JP2018021242A - 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法 - Google Patents

無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法 Download PDF

Info

Publication number
JP2018021242A
JP2018021242A JP2016154207A JP2016154207A JP2018021242A JP 2018021242 A JP2018021242 A JP 2018021242A JP 2016154207 A JP2016154207 A JP 2016154207A JP 2016154207 A JP2016154207 A JP 2016154207A JP 2018021242 A JP2018021242 A JP 2018021242A
Authority
JP
Japan
Prior art keywords
steel sheet
mass
less
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016154207A
Other languages
English (en)
Other versions
JP6794705B2 (ja
Inventor
高橋 克
Katsu Takahashi
克 高橋
義顕 名取
Yoshiaki Natori
義顕 名取
屋鋪 裕義
Hiroyoshi Yashiki
裕義 屋鋪
竹田和年
Kazutoshi Takeda
和年 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016154207A priority Critical patent/JP6794705B2/ja
Publication of JP2018021242A publication Critical patent/JP2018021242A/ja
Application granted granted Critical
Publication of JP6794705B2 publication Critical patent/JP6794705B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】コスト性及び絶縁被膜の密着性を維持しつつ、鉄損及び強度の更なる向上を実現すること。【解決手段】本発明の無方向性電磁鋼板は、質量%で、C:0.0010%〜0.0050%、Si:2.5%〜4.0%、Al:0.1%〜2.0%、Mn:0.05%〜2.0%、P:0.005%〜0.15%、S:0.0001%〜0.0030%、Ti:0.0005〜0.0030%、N:0.0010〜0.0030%を含有し、残部がFe及び不純物からなり、地鉄の板厚が0.10mm以上0.35mm以下であり、地鉄中の平均結晶粒径が50μm以下であり、地鉄表面からの深さ方向でのAl濃度について式(1)に示す関係式を満足する鋼板と、鋼板の表面に位置する絶縁被膜とを備え、絶縁被膜の付着量が400mg/m2以上1200mg/m2以下であり、絶縁被膜中の2価及び3価のFeの含有量が10mg/m2以上250mg/m2以下である。【選択図】図3

Description

本発明は、無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法に関する。
昨今、地球環境問題が注目されており、省エネルギーへの取り組みに対する要求は、一段と高まってきており、なかでも電気機器の高効率化は、近年強く要望されている。このため、モータ又は変圧器等の鉄心材料として広く使用されている無方向性電磁鋼板においても、磁気特性の向上に対する要請が更に強まっている。近年、モータの高効率化が進展する電気自動車やハイブリッド自動車用のモータ、及び、コンプレッサ用モータにおいては、その傾向が顕著である。
上記のような各種モータのモータコアは、固定子であるステータ、及び、回転子であるロータから構成される。かかるモータコアを製造する際には、無方向性電磁鋼板をモータコアの形状に打ち抜いて積層した後に、コア焼鈍(「歪取り焼鈍」とも呼ばれる。)を実施することで行われる。かかるコア焼鈍は、一般的に、窒素を含んだ雰囲気中で実施されるが、かかるコア焼鈍時に鋼板が窒化してしまい、鉄損が劣化してしまうという問題がある。
鋼板の窒化による鉄損の劣化は、窒化によって鋼板に取り込まれてしまったNと、鋼中のAlとが結合することによってAlNの析出物が生じ、かかる析出物が磁壁移動を阻害することで生じているものと考えられている。そこで、例えば以下の特許文献1では、鋼板の表面にAlを濃化させてAl酸化物により鋼板表面を覆うことで、歪取り焼鈍時の鋼板の窒化を防ぎ、鉄損の劣化を抑制する技術が提案されている。
特開平10−183310号公報
ここで、上記のような各種の用途に用いられるモータのモータコアは、通常、同一の鋼板から、円形のブランクをロータ用に打ち抜くとともに、円形のブランクを打ち抜いた後の外周から、リング状のブランクをステータ用に打ち抜いている。ここで、モータコアの更なる高出力化及び低損失化を図るに当たって、本発明者らが検討を行った結果、以下のような課題が存在することが明らかとなった。
まず、ステータについては、主にロータ回転時の損失低減に重きが置かれ、各種の検討が行われているが、打ち抜き加工時に歪が入り、損失が増加する。鋼板の損失低減及び加工歪の除去には、歪取り焼鈍が必要となるが、鋼板粒径が板厚に対して大きい場合には、粒界に存在する歪を解消するために、歪取り焼鈍温度を高くする必要があった。
また、ロータについては、主に回転数が大きくなる場合に、回転に伴う遠心力に耐えうるように、機械的強度をより増加させることが重要となる。ここで、鋼板粒径が板厚に対して大きい場合には、鋼板の固溶強化が強度増加の主な手段となるが、鋼板の合金成分を調整することでしか制御することができない。しかしながら、鋼板に固溶強化させるための添加元素の種類と添加量には、鋼板の冷間加工性から限界があり、強度増加は困難であった。
このように、経済性を鑑みて、同一の無方向性電磁鋼板からモータコアのロータ及びステータ用の部材を製造する際に、ステータに求められる低鉄損とロータに求められる高強度とを両立することは困難であった。特に、鋼板の粒径が板厚に対して大きい場合には、歪取り焼鈍の温度をより高温にすることが求められるが、高温とすることで無方向性電磁鋼板の絶縁被膜の密着性も低下してしまう。絶縁被膜が剥離してしまうと、層間短絡が生じてコア鉄損が増大してしまうほか、モータケース内で剥離が生じると異物が動作領域内に存在することとなるため、モータコアが破損してしまう可能性がある。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、コスト性及び絶縁被膜の密着性を維持しつつ、鉄損及び強度の更なる向上を実現することが可能な、無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法を提供することにある。
本発明者らは、上記課題について鋭意検討した結果、モータコアとして加工される前段階の無方向性電磁鋼板において地鉄の平均結晶粒径を所定の値以下としておいた上で、モータコアとして所定の製造プロセスを施すことに想到した。これにより、ステータに求められる低鉄損と、ロータに求められる高強度と、を共に実現することが可能となる。また、かかる無方向性電磁鋼板において、表面の近傍に、母材の部分よりもAl濃度の低い層を意図的に設け、かかる層と絶縁被膜とを反応させることで、歪取り焼鈍温度を高めても歪取り焼鈍後の絶縁被膜密着性を改善できることを知見した。
かかる知見に基づく本発明の要旨は、以下の通りである。
[1]質量%で、C:0.0010%〜0.0050%、Si:2.5%〜4.0%、Al:0.1%〜2.0%、Mn:0.05%〜2.0%、P:0.005%〜0.15%、S:0.0001%〜0.0030%、Ti:0.0005〜0.0030%、N:0.0010〜0.0030%を含有し、残部がFe及び不純物からなり、地鉄の板厚が0.10mm以上0.35mm以下であり、地鉄中の平均結晶粒径が50μm以下であり、かつ、地鉄表面からの深さ方向でのAl濃度について、以下の式(1)に示す関係式を満足する鋼板と、前記鋼板の表面に位置する絶縁被膜と、を備え、前記絶縁被膜の付着量が、400mg/m以上1200mg/m以下であり、前記絶縁被膜中の2価及び3価のFeの含有量が、10mg/m以上250mg/m以下である、無方向性電磁鋼板。
[2]残部のFeの一部に換えて、更に、Sn又はSbの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、[1]に記載の無方向性電磁鋼板。
[3]残部のFeの一部に換えて、更に、Ni、Cu又はCrの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、[1]又は[2]に記載の無方向性電磁鋼板。
[4]残部のFeの一部に換えて、更に、0.0005質量%以上0.0025質量%以下のCa、又は、0.0005質量%以上0.0050質量%以下のREMの少なくとも何れかを含有する、[1]〜[3]の何れか1つに記載の無方向性電磁鋼板。
[5]所定の化学成分を有する鋼塊に対して、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍を順に実施することで、無方向性電磁鋼板を製造する方法であって、前記鋼塊は、質量%で、C:0.0010%〜0.0050%、Si:2.5%〜4.0%、Al:0.1%〜2.0%、Mn:0.05%〜2.0%、P:0.005%〜0.15%、S:0.0001%〜0.0030%、Ti:0.0005〜0.0030%、N:0.0010〜0.0030%を含有し、残部がFe及び不純物からなり、前記熱間圧延後にスケールを除去しないままで、焼鈍雰囲気中の露点を−40℃以上60℃以下とし、焼鈍温度を900℃以上1100℃以下とし、かつ、均熱時間を1秒以上300秒以下とした前記熱延板焼鈍を実施し、前記酸洗により、酸洗板における地鉄表面からの深さ方向でのAl濃度について、以下の式(2)に示す関係式を満足するように酸洗減量を制御しつつ、内部酸化層を含むスケール層を除去し、前記冷間圧延により、地鉄の最終板厚を0.10mm以上0.35mm以下とし、前記仕上焼鈍において、仕上焼鈍温度を950℃以下とし、前記仕上焼鈍後に、前記地鉄の表面に対し、付着量が400mg/m以上1200mg/m以下となるように絶縁被膜を形成する、無方向性電磁鋼板の製造方法。
[6]前記仕上焼鈍後の地鉄の平均結晶粒径が、50μm以下であり、前記絶縁被膜中の2価及び3価のFeの含有量が、10mg/m以上250mg/m以下である、[5]に記載の無方向性電磁鋼板の製造方法。
[7]前記鋼塊は、残部のFeの一部に換えて、更に、Sn又はSbの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、[5]又は[6]に記載の無方向性電磁鋼板の製造方法。
[8]前記鋼塊は、残部のFeの一部に換えて、更に、Ni、Cu又はCrの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、[5]〜[7]の何れか1つに記載の無方向性電磁鋼板の製造方法。
[9]前記鋼塊は、残部のFeの一部に換えて、更に、0.0005質量%以上0.0025質量%以下のCa、又は、0.0005質量%以上0.0050質量%以下のREMの少なくとも何れかを含有する、[5]〜[8]の何れか1つに記載の無方向性電磁鋼板の製造方法。
[10]質量%で、C:0.0010%〜0.0050%、Si:2.5%〜4.0%、Al:0.1%〜2.0%、Mn:0.05%〜2.0%、P:0.005%〜0.15%、S:0.0001%〜0.0030%、Ti:0.0005〜0.0030%、N:0.0010〜0.0030%を含有し、残部がFe及び不純物からなり、地鉄の板厚が0.10mm以上0.35mm以下であり、地鉄中の平均結晶粒径が50μm以下であり、かつ、地鉄表面からの深さ方向でのAl濃度について、以下の式(1)に示す関係式を満足する鋼板と、前記鋼板の表面に位置する絶縁被膜と、を備え、前記絶縁被膜の付着量が、400mg/m以上1200mg/m以下であり、かつ、前記絶縁被膜中の2価及び3価のFeの含有量が、10mg/m以上250mg/m以下である無方向性電磁鋼板を、コア形状に打ち抜いて積層した後、70体積%以上窒素を含有した雰囲気中で、750℃以上900℃以下の温度で歪取り焼鈍を実施する、モータコアの製造方法。
[11]前記無方向性電磁鋼板は、残部のFeの一部に換えて、更に、Sn又はSbの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、[10]に記載のモータコアの製造方法。
[12]前記無方向性電磁鋼板は、残部のFeの一部に換えて、更に、Ni、Cu又はCrの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、[10]又は[11]に記載のモータコアの製造方法。
[13]前記無方向性電磁鋼板は、残部のFeの一部に換えて、更に、0.0005質量%以上0.0025質量%以下のCa、又は、0.0005質量%以上0.0050質量%以下のREMの少なくとも何れかを含有する、[10]〜[12]の何れか1つに記載のモータコアの製造方法。
0.1≦Al(x≦2μm)/Al(x=10μm)<1.0 ・・・(1)

