JP2018078322A - 格子調整ドメイン−マッチングエピタキシーを用いた化合物半導体のエピタキシャル成長 - Google Patents

格子調整ドメイン−マッチングエピタキシーを用いた化合物半導体のエピタキシャル成長 Download PDF

Info

Publication number
JP2018078322A
JP2018078322A JP2017250979A JP2017250979A JP2018078322A JP 2018078322 A JP2018078322 A JP 2018078322A JP 2017250979 A JP2017250979 A JP 2017250979A JP 2017250979 A JP2017250979 A JP 2017250979A JP 2018078322 A JP2018078322 A JP 2018078322A
Authority
JP
Japan
Prior art keywords
dislocation
dislocation layer
layer
lattice
lattice spacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017250979A
Other languages
English (en)
Inventor
ハウリーラック、エム、アンドリュー
M Andrew Hawryluk
スターンズ、ダニエル
Stearns Daniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultratech Inc
Original Assignee
Ultratech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultratech Inc filed Critical Ultratech Inc
Publication of JP2018078322A publication Critical patent/JP2018078322A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride

Abstract

【課題】結晶基板の表面上に最終フィルムを直接的に成長させることができない場合において、結晶基板を用いて最終フィルムをエピタキシャル的に成長させる方法を提供する。【解決手段】結晶基板42の上面44上に転位層40を形成することを含む。転位層は、その下面43と上面との間で変化する格子間隔aSを有する。転位層の下面における格子間隔は、7%以内の第1格子不整合において結晶基板の格子間隔に適合する。転位層の上面における格子間隔は、7%以内の第2格子不整合において最終フィルムの格子間隔に適合する。また、方法は、前記転位層の上面上に最終フィルムを形成することを含む。【選択図】図4C

