JP2018078133A - コイル内蔵ガラス基板およびビルドアップ基板 - Google Patents

コイル内蔵ガラス基板およびビルドアップ基板 Download PDF

Info

Publication number
JP2018078133A
JP2018078133A JP2016217089A JP2016217089A JP2018078133A JP 2018078133 A JP2018078133 A JP 2018078133A JP 2016217089 A JP2016217089 A JP 2016217089A JP 2016217089 A JP2016217089 A JP 2016217089A JP 2018078133 A JP2018078133 A JP 2018078133A
Authority
JP
Japan
Prior art keywords
glass substrate
coil
built
substrate
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016217089A
Other languages
English (en)
Inventor
浩功 野村
Hiroatsu Nomura
浩功 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2016217089A priority Critical patent/JP2018078133A/ja
Publication of JP2018078133A publication Critical patent/JP2018078133A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

【課題】ソレノイドコイルの形成に必要とする絶縁層は1層であり、且つ1枚のガラス板から構成されるガラスコア層を用いたガラス基板においても形成可能であるソレノイドコイルとその製造方法を提供することを課題とする。【解決手段】ガラス基板1の表裏面に形成した導体配線4、5を、ガラス基板に形成した複数の貫通孔2を介して、接続することにより形成したソレノイドコイルを、インダクタンス素子として使用するコイル内蔵ガラス基板20であって、ガラス基板の内部にソレノイドコイルの鉄心を備えていることを特徴とするコイル内蔵ガラス基板。【選択図】図1