ここで、上記式(1)において、
x:地鉄表面からの深さ[μm]
Al(x≦2μm):地鉄表面から深さ2μmまでのAl濃度の平均値
Al(x=10μm):深さ10μmの位置でのAl濃度
を表す。
0.1≦Al(x≦5μm)/Al(x=10μm)<1.0 ・・・(2)

ここで、上記式(2)において、
x:地鉄表面からの深さ[μm]
Al(x≦5μm):地鉄表面から深さ5μmまでのAl濃度の平均値
Al(x=10μm):深さ10μmの位置でのAl濃度
を表す。
以上説明したように本発明によれば、コスト性及び絶縁被膜の密着性を維持しつつ、鉄損及び強度の更なる向上を実現することが可能となる。
本発明の実施形態に係る無方向性電磁鋼板の構造を模式的に示した説明図である。 同実施形態に係る無方向性電磁鋼板の地鉄について説明するための説明図である。 同実施形態に係る地鉄におけるAl濃度の分布について模式的に示した説明図である。 同実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した流れ図である。 同実施形態に係る無方向性電磁鋼板の製造方法について説明するための説明図である。 同実施形態に係るモータコアの製造方法の流れの一例を示した流れ図である。 同実施形態に係るモータコアの製造方法の流れの一例を示した流れ図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(無方向性電磁鋼板について)
まず、図1〜図3を参照しながら、本発明の実施形態に係る無方向性電磁鋼板について、詳細に説明する。
図1は、本発明の実施形態に係る無方向性電磁鋼板の構造を模式的に示した説明図である。図2は、本実施形態に係る無方向性電磁鋼板の地鉄について説明するための説明図である。図3は、本実施形態に係る地鉄におけるAl濃度の分布について模式的に示した説明図である。
本実施形態に係る無方向性電磁鋼板10は、図1に模式的に示したように、所定の化学成分を含有しており、かつ、表面近傍においてAlが偏在している地鉄11と、地鉄11の表面に設けられた絶縁被膜13と、を有している。
以下では、まず、本実施形態に係る無方向性電磁鋼板10の地鉄11について、詳細に説明する。
<地鉄の化学組成について>
本実施形態に係る無方向性電磁鋼板10の地鉄11は、質量%で、C:0.0010%〜0.0050%、Si:2.5%〜4.0%、Al:0.1%〜2.0%、Mn:0.05%〜2.0%、P:0.005%〜0.15%、S:0.0001%〜0.0030%、Ti:0.0005%〜0.0030%、N:0.0010%〜0.0030%を含有し、残部がFe及び不純物からなる。
また、本実施形態に係る地鉄11は、残部のFeの一部に換えて、更に、Sn又はSbの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有していてもよく、Ni、Cu又はCrの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有していてもよく、Ca又はREMの少なくとも何れかを、それぞれ0.0005質量%以上0.0050質量%以下含有していていてもよい。
以下では、本実施形態に係る地鉄11の化学組成が上記のように規定される理由について、詳細に説明する。なお、以下では、特に断りの無い限り、「%」は「質量%」を表すものとする。
[C:0.0010%〜0.0050%]
C(炭素)は、鉄損劣化を引き起こす元素である。Cの含有量が0.0050%を超える場合には、無方向性電磁鋼板において鉄損劣化が生じ、良好な磁気特性を得ることができない。従って、本実施形態に係る無方向性電磁鋼板では、Cの含有量を、0.0050%以下とする。一方、Cの含有量が0.0010%未満となる場合には、無方向性電磁鋼板において磁束密度が低下し、良好な磁気特性を得ることができない。従って、本実施形態に係る無方向性電磁鋼板では、Cの含有量を、0.0010%以上とする。本実施形態に係る無方向性電磁鋼板において、Cの含有量は、好ましくは、0.0010%以上0.0040%以下であり、更に好ましくは、0.0015%以上0.0030%以下である。
[Si:2.5%〜4.0%]
Si(ケイ素)は、鋼の電気抵抗を上昇させて渦電流損を低減させ、高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、無方向性電磁鋼板の高強度化にも有効な元素である。かかる効果を十分に発揮させるためには、2.5%以上のSiを含有させることが必要である。一方、Siの含有量が4.0%を超える場合には、加工性が著しく劣化し、冷間圧延を実施することが困難となる。従って、Siの含有量は、4.0%以下とする。Siの含有量は、好ましくは、2.7%以上3.7%以下であり、更に好ましくは、3.0%以上3.5%以下である。
[Al:0.1%〜2.0%]
Al(アルミニウム)は、無方向性電磁鋼板の電気抵抗を上昇させることで渦電流損を低減し、高周波鉄損を改善するために有効な元素である。Alの含有量が0.1%未満である場合には、電気抵抗上昇の効果が小さく、また、AlNが電磁鋼板中に微細に析出するため、結晶粒が微細となることで鉄損低減に悪影響を及ぼす。そのため、Alの含有量は、0.1%以上とする。一方、Alの含有量が2.0%を超える場合には、無方向性電磁鋼板の磁束密度が著しく低下する。従って、Alの含有量は、2.0%以下とする。Alの含有量は、好ましくは、0.25%以上1.5%以下であり、更に好ましくは、0.3%以上1.2%以下である。
[Mn:0.05%〜2.0%]
Mn(マンガン)は、鋼の電気抵抗を上昇させて渦電流損を低減し、高周波鉄損を改善するために有効な元素である。かかる効果を十分に発揮させるためには、0.05%以上のMnを含有させることが必要である。一方、Mnの含有量が2.0%超過となる場合、磁束密度の低下が顕著となる。従って、Mnの含有量は、2.0%以下とする。Mnの含有量は、好ましくは、0.2%以上1.5%以下であり、更に好ましくは、0.5%以上1.3%以下である。
[P:0.005%〜0.15%]
P(リン)は、固溶強化能が大きく、加えて磁気特性の向上に有利な{100}集合組織を増加させる効果も有するため、高強度と高磁束密度とを両立するうえで極めて有効な元素である。更に、{100}集合組織の増加は、無方向性電磁鋼板の板面内における機械特性の異方性を低減することにも寄与するため、Pは、無方向性電磁鋼板の打ち抜き加工時の寸法精度を改善する効果も有する。このような強度、磁気特性、及び、寸法精度を改善する効果を得るためには、Pの含有量を0.005%以上とすることが必要である。一方、Pの含有量が0.15%を超える場合には、無方向性電磁鋼板の延性が著しく低下する。従って、Pの含有量は、0.15%以下とする。Pの含有量は、好ましくは、0.01%以上0.10%以下であり、更に好ましくは、0.04%以上0.08%以下である。
[S:0.0001%〜0.0030%]
S(硫黄)は、MnSの微細析出物を形成することで鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。そのため、Sの含有量は、0.0030%以下とする必要がある。一方、Sの含有量を0.0001%よりも低減させようとすると、いたずらにコストアップを招くのみである。従って、Sの含有量は、0.0001%以上とする。Sの含有量は、好ましくは、0.0003%以上0.0020%以下であり、更に好ましくは、0.0005%以上0.0010%以下である。
[N:0.0010%〜0.0030%]
N(窒素)は、磁気時効を引き起こして鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。そのため、Nの含有量は、0.0030%以下とする必要がある。一方、Nの含有量を0.0001%よりも低減させようとすると、いたずらにコストアップを招くのみである。従って、Nの含有量は、0.0001%以上とする。Nの含有量は、好ましくは、0.0010%以上0.0025%以下であり、更に好ましくは、0.0010%以上0.0020%以下である。
[Ti:0.0005%〜0.0030%]
Ti(チタン)は、C、N、Mn等と結合して介在物を形成し、歪取り焼鈍中の結晶粒の成長を阻害して磁気特性を劣化させる元素である。従って、Tiの含有量は、0.0030%以下とする。一方、Tiの含有量を0.0005%よりも低減させようとすると、いたずらにコストアップを招くのみである。従って、Tiの含有量は、0.0005%以上とする。Tiの含有量は、好ましくは、0.0005%以上0.0015%以下であり、更に好ましくは、0.0005%以上0.0020%以下である。
[Sn:0.01%〜0.2%]
[Sb:0.01%〜0.2%]