Description

本開示は、化合物半導体のエピタキシャル成長に関し、特に格子調整ドメイン−マッチングエピタキシーを用いたそのような成長に関する。
種々の半導体化合物のデバイスグレードのヘテロエピタキシャルフィルムをSiウェハ上に形成する方法を開発するという強い市場インセティブがある。関心の高い材料には、金属間化合物SiC、ならびにSiGe1−X、AlGa1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XPおよびInAl1−XAsのようないくつかの連続合金系が含まれる。他の関心の高い材料には、ZnOのような光電子化合物が含まれる。これらの材料はしばしば従前のシリコンよりも優れた電気的および光電子的性質を有するため、これらの材料に対して経済的関心が高まっている。これらの材料は、高出力トランジスタおよびスイッチから高電子移動度トランジスタ、レーザーダイオード、太陽電池および検出器にまで応用されている。
残念ながら、これらの材料は、Siとは異なり、大量生産することができない。現在、これらの材料を、大結晶ウェハ(例えば、300mm)を形成するのに加工し得る大結晶ブールに成長させることはできないからである。このため、現在、結晶シリコンウェハから製造されるシリコンデバイスについて長年発達してきた経済規模化(スケールメリット)や費用削減化の手法を活かすことはできない。
米国特許出願番号61/881,369号
したがって、Siウェハ上で単結晶化合物半導体を成長させる方法、およびこれらを基板として用いてより複合的なヘテロ構造を形成する方法が求められている。そのような方法によって、優れた電子および光電子デバイスを比較的低い費用で製造することができるようになるであろう。
本開示の一局面は、事実上、最終フィルムを結晶基板の表面上に直接的に成長させることができない場合において、結晶基板を用いて最終フィルムをエピタキシャル的に成長させる方法である。前記方法は、結晶基板の前記表面上に転位層を形成することを含む。前記転位層は、その下面と上面との間で変化する格子間隔を有する。前記転位層の下面における格子間隔は、7%以内の第1格子不整合において結晶基板の格子間隔に適合する。前記転位層の上面における格子間隔は、7%以内の第2格子不整合において最終フィルムの格子間隔に適合する。また、前記方法は、前記転位層の前記上面上に前記最終フィルムを形成することを含む。前記方法の種々の実施形態では、前記第1および第2格子不整合は、2%、または1%または実質的に0%であってもよい。
本開示の他の局面は、上面および格子間隔aを有する結晶基板を用いて格子間隔aを有する所望の(最終)フィルムをエピタキシャル的に成長させる方法である。本方法は、前記結晶基板の前記上面上に少なくとも一つの転位層を形成することと、前記転位層の前記上面上に前記所望のフィルムを形成することとを含む。前記少なくとも一つの転位層は、下面、上面、厚みh、および格子間隔a(z)を有する。前記格子間隔a(z)は、前記少なくとも一つの転位層の前記下面と前記上面との間で変化する。このとき、7%以内の第1格子不整合において前記少なくとも一つの転位層の前記下面における前記格子間隔a(0)がm・a(0)=n・aを満たす。ここで、n、mは整数である。前記少なくとも一つの転位層の前記上面における格子間隔a(h)は、7%以内の第2格子不整合においてi・a(h)=j・aの関係を満たす。ここで、i、jは整数である。前記方法の種々の実施形態では、前記第1および第2格子不整合は、2%、または1%または実質的に0%であってもよい。
本開示の他の局面は上述の方法であって、前記結晶基板は、Si、Ge、SiGe、AlN、GaN、SiCおよびダイアモンドからなる材料群から選択される材料からなる。
本開示の他の局面は上述の方法であって、前記結晶基板はSiからなる。前記転位層を形成することは、Si基板にGeを注入して、その注入Geをアニールすることを含む。
本開示の他の局面は上述の方法であって、前記結晶基板は、合金からなる。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、蒸発、スパッタリング、化学蒸着、金属有機化学蒸着、原子層エピタキシー(堆積)、およびレーザーアシスト原子層エピタキシー(堆積)からなる堆積方法群から選択される堆積方法を用いることを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層は、GeSi1−X、GaAl1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XP、およびInAl1−XAsからなる材料群から選択される材料からなる。
本開示の他の局面は上述の方法であって、前記結晶基板と少なくとも一つの転位層とは結晶学的整合性を有する。前記方法は、前記少なくとも一つの転位層をレーザー処理することによって前記結晶学的整合性を改善することをさらに備える。
本開示の他の局面は上述の方法であって、前記方法は、前記少なくとも一つの転位層の形成中に、前記少なくとも一つの転位層をレーザー処理することをさらに含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層は、複数の転位層である。前記複数の転位層のうちの少なくとも一つの転位層は、一定の格子間隔を有する。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、ドメインマッチングエピタキシーを行うことを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、格子調整ドメインマッチングエピタキシーを行うことを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、1から10の転位層を形成することを含む。
本開示の他の局面は上述の方法であって、前記結晶基板は、前記少なくとも一つの転位層の形成中に加熱される。
本開示の他の局面は、格子間隔aを有する所望のフィルムを成長させるためのテンプレート基板を形成する方法である。本方法は、格子間隔aを有する結晶基板の上面上に少なくとも一つの転位層を形成することを含む。前記少なくとも一つの転位層は、下面、上面、厚みh、および格子間隔a(z)を有する。前記格子間隔a(z)は、前記少なくとも一つの転位層の前記下面と前記上面との間で変化する。このとき、7%以内の第1格子不整合において前記少なくとも一つの転位層の前記下面における前記格子間隔a(0)がm・a(0)=n・aの関係を満たす。ここで、n、mは整数である。前記少なくとも一つの転位層の前記上面における格子間隔a(h)は、7%以内の第2格子不整合においてi・a(h)=j・aの関係を満たす。ここで、i、jは整数である。前記方法の種々の実施形態では、前記第1および第2格子不整合は、2%、または1%または実質的に0%であってもよい。
本開示の他の局面は上述の方法であって、前記結晶基板は、Si、Ge、SiGe、AlN、GaN、SiCおよびダイアモンドからなる材料群から選択される材料からなる。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、蒸発、スパッタリング、化学蒸着、金属有機化学蒸着、原子層エピタキシー(堆積)、およびレーザーアシスト原子層エピタキシー(堆積)からなる堆積方法群から選択される堆積方法を用いることを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層は、GeSi1−X、GaAl1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XP、InAl1−XAsおよびZnOからなる材料群から選択される材料からなる。
本開示の他の局面は上述の方法であって、前記結晶基板と少なくとも一つの転位層とは結晶学的整合性を有する。前記方法は、前記少なくとも一つの転位層をレーザー処理することによって前記結晶学的整合性を改善することをさらに備える。
本開示の他の局面は上述の方法であって、前記方法は、前記少なくとも一つの転位層の形成中に、前記少なくとも一つの転位層をレーザー処理することをさらに含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層は、複数の転位層である。前記複数の転位層のうちの少なくとも一つの転位層は、一定の格子間隔を有する。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、ドメインマッチングエピタキシーを行うことを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、格子調整ドメインマッチングエピタキシーを行うことを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、1から10の転位層を形成することを含む。
本開示の他の局面は上述の方法であって、前記結晶基板は、前記少なくとも一つの転位層の形成中に加熱される。
本開示の他の局面は上述の方法であって、前記方法は、前記転位層の前記上面上に前記所望のフィルムを形成することをさらに含む。
本開示の他の局面は、表面および基板格子間隔を有する結晶基板を用いて最終フィルムをエピタキシャル的に成長させる方法である。前記方法は、前記結晶基板の表面上に少なくとも一つの転位層を形成することと、前記転位層の前記上面上に前記最終フィルムを形成することとを含む。前記少なくとも一つの転位層は、格子間隔を有する。前記格子間隔は、前記少なくとも一つの転位層の前記下面と前記上面との間で変化する。このとき、7%以内の第1格子不整合において前記少なくとも一つの転位層の前記下面における前記格子間隔が前記結晶基板の格子間隔に適合する。また、前記少なくとも一つの転位層の前記上面における格子間隔は、7%以内の第2格子不整合において前記最終フィルムの格子間隔に適合する。前記方法の種々の実施形態では、前記第1および第2格子不整合は、2%、または1%または実質的に0%であってもよい。