Description

本発明は、電子機器等に用いられる受動部品に関し、特にガラス基板に形成されたコイル部品と、それを使用したビルドアップ基板に関する。
通常電子機器には、半導体部品や多数の受動部品が用いられており、それらがプリント基板に実装され、電子回路が形成されている。受動部品にはコイルやコンデンサ等があり、様々な仕様、サイズ、特性の製品が販売されているが、最近は電子機器の小型化の要求に応えるため、受動部品においても小型化が進んでいる。
現在、小型の受動部品はセラミック製のチップ部品が主流となっている。サイズは10mm×5mm、6mm×3mm、4mm×2mmなど非常に小型のものが実用化されてきている。しかしスマートフォン、携帯電話等のモバイル機器に代表される小型電子機器においては、小型化とともに高機能化も進み、受動部品の点数が増加し、部品の実装面積、実装した際の高さなどの面での制限がますます厳しくなっている。
そのような小型化の要求に対応するため、プリント基板の内部に受動部品を埋め込む部品内蔵基板が提案されている。ここで議論するプリント基板は、小型電子機器に搭載されるものを前提としているため、セラミックではなく樹脂製のプリント基板を指すものとする。部品内蔵基板には大別して2種類あり、作りこみタイプと埋め込みタイプに分類できる。作りこみタイプはプリント基板の製造プロセスを応用して基板の内部にキャパシタやコイルを作りこむものであるが、樹脂基板の製造プロセスを利用するため、作りこんだ受動部品の精度が低いため特性値のバラツキが大きく、また材料の面で、大きなキャパシタンス値やインダクタンス値を持った受動部品の製造が難しいという欠点がある。一方埋め込みタイプは、前記のようなチップ部品を樹脂基板に埋め込んで作製するため、高精度でバラツキも小さく、幅広いキャパシタンス値、インダクタンス値に対応可能であるが、樹脂基板にセラミック部品を埋め込むという通常の樹脂基板の製造工程には存在しない工程が必要となり、製造プロセスが複雑になるという欠点がある。
一方、最近ではプリント基板のコア材にガラス板を利用する技術が注目されている。以下、このような基板をガラス基板と呼ぶこととする。ガラス板は従来の樹脂コア材を使用した樹脂基板に比べて熱膨張率が低いため、ガラス基板と半導体チップの材料であるシリコンとの熱膨張率の差を小さくすることができる。そのため、チップ実装時における接続部へのストレスが緩和され、接続信頼性を向上させることができる。またガラス基板は、樹脂コア材に比べ平坦性が高いため、微細配線の形成にも有利であり、吸湿による基板の伸縮が発生しない点などがメリットとして挙げられている。
また、ガラス基板は前述のように熱や吸湿による伸縮が小さくサイズの安定性に優れるため、フォトリソやビア形成時におけるパターンの位置ズレが少なく、コイルを作りこんだ際の精度の向上やバラツキの低減が期待できる。また、セラミックのチップ部品では配線形成に印刷法を用いることが一般的だが、ガラス基板では銅などの材料をめっきすることにより配線を形成するため、配線抵抗が小さく、よりQ値の大きなコイルが形成可能である。
ガラス基板へのソレノイドコイルの形成方法の一例を図4と図5を用いて説明する。
図5は上面から見た図、図4は図5のX−Y断面、を表している。
図4(a)と図5(a)は、ガラス板1に貫通孔2を開け、貫通孔2の内部に金属や導
電性ペーストなどの良導体3が充填された状態を示す。ガラス板1の厚さは100μm〜500μm程度、貫通孔2は直径50μm〜100μm程度であり、レーザー加工等により形成することができる。良導体3は導電性ペーストや金属めっきであり、導電性ペーストをスクリーン印刷等によって充填する方法や、電解銅めっきにより銅を充填する方法等、既存の技術を用いることで形成することができる。電解銅めっきにより銅を充填する方法は、スパッタまたは無電解めっきによる金属給電層形成後に、レジスト塗布、フォトリソグラフィー、電解めっき、レジスト剥離、給電層除去などの工程が入るが、図では省略している。
図4(b)、図5(b)はガラス基板の表裏に導体配線4、5を形成したところを示す。これもフォトリソグラフィーとめっきを使った既知の方法により形成可能である。
このようにして形成したコイルは空芯コイルとなるため、コアの鉄損が発生しない。さらに配線が銅で形成され、抵抗値が低くなるため高いQ値を持つコイルが期待できる。しかしながら、空芯であるため小サイズでかつ高いインダクタンスを得ることが難しいという問題がある。この問題を解決する技術として、特許文献1には、半導体基板上に設けた絶縁層上に平行に配列して設けた複数の下層配線と、その下層配線と交互に接続してソレノイドコイルを形成する上層配線とを有する半導体装置において、下層配線と上層配線との間に互いに絶縁膜を介して設け、且つ下層配線と上層配線と交差する方向に設けた帯状の強磁性体層を備えた半導体装置が開示されている。この技術は、半導体基板上に設けたソレノイドコイルの芯となる部位に高い透磁率を持つ強磁性体層をコア材として備えることで、より高いインダクタンスを得ることを可能とした技術である。この技術は半導体装置に関するものであるが、同様の技術をプリント基板やガラス基板にも応用することができる。
