に配置されたロータを有するモータに利用可能である。
1 モータ
2、102 ロータ
3 ステータ
11、111 ロータコア
12、112 ロータ磁石
12a、122a 磁極外周面(磁極外表面)
12b、122b 磁極テーパ部
22 ロータ磁石取付部
23、123 突極部
23a、123a 突極外周面(突極外表面)
23b、123b 突極テーパ部
35、135 磁極部
51 ステータコア
52 ステータコイル
52a、52b、52c ステータコイル
122 突出部
P 中心軸
X、Y 基準線

Claims (11)

  1. 径方向に突出する複数の突極部を有し、且つ、中心軸に沿って延びる円筒状のロータコアと、
    前記ロータコアの表面上または径方向の内部に該ロータコアの周方向に前記突極部と交互に並んで配置されたロータ磁石を有する複数の磁極部と、
    を備えたロータであって、
    前記突極部は、前記ロータの一方の磁極であり、
    前記磁極部は、前記ロータの他方の磁極であり、
    前記突極部は、前記中心軸に直交する断面において、径方向に突出する円弧状の突極外表面を有し、
    前記磁極部は、前記断面において、径方向に突出する円弧状の磁極外表面を有し、
    前記突極外表面は、前記断面において、前記磁極外表面よりも曲率半径が大きい、ロータ。
  2. 請求項1に記載のロータにおいて、
    前記突極外表面の周方向長さは、前記磁極外表面の周方向長さよりも長い、ロータ。
  3. 請求項1または2に記載のロータにおいて、
    前記突極部は、前記断面において、前記周方向の少なくとも一方の端部に、前記周方向において前記突極部の中心から外側に離れるにしたがって前記突極部の外表面が前記突極部の基端側に直線状に傾斜する突極テーパ部を有する、ロータ。
  4. 請求項3に記載のロータにおいて、
    前記突極部は、前記断面で見て、前記周方向の両端部に前記突極テーパ部を有する、ロータ。
  5. 請求項3または4に記載のロータにおいて、
    前記磁極部は、
    前記断面において、
    前記周方向の少なくとも一方の端部に、前記周方向において前記磁極部の中心から外側に離れるにしたがって前記磁極部の外表面が前記磁極部の基端側に傾斜する磁極テーパ部を有し、
    前記突極テーパ部は、前記突極部における前記少なくとも一方の端部において前記周方向の外端を通過し且つ前記径方向に延びる基準線に対する傾きが、前記磁極部における前記少なくとも一方の端部において前記周方向の外端を通過し且つ前記径方向に延びる基準線に対する前記磁極テーパ部の傾きよりも大きい、ロータ。
  6. 請求項1から5のいずれか一つに記載のロータにおいて、
    前記ロータ磁石は、前記ロータコアの外周面上に配置されている、ロータ。
  7. 請求項6に記載のロータにおいて、
    前記ロータ磁石は、前記断面において、前記径方向の外周側が前記磁極外表面を構成する円弧状である、ロータ。
  8. 請求項1から5のいずれか一つに記載のロータにおいて、
    前記ロータ磁石は、前記ロータコアの前記径方向の内部に配置され、且つ、前記断面において、長方形状である、ロータ。
  9. 請求項1から8のいずれか一つに記載のロータにおいて、
    前記ロータ磁石は、ネオジウムを含む、ロータ。
  10. 請求項1から9のいずれか一つに記載のロータを備えたモータ。
  11. 請求項10に記載のモータにおいて、
    径方向に前記ロータと対向して配置され、複数のコイルを有する円筒状または円柱状のステータをさらに備え、
    前記複数のコイルは、前記断面において、同相で且つ直列に接続された複数のコイルが前記ステータの周方向に配置された同相コイル群を複数、含み、
    前記複数の同相コイル群は、同相のコイルを含む同相コイル群同士が並列結線されている、モータ。
JP2017008445A 2017-01-20 2017-01-20 ロータ及びそれを用いたモータ Pending JP2018117490A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017008445A JP2018117490A (ja) 2017-01-20 2017-01-20 ロータ及びそれを用いたモータ
CN201880007282.4A CN110192330A (zh) 2017-01-20 2018-01-12 转子和使用该转子的马达
DE112018000465.1T DE112018000465T5 (de) 2017-01-20 2018-01-12 Rotor und Motor, welcher denselben verwendet
US16/469,687 US20190363595A1 (en) 2017-01-20 2018-01-12 Rotor and motor using same
PCT/JP2018/000627 WO2018135405A1 (ja) 2017-01-20 2018-01-12 ロータ及びそれを用いたモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008445A JP2018117490A (ja) 2017-01-20 2017-01-20 ロータ及びそれを用いたモータ