Sn(スズ)及びSb(アンチモン)は、表面に偏析し焼鈍中の酸化を抑制することで、低い鉄損を確保するのに有用な任意添加元素である。従って、本実施形態に係る無方向性電磁鋼板では、かかる効果を得るために、Sn又はSbの少なくとも何れか一方を、任意添加元素として地鉄中に含有させてもよい。かかる効果を十分に発揮させるためには、Sn又はSbの含有量を、それぞれ0.01%以上とすることが好ましい。一方、Sn又はSbの含有量がそれぞれ0.2%を超える場合には、地鉄の延性が低下して冷間圧延が困難となる可能性がある。従って、Sn又はSbの含有量は、それぞれ0.2%以下とすることが好ましい。Sn又はSbを地鉄中に含有させる場合に、Sn又はSbの含有量は、より好ましくは、それぞれ0.03%以上0.10%以下である。
[Ni:0.01%〜0.2%]
[Cu:0.01%〜0.2%]
[Cr:0.01%〜0.2%]
Ni(ニッケル)、Cu(銅)、及び、Cr(クロム)は、比抵抗を高めて鉄損を低減させるのに有効な任意添加元素である。従って、本実施形態に係る無方向性電磁鋼板では、かかる効果を得るために、Ni、Cu又はCrの少なくとも何れか一方を、任意添加元素として地鉄中に含有させてもよい。かかる効果を十分に発揮させるためには、Ni、Cu又はCrの含有量を、それぞれ0.01%以上とすることが好ましい。一方、Ni、Cu又はCrの含有量がそれぞれ0.2%を超える場合には、磁束密度が劣化する可能性がある。従って、Ni、Cu又はCrの含有量は、それぞれ0.2%以下とすることが好ましい。Ni、Cu又はCrを地鉄中に含有させる場合に、Ni、Cu又はCrの含有量は、より好ましくは、それぞれ0.03%以上0.10%以下である。
[Ca:0.0005%〜0.0025%]
[REM:0.0005%〜0.0050%]
Ca(カルシウム)及びREM(Rare Earth Metal:希土類元素)は、それぞれ、仕上焼鈍時における結晶粒成長を促進させるのに有効な任意添加元素である。従って、本実施形態に係る無方向性電磁鋼板では、かかる効果を得るために、Ca又はREMの少なくとも何れか一方を、任意添加元素として地鉄中に含有させてもよい。かかる効果を十分に発揮させるためには、Ca又はREMの含有量を、それぞれ0.0005%以上とすることが好ましい。一方、Caの含有量が0.0025%を超える場合、又はREMの含有量が0.0050%を超える場合には、効果が飽和してしまい、コストアップを招くだけである。従って、Caの含有量は、0.0025%以下とすることが好ましく、REMの含有量は、0.0050%以下とすることが好ましい。Ca又はREMを地鉄中に含有させる場合に、Caの含有量は、より好ましくは、0.0010%以上0.0025%以下であり、REMの含有量は、より好ましくは、0.0010%以上0.0030%以下である。
なお、上記の元素の他に、Pb、Bi、V、As、Bなどの元素が0.0001%〜0.0050%の範囲で含まれていても、本発明を損なうものではない。
以上、本実施形態に係る無方向性電磁鋼板における地鉄の化学成分について、詳細に説明した。
なお、無方向性電磁鋼板における地鉄の化学成分を、事後的に測定する場合には、公知の各種測定法を利用することが可能であり、例えば、ICP−MS(誘導結合プラズマ質量分析)法等を適宜利用すればよい。
<地鉄の平均結晶粒径について>
本実施形態に係る無方向性電磁鋼板の地鉄11は、金属組織の平均結晶粒径が50μm以下となっている。地鉄11の平均結晶粒径を50μm以下とすることで、ロータコアに求められる高強度と、歪取り焼鈍により達成できるステータに求められる低鉄損とを共に実現することが可能となる。
すなわち、ロータコアを製造する際には、無方向性電磁鋼板10を打ち抜いて所定の形状を有するロータ用ブランクとし、得られたロータ用ブランクを積層・接合することで、ロータコアが製造される。ここで、仕上げ焼鈍を経た後の地鉄11の平均結晶粒径を50μm以下とすることで、製造されるロータコアの機械的強度を、従来の機械的強度よりも更に増強することが可能となる。
また、ステータコアを製造する際には、ロータコアと同様に、無方向性電磁鋼板10を打ち抜いて所定の形状を有するステータ用ブランクとし、得られたステータ用ブランクを積層・接合した上で歪取り焼鈍が行われる。この際、ロータコアブランクを打ち抜いた同一の鋼板の外周部からステータコアブランクを打ち抜くことが、よりコスト的に好ましい。ここで、無方向性電磁鋼板10の地鉄11の平均結晶粒径を50μm以下とすることで、歪取り焼鈍における焼鈍温度を高くしなくとも、打ち抜き加工の際に生じた加工歪を十分に除去することが可能となる。また、地鉄11に平均結晶粒径が50μm以下である再結晶組織が存在することで、歪取り焼鈍時における焼鈍温度を高くしなくとも、かかる再結晶組織の粒成長が生じ、ステータコアの鉄損を更に低減することが可能となる。
ここで、地鉄11の平均結晶粒径が50μmを超える場合には、モータコアを製造する際に実施される歪取り焼鈍の焼鈍温度をより高く設定することが求められステータコアの鉄損低減が困難となるとともに、ロータコアの機械的強度を向上させることが困難となる。一方、地鉄11の平均結晶粒径が10μm未満である場合には、磁気特性が悪くなり、かつ、ステータコアの歪取り焼鈍時に再結晶組織の粒成長が不均一となって、磁気特性の改善代が小さくなるため、好ましくない。そのため、地鉄11の平均結晶粒径は、10μm以上であることが好ましい。地鉄11の平均結晶粒径は、好ましくは、10μm〜50μmであり、更に好ましくは、15μm〜40μmである。
なお、地鉄11の平均結晶粒径の測定方法は、特に限定されるものではなく、公知の方法により測定することが可能である。例えば、鋼板断面を研磨し、その後ナイタール腐食により粒界をエッチングした上で、得られた試験片を、光学顕微鏡又はSEM(Scanning Electron Microscope:走査型電子顕微鏡)により観察し、一般的に知られている線分法等により、地鉄11の平均結晶粒径を測定することが可能である。
<地鉄の板厚について>
本実施形態に係る無方向性電磁鋼板10における地鉄11の板厚(図1における厚みt)は、高周波鉄損を低減するために0.35mm以下とする必要がある。一方、地鉄11の板厚tが0.10mm未満である場合には、板厚が薄いために焼鈍ラインの通板が困難となる可能性がある。従って、無方向性電磁鋼板10における地鉄11の板厚tは、0.10mm以上0.35mm以下とする。無方向性電磁鋼板10における地鉄11の板厚tは、好ましくは、0.15mm以上0.30mm以下である。
<Alの深さ方向分布について>
続いて、本実施形態に係る無方向性電磁鋼板10の地鉄11におけるAlの深さ方向分布について、説明する。
先だって簡単に言及したように、モータコアを製造する際には、無方向性電磁鋼板から打ち抜かれたブランクを積層・接合した上で製造され、必要に応じて歪取り焼鈍が行われる。ここで、歪取り焼鈍は、非酸化雰囲気として窒素中で行われることが多いが、その際に地鉄の窒化の進行と窒化に伴うAlNの析出とによって、鉄損の劣化が生じてしまう。不活性雰囲気に、窒素ではなくアルゴンやヘリウムを用いることで、窒化は抑制することができるが、コストがかかる。従って、歪取り焼鈍に窒素を主たる雰囲気として用いることは、工業的に不可欠である。ここで、本発明者らは、Nが結合する相手となるAlが少なければAlNの析出が抑制でき、鉄損の劣化を抑制できるとの知見を得た。
窒化によるN濃度の増加は、地鉄11の表面付近に限られる。そのため、Nが固溶してくる地鉄11の表面近傍のAl濃度を低減することができれば、AlNの析出を抑制することができる。また、Nと親和性の高いAlの地鉄最表面に存在する量を低減することができれば、N分子が分解して原子として地鉄中に溶け込む反応自体を抑制することも可能となる。本発明者らは、かかる知見に基づき、地鉄11の表面近傍でAlの分布を偏在させる(より詳細には、地鉄11の表面近傍に、Al濃度の相対的に少ない脱Al層を形成させる)ことで、歪取り焼鈍時の鉄損劣化を抑制して、良好な磁気特性を得ることができる旨に想到した。
図2は、本実施形態に係る地鉄11の表面近傍を、模式的に示したものである。なお、以下では、便宜的に、地鉄11の表面から厚み方向(深さ方向)の中心へと向かう方向にx軸正方向を設定し、かかる座標軸を用いて説明を行うものとする。
本実施形態に係る無方向性電磁鋼板10の地鉄11は、図2に模式的に示したように、母材部101と、脱Al層103と、を有している。
母材部101は、地鉄11の内部において、Alがほぼ均一に分布している部分であり、母材部101のAl濃度は、地鉄11が有しているAl含有量とほぼ等しい値となっている。また、脱Al層103は、地鉄11の表面側に位置している層であり、脱Al層103のAl濃度は、母材部101のAl濃度よりも相対的に低い値となっている。
具体的には、地鉄11の表面をx軸の原点(すなわち、x=0μmの位置)とした場合に、脱Al層103では、以下の式(101)の関係が成立している。以下の式(101)のような関係が成立することで、本実施形態に係る無方向性電磁鋼板10では、歪取り焼鈍時の鉄損劣化を抑制して、良好な磁気特性を得ることが可能となる。