特許文献1に開示された技術においては、本来1層で構成される絶縁層を2回に分けて形成し、その間に強磁性体の層を追加で1層加える必要がある。そのため、工程が複雑化するという問題がある。また、これをガラス基板に応用する際、ガラス基板のビルドアップ層にソレノイドコイルを形成する場合はこの技術を応用できるが、図4と図5に示すようなガラスコア層にソレノイドコイルを形成する場合は、ガラスコア層の内部に強磁性体層を形成する必要があり、1枚のガラス板から構成されるガラスコア層においては物理的に適用できないという問題がある。
特開平4−130767号公報
上記の問題点を解決するため、本発明は、ソレノイドコイルの形成に必要とする絶縁層は1層であり、且つ1枚のガラス板から構成されるガラスコア層を用いたガラス基板においても形成可能であるソレノイドコイルとその製造方法を提供することを課題とする。
上記の課題を解決する手段として、本発明の請求項1に記載の発明は、ガラス基板の表裏面に形成した導体配線を、ガラス基板に形成した複数の貫通孔を介して、接続することにより形成したソレノイドコイルを、インダクタンス素子として使用するコイル内蔵ガラス基板であって、
ガラス基板の内部にソレノイドコイルの鉄心を備えていることを特徴とするコイル内蔵ガラス基板である。
また請求項2に記載の発明は、前記鉄心が、前記ガラス基板の内部に形成された管状経路に充填された磁芯材料からなり、該管状経路の両端は前記ガラス基板の表面または裏面に形成された開口となっていることを特徴とする請求項1に記載のコイル内蔵ガラス基板である。
また請求項3に記載の発明は、前記管状経路が延伸する方向に直交する平面における該管状経路の断面形状が円形であることを特徴とする請求項2に記載のコイル内蔵ガラス基板である。
また請求項4に記載の発明は、前記管状経路は、その両端に近づくほど直径が大きくなることを特徴とする請求項2または3に記載のコイル内蔵ガラス基板である。
また請求項5に記載の発明は、前記磁芯材料がニッケルからなることを特徴とする請求項1〜4のいずれかに記載のコイル内蔵ガラス基板である。
また請求項6に記載の発明は、請求項1〜5のいずれかに記載のコイル内蔵ガラス基板を使用したことを特徴とするビルドアップ基板である。
本発明によれば、ガラス基板に形成されたソレノイドコイルにおいて、ソレノイドコイルの内部に、ソレノイドコイルの長さ方向に沿って磁芯材料を使用して鉄芯として形成するので、インダクタンスを大きくすることが可能となり、コイルのサイズが小さくても大きなインダクタンス素子を備えたコイル内蔵ガラス基板を得ることができる。
また、そのコイル内蔵ガラス基板を使用して、その上にビルドアップ層を形成することにより、小型化したビルドアップ基板を提供することが可能となる。
本発明のガラス基板に形成したソレノイドコイルの構成例を示す説明図。 図2(a)〜(f)は、図3(a)〜(f)におけるX−Y切断線に対応した断面図。 本発明のガラス基板に形成したソレノイドコイルの製造過程の例を示す説明図。 図4(a)、(b)は、図5(a)、(b)におけるX−Y切断線に対応した断面図。 従来のガラス基板に形成したソレノイドコイルの構成例を示す説明図。
本発明の実施形態の例を、図1を用いて説明する。
<ソレノイドコイル>
図1は本発明のソレノイドコイルを内蔵したコイル内蔵ガラス基板20の構成を例示したものである。図1(a)は上面から見た図、図1(b)は図1(a)で示したA−B切断線及びA´−B´切断線における断面図、図1(c)は図1(a)で示したX−Y切断線における断面図である。
ガラス基板1には複数の貫通孔2が形成されており、貫通孔2の内部には、金属ペースト、導電性ペースト、銅めっきなどの良導体3が充填されている。ガラス基板1の表裏には導体配線4、5が形成され、貫通孔2に充填された良導体3によって導通し、導体配線4、5及び貫通孔2に充填された良導体3によってソレノイドコイルが形成されている。さらにソレノイドコイルを貫通するように略円柱状の管状経路6が形成され、その内部には、高い透磁率を持つパーマロイなどの金属系、ダストコアなどの粉末状の強磁性体の表
面を電気的絶縁処理して押し固めた圧粉系、フェライトなどセラミック系などの磁芯材料7が充填され、ソレノイドコイルの鉄芯(磁芯(Magnetic Core)とも言う。)となっている。管状経路6の両端8及び8´はガラス板1の表面に露出しており、表面に近づくほど直径が大きくなる開口部となっている。
次に、本発明のコイル内蔵ガラス基板の製造方法を図2と図3を用いて説明する。
図2(a)〜(f)はそれぞれ、図3(a)〜(f)のX−Y切断線における断面図を示している。
図2(a)と図3(a)は、ガラス基板1に複数の貫通孔2を形成し、良導体3を充填した状態を示している。
