JP2017225297A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2017225297A
JP2017225297A JP2016120649A JP2016120649A JP2017225297A JP 2017225297 A JP2017225297 A JP 2017225297A JP 2016120649 A JP2016120649 A JP 2016120649A JP 2016120649 A JP2016120649 A JP 2016120649A JP 2017225297 A JP2017225297 A JP 2017225297A
Authority
JP
Japan
Prior art keywords
value
limit value
lower limit
duty
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016120649A
Other languages
English (en)
Other versions
JP6699385B2 (ja
Inventor
崇志 鈴木
Takashi Suzuki
崇志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016120649A priority Critical patent/JP6699385B2/ja
Priority to DE102017209886.4A priority patent/DE102017209886B4/de
Priority to US15/624,561 priority patent/US10116235B2/en
Publication of JP2017225297A publication Critical patent/JP2017225297A/ja
Application granted granted Critical
Publication of JP6699385B2 publication Critical patent/JP6699385B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/61Arrangements of controllers for electric machines, e.g. inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel

Abstract

【課題】制御の切り替えに伴う音や振動の発生を低減可能である電力変換装置を提供する。
【解決手段】変調処理部463は、最も小さい入力デューティDu2、Dv2、Dw2である最小デューティminDutyが、第1下限値DL1または第2下限値DL2である下側固定値Lfixとなるように中性点電圧を下側にシフトする下シフト処理を行う。第1下限値DL1から第2下限値DL2への切り替えに係る第1判定値TH1と、第2下限値DL2から第1下限値DL1への切り替えに係る第2判定値TH2とは、異なる値である。変調処理部463は、入力デューティDu2、D2、Dw2の差に基づき、第1下限値DL1または第2下限値DL2を選択する。これにより、下側固定値Lfixの切り替え前後でのハンチングを防ぐことができるので、ハンチングによる音や振動の発生を抑制することができる。
【選択図】 図5

Description

本発明は、電力変換装置に関する。
従来、電圧利用率を向上すべく、変調処理を行う電力変換装置が知られている。例えば特許文献1では、デッドタイムの影響により、線間電圧に歪みが生じるデューティを回避するために、2相変調と3相変調とを切り替えている。
特開2012−125022号公報
特許文献1のように2相変調と3相変調とを切り替えながら駆動する場合、切り替えの前後でハンチングが生じ、音や振動が発生する虞がある。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、制御の切り替えに伴う音や振動の発生を低減可能である電力変換装置を提供することにある。
本発明の電力変換装置は、3相の巻線組(81)を備える回転電機(80)の電力を変換するものであって、インバータ部(10)と、制御部(40)と、を備える。
インバータ部は、巻線組の各相に対応して設けられる複数のスイッチング素子(11〜16)を有する。
制御部は、PWM制御によりスイッチング素子のオンオフ作動を制御することで、巻線組の電流を制御するものであって、変調処理部(463)を有する。変調処理部は、下シフト処理、または、上シフト処理である変調処理を行う。下シフト処理では、最も小さい相電圧指令値が第1下限値または第2下限値である下側固定値となるように中性点電圧を低電圧側にシフトする。上シフト処理では、最も大きい相の相電圧指令値が第1上限値または第2上限値である上側固定値となるように中性点電圧を高電圧側にシフトする。
ここで、第1下限値または第1上限値を第1固定値、第2下限値または第2上限値を第2固定値とする。変調処理における第1固定値から第2固定値への切り替えに係る第1判定値と、第2固定値から第1固定値への切り替えに係る第2判定値とは、異なる値である。