0.1≦Al(x≦2μm)/Al(x=10μm)<1.0 ・・・式(101)
ここで、上記の式(101)において、
x:地鉄11の表面からの深さ[μm]
Al(x≦2μm):地鉄表面から深さ2μmまでのAl濃度の平均値[質量%]
Al(x=10μm):深さ10μmの位置でのAl濃度[質量%]
を表す。
図3に模式的に示したように、地鉄11中に脱Al層103が存在せず、Alの深さ方向(x方向)の分布が均一である場合には、Al濃度は、Al(x=10)の値(換言すれば、地鉄11全体の平均Al濃度の値)でほぼ一定となるはずである。また、上記特許文献1のようなAl濃化層を形成する技術では、図3において破線で示したように、地鉄の表面近傍のAl濃度は、地鉄11全体の平均Al濃度の値よりも高くなっている。しかしながら、本実施形態に係る地鉄11では、上記特許文献1とは逆の状態が実現されている。
すなわち、本実施形態に係る地鉄11では、脱Al層103が形成されることで、図3において実線で示したように、地鉄表面(x=0μm)から深さ2μm(x=2μm)の位置までの平均のAl濃度は、深さ10μmの位置(x=10μm)でのAl濃度よりも小さくなっている。従って、上記式(101)の最右辺に示したような不等式が成立している。かかる状態が実現されるということは、脱Al層103のAl濃度が母材部101の平均Al濃度よりも相対的に低くなっていることを意味している。
一方、脱Al層103のAl濃度が低くなりすぎ、Al(x≦2μm)/Al(x=10μm)で表される濃度比が0.1未満となる場合には、地鉄11の表面近傍のAl含有量が低くなりすぎ、特に表層付近の比抵抗が低下するため、高周波鉄損で重要となる渦電流損が劣化してしまう。従って、Al(x≦2μm)/Al(x=10μm)で表される濃度比は、上記式(101)の最左辺の不等式に示したように、0.1以上とする。
なお、本実施形態に係る地鉄11において、Al(x≦2μm)/Al(x=10μm)で表される濃度比は、好ましくは0.2以上0.9以下であり、更に好ましくは、0.5以上0.7以下である。
ここで、上記のような深さ方向に沿った地鉄11のAl濃度は、グロー放電発光分析装置(Glow Discharge Spectroscopy:GDS)を用いて、地鉄11の表面からの深さ方向に沿ってAl濃度を測定することで、特定することができる。GDSの測定条件については、特に規定するものではないが、例えば、分析する材料に応じて、直流モード、高周波モード、更にパルスモード等が用意されているが、主に伝導体である地鉄を分析する本実施形態の範囲では、どのようなモードでも大差はない。そのため、スパッタ痕が均一となり、かつ、深さが10μm以上分析できる測定時間を条件として設定し、適宜分析すればよい。
なお、以上説明したような、Alが深さ方向に偏在している地鉄11の実現方法については、以下で改めて詳細に説明する。
本実施形態に係る無方向性電磁鋼板10では、地鉄13の表層に上記のような脱Al層103が存在することで、絶縁被膜13を設ける際に、脱Al層103に含まれるFeが酸化されやすくなり、絶縁被膜13に向け、Feが拡散しやすくなる。これにより、本実施形態に係る無方向性電磁鋼板10では、絶縁被膜13中に2価及び3価のFeが所定量存在するようになる。本実施形態に係る無方向性電磁鋼板10では、絶縁被膜13中に2価及び3価のFeが所定量存在することで、歪取り焼鈍時における酸素等の透過を抑制することが可能となり、歪取り焼鈍後の絶縁被膜13の密着性を向上させることが可能となる。
以上、図2及び図3を参照しながら、本実施形態に係る地鉄11におけるAlの深さ方向分布について、詳細に説明した。
<絶縁被膜について>
再び図1に戻って、本実施形態に係る無方向性電磁鋼板10が備える絶縁被膜13について、詳細に説明する。
無方向性電磁鋼板はコアブランクを打ち抜いたのち積層され使用されるため、地鉄11の表面に絶縁被膜13を設けることで、板間の渦電流を低減することができ、コアとして渦電流損を低減することが可能となる。
ここで、本実施形態に係る絶縁被膜13は、無方向性電磁鋼板の絶縁被膜として用いられるものであれば、特に限定されるものではなく、公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、更に有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩、又は、コロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくとも何れかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩やZrあるいはTiのカップリング剤、又は、これらの炭酸塩やアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
ここで、上記のような絶縁被膜13の付着量は、片面あたり400mg/m以上1200mg/m以下とする。片面あたりの付着量が400mg/m未満である場合には、絶縁被膜が薄くなるため、歪取り焼鈍中に被膜を通して酸素等が透過し、被膜密着性を劣化させることがある。また、無方向性電磁鋼板10が所望の形状に打ち抜かれて積層された際に、積層された鋼板の間を十分に絶縁することが困難となるため、好ましくない。一方、片面あたりの付着量が1200mg/mを超える場合には、占積率が低下するとともに、歪取り焼鈍後の被膜密着性が劣化するため、好ましくない。片面あたりの絶縁被膜13の付着量を、片面あたり400mg/m以上1200mg/m以下とすることで、上記のような特性を実現しつつ、絶縁被膜13の歪取り焼鈍後の密着性を担保することが可能となる。片面あたりの絶縁被膜13の付着量は、好ましくは、600mg/m以上1200mg/m以下であり、より好ましくは、800mg/m以上1000mg/m以下である。
また、本実施形態に係る絶縁被膜13では、絶縁被膜13中の2価及び3価のFeの含有量が、金属Fe換算で、10mg/m以上250mg/m以下となっている。2価及び3価のFeの含有量が10mg/m未満である場合には、モータコアを製造する際に実施される歪取り焼鈍において雰囲気中に不可避的に存在する酸素等の透過を十分に抑制することができず、絶縁被膜13の密着性を向上させることが困難となるとともに、歪取り焼鈍での焼鈍温度を上昇させることが困難となる。一方、2価及び3価のFeの含有量が250mg/mを超える場合には、通常の絶縁被膜を焼付時間が長時間必要であり、コスト的に不利である。絶縁被膜13中の2価及び3価のFeの含有量は、好ましくは、金属Fe換算で、50mg/m以上200mg/m以下である。
なお、かかる絶縁被膜13の付着量を、事後的に測定する場合には、公知の各種測定法を利用することが可能であり、例えば、水酸化ナトリウム水溶液浸漬前後の重量差を測定する方法や、検量線法を用いた蛍光X線法等を適宜利用すればよい。また、絶縁被膜13中の2価及び3価のFeの含有量は、公知の各種測定法を利用して測定することが可能であり、例えば、水酸化ナトリウム水溶液浸漬により被膜を溶解させ、その水溶液に含まれるFe成分のICP(Inductively Coupled Plasma:誘導結像プラズマ)発光分光測定(水酸化ナトリウムを用いる場合、鋼板中のFeは溶解しないため、Fe2価とFe3価の合計量が定量できる。)や、かかるICP発光分光測定にメスバウワー分光法を組み合わせることで、Fe2価の含有量とFe3価の含有量とを互いに分離して定量することができる。
<無方向性電磁鋼板の磁気特性の測定方法について>
本実施形態に係る無方向性電磁鋼板10は、上記のような構造を有することで、優れた磁気特性を示すものとなる。ここで、本実施形態に係る無方向性電磁鋼板10の示す各種の磁気特性は、JIS C2550に規定されたエプスタイン法や、JIS C2556に規定された単板磁気特性測定法(Single Sheet Tester:SST)に則して、測定することが可能である。
以上、図1〜図3を参照しながら、本実施形態に係る無方向性電磁鋼板10について、詳細に説明した。
(無方向性電磁鋼板の製造方法について)
続いて、図4及び図5を参照しながら、以上説明したような本実施形態に係る無方向性電磁鋼板10の製造方法について、詳細に説明する。
図4は、本実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した流れ図であり、図5は、本実施形態に係る無方向性電磁鋼板の製造方法について説明するための説明図である。
本実施形態に係る無方向性電磁鋼板10の製造方法では、以上説明したような所定の化学成分を有する鋼塊に対して、まず、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍を順に実施する。その後、絶縁被膜13を地鉄11の表面に形成するために、上記仕上焼鈍の後に絶縁被膜の形成が行われる。以下、本実施形態に係る無方向性電磁鋼板10の製造方法で実施される各工程について、詳細に説明する。
<熱間圧延工程>
本実施形態に係る無方向性電磁鋼板10の製造方法では、まず、上記の化学組成を有する鋼塊(スラブ)を加熱し、加熱された鋼塊について熱間圧延を行って、熱延板を得る(ステップS101)。ここで、熱間圧延に供する際の鋼塊の加熱温度については、特に規定するものではないが、例えば、1050℃以上1200℃以下とすることが好ましい。また、熱間圧延後の熱延板の板厚についても、特に規定するものではないが、地鉄の最終板厚を考慮して、例えば、1.5mm〜3.0mm程度とすることが好ましい。
鋼塊に対して以上のような熱間圧延が施されることで、図5の左上の図に示したように、地鉄11の表面には、Feの酸化物を主体とするスケールが生成される。また、かかる熱間圧延工程では、Alは、地鉄内でほぼ均一に分散しているものと考えられる。
<熱延板焼鈍工程>
上記熱間圧延の後には、熱延板焼鈍が実施される(ステップS103)。ここで、本実施形態に係る無方向性電磁鋼板の製造方法では、熱間圧延によって地鉄の表面に形成されたスケールを除去しないままで、熱延板焼鈍が実施される。以下で説明するように、熱間圧延によって生じたスケールを除去せずに焼鈍を実施することで、本実施形態に係る無方向性電磁鋼板10に特徴的な脱Al層103を形成することが可能となる。
具体的には、焼鈍雰囲気中の露点を−40℃以上60℃以下とし、焼鈍温度を900℃以上1100℃以下とし、かつ、均熱時間を1秒以上300秒以下として、スケールが付着したままの熱延板に対して、焼鈍を実施する。
露点が−40℃未満である場合には、酸化源が表層スケールのみとなるために十分な脱Al層103を形成できない可能性があるため、好ましくない。一方、露点が60℃を超える場合には、地鉄のFeの酸化が進むことで、酸洗減による歩留まり悪化が生じることに加え、以下で説明するようなAl濃化層及び脱Al層がFeの酸化で消失してしまう可能性があるため、好ましくない。焼鈍雰囲気中の露点は、好ましくは、−30℃以上40℃以下であり、より好ましくは、−20℃以上30℃以下である。
また、焼鈍温度が900℃未満である場合、又は、均熱時間が1秒未満である場合には、焼鈍によって地鉄の結晶粒が十分に粗大化せずに良好な磁気特性が得られないため、好ましくない。一方、焼鈍温度が1100℃を超える場合、又は、均熱時間が300秒を超える場合には、後段の冷間圧延工程において地鉄が破断してしまう可能性が生じるため、好ましくない。焼鈍温度は、好ましくは、930℃以上1070℃以下であり、より好ましくは、950℃以上1050℃以下である。また、均熱時間は、好ましくは、10秒以上150秒以下であり、より好ましくは、30秒以上90秒以下である。
なお、熱延板焼鈍における冷却過程では、800℃〜500℃までの温度域での冷却速度を、20℃/秒〜100℃/秒とすることが好ましい。冷却速度をかかる範囲内とすることで、より良好な磁気特性を得ることが可能となる。
本実施形態に係る熱延板焼鈍工程では、図5上段中央の図に示したように、熱間圧延で生成したスケールを付着させたままで、焼鈍が実施される。熱延板表面のスケール、及び、焼鈍時の雰囲気の双方により、地鉄中に含まれるAlはスケール方向に拡散しつつ酸化される。その結果、地鉄の表面付近には、Al酸化物を含むAl濃化層が形成されるとともに、かかるAl濃化層の数μm内層側(地鉄の厚み方向中心側)には、脱Al層が形成される。
かかる熱延板焼鈍時には、Al濃化層と脱Al層との双方が形成されるが、本実施形態に係る製造方法では、従来と比較してAlがより酸化されやすい状況下でAl濃化層が形成されていくため、Al濃化層へのAlの供給元である脱Al層のAl濃度は、従来と比較してより一層低くなる。これにより、図3に模式的に示したようなAlの濃度分布を有する脱Al層が形成される。一方、熱間圧延で生成したスケールを除去した上で、上記のような焼鈍条件で熱延板を焼鈍したとしても、地鉄中の表層近傍のAlは十分に酸化されず、本実施形態に係る脱Al層を形成することはできない。
<酸洗工程>
上記熱延板焼鈍の後には、酸洗が実施される(ステップS105)。本実施形態に係る酸洗工程では、酸洗板における地鉄表面からの深さ方向でのAl濃度について、上記式(1)に示す関係式を満足するように酸洗減量を制御しつつ、内部酸化層(すなわち、Al濃化層)を含むスケール層が除去される。
すなわち、図5右上の図に示したように、本実施形態に係る酸洗工程では、スケールと、地鉄の最表層に位置する内部酸化層であるAl濃化層と、を除去して、脱Al層が最表層となるように酸洗を制御する。この際、酸洗中や酸洗後の鋼板について、GDSにより深さ方向のAl濃度を随時測定し、最終的に得られる無方向性電磁鋼板10が上記式(101)に示す関係式を満足するように、酸洗減量を制御する。なお、酸洗減量は、例えば、酸洗に用いる酸の濃度、酸洗に用いる促進剤の濃度、酸洗液の温度の少なくとも何れかを変更することで、制御することが可能である。
具体的には、以下の式(103)に示す関係式を満足するように、酸洗減量を制御することが好ましい。以下の式(103)に示す関係式を満足するように酸洗減量を制御することで、最終的に得られる無方向性電磁鋼板10では、上記式(101)に示す関係式を満足するようになる。