ガラス基板1は、厚さ100μm〜500μm程度、貫通孔2は直径50μm〜100μm程度とすることが一般的である。貫通孔2はレーザー加工により形成することが一般的だが、レーザー加工に限る必要はない。
良導体3の充填は、金属ペーストをスクリーン印刷で充填する方法、または電解めっきによる方法等が利用できる。金属の種類に制限はないが、どちらも銅を用いる方法が一般的である。
電解めっきによる方法は、貫通孔2を形成した後、スパッタまたは無電解めっきにより金属の給電層を形成した後に、レジスト塗布・乾燥・露光・現像などのフォトリソグラフィー、電解めっき、レジスト剥離、給電層除去などの各工程を経て処理する一般的な処理工程で実施可能である。
ガラス基板1の材質については特に制限はないが、貫通孔2及び、後に説明する管状経路6の形成にレーザー加工を用いる場合は、加工のしやすさから、純度の高い石英ガラスよりも一般に流通している無アルカリガラス等を用いるほうが良い。
図2(b)と図3(b)は、ガラス基板1に管状経路6を形成した状態を示す。
管状経路6の形成には、レーザーとフッ酸によるエッチングを用いる。具体的には、ピコ秒程度以下の短パルスレーザーを、管状経路6を形成したい部分のガラス内部に集光させることで集光した部分のガラスを改質し、フッ酸でエッチング処理を行うことで形成することができる。短パルスレーザーは非常に大きなパワーを短いパルス幅に集中して発生させるため、ガラス内部の集光した部分にだけマイクロクラック等を発生させることができる。そのため改質された部分は周囲のガラスよりもフッ酸にエッチングされやすくなる。フッ酸によるエッチングはガラス表面から行うため、管状経路6の端面8、8´はガラス基板1の表面に達している必要がある。またフッ酸によるエッチングは等方性であるため、管状経路6の内部は略円形となり、さらに等方性エッチングのため管状経路6の両端は徐々に広がる形状となる。
図2(c)と図3(c)は、管状経路6の内部に磁芯材料7を充填した状態を示す。
磁芯材料7は、例えばニッケルを無電解めっきで析出させることで形成できる。無電解めっきはガラス基板1の両面にも形成されるため、無電解めっき後に管状経路6の端面8、8´の近傍のみフォトリソグラフィー法でエッチングマスクを形成し、その他の不要な部分はエッチングで取り除いておく必要がある。ただし、一般にこのような管状の経路に無電解めっきで金属を充填させることは難しい。その場合は図2(d)と図3(d)に示すように管状経路6の内壁にのみ無電解めっき層を形成しても良い。
図2(e)と図3(e)は、ガラス基板1の表裏に導体配線4、5を形成し、それらを貫通孔2に充填した良導体3で接続し、ソレノイドコイルを形成し、本発明のコイル内蔵ガラス基板20を作製した状態を示す。
導体配線4、5は、良導体3と同様にフォトリソグラフィーと電解めっきにより形成することができる。すなわち、スパッタまたは無電解めっきにより金属の給電層を形成した後に、レジスト塗布・乾燥・露光・現像などのフォトリソグラフィー、電解めっき、レジスト剥離、給電層除去などの工程を経て形成することができる。
図2(f)と図3(f)は、管状経路6の端面8、8´が形成されている側にビルドアップ層を1層追加し、ビルドアップ層上に、ビルドアップ層に形成したビア9を介して導体配線4と接続して、ソレノイドコイルの電極10を形成し、本発明のビルドアップ基板30を作製した状態を示す。
ビルドアップ工程は、絶縁層として絶縁樹脂11を、真空ラミネート等で導体配線4、5を含めて図2(e)の表裏両面に接着させ、ビア9をレーザーで形成後、フォトリソグラフィーと電解めっきにより電極10を形成する。絶縁樹脂11としては一般によく使用されるエポキシ系樹脂が使用でき、電極10の材料としては銅めっきを使用することができる。
なお、本発明のコイル内蔵ガラス基板20について、鉄心を備えたソレノイドコイルによるインダクタンス素子について説明して来たが、これ以外のキャパシタンス素子や抵抗素子などの受動素子および集積回路やその他の半導体素子などの能動素子が、本発明のコイル内蔵ガラス基板に備えられていても構わない。
この後、必要に応じビルドアップ層やソルダーレジスト層の形成など、通常のビルドアップ基板の製造方法を使用することにより、鉄心を備えたソレノイドコイルを内蔵したガラス基板をコア材とするビルドアップ基板30とすることができる。
本発明の鉄心を備えたソレノイドコイルを内蔵したガラス基板をコア材としたビルドアップ基板は、インダクタンス素子の薄型化および小型化を可能とする。そのため、インダクタンス素子が不可欠な受動回路を含む半導体装置分野において、半導体装置の薄型化および小型化を可能とする技術として利用可能である。
1・・・ガラス基板、2・・・貫通孔、3・・・良導体、4・・・導体配線、5・・・導体配線、6・・・管状経路、7・・・磁芯材料、8・・・管状経路の端面、8´・・・管状経路の端面、9・・・ビア、10・・・電極、11・・・絶縁樹脂、20・・・コイル内蔵ガラス基板、30・・・ビルドアップ基板