本開示の他の局面は上述の方法であって、前記結晶基板は、Si、Ge、SiGe、AlN、GaN、SiCおよびダイアモンドからなる材料群から選択される材料からなる。
本開示の他の局面は上述の方法であって、前記結晶基板はSiからなる。前記転位層を形成することは、Si基板にGeを注入して、その注入Geをアニールすることを含む。
本開示の他の局面は上述の方法であって、前記結晶基板は、合金からなる。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、蒸発、スパッタリング、化学蒸着、金属有機化学蒸着、原子層エピタキシー(堆積)、およびレーザーアシスト原子層エピタキシー(堆積)からなる堆積方法群から選択される堆積方法を用いることを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層は、GeSi1−X、GaAl1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XP、およびInAl1−XAsからなる材料群から選択される材料からなる。
本開示の他の局面は上述の方法であって、前記結晶基板と少なくとも一つの転位層とは結晶学的整合性を有する。前記方法は、前記少なくとも一つの転位層をレーザー処理することによって前記結晶学的整合性を改善することをさらに備える。
本開示の他の局面は上述の方法であって、前記方法は、前記少なくとも一つの転位層の形成中に、前記少なくとも一つの転位層をレーザー処理することをさらに含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層は、複数の転位層を有する。前記複数の転位層のうちの少なくとも一つの転位層は、一定の格子間隔を有する。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、ドメインマッチングエピタキシーを行うことを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、格子調整ドメインマッチングエピタキシーを行うことを含む。
本開示の他の局面は上述の方法であって、前記少なくとも一つの転位層を形成することは、1から10の転位層を形成することを含む。
本開示の他の局面は上述の方法であって、前記結晶基板は、前記少なくとも一つの転位層の形成中に加熱される。
さらなる特徴及び利点は、下記の詳細な説明に明記されている。また、それらの一部は詳細な説明の記載内容から当業者にとって直ちに明白となるか、詳細な説明、特許請求の範囲、添付図面を含む、ここに記載された発明を実施することによって認識される。上記の背景技術等に関する記載及び下記の詳細な説明に関する記載は、単なる例示であって、特許請求の範囲に記載されている本発明の本質及び特徴を理解するための概略または枠組みを提供するものであることを理解すべきである。
添付図面は、さらなる理解を提供するために含まれており、本明細書の一部を構成すると共に本明細書の一部に組み込まれる。図面は、1または複数の実施形態を示しており、詳細な説明と共に種々の実施形態の原理や動作を説明する役割を担う。このように、本開示は、添付図面と共に以下に示す詳細な説明からより完全に理解されることになるであろう。
半導体基板の一例の断面図である。 図1の半導体基板上にエピタキシャルフィルムを形成する工程中における図1の半導体基板の断面図である。 図2Aのエピタキシャル堆積処理によって半導体基板上に形成された最終結果フィルムを示している。 材料組成に対する面内格子間隔「a」(Å)およびDME比(縦軸)のプロット図である。 格子調整ドメインマッチングエピタキシー(LT−DME)を用いて形成された転位層を示していると共に、LT−DME処理中に任意にレーザー処理された転位層を示している。 図1の半導体基板から形成され、種々の格子間隔を有する転位層を含むテンプレート基板の一例の断面図であって、レーザー光線で任意にレーザー処理された転位層を示している。 図4Bに示されるようなLT−DMEを用いて半導体基板の表面上に形成された厚みhの転位層の拡大図であって、転位層内における格子間隔a(z)がz=0からz=hまでの間でどのように変化するかを示している。 図4Cの転位層の格子間隔a(z)の理想プロット図であって、転位層を形成する複数の材料層の材料組成の変化に相当する方法で転位層においてどのように格子間隔が線形的に変化するかの一例を示している。 出発基板およびその上に形成されるp転位層を含むテンプレート基板の一例の断面図である。 図4Eと同様の断面図であって、テンプレート基板の最上位の転位層上に形成される最終フィルムを示している。 出発基板および転位層を含むテンプレート基板の一例の断面図であって、ドメイン−マッチングエピタキシー(DME)処理を用いて転位層上に形成された最終フィルムを示している。 図5Aと同様の図であって、図5Aに示される処理の最終結果構造を示している。 所望のフィルムを直接的に形成することができない出発基板を使用してテンプレート基板上に所望の最終フィルムを形成する方法の一例のフローチャートである。 出発基板および7つの転位層を含むテンプレート基板の一例の断面図である。 所望のフィルムを直接的に形成することができない出発基板を使用してテンプレート基板上に所望のフィルムを形成する方法の他の例のフローチャートである。
以降、本開示の様々な実施形態、および、添付の図面に示される複数の例について詳述する。可能な限り、同一または類似の部分の図では、同一または類似の参照番号および参照符号が用いられる。図面には決まった縮尺がなく、当業者であれば、図面は本発明の主要な部分を説明するために簡略化されていることに気づくであろう。
特許請求の範囲の記載は、この発明の詳細な説明に組み込まれると共にその一部を構成する。
本願で言及されるいずれの刊行物または特許文献の全開示は、参照により組み込まれる。
いくつかの図面に参照のためにデカルト座標が示されているが、その座標は方向または配向について限定することを意図したものではない。
以下の議論において、パラメータ「a」は、一般的に材料の格子間隔または格子定数、すなわち、その材料の結晶構造の単位セル間の距離、また、単位セルを形成する原子または種の間の間隔を示すために用いられている。パラメータaは、基板の格子間隔を示している。パラメータa(z)は、転位層の可変の(例えば、段階的な)格子間隔を示している。パラメータaは、最上位の転位層上に形成される最終フィルムの格子間隔を示している。
また、以下の議論において、mおよびnは整数であり、iおよびjも同様である。
以下で用いられている頭字語DMEは「ドメイン−マッチングエピタキシー」の略語であり、頭字語LT−DMEは「格子調整ドメイン−マッチングエピタキシー」の略語である。
以下の議論において、「X%以内」との用語は、「X%以下」を意味している。
本開示の一局面は、Si基板上に単結晶化合物を成長させることに関する。しかしながら、本開示のこの局面は、本開示をSi基板のみに限定するものと解釈すべきではない。本明細書においてSi基板を参照することは、単に、費用対効果の高い製造に関連する実例を示すことを目的としているに過ぎない。製造費用が取るに足りないものである場合、他の結晶基板が用いられてもよい。そのような基板は、Ge、SiC、Al、GaN、ダイアモンドおよびその他を含むが、これらに限定されることはない。本明細書に記載される方法は、非シリコン結晶基板でも同等にうまく機能する。
図1は、本体11および上面14を有する結晶半導体基板(「基板」)10の断面図である。一例では、基板10は、Siウェハである。基板10は、(1,1,1)配向および3.84オングストローム(Å)の格子間隔aを有する立方晶系(正方晶系)結晶構造を有する。以下の議論において、基板10は、種々の実施例に関してSiウェハと称される。また、以下により詳細に説明する通り、本明細書において、基板10は、テンプレート基板の形成に関して「出発基板」と称される。
基板10は、図2Aおよび2Bに模式的に示されているように、従前の材料(種)22の堆積処理により、デバイスグレード(デバイス級の)ヘテロエピタキシャルフィルム20を成長させるために使用されてもよい。図2Aの矢印ADは、種22の堆積方向を示している。ヘテロエピタキシャルフィルム20と基板10の上面14とは、基板−フィルム界面24を規定している。図2Aは、基板10の上面14における種22の単一層(「ヘテロ層」)22Lを示している。ヘテロエピタキシャルフィルム20は、複数のヘテロ層22Lからなっている。
基板10上に化合物半導体のデバイスグレードヘテロエピタキシャルフィルム20を形成(すなわち、堆積または成長)させる方法を開発するには、主に2つの課題がある。第1は、堆積フィルム、すなわちヘテロエピタキシャルフィルム20のヘテロ層22Lを、基板10の単結晶テンプレートと共に比例的に成長させるためには、熱力学的な推進力が必須となることである。これは、典型的には、面内結晶構造を同形とすると共に基板10の格子間隔とヘテロエピタキシャルフィルム20の格子間隔とを適合させることによって達成することができ、これにより、基板−フィルム界面24を横切って高い登録性が得られる。第2の課題は、熱膨張の問題に対処することである。典型的に、ヘテロエピタキシャル成長には、表面移動度を促進すると共に長距離規則度を達成するための高い温度が必要とされる。基板10および材料22の熱膨張係数が一致しない場合、ヘテロエピタキシャルフィルム20が冷却されると、その内部に大きな熱応力が残存し、ヘテロエピタキシャルフィルム20が変形したり、ひび割れたりし得る。