0.1≦Al(x≦5μm)/Al(x=10μm)<1.0 ・・・式(103)
ここで、上記の式(103)において、
x:地鉄11の表面からの深さ[μm]
Al(x≦5μm):地鉄表面から深さ5μmまでのAl濃度の平均値[質量%]
Al(x=10μm):深さ10μmの位置でのAl濃度[質量%]
を表す。
<冷間圧延工程>
上記酸洗の後には、冷間圧延が実施される(ステップS107)。かかる冷間圧延では、地鉄の最終板厚が0.10mm以上0.35mm以下となるような圧下率で、スケール及びAl濃化層の除去された酸洗板が圧延される。図5右下の図に示したように、かかる冷間圧延により、母材部の金属組織は、冷間圧延によって得られる冷延組織となる。
<仕上焼鈍工程>
上記冷間圧延の後には、仕上焼鈍が実施される(ステップS109)。本実施形態に係る無方向性電磁鋼板の製造方法においては、熱延板焼鈍工程において脱Al層が形成され、その後の工程では、脱Al層の形成されている状態を維持しているが、仕上焼鈍工程において、仕上焼鈍温度が950℃を超える場合には、母材部から脱Al層へとAlが拡散して、脱Al層が消失してしまう可能性が高くなる。従って、かかる仕上焼鈍では、仕上焼鈍温度を950℃以下とする。仕上焼鈍温度を950℃以下とする仕上焼鈍を実施することで、母材部及び脱Al層の組織に、ステータコアの製造に際して実施される歪取り焼鈍において好適に再結晶組織の粒成長を生じさせることが可能な、平均結晶粒径が50μm以下という微細な再結晶組織が生成される。一方、仕上焼鈍温度が750℃未満となる場合には、焼鈍時間が長くなりすぎて、生産性を低下させてしまう可能性が高い。従って、かかる仕上焼鈍において、仕上焼鈍温度は、750℃以上であることが好ましい。仕上焼鈍温度は、より好ましくは、775℃以上900℃以下である。
ここで、仕上焼鈍を実施する焼鈍時間は、上記仕上焼鈍温度に応じて適宜設定すればよいが、例えば、1秒〜150秒とすることができる。焼鈍時間が1秒未満である場合には、十分な仕上焼鈍を行うことができず、母材部に適切に再結晶組織を生じさせることが困難となることがある。一方、焼鈍時間が150秒を超える場合には、焼鈍時間が長くなりすぎて、生産性を低下させてしまう可能性が高い。焼鈍時間は、より好ましくは、5秒〜100秒である。
なお、仕上焼鈍における950℃以下700℃以上の温度域での加熱速度は、10℃/s〜800℃/sとすることが好ましい。加熱速度を10℃/s〜800℃/sとすることで、無方向性電磁鋼板の磁気特性を更に良好なものとすることが可能となるからであり、加熱速度を800℃/sを超えて上げたとしても、磁気特性の向上効果が飽和するからである。仕上焼鈍における950℃以下700℃以上の温度域での加熱速度は、より好ましくは、100℃/s〜400℃/sである。
また、900℃以下500℃以上の温度域での冷却速度は、10℃/s〜100℃/sとすることが好ましい。冷却速度を10℃/s〜100℃/sとすることで、無方向性電磁鋼板の磁気特性を更に良好なものとすることが可能となるからであり、冷却速度を100℃/sを超えて上げたとしても、磁気特性の向上効果が飽和するからである。仕上焼鈍における900℃以下500℃以上の温度域での冷却速度は、より好ましくは、20℃/s〜70℃/sである。
<絶縁被膜形成工程>
上記仕上焼鈍の後に、絶縁被膜の形成工程が実施される(ステップS111)。ここで、絶縁被膜の形成工程については、特に限定されるものではなく、上記のような公知の絶縁被膜処理液を用いて、公知の方法により処理液の塗布及び乾燥を行えばよい。
この際に、乾燥後の絶縁被膜の付着量が、片面あたり400mg/m以上1200mg/m以下となるように、絶縁被膜処理液の付着量を制御する。かかる付着量の制御についても、特に限定されるものではなく、固形分濃度が適切に調整された絶縁被膜処理液を用いて、公知の方法により塗布及び乾燥を行えばよい。
絶縁被膜処理液を塗布し、当該絶縁被膜処理液の溶媒に応じた温度まで鋼板を加熱することで、地鉄における脱Al層が存在することにより絶縁被膜処理液及び/又は固形分が互いに反応して、所定量の2価及び3価のFeが、絶縁被膜中へと導入されやすくなる。
なお、絶縁被膜が形成される地鉄の表面は、処理液を塗布する前に、脱Al層の状態、厚み等に大きな影響を与えない程度に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよいし、これら前処理を施さずに仕上焼鈍後のままの表面であってもよい。
以上、図4及び図5を参照しながら、本実施形態に係る無方向性電磁鋼板の製造方法について、詳細に説明した。
(モータコアの製造方法について)
続いて、図6A及び図6Bを参照しながら、以上説明したような本実施形態に係る無方向性電磁鋼板を用いた、モータコアの製造方法について、簡単に説明する。
図6A及び図6Bは、本実施形態に係るモータコアの製造方法の流れの一例を示した流れ図である。
まず、図6Aを参照しながら、本実施形態に係るモータコアの製造方法のうち、ロータコアの製造方法について説明する。
本実施形態に係るロータコアの製造方法では、まず、本実施形態に係る無方向性電磁鋼板10を、コア形状に打ち抜いた後に積層して(ステップS201)、所望のロータコアの形状を形成する。すなわち、本実施形態に係る無方向性電磁鋼板10からロータ用ブランクが打ち抜かれた後、ロータ用ブランクが積層・接合されることで、ロータコアの形状が形成される。
ロータコアは、仕上げ焼鈍後の平均結晶粒径を小さくしているために、コア形状としたままで強度が高いため、そのまま好ましく使用ができる。
次に、図6Bを参照しながら、本実施形態に係るモータコアの製造方法のうち、ステータコアの製造方法について説明する。
本実施形態に係るステータコアの製造方法では、まず、本実施形態に係る無方向性電磁鋼板10を、コア形状に打ち抜いた後に積層して(ステップS211)、所望のステータコアの形状を形成する。すなわち、本実施形態に係る無方向性電磁鋼板10からステータ用ブランクが打ち抜かれた後、ステータ用ブランクが積層・接合されることで、ステータコアの形状が形成される。
続いて、ステータコア形状に積層された無方向性電磁鋼板に対して、歪取り焼鈍(コア焼鈍)を実施する(ステップS213)。かかる歪取り焼鈍は、70体積%以上窒素を含有した雰囲気中で実施される。また、歪取り焼鈍の焼鈍温度は、750℃以上900℃以下である。かかる焼鈍条件で歪取り焼鈍を実施することで、先だって説明したように、無方向性電磁鋼板10に蓄積されている歪が解放されるとともに、無方向性電磁鋼板10の母材部中に存在する再結晶組織から粒成長が進行する。その結果、望ましい磁気特性を示すステータコアを実現することが可能となる。
ここで、雰囲気中の窒素の割合が70体積%未満である場合には、残留する酸素による鋼板の酸化が生じ、また、酸素以外の混入物(例えば、アルゴンやヘリウム)を使用する場合にはコストが高くなって、好ましくない。雰囲気中の窒素の割合は、より好ましくは、80体積%以上であり、更に好ましくは、90体積%〜100体積%であり、特に好ましくは、97体積%〜100体積%である。なお、窒素以外の雰囲気ガスは、特に規定するものではないが、一般的に、水素、二酸化炭素、一酸化炭素、水蒸気、メタンなどからなる還元性の混合ガスを用いることができる。これらのガスを得るために、プロパンガスや天然ガスを燃焼させて得る方法が、一般的に採用されている。
また、歪取り焼鈍の焼鈍温度が750℃未満である場合には、無方向性電磁鋼板10に蓄積されている歪を十分に解放することができず、好ましくない。一方、歪取り焼鈍の焼鈍温度が900℃を超える場合には、絶縁被膜の密着性が低下するため、好ましくない。また、歪取り焼鈍の焼鈍温度が900℃を超える場合には、再結晶組織の粒成長が進みすぎて、ヒステリシス損失は低下するものの、渦電流損が増加するために、かえって全鉄損は増加する。歪取り焼鈍の焼鈍温度は、好ましくは、775℃以上850℃以下である。
なお、歪取り焼鈍を実施する焼鈍時間は、上記焼鈍温度に応じて適宜設定すればよいが、例えば、10分〜180分とすることができる。焼鈍時間が10分未満である場合には、十分に歪を解放することが出来ないことがある。一方、焼鈍時間が180分を超える場合には、焼鈍時間が長くなりすぎて、生産性を低下させてしまう可能性が高い。焼鈍時間は、より好ましくは、30分〜150分である。なお、かかる焼鈍時間は、歪取り焼鈍の設定温度における保持時間を指す。
また、歪取り焼鈍における500℃以上750℃以下の温度域での加熱速度は、10℃/h〜300℃/hとすることが好ましい。加熱速度を0℃/h〜300℃/hとすることで、磁気特性だけでなく、コアの形状の確保などを含めたステータコアの諸特性を更に良好なものとすることが可能となるからであり、加熱速度を300℃/hを超えて上げたとしても、諸特性の向上効果が飽和するからである。歪取り焼鈍における500℃以上750℃以下の温度域での加熱速度は、より好ましくは、80℃/h〜150℃/hである。