変調処理部は、下シフト処理または上シフト処理において、相電圧指令値の差に基づき、第1固定値または第2固定値を選択する。
本発明では、相電圧指令値の差に基づき、第1固定値または第2固定値を選択しているので、全ての相のデューティが、デッドタイムの影響により線間電圧に歪みが生じるデューティである回避デューティとならないようにすることができる。これにより、線間電圧の歪みを低減することができる。また、第1判定値と第2判定値とを異なる値とすることで、固定値の切り替え前後でのハンチングを防ぐことができる。これにより、ハンチングの発生による音や振動の発生を抑制することができる。
本発明の第1実施形態によるステアリングシステムを示す概略構成図である。 本発明の第1実施形態による電力変換装置を示す回路図である。 本発明の第1実施形態による制御部を示すブロック図である。 本発明の第1実施形態によるデューティ演算部を示すブロック図である。 本発明の第1実施形態による変調処理を説明するフローチャートである。 本発明の第1実施形態による低回転時のデューティを示す波形図である。 本発明の第1実施形態による高回転時のデューティを示す波形図である。 本発明の第2実施形態による変調処理を説明するフローチャートである。
以下、本発明による電力変換装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
本発明の第1実施形態を図1〜図7に示す。
図1に示すように、電力変換装置1は、回転電機としてのモータ80とともに、運転者によるステアリング操作を補助する電動パワーステアリング装置8に適用される。
図1は、電動パワーステアリング装置8を備えるステアリングシステム90の構成を示す。ステアリングシステム90は、操舵部材であるステアリングホイール91、ステアリングシャフト92、ピニオンギア96、ラック軸97、車輪98、および、電動パワーステアリング装置8等を備える。
ステアリングホイール91は、ステアリングシャフト92と接続される。ステアリングシャフト92には、運転者がステアリングホイール91を操作することにより入力される操舵トルクTsを検出するトルクセンサ94が設けられる。
ステアリングシャフト92の先端には、ピニオンギア96が設けられる。ピニオンギア96は、ラック軸97に噛み合っている。ラック軸97の両端には、タイロッド等を介して一対の車輪98が連結される。
運転者がステアリングホイール91を回転させると、ステアリングホイール91に接続されたステアリングシャフト92が回転する。ステアリングシャフト92の回転運動は、ピニオンギア96によってラック軸97の直線運動に変換される。一対の車輪98は、ラック軸97の変位量に応じた角度に操舵される。
電動パワーステアリング装置8は、モータ80、モータ80の回転を減速してステアリングシャフト92に伝える減速ギア89、および、電力変換装置1等を備える。すなわち、本実施形態の電動パワーステアリング装置8は、所謂「コラムアシストタイプ」であるが、モータ80の回転をラック軸97に伝える所謂「ラックアシストタイプ」としてもよい。
モータ80は、運転者によるステアリングホイール91の操舵を補助する補助トルクを出力するものであって、電源としてのバッテリ105(図2参照)から電力が供給されることにより駆動され、減速ギア89を正逆回転させる。モータ80は、3相ブラシレスモータであって、いずれも図示しないロータおよびステータを有する。
図2に示すように、モータ80は、3相の巻線組81を備える。巻線組81は、U相コイル811、V相コイル812、および、W相コイル813を有し、ステータに巻回される。
電力変換装置1は、インバータ部10、電流検出部20、および、制御部40等を備える。
インバータ部10は、6つのスイッチング素子11〜16を有し、巻線組81への電力を変換する。以下、スイッチング素子を「SW素子」と記す。SW素子11〜16は、MOSFETであるが、IGBTやサイリスタ等であってもよい。
SW素子11〜13は高電位側に接続され、SW素子14〜16は低電位側に接続される。対になるU相のSW素子11、14の接続点には、U相コイル811の一端が接続される。対になるV相のSW素子12、15の接続点には、V相コイル812の一端が接続される。対になるW相のSW素子13、16の接続点には、W相コイル813の一端が接続される。コイル811〜813の他端は、結線される。
高電位側に配置されるSW素子11〜13のドレインは、上側母線17を経由して、バッテリ105の正極と接続される。低電位側に配置されるSW素子14〜16のソースは、下側母線18を経由してグランドと接続される。以下適宜、高電位側に接続されるSW素子11〜13を「上アーム素子」、低電位側に配置されるSW素子14〜16を「下アーム素子」という。
電流検出部20は、U相電流検出素子21、V相電流検出素子22、および、W相電流検出素子23を有し、インバータ部10の低電位側に設けられる。詳細には、U相電流検出素子21はU相の下アーム素子14と下側母線18との間に設けられ、V相電流検出素子22はV相の下アーム素子15と下側母線18との間に設けられ、W相の電流検出素子23はW相の下アーム素子16と下側母線18との間に設けられる。