Publications (1)

Publication Number Publication Date
JP2018117490A true JP2018117490A (ja) 2018-07-26

Family

ID=62908180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008445A Pending JP2018117490A (ja) 2017-01-20 2017-01-20 ロータ及びそれを用いたモータ

Country Status (5)

Country Link
US (1) US20190363595A1 (ja)
JP (1) JP2018117490A (ja)
CN (1) CN110192330A (ja)
DE (1) DE112018000465T5 (ja)
WO (1) WO2018135405A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7131516B2 (ja) * 2019-09-18 2022-09-06 トヨタ自動車株式会社 磁石埋込型モータおよびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524674A (en) 1978-08-12 1980-02-21 Yokowo Mfg Co Ltd Winding inspecting terminal for armature of motor
JP2010200400A (ja) * 2009-02-23 2010-09-09 Nippon Densan Corp ステータ、バスバーユニット、モータ、及びパワーステアリング装置
JP5524674B2 (ja) * 2009-04-10 2014-06-18 アスモ株式会社 ロータ及びモータ
US20100301695A1 (en) * 2009-04-03 2010-12-02 Asmo Co., Ltd. Rotor and Motor
JP5737267B2 (ja) * 2012-10-30 2015-06-17 株式会社デンソー 回転子、および、これを用いた回転電機
EP3109972B1 (en) * 2014-02-17 2018-12-05 Mitsubishi Electric Corporation Permanent magnet motor

Also Published As

Publication number Publication date
CN110192330A (zh) 2019-08-30
WO2018135405A1 (ja) 2018-07-26
US20190363595A1 (en) 2019-11-28
DE112018000465T5 (de) 2019-10-02

Similar Documents

Publication Publication Date Title
JP5491484B2 (ja) スイッチドリラクタンスモータ
JP6589624B2 (ja) モータ
JP2005143276A (ja) アキシャルギャップ回転電機
JP5347588B2 (ja) 埋め込み磁石式モータ
JP5857799B2 (ja) ハイブリッド励磁式回転電機
US20050275301A1 (en) Electric motor
JP2006087283A (ja) 永久磁石型回転モータ
JP6657928B2 (ja) モータ及びモータの磁束調整方法
WO2018135405A1 (ja) ロータ及びそれを用いたモータ
WO2018135409A1 (ja) ロータ及びそれを用いたモータ
JP6481545B2 (ja) モータ
JP6631763B1 (ja) 回転電機
JP6012046B2 (ja) ブラシレスモータ
JP2017216855A (ja) 回転電機
JP2006025486A (ja) 回転電機
JP2013021774A (ja) モータ
WO2019058699A1 (ja) ロータ、およびモータ
JP2014050253A (ja) 永久磁石回転電機用ロータ及び永久磁石回転電機
JP7475676B2 (ja) 回転電機
JP2012060709A (ja) 永久磁石型モータ
JP2007189860A (ja) 回転電機
CN105634167A (zh) 马达
JP6672914B2 (ja) モータ
JP6481546B2 (ja) モータ
JP6380112B2 (ja) ロータ、及びモータ

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105