また、750℃以下500℃以上の温度域での冷却速度は50℃/h〜500℃/hとすることが好ましい。冷却速度を50℃/h〜500℃/hとすることで、モータコアの諸特性を更に良好なものとすることが可能となるからであり、冷却速度を500℃/hを超えたものとしても、冷却ムラが生じることで逆に熱応力による歪が導入され易くなってしまい、鉄損の劣化が生じてしまう可能性がある。歪取り焼鈍における750℃以下500℃以上の温度域での冷却速度は、より好ましくは、80℃/h〜200℃/hである。
上記のような各工程を経ることで、モータコアを製造することができる。
以上、図6を参照しながら、本実施形態に係るモータコアの製造方法について、簡単に説明した。
以下では、実施例及び比較例を示しながら、本発明に係る無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法について、具体的に説明する。なお、以下に示す実施例は、あくまでも本発明に係る無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法のあくまでも一例であって、本発明に係る無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法が下記の例に限定されるものではない。
(実施例1)
以下の表1に示す成分組成のスラブを実験室で作成し、1150℃に加熱した後、仕上温度850℃、仕上板厚1.6mmとなるように熱間圧延を施し、650℃で巻取って熱延板とした。表面のスケールについては、熱間圧延の巻取り前の冷却以降から熱延板焼鈍までスケール除去工程を経ずに、雰囲気露点10℃の窒素雰囲気にて1000℃×50秒の熱延板焼鈍を施し、塩酸で酸洗した。この際に、酸洗時の塩酸の酸濃度、温度、時間を変更することで、以下の表2に示すような種々のAl(x≦5μm)/Al(x=10μm)値をとるような酸洗板を作成した。これらの酸洗板は、冷間圧延により板厚0.20mmの冷延板とした。更に、水素20%窒素80%露点0℃の混合雰囲気にて、表2に示すような仕上焼鈍条件で焼鈍した後、リン酸アルミニウムと粒径0.2μのアクリル−スチレン共重合体樹脂エマルジョンからなる絶縁被膜を所定付着量となるよう塗布し、大気中350℃で焼付けて、無方向性電磁鋼板とした。なお、熱延板焼鈍時における800℃〜500℃までの温度域での冷却速度を、40℃/秒とし、仕上焼鈍時における950℃以下700℃以上の温度域での加熱速度、及び、900℃以下500℃以上の温度域での冷却速度を、それぞれ、100℃/秒、及び、30℃/秒とした。得られた試料のそれぞれに対して、以下に示す調査を行い、得られた結果を、表2にあわせて示した。
また、ステータコアの製造を模擬し、表2に示したNo.1〜No.50の無方向性電磁鋼板について、一部は露点−40℃の99.99%窒素雰囲気で700℃、750℃、800℃、850℃、900℃、950℃到達後、2時間均熱する歪取り焼鈍を施した。得られた試料のそれぞれに対して、以下に示す磁気特性及び被膜密着性に関する調査を行い、得られた結果を、以下の表3に示した。
<強度(歪取り焼鈍前)>
JISZ2241にしたがって、降伏応力を求めた。得られた降伏応力について、以下のように評価した。降伏応力が450MPa以上であれば、ロータコアとして好ましく使用が可能である。
○:降伏応力450MPa以上
×:降伏応力450MPa未満
<磁気特性(歪取り焼鈍前・後)>
単板磁気特性試験機にて、励磁周波数400Hz、磁束密度1.0T(以下W10/400)を測定した。鉄損値は、励磁方向を圧延方向と平行(L方向)としたときに測定される値と、圧延方向に対して90°方向(C方向)としたときに測定される値と、の平均値とした。ここで、歪取り焼鈍後の鉄損値W10/400≦12.0となるものを、磁気特性に優れるものと評価した。
<平均結晶粒径(歪取り焼鈍前・後)>
得られた各試料を断面研磨後、ナイタール腐食させ、線分法により平均結晶粒径を求めた。
<歪取り焼鈍後の被膜密着性>
歪取り焼鈍後、試料をφ30mmの丸棒に巻きつけ、巻きつけた部分の外側の被膜の残存状況を、目視により以下のように判断した。評価○となった試料を、歪取焼鈍後の被膜密着性に優れるものと判断した。
○:剥離面積率20%以下
△:剥離面積率20%超50%以下
×:剥離面積率50%超
<脱Al層(歪取り焼鈍前)>
20%水酸化ナトリウム水溶液に対して試料を浸漬して表面の絶縁被膜を除去した後に、GDSにて表層から10μm深さの領域のAl濃度分布を調べ、式(101)及び式(103)の数値を求めた。
<絶縁被膜付着量(歪取り焼鈍前)>
20%水酸化ナトリウム水溶液に対して試料を浸漬し、表面の絶縁被膜を除去前後の質量差と試料の面積とから求めた。
<絶縁被膜中に含まれるFe2価及びFe3価の含有量(歪取り焼鈍前)>
20%水酸化ナトリウム水溶液に試料を浸漬し、得られた水溶液についてICP分析を行い、含まれるFe量を定量し、面積あたりのFe付着量に換算した。アルカリ水溶液に鋼板からFeが溶出せず、かつ、専らアルカリ水溶液にて溶解されるのは、無方向性電磁鋼板の絶縁被膜のみである。そのため、ICP分析にて定量されたFe量は、金属Fe(0価のFe)が含まれないことは明らかである。また、Feは、2価及び3価の価数で大気中で安定であるため、上記のFe付着量は、2価及び3価のFeの合計付着量であると言い換えることができる。
また、絶縁被膜中に含まれるFeが2価あるいは3価であることを直接的に確認する方法の一例としては、以下に示す方法が挙げられる。まず、一定面積の絶縁被膜を有する無方向性電磁鋼板の試料を、5%臭素メタノール溶液に浸漬し、溶液に鋼板を溶解させ、溶解しない絶縁被膜を浮き上がらせ、これを捕集する。これら捕集した被膜について以下に示すメスバウワー分光法を用い、Fe3+及びFe2+の等の各価数(0価含む)のFeの存在比を求めることができる。
具体的には、以下の方法を行う。
捕集した被膜をろ紙の表面に展開し、試料片作成する。線源として57Co/Rhマトリックスを用い、線源から取り出したγ線を試料展開面に照射し、試料展開面の裏面から放出されるγ線の強度を測定し、純鉄に対するドップラーシフトを求め、Fe3+及びFe2+の存在を、それぞれ同定することができる。
以下に示す実施例では、Fe3+及びFe2+の存在以外のFeの状態を示す結果は認められなかったので、上記の20%水酸化ナトリウム水溶液を用いて分析定量したFe付着量は、すべてFe3+及びFe2+によるものであることが改めて確認された。
Figure 2018021242
Figure 2018021242
Figure 2018021242
No.1及びNo.2の試料は、表2から明らかなように、式(101)で規定される表面Al濃度が低いため、表3に示したように歪取り焼鈍後の磁気特性(鉄損)が劣化した。これは、表面Al濃度の低下に伴い、高周波鉄損で重要となる渦電流損が劣化したためと考えられる。
No.3及びNo.6の試料は、表2から明らかなように、式(101)で規定される表面Al濃度が高く、かつ、結晶粒径が50μmを超える大きさとなっているため、強度が低くなっている。また、表3から明らかなように、No.3及びNo.6の試料は、絶縁被膜の密着性も優れた値を示さず、鉄損と強度の双方を共に向上させることができなかった。No.16〜No.21の試料は、表2から明らかなように、式(101)で規定される表面Al濃度が高く、かつ、絶縁被膜中のFe2価及びFe3価の含有量が低くなっているために、かかる試料を歪取り焼鈍することで、表3に示したように絶縁被膜の密着性が優れた値を示さなかった。
No.25及びNo.29の試料は、表2から明らかなように、無方向性電磁鋼板としては本発明例に該当しており、ロータコアとして使用可能な強度が実現されている。しかしながら、表3から明らかなように、歪取り焼鈍時において焼鈍温度が高すぎたために、絶縁被膜の密着性が劣化し、また、優れた磁気特性も示さなかった。これは、歪取り焼鈍時の焼鈍温度が高すぎたために、再結晶組織が粒成長しすぎて、ヒステリシス損が上昇したためと考えられる。
No.30及びNo.31の試料は、表2から明らかなように、絶縁被膜の付着量が少なく、かつ、絶縁被膜中のFe2価及び3価の含有量が低くなっている。そのため、表3に示したように、適切な条件で歪取り焼鈍を行っても、絶縁被膜の密着性が劣化し、また、優れた磁気特性も示さなかった。
No.36の試料は、表2から明らかなように、絶縁被膜中のFe2価及びFe3価の合計含有量が高すぎたために、適切な条件で歪取り焼鈍を行っても、表3に示したように絶縁被膜の密着性が劣化した。
一方、本発明例に該当する無方向性電磁鋼板では、ロータコアとして使用可能な強度が実現されているとともに、適切な条件で歪取り焼鈍を行うことで、ステータコアとしても、優れた磁気特性及び絶縁被膜の密着性を示していることがわかる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
10 無方向性電磁鋼板
11 地鉄
13 絶縁被膜
101 母材部
103 脱Al層