ヘテロエピタキシャル成長では、基板10およびヘテロエピタキシャルフィルム20の表面エネルギーと、基板−フィルム界面24におけるエネルギーとの間に競合関係が伴う。この競合関係により、ヘテロエピタキシャルフィルム20に3つのあり得る成長モードが生じる。フランクーファンデルマーヴェ(FM)成長モードは、界面エネルギーが支配的になると共にヘテロエピタキシャルフィルム20が共形的に1層ずつ成長するときに観察される。ストランスキー−クラスタノフ(SK)成長モードは、ヘテロエピタキシャルフィルム20が、島部分のネットワークからなる三次元形態を形成し始める臨界厚みまで1層ずつ成長する。最後に、ウォリメル−ウェーバー(VW)成長モードでは、基板10、すなわちSiウェハの上面14上に直接、島部分が形成される。SKおよびVW成長モードにより、ヘテロ層22Lは、高密度の粒界を有する小ドメインに細分化する。
高品質なヘテロエピタキシャルフィルム20を成長させるための鍵は、FMモードに適する条件を見つけ出すことにある。その課題は、層成長が基板10の下層の結晶テンプレートに適合するように基板−フィルム界面24を設計することである。特に、基板10の格子と、成長するヘテロエピタキシャルフィルム20との間にある程度の位置関係(レジストレーション)がなければならない。この条件が成立するための要件は、基板10の結晶面およびヘテロエピタキシャルフィルム20の結晶面が同じ対称性を有することである。
関心の高い半導体物質の一例の結晶構造が、以下に示される表1に列挙されている。
Figure 2018078322
Ga−Al−N化合物が六方最密(hcp)(ウルツ鉱)構造を有することがわかる。ヘテロエピタキシャルフィルム20は、常に、(001)配向で成長する。その面内格子は、hcp構造を有する。これらのヘテロエピタキシャルフィルム20がヘテロエピタキシャル的に成長する場合、用いられる基板10は六方対称性に適合しなければならない。全ての他の材料(Si、Ge、SiC、GaAlAs、InGaAs、InGaP、InAlAs)は立方晶構造を有しており、六方対称性は、(111)配向で得られる。したがって、表1の全ての材料22は、任意の配向において面内対称性に適合する。
ヘテロエピタキシャルフィルム20は、種々の技術(例えば、PVD、CVD、蒸発、スパッタリング、および原子層エピタキシー(堆積)(ALD))により堆積され得るが、強制的にFM成長がなされるため、ALD処理が有利である。
典型的な堆積処理において、堆積処理中における種々の層間の界面におけるエネルギーを制御するためには、堆積種22のエネルギー制御が重要となる。エネルギーおよび堆積種22が少なすぎれば、下層の基板10の結晶学的方向を再調整することができない。ALDにおいて、堆積処理のエネルギー論は、堆積中の基板10の温度を制御することによって又は堆積処理中もしくは堆積処理後にレーザースパイクアニールを実行することによって制御され得る。短距離秩序は、化学反応によって規定される。長距離秩序は、追加的なエネルギーを含めることによって規定される。これは、昇温することによって又はレーザーアニールによって供給され得る。レーザースパイクアニールを用いることによって、時間と、薄膜ヘテロエピタキシャルフィルム20に向かうと共に薄膜ヘテロエピタキシャルフィルム20によって吸収されるエネルギーの大きさとを十分に制御することができる。これによって、堆積材料22およびそのエネルギーの両方を特有に独立制御することができる。レーザーアシストALD(LA−ALD)は、使用可能な唯一の堆積方法であり、これにより成長界面の新規な制御がなされると共に、低温(400℃未満)堆積が可能となる。これにより、より高温で基板10に堆積する材料22の種々の熱膨張係数に関わる問題が軽減される。
ヘテロエピタキシャルフィルム20のヘテロエピタキシャル成長の他の標準要件は、格子間隔(または格子定数)「a」に適合性があるべきであるということである。理想的には、これは、基板−フィルム界面24を横切る種22の1対1登録に対応するであろう。基板−フィルム界面24は、基板10の上面14上にヘテロ層22Lを「固定」する役割を果たす。
図3は、材料組成に対する面内格子間隔「a」(Å)(縦軸)のプロット図である。水平な実線は、図示される材料22としての合金の格子間隔を示している。例えば、SiおよびGeは、合金の連続体を形成することが可能である。100%のSiにおいて格子間隔は3.8Åであり、100%のGeにおいて格子間隔は4.0Åである。破線矢印は、DMEを用いた成長の機会を示している。ここでは、DME比が図示されている。例えば、4:3比のSiCは、DMEを用いてGa0.2In0.8P上で成長させることができる。GaInP組成の調整は、LT−DMEを示している。
なお、Si−Geは、Ga−Al−N、Ga−Al−As、In−Ga−As、In−Ga−P、およびIn−Al−As系のように、連続合金を形成する。図3は、Siウェハ、すなわち基板10と、材料22、SiCおよびGa−Al−Nとの間に比較的に大きな(20%未満)の格子不整合があることを示している。しかしながら、DMEを用いて格子間隔「a」の整数を適合させることによって、依然として長距離秩序が達成され得る。DMEでは、通常、基板10が室温から700℃の温度に加熱される。また、基板10および堆積材料22は、堆積後、通常、最高700℃の温度で最長約30分の時間、アニールされる。堆積中または堆積後の昇温により、堆積種22に、基板10と共にそれら自体を再配列および配向させるのに十分な表面エネルギーを与える。いくつかの堆積方法では、より多量のエネルギーが堆積材料22に与えられる。このため、これらの方法では、堆積中または堆積後にほとんど(または全く)熱処理を必要としない。
DMEは、第1および第2格子定数の整数を適合させることによって、異なる(第2)格子定数(a)を有する材料22の異なる層が上に堆積されている、第1格子定数(a)を有する材料22の1つのヘテロ層22Lのエピタキシャル成長が許容されるように示されている。例えば、AlNはa=3.11Åの格子定数を有し、Siはa=3.84Åの格子定数を有する。偶然にも、AlNの格子間隔を5倍した値は、Siの格子間隔を4倍した値に近い。具体的には、(5)・(3.11)=15.55Åであり、(4)・(3.84)=15.36Åである。その差は、わずか0.19Å(15.5Åに対して)または1.2%である。これは、Siウェハ、すなわち基板10上におけるAlNヘテロエピタキシャルフィルム20のエピタキシャル成長を十分許容できる程度に近似している。DMEの他の例としては、Al上におけるInの成長;Si(100)上におけるNdNiOの成長;Y上におけるZnOの成長;SiGe(30%Ge)上におけるGaNの成長;およびSi上におけるSiCの成長が含まれる。
従来技術において、DMEは、ある格子間隔aの倍数が第2格子間隔aの倍数の7%以内、すなわち格子不整合が7%以内である場合、いくつかの材料に最も機能することが知られている。DMEは、格子不整合が小さくなるほど、例えば、2%または1%になるほど、よりよく機能することがわかっている。その不整合が小さいほど、転位欠陥が生じにくくなるため第2層が成長しやすくなる。理想的には、格子を完全に適合させて、最も欠陥が少ない層を成長させるのが望ましい。
一例では、一般的なDME基準は、閾値THの範囲内においてm・a=n・aである。いくつかの材料では、閾値THは7%程度であるが、これらの材料は、典型的には多数の転位欠陥と共に成長する。DME基準が2%以内、または1%以内に適合するか、本質的に完全一致すれば(すなわち格子不整合が実質的に0であるか、TH=0であれば)、よりよい成長条件が生じる。これは、エピタキシャル的に成長することができる材料22の数を拡大することが非常に大きな改善であることを表しているが、未だに任意の材料についての成長を可能にするには至っていない。さらに、Siウェハの遍在性により、出発基板10をSiウェハとすることが商業的に望ましくなる。Siウェハ、すなわち基板10では、従来のDME処理は、格子定数がSiウェハ、すなわち基板10に対する上記閾値条件を満足する材料に制限される。
格子調整DME(LT−DME)
本開示の一局面には、本明細書において「格子調整DME」またはLT−DMEと称される改良版のDMEを使用することが含まれる。図4Aから4Fは、複数のヘテロ層42Lを形成する種42を用いて転位層40を形成するために基板10を用いて行われるLT−DME処理の一例を示している。
LT−DMEは、少なくとも一つの材料(フィルムまたは基板)が連続合金系に属する基板10上における転位層40のヘテロエピタキシャル成長である。転位層40の格子間隔を調整するために合金の化学量論が選ばれる。その結果、転位層40および基板10の格子間隔が最大で7%の閾値THに至るまで第1格子適合条件m:nを実質的に満たす。これは、その比が1:1であり、格子間隔が等しい特殊な場合を含んでいる。