Claims (6)

  1. ガラス基板の表裏面に形成した導体配線を、ガラス基板に形成した複数の貫通孔を介して、接続することにより形成したソレノイドコイルを、インダクタンス素子として使用するコイル内蔵ガラス基板であって、
    ガラス基板の内部にソレノイドコイルの鉄心を備えていることを特徴とするコイル内蔵ガラス基板。
  2. 前記鉄心が、前記ガラス基板の内部に形成された管状経路に充填された磁芯材料からなり、該管状経路の両端は前記ガラス基板の表面または裏面に形成された開口となっていることを特徴とする請求項1に記載のコイル内蔵ガラス基板。
  3. 前記管状経路が延伸する方向に直交する平面における該管状経路の断面形状が円形であることを特徴とする請求項2に記載のコイル内蔵ガラス基板。
  4. 前記管状経路は、その両端に近づくほど直径が大きくなることを特徴とする請求項2または3に記載のコイル内蔵ガラス基板。
  5. 前記磁芯材料がニッケルからなることを特徴とする請求項1〜4のいずれかに記載のコイル内蔵ガラス基板。
  6. 請求項1〜5のいずれかに記載のコイル内蔵ガラス基板を使用したことを特徴とするビルドアップ基板。
JP2016217089A 2016-11-07 2016-11-07 コイル内蔵ガラス基板およびビルドアップ基板 Pending JP2018078133A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016217089A JP2018078133A (ja) 2016-11-07 2016-11-07 コイル内蔵ガラス基板およびビルドアップ基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016217089A JP2018078133A (ja) 2016-11-07 2016-11-07 コイル内蔵ガラス基板およびビルドアップ基板

Publications (1)

Publication Number Publication Date
JP2018078133A true JP2018078133A (ja) 2018-05-17

Family

ID=62150983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016217089A Pending JP2018078133A (ja) 2016-11-07 2016-11-07 コイル内蔵ガラス基板およびビルドアップ基板

Country Status (1)

Country Link
JP (1) JP2018078133A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113674A (ja) * 2019-01-15 2020-07-27 凸版印刷株式会社 高周波モジュール用電子基板
CN111799057A (zh) * 2019-04-05 2020-10-20 株式会社村田制作所 电子部件、电子部件安装基板和电子部件的制造方法
JP2021007127A (ja) * 2019-06-28 2021-01-21 凸版印刷株式会社 ガラスコア多層配線基板
CN112997589A (zh) * 2018-12-04 2021-06-18 凸版印刷株式会社 电路基板
JP2022136019A (ja) * 2021-03-04 2022-09-15 ズハイ アクセス セミコンダクター シーオー.,エルティーディー インダクタが集積された埋め込み支持フレーム、基板及びその製造方法
EP4064803A4 (en) * 2019-11-18 2023-03-15 Toppan Inc. MULTILAYER WIRING SUBSTRATE WITH GLASS CORE AND METHOD OF MANUFACTURE THEREOF