Claims (13)

  1. 質量%で、
    C:0.0010%〜0.0050%
    Si:2.5%〜4.0%
    Al:0.1%〜2.0%
    Mn:0.05%〜2.0%
    P:0.005%〜0.15%
    S:0.0001%〜0.0030%
    Ti:0.0005〜0.0030%
    N:0.0010〜0.0030%
    を含有し、残部がFe及び不純物からなり、地鉄の板厚が0.10mm以上0.35mm以下であり、地鉄中の平均結晶粒径が50μm以下であり、かつ、地鉄表面からの深さ方向でのAl濃度について、以下の式(1)に示す関係式を満足する鋼板と、
    前記鋼板の表面に位置する絶縁被膜と、
    を備え、
    前記絶縁被膜の付着量が、400mg/m以上1200mg/m以下であり、
    前記絶縁被膜中の2価及び3価のFeの含有量が、10mg/m以上250mg/m以下である、無方向性電磁鋼板。

    0.1≦Al(x≦2μm)/Al(x=10μm)<1.0 ・・・(1)

    ここで、上記式(1)において、
    x:地鉄表面からの深さ[μm]
    Al(x≦2μm):地鉄表面から深さ2μmまでのAl濃度の平均値
    Al(x=10μm):深さ10μmの位置でのAl濃度
    を表す。
  2. 残部のFeの一部に換えて、更に、Sn又はSbの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、請求項1に記載の無方向性電磁鋼板。
  3. 残部のFeの一部に換えて、更に、Ni、Cu又はCrの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、請求項1又は2に記載の無方向性電磁鋼板。
  4. 残部のFeの一部に換えて、更に、0.0005質量%以上0.0025質量%以下のCa、又は、0.0005質量%以上0.0050質量%以下のREMの少なくとも何れかを含有する、請求項1〜3の何れか1項に記載の無方向性電磁鋼板。
  5. 所定の化学成分を有する鋼塊に対して、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍を順に実施することで、無方向性電磁鋼板を製造する方法であって、
    前記鋼塊は、質量%で、
    C:0.0010%〜0.0050%
    Si:2.5%〜4.0%
    Al:0.1%〜2.0%
    Mn:0.05%〜2.0%
    P:0.005%〜0.15%
    S:0.0001%〜0.0030%
    Ti:0.0005〜0.0030%
    N:0.0010〜0.0030%
    を含有し、残部がFe及び不純物からなり、
    前記熱間圧延後にスケールを除去しないままで、焼鈍雰囲気中の露点を−40℃以上60℃以下とし、焼鈍温度を900℃以上1100℃以下とし、かつ、均熱時間を1秒以上300秒以下とした前記熱延板焼鈍を実施し、
    前記酸洗により、酸洗板における地鉄表面からの深さ方向でのAl濃度について、以下の式(2)に示す関係式を満足するように酸洗減量を制御しつつ、内部酸化層を含むスケール層を除去し、
    前記冷間圧延により、地鉄の最終板厚を0.10mm以上0.35mm以下とし、
    前記仕上焼鈍において、仕上焼鈍温度を950℃以下とし、
    前記仕上焼鈍後に、前記地鉄の表面に対し、付着量が400mg/m以上1200mg/m以下となるように絶縁被膜を形成する、無方向性電磁鋼板の製造方法。

    0.1≦Al(x≦5μm)/Al(x=10μm)<1.0 ・・・(1)

    ここで、上記式(2)において、
    x:地鉄表面からの深さ[μm]
    Al(x≦5μm):地鉄表面から深さ2μmまでのAl濃度の平均値
    Al(x=10μm):深さ10μmの位置でのAl濃度
    を表す。
  6. 前記仕上焼鈍後の地鉄の平均結晶粒径が、50μm以下であり、
    前記絶縁被膜中の2価及び3価のFeの含有量が、10mg/m以上250mg/m以下である、請求項5に記載の無方向性電磁鋼板の製造方法。
  7. 前記鋼塊は、残部のFeの一部に換えて、更に、Sn又はSbの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、請求項5又は6に記載の無方向性電磁鋼板の製造方法。
  8. 前記鋼塊は、残部のFeの一部に換えて、更に、Ni、Cu又はCrの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、請求項5〜7の何れか1項に記載の無方向性電磁鋼板の製造方法。
  9. 前記鋼塊は、残部のFeの一部に換えて、0.0005質量%以上0.0025質量%以下のCa、又は、0.0005質量%以上0.0050質量%以下のREMの少なくとも何れかを含有する、請求項5〜8の何れか1項に記載の無方向性電磁鋼板の製造方法。
  10. 質量%で、
    C:0.0010%〜0.0050%
    Si:2.5%〜4.0%
    Al:0.1%〜2.0%
    Mn:0.05%〜2.0%
    P:0.005%〜0.15%
    S:0.0001%〜0.0030%
    Ti:0.0005〜0.0030%
    N:0.0010〜0.0030%
    を含有し、残部がFe及び不純物からなり、地鉄の板厚が0.10mm以上0.35mm以下であり、地鉄中の平均結晶粒径が50μm以下であり、かつ、地鉄表面からの深さ方向でのAl濃度について、以下の式(1)に示す関係式を満足する鋼板と、前記鋼板の表面に位置する絶縁被膜と、を備え、前記絶縁被膜の付着量が、400mg/m以上1200mg/m以下であり、かつ、前記絶縁被膜中の2価及び3価のFeの含有量が、10mg/m以上250mg/m以下である無方向性電磁鋼板を、
    コア形状に打ち抜いて積層した後、70体積%以上窒素を含有した雰囲気中で、750℃以上900℃以下の温度で歪取り焼鈍を実施する、モータコアの製造方法。

    0.1≦Al(x≦2μm)/Al(x=10μm)<1.0 ・・・(1)

    ここで、上記式(1)において、
    x:地鉄表面からの深さ[μm]
    Al(x≦2μm):地鉄表面から深さ2μmまでのAl濃度の平均値
    Al(x=10μm):深さ10μmの位置でのAl濃度
    を表す。
  11. 前記無方向性電磁鋼板は、残部のFeの一部に換えて、更に、Sn又はSbの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、請求項10に記載のモータコアの製造方法。
  12. 前記無方向性電磁鋼板は、残部のFeの一部に換えて、更に、Ni、Cu又はCrの少なくとも何れかを、それぞれ0.01質量%以上0.2質量%以下含有する、請求項10又は11に記載のモータコアの製造方法。
  13. 前記無方向性電磁鋼板は、残部のFeの一部に換えて、更に、0.0005質量%以上0.0025質量%以下のCa、又は、0.0005質量%以上0.0050質量%以下のREMの少なくとも何れかを含有する、請求項10〜12の何れか1項に記載のモータコアの製造方法。

JP2016154207A 2016-08-05 2016-08-05 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法 Active JP6794705B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016154207A JP6794705B2 (ja) 2016-08-05 2016-08-05 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154207A JP6794705B2 (ja) 2016-08-05 2016-08-05 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法

Publications (2)