連続合金系によって与えられた格子間隔が連続することにより、転位層40の格子間隔が、(格子不整合閾値THの範囲内となるように)i:jの第2格子適合条件を、転位層40上に形成される最終フィルム、すなわちヘテロエピタキシャルフィルム20に与えるように変化し得る。このように、最終フィルム、すなわちヘテロエピタキシャルフィルム20を形成するためにDMEを用いて成長させることができる可能性がある多くの材料は、非常に強化されている。例えば、第1および第2格子不整合条件(閾値THにより規定される)は、7%以内または2%以内、または1%以内、または実質的に0%(すなわち、格子不整合がない)である。一実施例では、第1格子不整合条件は、第2格子不整合条件と相違してもよい。
このように、種42の組成は、LT−DME処理中に変化する。この結果、転位層40は、ヘテロ層42Lにより規定される変化合金組成を有する。いくつかのヘテロ層42Lは同一の組成を有し得るが、全てのヘテロ層42が同一の組成を有するわけではない。転位層40は、基板10と、所望の最終、すなわちヘテロエピタキシャルフィルム20(図4F参照)との間に存在する。ここで、基板10と、所望のフィルム、すなわちヘテロエピタキシャルフィルム20とは、異なる格子間隔を有する。一般的に、このように格子間隔が異なることにより、従前のDMEを行って、基板10の上面14上に直接的に最終フィルム、すなわちヘテロエピタキシャルフィルム20を形成することは不可能である。LT−DME処理によって、転位層40の複数のヘテロ層42Lの合金の初期組成をLT−DME適合基板10に選ぶことができる。(例えば、ヘテロ層42Lの組成を変化させることによって、)転位層40の厚みで化学量論が変化し、最終層20に適合するLT−DMEである組成に達する。
一例では、転位層40は、連続的に変化する化学量論を有する。すなわち、ヘテロ層42Lは、基板10から最終フィルム、すなわちヘテロエピタキシャルフィルム20まで、それらの化学量論で連続的に変化する。しかしながら、ヘテロ層42Lを化学量論で合理的に変動させることができ、その結果、最終フィルム20に適合するLT−DMEを用いることができる。
図4Aは、LT−DMEによりヘテロ層42Lが堆積される際に、ヘテロ層42Lを処理するためにレーザー光線LBが使用される例を示している。なお、LT−DMEは、大きい矢印で示されており、以下においてより詳細に説明される。図4Bは、Siウェハ、すなわち出発基板としての基板10から形成されるテンプレート基板50の一例の断面図である。テンプレート基板50は、Siウェハ、すなわち基板10の上面14上に形成される少なくとも一つの転位層40を含む。また、図4Bは、転位層40の堆積後、転位層40が、任意にレーザー光線LBによってアニールされる例を示している。矢印ASは、レーザー光線LBが走査される方向を示している。
一例では、レーザー処理には、レーザーアシスト原子層エピタキシー(堆積)(LT−ALD)のようなレーザーアニール処理が含まれる。本明細書に開示される方法において使用に適するLA−ALDシステムおよび方法の例は、2013年9月22日に出願された「シリコン基板にデバイス品質の窒化ガリウム層を形成する方法および装置」との名称の米国特許出願番号61/881,369に開示されている。転位層40のレーザー処理は、Siウェハ、すなわち基板10の上面14と、転位層40との結晶学的整合性を改善するために使用され得る。
図4Cは、図4Aに示される材料42のヘテロ層42Lと共にSiウェハ、すなわち基板10の上面14上に形成される転位層40の一例の拡大図である。基板10は、基板10の上面14を規定すると共に基板格子間隔aを有する原子12と共に示されている。
転位層40は、本体41を有する。本体41は、下面43および上面44を有する。下面43は、Siウェハ、すなわち基板10の上面14に接しており、ウェハ−層界面46を規定している。転位層40は、高さ(厚さ)hおよび種々の(例えば、段階的な)構造を有する。この構造は、格子間隔aを規定する。格子間隔aは、z方向において、例えば、下面43におけるz=0から転位層40の上面44におけるz=hまで、変化する。zに伴う転位層40の格子間隔aの変動は複数のヘテロ層42Lで別々であるが、便宜上、転位層40の可変格子間隔は、a(z)で示される。
転位層40は、イオン注入およびアニールにより基板10の内部に形成され得る。例えば、Siウェハ、すなわち基板10にGeを注入することができ、それをアニールすれば、SiGeの転位層40を生成することができる。Geの割合は、ドーパント密度によって決定される。これにより種々の格子間隔を生成することができ、追加の転位層40を成長させるために用いることができる。
一実施例では、転位層40の種々の格子間隔a(z)は、材料をヘテロ層42Lとして堆積させるときに、種(材料)42を構成する元素の混合物を変化させることによって形成される。図4Dは、LT−DME転位層40内に形成され得る格子間隔a(z)における直線変化の一例の理想プロット図である。ウェハ−層界面46におけるヘテロ層42Lは、基板10の格子間隔aに実質的に適合する(すなわち、第1格子不整合条件の範囲内となるような)格子間隔a(0)を有する。この例では、その転位の格子間隔aは、初期値a(0)=aから最終値a(h)まで増加する。その処理は、格子間隔がその初期値から最終値まで減少する場合においても同様に良好に機能する。
再び図4Cに関して述べると、材料42を構成する元素混合物を変化させることによって、次のヘテロ層または複数のヘテロ層42Lが形成される。これにより、格子間隔a(z)が変化する、例えば、本例では大きくなる。なお、1または複数のヘテロ層42Lは、転位層40の作製時に、同一の格子間隔a(z)を有することができる。この成長過程は、転位層40の上面44において所望の格子間隔a(h)が得られるまで絶え間なく続く。また、転位層40の上面44における格子間隔a(h)は、「表面格子間隔」と称される。
例として、転位層40は、Si元素とGe元素を組み合わせて単結晶材料42いわゆるシリコン−ゲルマニウムを形成することによって、形成され得る。なお、シリコン−ゲルマニウムは、合金であって、Si1−XGeで示される。Geは、Siに0%(x=0)から100%(x=1)まで導入することができる。その成果物が、転位層40内の連続格子間隔a(z)である。連続格子間隔a(z)は、最初のSiウェハ格子間隔a=3.84Å(z=0における)から最大4.00Å(例えば、a(h)、または表面格子間隔)までの範囲内である。なお、4.00Åは、Ge結晶の格子間隔である。他の例では、窒化アルミニウム(AlN)を窒化ガリウム(GaN)と組み合わせて、AlN由来の3.11ÅからGaN由来の3.19Åまでの連続格子間隔a(z)を有する合金を生成することができる。
図4Eは、図4Bと同様の図であって、テンプレート基板50が出発基板および複数(p)の転位層40、例えば、層40−1,40−2,...40−pを含む実施例を示している。なお、層40−1,40−2,...40−pは、それぞれ厚さh,h,...hを有すると共に、それぞれ格子間隔aT1(z),aT2(z),...aTp(z)を有する。そのようなテンプレート基板50の例を、以下で議論する。図4Fは、図4Eと同様の図であって、最終フィルム、すなわちヘテロエピタキシャルフィルム20を示している。最終フィルムは、最上位の転位層40−pの上に形成されている。また、図4Fには、最終フィルム、すなわちヘテロエピタキシャルフィルム20の格子間隔aが示されている。
図5Aおよび5Bに関して述べると、一度、テンプレート基板50が形成されると、それは、(例えば、図3中の破線矢印によって示されるように、LT−DMEを用いて)最終格子間隔aを有する所望の最終フィルム20を成長させるために使用することができる。なお、再び言うと、最終フィルム、すなわちヘテロエピタキシャルフィルム20は、aとaの格子寸法の不整合のため、事実上、Siウェハ、すなわち基板10の上面14上に直接的に成長させることはできないであろう。所望のフィルム20の最終格子間隔aは、最上位の転位層40−pの表面格子間隔aTp(h)に実質的に適合する(すなわち、第2格子不整合条件の範囲内となる)。
図6は、別の方法ではシリコンウェハのような基板10上に直接的に形成することができない所望のフィルム、すなわちヘテロエピタキシャルフィルム20を形成する方法の一実施例をまとめるフローチャート100である。ステップS101では、所望のフィルム、すなわちヘテロエピタキシャルフィルム20の最終基板間隔aが、閾値THを超えて基板格子間隔aと相違することが成立している。閾値THは、通常、材料に依存し、上述の通り、典型的には約7%であるか、場合によっては2%である。格子不整合の許容差に対する閾基準値は、|a−a|/a≦THの関係でまとめられる。ここで「|x|」は、「xの絶対値」を表している。
このように、ステップS101で、先ず、|a−a|/a>THの基準が成立すれば、所望の最終フィルム、すなわちヘテロエピタキシャルフィルム20を、事実上、基板10上に直接的に形成できないことが確認される。格子調整により格子不整合を任意の閾値TH以下(例えば、7%または2%または1%または実質的に0%)にまで低減すれば、DMEを用いた成長がかなり改善される。一例では、LT−DME処理の目的は、転位層40と、最終フィルム、すなわちヘテロエピタキシャルフィルム20との格子不整合をできるだけ多く減少させることにある。
ステップS102では、出発基板としての基板10を用いて、p個の転位層40(すなわち、転位層40−1,40−2,...40−p、ここで、p=1,2,3,...)を有するテンプレート基板50を形成する。これにより、閾値に基づいた基準、すなわち|a−aTp(z)|/aTp≦THを満たすことができる。なお、ここで、aTp(z)は最上位の転位層40−pの表面格子間隔であり、その表面はz=zに存在する(図4E参照)。上述の通り、複数の例では、(格子不整合の程度を示す)閾値THは、7%または2%または1%または実質的に0%である。