本実施形態の電流検出素子21〜23は、いずれもシャント抵抗である。電流検出素子21〜23の両端電圧は、それぞれ、相電流Iu、Iv、Iwに係る検出値として、増幅回路24を経由して制御部40に出力される。また、相電流Iu、Iv、Iwの検出値は、AD変換回路25にてデジタル信号に変換される。
位置センサ28は、モータ80の回転位置として、電気角θeを検出し、検出値を制御部40に出力する。
コンデンサ31およびコイル32は、バッテリ105とインバータ部10との間に配置され、パワーフィルタを構成している。パワーフィルタを設けることで、バッテリ105を共有する他の装置から伝わるノイズが低減されるとともに、インバータ部10側からバッテリ105を共有する他の装置へ伝わるノイズが低減される。
コンデンサ31は、コイル32のインバータ部10側にて、上側母線17および下側母線18に接続される。コンデンサ31は、電荷を蓄えることで、インバータ部10への電力供給を補助したり、サージ電流などのノイズ成分を抑制したりする。コンデンサ31の電圧であるコンデンサ電圧Vcは、図示しないコンデンサ電圧検出部により検出され、検出値が制御部40に出力される。
また、上側母線17のバッテリ105とコンデンサ31との間には、バッテリ105からインバータ部10側への電力供給を遮断可能である図示しない電源リレーが設けられる。
制御部40は、マイコン等を主体として構成される。制御部40における各処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
制御部40は、電流検出部20から取得される相電流Iu、Iv、Iw、位置センサ28から取得される電気角θe、および、トルクセンサ94から取得される操舵トルクTs等に基づき、SW素子11〜16のオンオフ作動を制御する駆動信号を生成する。生成された駆動信号は、駆動回路35を経由して、SW素子11〜16のゲートに出力される。
図3に示すように、制御部40は、機能ブロックとして、3相2相変換部41、減算器42、43、制御器44、2相3相変換部45、デューティ演算部46、デューティ更新部47、および、信号生成部48等を有する。
3相2相変換部41は、相電流Iu、Iv、Iwを電気角θeに基づいてdq変換し、d軸電流検出値Idおよびq軸電流検出値Iqを演算する。
d軸減算器42は、d軸電流指令値Id*からd軸電流検出値Idを減算し、d軸電流偏差ΔIdを演算する。q軸減算器43は、q軸電流指令値Iq*からq軸電流検出値Iqを減算し、q軸電流偏差ΔIqを演算する。
制御器44は、電流偏差ΔId、ΔIqが0に収束するように、PI演算等により、d軸電圧指令値Vd*およびq軸電圧指令値Vq*を演算する。
2相3相変換部45は、電気角θeに基づき、d軸電圧指令値Vd*およびq軸電圧指令値Vq*を逆dq変換し、U相電圧指令値Vu*、V相電圧指令値Vv*、および、W相電圧指令値Vw*を演算する。
デューティ演算部46は、U相電圧指令値Vu*、V相電圧指令値Vv*、および、W相電圧指令値Vw*に基づき、デューティ指令値Du*、Dv*、Dw*を演算する。デューティ指令値Du*、Dv*、Dw*の演算の詳細は、後述する。
デューティ更新部47は、デューティ演算部46にて演算されたデューティ指令値Du*、Dv*、Dw*を設定、更新する。
信号生成部48は、デューティ指令値Du*、Dv*、Dw*と三角波等のキャリア信号であるPWM信号とを比較し、SW素子11〜16のオンオフを切り替える駆動信号であるU_MOS_H、U_MOS_L、V_MOS_H、V_MOS_L、W_MOS_H、W_MOS_Lを駆動回路35に出力する。U_MOS_Hが出力されると、SW素子11がオン、SW素子14がオフされ、U_MOS_Lが出力されると、SW素子11がオフ、SW素子14がオンされる。V_MOS_Hが出力されると、SW素子12がオン、SW素子15がオフされ、V_MOS_Lが出力されると、SW素子12がオフ、SW素子15がオンされる。W_MOS_Hが出力されると、SW素子13がオン、SW素子16がオフされ、W_MOS_Lが出力されると、SW素子13がオフ、SW素子16がオンされる。
本実施形態では、対になるSW素子11とSW素子14、SW素子12とSW素子15、SW素子13とSW素子16が同時にオンされることによる短絡を防ぐべく、対になるSW素子11とSW素子14、SW素子12とSW素子15、SW素子13とSW素子16が、共にオフとなるデッドタイム期間を設けている。デッドタイム期間は、有効パルス幅やその他要因等を考慮し、適宜設定可能である。本実施形態では、デューティ指令値Du*、Dv*、Dw*が0%〜100%であるものとし、デッドタイムに相当するデューティを4%として説明する。以下、デッドタイムに相当するデューティを単に「デッドタイム」という。また図中、適宜、デッドタイムを「DT」と記載する。
図4に示すように、デューティ演算部46は、デューティ換算部461、デッドタイム補償部462、変調処理部463、デッドタイム調整部464、および、擬似デューティ演算部465を有する。