Publication Number Publication Date
JP2018021242A true JP2018021242A (ja) 2018-02-08
JP6794705B2 JP6794705B2 (ja) 2020-12-02

Family

ID=61166118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154207A Active JP6794705B2 (ja) 2016-08-05 2016-08-05 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法

Country Status (1)

Country Link
JP (1) JP6794705B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179871A1 (ja) * 2017-03-30 2018-10-04 Jfeスチール株式会社 無方向性電磁鋼板の製造方法、モータコアの製造方法およびモータコア
WO2019182022A1 (ja) * 2018-03-23 2019-09-26 日本製鉄株式会社 無方向性電磁鋼板
KR20200009321A (ko) * 2018-07-18 2020-01-30 주식회사 포스코 무방향성 전기강판 및 그 제조방법
WO2020067624A1 (ko) * 2018-09-27 2020-04-02 주식회사 포스코 무방향성 전기강판 및 그 제조방법
WO2020166718A1 (ja) * 2019-02-14 2020-08-20 日本製鉄株式会社 無方向性電磁鋼板
WO2020262063A1 (ja) * 2019-06-28 2020-12-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
WO2021117325A1 (ja) * 2019-12-09 2021-06-17 Jfeスチール株式会社 無方向性電磁鋼板とモータコアならびにそれらの製造方法
CN113302320A (zh) * 2019-01-16 2021-08-24 日本制铁株式会社 方向性电磁钢板及其制造方法
RU2764738C1 (ru) * 2021-02-25 2022-01-20 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства высокопрочной электротехнической изотропной стали в виде холоднокатаной полосы
JP2022509675A (ja) * 2018-11-30 2022-01-21 ポスコ 磁性に優れる無方向性電磁鋼板およびその製造方法
EP3904551A4 (en) * 2018-12-27 2022-04-06 JFE Steel Corporation NON-ORIENTED ELECTRICAL STEEL SHEET AND PRODUCTION METHOD THEREOF
US11404189B2 (en) 2017-05-31 2022-08-02 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
WO2022210530A1 (ja) 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
JP2022545027A (ja) * 2019-08-26 2022-10-24 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa級無方向性電磁鋼板及びその製造方法
US11525169B2 (en) 2018-10-31 2022-12-13 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183310A (ja) * 1996-12-20 1998-07-14 Kawasaki Steel Corp 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板
JPH1192890A (ja) * 1997-09-22 1999-04-06 Nkk Corp 鉄損の低い無方向性電磁鋼板及びその製造方法
JPH11234971A (ja) * 1998-02-10 1999-08-27 Hiromichi Koshiishi コアの製造方法および低鉄損コア
JP2003293100A (ja) * 2002-04-02 2003-10-15 Jfe Steel Kk 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板
WO2009072394A1 (ja) * 2007-12-03 2009-06-11 Nippon Steel Corporation 高周波鉄損の低い無方向性電磁鋼板及びその製造方法
WO2015079633A1 (ja) * 2013-11-28 2015-06-04 Jfeスチール株式会社 絶縁被膜付き電磁鋼板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183310A (ja) * 1996-12-20 1998-07-14 Kawasaki Steel Corp 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板
JPH1192890A (ja) * 1997-09-22 1999-04-06 Nkk Corp 鉄損の低い無方向性電磁鋼板及びその製造方法
JPH11234971A (ja) * 1998-02-10 1999-08-27 Hiromichi Koshiishi コアの製造方法および低鉄損コア
JP2003293100A (ja) * 2002-04-02 2003-10-15 Jfe Steel Kk 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板
WO2009072394A1 (ja) * 2007-12-03 2009-06-11 Nippon Steel Corporation 高周波鉄損の低い無方向性電磁鋼板及びその製造方法
WO2015079633A1 (ja) * 2013-11-28 2015-06-04 Jfeスチール株式会社 絶縁被膜付き電磁鋼板

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11136645B2 (en) 2017-03-30 2021-10-05 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
WO2018179871A1 (ja) * 2017-03-30 2018-10-04 Jfeスチール株式会社 無方向性電磁鋼板の製造方法、モータコアの製造方法およびモータコア
US11404189B2 (en) 2017-05-31 2022-08-02 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
KR102501748B1 (ko) * 2018-03-23 2023-02-21 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
WO2019182022A1 (ja) * 2018-03-23 2019-09-26 日本製鉄株式会社 無方向性電磁鋼板
US11421297B2 (en) 2018-03-23 2022-08-23 Nippon Steel Corporation Non-oriented electrical steel sheet
JP6628016B1 (ja) * 2018-03-23 2020-01-08 日本製鉄株式会社 無方向性電磁鋼板
KR20200116990A (ko) * 2018-03-23 2020-10-13 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
CN111819301A (zh) * 2018-03-23 2020-10-23 日本制铁株式会社 无取向电磁钢板
CN111819301B (zh) * 2018-03-23 2022-03-22 日本制铁株式会社 无取向电磁钢板
KR20200009321A (ko) * 2018-07-18 2020-01-30 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102106409B1 (ko) * 2018-07-18 2020-05-04 주식회사 포스코 무방향성 전기강판 및 그 제조방법
WO2020067624A1 (ko) * 2018-09-27 2020-04-02 주식회사 포스코 무방향성 전기강판 및 그 제조방법
US20220033940A1 (en) * 2018-09-27 2022-02-03 Posco Non-grain oriented electrical steel and method for manufacturing same
CN113195769A (zh) * 2018-09-27 2021-07-30 Posco公司 无取向电工钢板及其制造方法
JP7350063B2 (ja) 2018-09-27 2023-09-25 ポスコ カンパニー リミテッド 無方向性電磁鋼板およびその製造方法
JP2022501513A (ja) * 2018-09-27 2022-01-06 ポスコPosco 無方向性電磁鋼板およびその製造方法
US11718891B2 (en) 2018-10-31 2023-08-08 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
US11525169B2 (en) 2018-10-31 2022-12-13 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
JP2022509675A (ja) * 2018-11-30 2022-01-21 ポスコ 磁性に優れる無方向性電磁鋼板およびその製造方法
JP7253054B2 (ja) 2018-11-30 2023-04-05 ポスコ カンパニー リミテッド 磁性に優れる無方向性電磁鋼板およびその製造方法
EP3904551A4 (en) * 2018-12-27 2022-04-06 JFE Steel Corporation NON-ORIENTED ELECTRICAL STEEL SHEET AND PRODUCTION METHOD THEREOF
CN113302320A (zh) * 2019-01-16 2021-08-24 日本制铁株式会社 方向性电磁钢板及其制造方法
JPWO2020166718A1 (ja) * 2019-02-14 2021-10-21 日本製鉄株式会社 無方向性電磁鋼板
JP7180700B2 (ja) 2019-02-14 2022-11-30 日本製鉄株式会社 無方向性電磁鋼板
WO2020166718A1 (ja) * 2019-02-14 2020-08-20 日本製鉄株式会社 無方向性電磁鋼板
WO2020262063A1 (ja) * 2019-06-28 2020-12-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
US11962184B2 (en) 2019-06-28 2024-04-16 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
JP7054074B2 (ja) 2019-06-28 2022-04-13 Jfeスチール株式会社 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
CN114008224A (zh) * 2019-06-28 2022-02-01 杰富意钢铁株式会社 无方向性电磁钢板的制造方法和马达铁芯的制造方法以及马达铁芯
JPWO2020262063A1 (ja) * 2019-06-28 2021-09-13 Jfeスチール株式会社 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
JP2022545027A (ja) * 2019-08-26 2022-10-24 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa級無方向性電磁鋼板及びその製造方法
JP7462737B2 (ja) 2019-08-26 2024-04-05 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa級無方向性電磁鋼板及びその製造方法
JPWO2021117325A1 (ja) * 2019-12-09 2021-06-17
JP7310880B2 (ja) 2019-12-09 2023-07-19 Jfeスチール株式会社 無方向性電磁鋼板とモータコアならびにそれらの製造方法
WO2021117325A1 (ja) * 2019-12-09 2021-06-17 Jfeスチール株式会社 無方向性電磁鋼板とモータコアならびにそれらの製造方法
RU2764738C1 (ru) * 2021-02-25 2022-01-20 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства высокопрочной электротехнической изотропной стали в виде холоднокатаной полосы
KR20230134148A (ko) 2021-03-31 2023-09-20 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법
WO2022210530A1 (ja) 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法

Also Published As

Publication number Publication date
JP6794705B2 (ja) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6794705B2 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
JP6690714B2 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
US11279985B2 (en) Non-oriented electrical steel sheet
JP6794704B2 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
JP2018141206A (ja) 電磁鋼板、及びその製造方法
JP6880814B2 (ja) 電磁鋼板、及びその製造方法
JP7143900B2 (ja) 無方向性電磁鋼板
JP2018066033A (ja) 無方向性電磁鋼板
JP7173286B2 (ja) 無方向性電磁鋼板
KR102555134B1 (ko) 방향성 전자 강판 및 그의 제조 방법
TWI688658B (zh) 無方向性電磁鋼板
WO2022211004A1 (ja) 無方向性電磁鋼板およびその製造方法
JP7477748B2 (ja) 無方向性電磁鋼板および熱延鋼板
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
JP7001210B1 (ja) 無方向性電磁鋼板およびその製造方法
JP2019178374A (ja) 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
WO2023149269A1 (ja) 無方向性電磁鋼板およびその製造方法
CN114729415B (zh) 无取向电钢板及其制造方法
WO2023204267A1 (ja) 方向性電磁鋼板およびその製造方法
WO2023176865A1 (ja) 無方向性電磁鋼板およびモータコアならびにそれらの製造方法
WO2023176866A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2022176933A1 (ja) 無方向性電磁鋼板およびその製造方法
KR20240076824A (ko) 무방향성 전자 강판, 철심 및 모터 코어, 그리고 철심 및 모터 코어의 제조 방법
JP2019167567A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6794705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151