そして、ステップS103では、格子不整合閾値THの範囲内に収めながら(すなわち、第2格子不整合条件を満足させながら。図4F参照。)、最上位の転位層40−pの上に所望の材料層22のフィルム、すなわちヘテロエピタキシャルフィルム20を成長させる。
再び図3に関して述べると、ある水平線には、m:nの比(例えば、4:3)が含まれている。この比は、両端破線矢印で示される通り、下の材料に対する整数適合基準を満たす格子間隔に相当する。種々の元素および化合物の格子間隔は暗線で図示されており、それらの連続合金は、暗線矢印として図示されている。示されるように、m:nの比を用いてDME処理を使用し得る。例えば、AlNは、SiGe合金(30%Ge)上に5:4の比で(m=GaN格子間隔の5倍が、n=SiGe格子間隔の4倍と適合する)成長し得る。
また、Siに対するGa−Al−N系の格子適合も行われ得る。AlNの場合における最善の整数適合比は、a=3.90Åで5:4である。これは、Siの間隔a=3.84Åよりも1.6%大きい。しかしながら、Siを30%のGeと合金化することによって転位層40を形成し、ほぼ完全に格子間隔を適合させることにより、格子間隔不整合をなくすことができる。Si−Ge合金の格子間隔は、Si−Geの全組成範囲に渡って極めて直線的に変化する。GeをSiに注入してアニールすることによって、テンプレート基板50に第1転位層40−1を設けることができる。この第1転位層40−1は、AlNヘテロ層20に完全に適合するように調整された格子間隔aT1(z=h1)を有する。第2転位層40−2はAlNで始まり、その後、GaAl1−XAsの化学量論が特定の組成に至るように変化する。このGaAl1−XAsは、格子間隔aT2(z=h2)を有し、第3転位層40−3または所望のフィルム20の成長表面として機能することができる(図4E参照)。例えば、第2転位層40−2の最終組成を、3.99Åの格子間隔を有するGaNとする。これは、GaNまたはGaAs(a=4.00Å)の最終ヘテロ層20を成長させるための成長表面となることができる。
このように、本明細書に開示の方法は、一連の転位層40を形成することを含む。転位層40が形成されることによって、利用可能な格子間隔につき広範囲の選択肢を有し得るテンプレート基板50を形成することができる。複数の転位層40を使用することにより、最上位の転位層40−pが表面格子間隔を有するまで格子間隔の範囲を徐々に変化させることができる。なお、表面格子間隔は、所望のフィルム、すなわちヘテロエピタキシャルフィルム20の材料22の最終の所望の格子間隔aに十分に適合される。
1または複数の転位層40を形成するに際して効果的に採用され得る多数の種々の合金が存在する。そのような合金には、SiGe1−X、AlGa1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XP、InAl1−XAs、およびZnOが含まれる。化合物ZnOは、a=3.252Åの格子間隔を有する。通常、ZnOは、Siウェハ、すなわち基板10上で成長することができない。これは、格子不整合がほぼ17%であるからである。しかしながら、LT−DMEを用いることによりZnOヘテロエピタキシャルフィルム20を成長させる経路を得ることができる。例えば、ZnOは、(m=6)・(3.252Å)≒(n=5)・(3.9Å)の関係により、Si−Ge結晶(30%Ge)と適合することができる。これは、m=6倍の格子間隔とn=5倍の格子間隔とを組み合わせてLT−DMEを使用することができることを示している。格子寸法の不整合が大きすぎるため、事実上、ZnOは、基板10の上面14上で直接的に成長することができないであろうことが強調される。
なお、材料を種々の方法で組み合わせることによりDMEに適した所望の格子間隔を得ることができる。図7に関して述べると、Siウェハ、すなわち基板10から出発し、Geを注入して、z=zで30%のGe濃度を有するSiGe転位層40−1を形成し、aT1(h)≒3.9Åの表面格子間隔を規定する。そして、AlNは、5:4のDME比で転位層40−1上に直接的に成長することができ、その結果、aT2(z)=3.11Åの格子間隔を有する第2転位層40−2を規定する。
次に、AlNをGaNと混ぜて、純GaNが成長するまでxが連続的に変化するAlGa1−XNを形成することによって、格子間隔aT3(z)を有する第3転位層40−3が第2転位層40−2上に形成される。そして、この第3転位層40−3は、自身の第4転位層40−4を規定する。
GaN転位層40の上面44は、aT4(z)=3.19Åの表面格子間隔を有する。そして、この上面44は、5:4のDME比であらゆるAlGa1−XAs合金を成長させるために用いられ得る。これにより、aT5(z)=4.0Åの格子間隔を有する第5転位層40−5が形成される。そして、GaAsまたはAlAsが第5転位層40−5上で成長すると、LT−DMEを用いて、これらの材料42は、aT6(z)の格子間隔を有する第6転位層40−6を形成することができ、その結果、連続的にInAsおよびそれに関連した格子間隔aT6(z)=4.28Åに上級化される。また、第5GaN転位層40−5上で、In0.5Ga0.5Pの組成を有する第6転位層40−6を成長させるために、LT−DMEが5:4の比で使用され得る。第7転位層40−7は、aT7(z)=4.15Åの格子間隔を有するInPに上級化するか、aT7(z)=3.85Åの格子間隔を有するGaPに下級化する。
一例では、テンプレート基板50には、1から10の転位層40が含まれる。2つ以上の転位層40が存在する例では、少なくとも一つの転位層40が一定の格子寸法を有する。一例では、一定の格子寸法を有する少なくとも一つの転位層40は、LT−DMEを用いて形成される。
本明細書に開示される方法の一例では、GeSi1−X、GaAl1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XP、およびInAl1−XAsの連続合金系が使用される。これらの合金系を用いることによって、テンプレート基板50の1または複数の転位層40の格子間隔を、広範囲の正確に特定された値に調整することができ、特に、第2格子適合条件で、最上位の転位層40−pに、所望のフィルム、すなわちヘテロエピタキシャルフィルム20の格子間隔aに相当する表面格子間隔aTp(z)を付与することができる。LT−DMEを用いることによって、格子間隔を調節(調整)する機構を得ることができる。1または複数の連続合金系を用いてLT−DMEを使用することによって、基板10から始まる広範な化合物半導体材料のヘテロエピタキシャル成長経路が見出される。
図8は、Siウェハ、すなわち基板10から始まりaの格子間隔を有する所望の(最終の)材料Aの所望のフィルム、すなわちヘテロエピタキシャルフィルム20を成長させる方法の一例をまとめるフローチャート200である。第1ステップS201では、所望の材料Aおよび格子間隔を特定する。一例として、所望の最終材料Aが、a=3.72Åの格子間隔を有すると考える。
ステップS202では、材料AがSi−Ge合金に適合するLT−DMEであり得るかについての問い合わせがなされる。これには、格子間隔の比が1:1である、すなわち、格子間隔が等しい特殊な場合が含まれる。回答がYESであれば、方法は、ステップS203に直接進む。ステップS203では、材料Aを成長させるためにSi−Ge合金転位層40が用いられる。しかしながら、Si−Ge系は格子間隔の範囲がa=3.84−4.00Åと幅広い。このため、適合は不可能であり、本例のステップS202の問いに対する回答はNOである。
ステップS202の問いに対する回答がNOである場合、方法はステップS204に進む。ステップS204では、「最終材料が、合金の一つがSi−Ge合金とLT−DME格子適合性を有するような連続合金A−Bを形成する系にあるか?」が問われる。回答がYESであれば、方法は、ステップS205へ進む。ステップS205では、Si−Geを用いて第1転位層40−1を形成し、LT−DMEによってSi−Ge上に材料の合金A−Bを成長させることができる。組成を(連続して段階的に)変化させて、材料Aの格子間隔を適合させる。今回の場合、材料Aは、連続合金系中にはないと仮定される。その結果、回答はNOとなり、方法はステップS206に進む。ステップS206では、材料A−Bが、連続合金系中の異なる材料C−Dに適合するLT−DMEであり得るかが問われる。回答がYESである場合、GaNは、DME7:6で3.72Åの格子間隔を有する。そして、方法は、ステップS207に進み、そこで、Al−Ga−N合金系がSi−GeにLT−DME適合するかが問われる。事実、AlN合金は、DME5:4で3.89Åの格子間隔を有し、Si0.7Ge0.3に適合する。
S207の問いに対する回答がYESであるので、方法は、ステップS208に進み、そこで、次に示すように材料Aを成長させるためにLT−DME処理が実行される。先ず、Si−Ge転位層40−1を成長させる。次に、純AlNから純GaNまで組成変化するAl−Ga−Nの転位層を堆積させる。最後に、GaN基板10上に関心の高い(目的とする)材料Aを堆積させる。
なお、ステップS206およびS207では、問いに対する回答がNOであれば、適切な適合がなく、方法はステップS210で終了する。
当業者には明白であるが、添付の特許請求の範囲に記載される本開示の精神および範囲を逸脱することなく、ここに記述される本開示の好ましい実施形態に対して様々な修正を加えることができる。したがって、本開示は、添付の特許請求の範囲およびその均等範囲内において本開示の修正および変更を包含する。