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997589A (zh) * 2018-12-04 2021-06-18 凸版印刷株式会社 电路基板
JP2020113674A (ja) * 2019-01-15 2020-07-27 凸版印刷株式会社 高周波モジュール用電子基板
JP7188101B2 (ja) 2019-01-15 2022-12-13 凸版印刷株式会社 高周波モジュール用電子基板
JP7287185B2 (ja) 2019-04-05 2023-06-06 株式会社村田製作所 電子部品、電子部品実装基板及び電子部品の製造方法
US11527352B2 (en) 2019-04-05 2022-12-13 Murata Manufacturing Co., Ltd. Electronic component, electronic-component mounting board, and electronic-component manufacturing method
JP2020174169A (ja) * 2019-04-05 2020-10-22 株式会社村田製作所 電子部品、電子部品実装基板及び電子部品の製造方法
CN111799057A (zh) * 2019-04-05 2020-10-20 株式会社村田制作所 电子部件、电子部件安装基板和电子部件的制造方法
CN111799057B (zh) * 2019-04-05 2023-09-19 株式会社村田制作所 电子部件、电子部件安装基板和电子部件的制造方法
JP2021007127A (ja) * 2019-06-28 2021-01-21 凸版印刷株式会社 ガラスコア多層配線基板
EP4064803A4 (en) * 2019-11-18 2023-03-15 Toppan Inc. MULTILAYER WIRING SUBSTRATE WITH GLASS CORE AND METHOD OF MANUFACTURE THEREOF
US11877394B2 (en) 2019-11-18 2024-01-16 Toppan Inc. Glass core multilayer wiring board and method of producing the same
JP2022136019A (ja) * 2021-03-04 2022-09-15 ズハイ アクセス セミコンダクター シーオー.,エルティーディー インダクタが集積された埋め込み支持フレーム、基板及びその製造方法
JP7378525B2 (ja) 2021-03-04 2023-11-13 ズハイ アクセス セミコンダクター シーオー.,エルティーディー インダクタが集積された埋め込み支持フレーム、基板及びその製造方法

Similar Documents

Publication Publication Date Title
JP2018078133A (ja) コイル内蔵ガラス基板およびビルドアップ基板
JP4992158B2 (ja) 3次元アルミニウムパッケージモジュール及びその製造方法
JP6373574B2 (ja) 回路基板及びその製造方法
JP3910045B2 (ja) 電子部品内装配線板の製造方法
US8099865B2 (en) Method for manufacturing a circuit board having an embedded component therein
JP6606331B2 (ja) 電子装置
JP2006190953A (ja) メッキによるチップ内蔵型プリント回路基板およびその製造方法
JP2008060573A (ja) 電子素子内蔵型印刷回路基板の製造方法
TWI513379B (zh) 內埋元件的基板結構與其製造方法
TWI658761B (zh) 電路板及其製作方法
KR102134933B1 (ko) 배선 기판 및 배선 기판의 제조 방법
KR20150102504A (ko) 임베디드 기판 및 임베디드 기판의 제조 방법
KR20090012664A (ko) 금속 베이스 패키지 기판과 이를 이용한 3차원 다층 패키지모듈 및 그 제조방법
JP5150246B2 (ja) 多層プリント配線板及びその製造方法
CN102214628B (zh) 封装基板及其制造方法
KR100735825B1 (ko) 다층 패키지 구조물 및 그의 제조방법
JP2010103435A (ja) 配線基板及びその製造方法
US10211119B2 (en) Electronic component built-in substrate and electronic device
KR101259844B1 (ko) 리드 크랙이 강화된 전자소자용 탭 테이프 및 그의 제조 방법
JP2005064446A (ja) 積層用モジュールの製造方法
CN101683003B (zh) 薄膜陶瓷多层衬底的制造方法
US10643949B2 (en) Component carrier and method for manufacturing the same
KR100560571B1 (ko) 상호 연결체
KR20100096513A (ko) 반도체 칩을 내장하는 반도체 패키지와, 이를 제조하는 방법
JP2019175968A (ja) 回路基板及び回路基板の製造方法