Claims (44)

  1. 上面および格子間隔aを有する結晶基板を用いて格子間隔aを有する所望のフィルムをエピタキシャル的に成長させる方法であって、
    前記結晶基板の上面上に少なくとも一つの転位層を形成することと、
    前記転位層の前記上面上に前記所望のフィルムを形成することと
    を備え、
    前記少なくとも一つの転位層は、下面、上面、厚みh、および格子間隔a(z)を有し、
    前記格子間隔a(z)は、前記少なくとも一つの転位層の前記下面と前記上面との間で変化し、このとき、
    7%以内の第1格子不整合において前記少なくとも一つの転位層の前記下面における前記格子間隔a(0)がm・a(0)=n・a(ここで、n、mは整数である)を満たし、かつ、
    前記少なくとも一つの転位層の前記上面における格子間隔a(h)は、7%以内の第2格子不整合においてi・a(h)=j・aの関係(ここで、i、jは整数である)を満たす
    方法。
  2. 前記第1および第2格子不整合の少なくとも一方は2%以内である
    請求項1に記載の方法。
  3. 前記第1および第2格子不整合の少なくとも一方は1%以内である
    請求項2に記載の方法。
  4. 前記結晶基板は、Si、Ge、SiGe、AlN、GaN、SiCおよびダイアモンドからなる材料群から選択される材料からなる
    請求項1から3のいずれかに記載の方法。
  5. 前記結晶基板はSiからなり、
    前記転位層を形成することは、Si基板にGeを注入して、その注入Geをアニールすることを含む
    請求項1から3のいずれかに記載の方法。
  6. 前記結晶基板は合金からなる
    請求項1から3のいずれかに記載の方法。
  7. 前記少なくとも一つの転位層を形成することは、蒸発、スパッタリング、化学蒸着、金属有機化学蒸着、原子層エピタキシー(堆積)、およびレーザーアシスト原子層エピタキシー(堆積)からなる堆積方法群から選択される堆積方法を用いることを含む
    請求項1から6のいずれかに記載の方法。
  8. 前記少なくとも一つの転位層は、GeSi1−X、GaAl1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XP、およびInAl1−XAsからなる材料群から選択される材料からなる
    請求項1から7のいずれかに記載の方法。
  9. 前記結晶基板と少なくとも一つの転位層とは結晶学的整合性を有し、
    前記少なくとも一つの転位層をレーザー処理することによって前記結晶学的整合性を改善することをさらに備える
    請求項1から8のいずれかに記載の方法。
  10. 前記少なくとも一つの転位層の形成中に、前記少なくとも一つの転位層をレーザー処理することをさらに備える
    請求項1から9のいずれかに記載の方法。
  11. 前記少なくとも一つの転位層は複数の転位層であり、
    前記複数の転位層のうちの少なくとも一つの転位層は一定の格子間隔を有する
    請求項1から10のいずれかに記載の方法。
  12. 前記少なくとも一つの転位層を形成することは、ドメインマッチングエピタキシーを行うことを含む
    請求項1から11のいずれかに記載の方法。
  13. 前記少なくとも一つの転位層を形成することは、格子調整ドメインマッチングエピタキシーを行うことを含む
    請求項1から11のいずれかに記載の方法。
  14. 前記少なくとも一つの転位層を形成することは、1から10の転位層を形成することを含む
    請求項1から13のいずれかに記載の方法。
  15. 前記結晶基板は、前記少なくとも一つの転位層の形成中に加熱される
    請求項1から14のいずれかに記載の方法。
  16. 格子間隔aを有する所望のフィルムを成長させるためのテンプレート基板を形成する方法であって、
    格子間隔aを有する結晶基板の上面上に少なくとも一つの転位層を形成することを備え、
    前記少なくとも一つの転位層は、下面、上面、厚みh、および格子間隔a(z)を有し、
    前記格子間隔a(z)は、前記少なくとも一つの転位層の前記下面と前記上面との間で変化し、このとき、
    7%以内の第1格子不整合において前記少なくとも一つの転位層の前記下面における前記格子間隔a(0)がm・a(0)=n・a(ここで、n、mは整数である)を満たし、かつ、
    前記少なくとも一つの転位層の前記上面における格子間隔a(h)は、7%以内の第2格子不整合においてi・a(h)=j・aの関係(ここで、i、jは整数である)を満たす
    方法。
  17. 前記第1および第2格子不整合の少なくとも一方は2%以内である
    請求項16に記載の方法。
  18. 前記第1および第2格子不整合の少なくとも一方は1%以内である
    請求項17に記載の方法。
  19. 前記結晶基板は、Si、Ge、SiGe、AlN、GaN、SiCおよびダイアモンドからなる材料群から選択される材料からなる
    請求項16から18のいずれかに記載の方法。
  20. 前記少なくとも一つの転位層を形成することは、蒸発、スパッタリング、化学蒸着、金属有機化学蒸着、原子層エピタキシー(堆積)、およびレーザーアシスト原子層エピタキシー(堆積)からなる堆積方法群から選択される堆積方法を用いることを含む
    請求項16から19のいずれかに記載の方法。
  21. 前記少なくとも一つの転位層は、GeSi1−X、GaAl1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XP、InAl1−XAsおよびZnOからなる材料群から選択される材料を含むからなる
    請求項16から20のいずれかに記載の方法。
  22. 前記結晶基板と少なくとも一つの転位層とは結晶学的整合性を有し、
    前記少なくとも一つの転位層をレーザー処理することによって前記結晶学的整合性を改善することをさらに備える
    請求項16から21のいずれかに記載の方法。
  23. 前記少なくとも一つの転位層の形成中に、前記少なくとも一つの転位層をレーザー処理することをさらに備える
    請求項16から22のいずれかに記載の方法。
  24. 前記少なくとも一つの転位層は複数の転位層であり、
    前記複数の転位層のうちの少なくとも一つの転位層は一定の格子間隔を有する
    請求項16から23のいずれかに記載の方法。
  25. 前記少なくとも一つの転位層を形成することは、ドメインマッチングエピタキシーを行うことを含む
    請求項16から24のいずれかに記載の方法。
  26. 前記少なくとも一つの転位層を形成することは、格子調整ドメインマッチングエピタキシーを行うことを含む
    請求項16から24のいずれかに記載の方法。
  27. 前記少なくとも一つの転位層を形成することは、1から10の転位層を形成することを含む
    請求項16から26のいずれかに記載の方法。
  28. 前記結晶基板は、前記少なくとも一つの転位層の形成中に加熱される
    請求項16から27のいずれかに記載の方法。
  29. 前記転位層の前記上面上に前記所望のフィルムを形成することをさらに備える
    請求項16から28のいずれかに記載の方法。
  30. 表面および基板格子間隔を有する結晶基板を用いて最終フィルムをエピタキシャル的に成長させる方法であって、
    前記結晶基板の表面上に少なくとも一つの転位層を形成することと、
    前記転位層の前記上面上に前記所望のフィルムを形成することと
    を備え、
    前記少なくとも一つの転位層は、格子間隔を有し、
    前記格子間隔は、前記少なくとも一つの転位層の前記下面と前記上面との間で変化し、このとき、
    7%以内の第1格子不整合において前記少なくとも一つの転位層の前記下面における前記格子間隔が前記結晶基板の格子間隔に適合し、
    前記少なくとも一つの転位層の前記上面における格子間隔は、7%以内の第2格子不整合において前記最終フィルムの格子間隔に適合する
    方法。
  31. 前記第1および第2格子不整合の少なくとも一方は2%以内である
    請求項30に記載の方法。
  32. 前記第1および第2格子不整合の少なくとも一方は1%以内である
    請求項31に記載の方法。
  33. 前記結晶基板は、Si、Ge、SiGe、AlN、GaN、SiCおよびダイアモンドからなる材料群から選択される材料からなる
    請求項30から32のいずれかに記載の方法。
  34. 前記結晶基板はSiからなり、
    前記転位層を形成することは、Si基板にGeを注入して、その注入Geをアニールすることを含む
    請求項30から32のいずれかに記載の方法。
  35. 前記結晶基板は合金からなる
    請求項30から32のいずれかに記載の方法。
  36. 前記少なくとも一つの転位層を形成することは、蒸発、スパッタリング、化学蒸着、金属有機化学蒸着、原子層エピタキシー(堆積)、およびレーザーアシスト原子層エピタキシー(堆積)からなる堆積方法群から選択される堆積方法を用いることを含む
    請求項30から35のいずれかに記載の方法。
  37. 前記少なくとも一つの転位層は、GeSi1−X、GaAl1−XN、GaAl1−XAs、InGa1−XAs、InGa1−XP、およびInAl1−XAsからなる材料群から選択される材料からなる
    請求項30から36のいずれかに記載の方法。
  38. 前記結晶基板と少なくとも一つの転位層とは結晶学的整合性を有し、
    前記少なくとも一つの転位層をレーザー処理することによって前記結晶学的整合性を改善することをさらに備える
    請求項30から37のいずれかに記載の方法。
  39. 前記少なくとも一つの転位層の形成中に、前記少なくとも一つの転位層をレーザー処理することをさらに備える
    請求項30から38のいずれかに記載の方法。
  40. 前記少なくとも一つの転位層は複数の転位層であり、
    前記複数の転位層のうちの少なくとも一つの転位層は一定の格子間隔を有する
    請求項30から39のいずれかに記載の方法。
  41. 前記少なくとも一つの転位層を形成することは、ドメインマッチングエピタキシーを行うことを含む
    請求項30から40のいずれかに記載の方法。
  42. 前記少なくとも一つの転位層を形成することは、格子調整ドメインマッチングエピタキシーを行うことを含む
    請求項30から40のいずれかに記載の方法。
  43. 前記少なくとも一つの転位層を形成することは、1から10の転位層を形成することを含む
    請求項30から42のいずれかに記載の方法。
  44. 前記結晶基板は、前記少なくとも一つの転位層の形成中に加熱される
    請求項30から43のいずれかに記載の方法。
JP2017250979A 2013-09-27 2017-12-27 格子調整ドメイン−マッチングエピタキシーを用いた化合物半導体のエピタキシャル成長 Pending JP2018078322A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/040,326 US20150090180A1 (en) 2013-09-27 2013-09-27 Epitaxial growth of compound semiconductors using lattice-tuned domain-matching epitaxy
US14/040,326 2013-09-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014176871A Division JP2015096460A (ja) 2013-09-27 2014-09-01 格子調整ドメイン−マッチングエピタキシーを用いた化合物半導体のエピタキシャル成長

Publications (1)

Publication Number Publication Date
JP2018078322A true JP2018078322A (ja) 2018-05-17

Family

ID=52738848

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014176871A Pending JP2015096460A (ja) 2013-09-27 2014-09-01 格子調整ドメイン−マッチングエピタキシーを用いた化合物半導体のエピタキシャル成長
JP2017250979A Pending JP2018078322A (ja) 2013-09-27 2017-12-27 格子調整ドメイン−マッチングエピタキシーを用いた化合物半導体のエピタキシャル成長

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014176871A Pending JP2015096460A (ja) 2013-09-27 2014-09-01 格子調整ドメイン−マッチングエピタキシーを用いた化合物半導体のエピタキシャル成長

Country Status (6)

Country Link
US (1) US20150090180A1 (ja)
JP (2) JP2015096460A (ja)
KR (1) KR20150035413A (ja)
CN (1) CN104517817A (ja)
SG (1) SG10201405334TA (ja)
TW (1) TWI550689B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104947070B (zh) * 2015-06-01 2018-03-02 深圳大学 一种二硫化钼薄膜的制备方法及二硫化钼薄膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488627A (ja) * 1990-07-31 1992-03-23 Oki Electric Ind Co Ltd エピタキシャル層の成長法
JPH04370920A (ja) * 1991-06-20 1992-12-24 Matsushita Electric Ind Co Ltd 化合物半導体のエピタキシャル成長方法
JPH08222812A (ja) * 1995-02-17 1996-08-30 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体の結晶成長方法
JP2012151472A (ja) * 2011-01-20 2012-08-09 Sharp Corp メタモルフィック基板システム、メタモルフィック基板システムの形成方法、および、第3族窒化物の半導体素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106495A (ja) * 1984-10-29 1986-05-24 Matsushita Electric Ind Co Ltd 3−5化合物単結晶薄膜をそなえたSi基板およびその製造方法
JPH03203316A (ja) * 1989-12-29 1991-09-05 Showa Denko Kk エピタキシャルウェーハ及びその製造方法
US5225366A (en) * 1990-06-22 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and a method of growing thin films of elemental semiconductors
US5221413A (en) * 1991-04-24 1993-06-22 At&T Bell Laboratories Method for making low defect density semiconductor heterostructure and devices made thereby
JPH06349733A (ja) * 1993-06-11 1994-12-22 Sumitomo Metal Ind Ltd 化合物半導体基板及びその製造方法
JPH088627A (ja) * 1994-06-23 1996-01-12 Mitsubishi Electric Corp ヘリカルアンテナの給電線固定方法
US5548128A (en) * 1994-12-14 1996-08-20 The United States Of America As Represented By The Secretary Of The Air Force Direct-gap germanium-tin multiple-quantum-well electro-optical devices on silicon or germanium substrates
JP2000124444A (ja) * 1998-10-12 2000-04-28 Hitachi Cable Ltd 半導体装置及びエピタキシャルウェハ
TWI246116B (en) * 2004-04-14 2005-12-21 Witty Mate Corp Process for growing ZnSe Epitaxy layer on Si substrate and semiconductor structure thereby
WO2009063288A1 (en) * 2007-11-15 2009-05-22 S.O.I.Tec Silicon On Insulator Technologies Semiconductor structure having a protective layer
US8575471B2 (en) * 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US8957454B2 (en) * 2011-03-03 2015-02-17 International Rectifier Corporation III-Nitride semiconductor structures with strain absorbing interlayer transition modules
CN103035794B (zh) * 2012-12-11 2015-11-11 广州市众拓光电科技有限公司 一种生长在Si衬底上的LED外延片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488627A (ja) * 1990-07-31 1992-03-23 Oki Electric Ind Co Ltd エピタキシャル層の成長法
JPH04370920A (ja) * 1991-06-20 1992-12-24 Matsushita Electric Ind Co Ltd 化合物半導体のエピタキシャル成長方法
JPH08222812A (ja) * 1995-02-17 1996-08-30 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体の結晶成長方法
JP2012151472A (ja) * 2011-01-20 2012-08-09 Sharp Corp メタモルフィック基板システム、メタモルフィック基板システムの形成方法、および、第3族窒化物の半導体素子

Also Published As

Publication number Publication date
CN104517817A (zh) 2015-04-15
TWI550689B (zh) 2016-09-21
KR20150035413A (ko) 2015-04-06
JP2015096460A (ja) 2015-05-21
US20150090180A1 (en) 2015-04-02
TW201519286A (zh) 2015-05-16
SG10201405334TA (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP6304899B2 (ja) 希土類酸化物ゲート誘電体を備えた、シリコン基板上に成長したiii−n半導体素子
JP4127463B2 (ja) Iii族窒化物系化合物半導体の結晶成長方法及びiii族窒化物系化合物半導体発光素子の製造方法
CN104051232B (zh) 具有AlzGa1‑zN层的半导体晶片及其制造方法
JP2009507362A (ja) ネイティブ基板を含む高電子移動度電子デバイス構造およびそれらを製造するための方法
US9437688B2 (en) High-quality GaN high-voltage HFETs on silicon
JP6896063B2 (ja) イオン注入を用いた高抵抗窒化物バッファ層の半導体材料成長
CN210120127U (zh) 一种复合硅衬底
JP5883331B2 (ja) 窒化物半導体エピタキシャルウェハの製造方法及び電界効果型窒化物トランジスタの製造方法
JP2010056555A (ja) 半導体構造物及びそれを製造する方法
US20190371604A1 (en) Method for manufacturing gallium nitride substrate using the multi ion implantation
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
JP2018078322A (ja) 格子調整ドメイン−マッチングエピタキシーを用いた化合物半導体のエピタキシャル成長
US20130171811A1 (en) Method for manufacturing compound semiconductor
US20230290835A1 (en) Nitride semiconductor wafer and method for producing nitride semiconductor wafer
CN110957354A (zh) 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
WO2023037838A1 (ja) 窒化物半導体基板の製造方法
JP2004296636A (ja) 窒化物系iii−v族化合物半導体装置の製造方法および窒化物系iii−v族化合物半導体装置
WO2011105066A1 (ja) 半導体基板、半導体デバイスおよび半導体基板の製造方法
JP2649928B2 (ja) 半導体ウエハの製造方法
TW200417024A (en) Compound semiconductor epitaxial substrate and method for production thereof
JP2009239315A (ja) 窒化物系iii−v族化合物半導体装置の製造方法
TW202338171A (zh) 氮化物半導體基板及其製造方法
TW202338172A (zh) 氮化物半導體基板及其製造方法
KR20240068140A (ko) 이온빔을 통한 AlN 재결정화 완충층을 갖는 소자 제작 방법
CN116798856A (zh) SiC基GaN外延结构的制备方法及结构、HBT的制备方法及HBT

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820