デューティ換算部461では、電圧指令値Vu*、Vv*、Vw*をデューティに換算し、デューティ換算値Du1、Dv1、Dw1を演算する。
デッドタイム補償部462では、デッドタイムの影響により、コイル811〜813に印加される電圧が変化する変化量を打ち消すように、デッドタイム補償量Ddtに基づいてデューティ換算値Du1、Dv1、Dw1を補正する。
詳細には、デッドタイム補償部462は、U相電流Iuが正のとき、デューティ換算値Du1にデッドタイム補償量Ddtを加算し、U相電流Iuが負のとき、デューティ換算値Du1からデッドタイム補償量Ddtを減算する。デッドタイム補償部462は、V相電流Ivが正のとき、デューティ換算値Dv1にデッドタイム補償量Ddtを加算し、V相電流Ivが負のとき、デューティ換算値Dv1からデッドタイム補償量Ddtを減算する。デッドタイム補償部462は、W相電流Iwが正のとき、デューティ換算値Dw1にデッドタイム補償量Ddtを加算し、W相電流Iwが負のとき、デューティ換算値Dw1からデッドタイム補償量Ddtを減算する。
電流方向は、コイル811〜813に流れ込む方向を正、流れ出す方向を負とする。
デッドタイム補償がなされ、変調処理部463に入力されるデューティを、入力デューティDu2、Dv2、Dw2とする。
変調処理部463では、入力デューティDu2、Dv2、Dw2を変調し、出力デューティDu3、Dv3、Dw3を演算する。本実施形態では、最も小さい相のデューティが下側固定値Lfixとなるように変調することで、中性点電圧が低電圧側にシフトされる下シフト処理が行われる。本実施形態では、下シフト処理が「変調処理」に対応する。変調処理により、相電圧の平均値である中性点電圧が変更され、電圧利用率を向上可能である。なお、中性点電圧が変わっても、線間電圧が変わらなければ、巻線組81に印加される電圧は変わらない。以下、最も小さい相のデューティが下側固定値Lfixとなるように変調することを、「下べた変調」とする。
変調処理部463は、下側固定値Lfixを、第1下限値DL1とするか、第2下限値DL2とするかを、入力デューティDu2、Dv2、Dw2の差に基づいて切り替える。本実施形態では、第1下限値DL1を0%とする。また、第2下限値DL2は、デッドタイムに応じて設定される値であって、本実施形態では4%とする。
ところで、デッドタイムの影響により、線間電圧に歪みが生じるデューティが存在する。線間電圧に歪みが生じるデューティを回避デューティDaとする。本実施形態では、デッドタイムが4%であるので、下べた変調時の回避デューティの範囲は、0<Da<4である。なお、デューティ0%は、上アーム素子11〜13をオフ、下アーム素子14〜16をオンすることで出力可能であるので、回避デューティDaから除外する。
ここで、最も小さい相のデューティを最小デューティMinDuty、真ん中の相のデューティを中間デューティMidDuty、最も大きい相のデューティを最大デューティMaxDutyとする。中間デューティMidDutyから最小デューティMinDutyを減算した値である減算値diff1が、0<diff1<4の場合、最も小さい相のデューティが第1下限値DL1となるように下べた変調すると、真ん中の相のデューティが回避デューティDaとなり、線間電圧に歪みが生じる。そのため本実施形態では、全ての相のデューティが回避デューティDaとならないように、減算値diff1に応じて、下側固定値Lfixを切り替えている。
また、下側固定値Lfixを、第1下限値DL1から第2下限値DL2に切り替える場合と、第2下限値DL2から第1下限値DL1に切り替える場合とで、同一の判定値を用いると、切り替えの前後でハンチングが生じる虞があり、ハンチングが生じると音や振動の原因となる。
そこで本実施形態では、下べた変調処理における下側固定値Lfixを、第1下限値DL1から第2下限値DL2に切り替える場合の判定値と、第2下限値DL2から第1下限値DL1に切り替える場合の判定値とを異なる値とし、ヒステリシスを持たせることで、下側固定値Lfixの切り替えに伴うハンチングを防止している。
本実施形態における変調処理を図5に示すフローチャートに基づいて説明する。変調処理は、変調処理部463にて行われる処理である。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップについても同様である。
最初のS101では、変調処理部463は、入力デューティDu2、Dv2、Dw2のうち、最も小さいものを最小デューティMinDuty、2番目に小さいものを中間デューティMidDuty、最も大きいものを最大デューティMaxDutyに設定する。
S102では、変調処理部463は、現在の下側固定値Lfixが第1下限値DL1か否かを判断する。現在の下側固定値Lfixが第1下限値DL1ではない、すなわち第2下限値DL2であると判断された場合(S102:NO)、S105へ移行する。現在の下側固定値Lfixが第1下限値DL1であると判断された場合(S102:YES)、S103へ移行する。
S103では、変調処理部463は、減算値diff1が第1判定値TH1より小さいか否かを判断する。第1判定値TH1は、デッドタイムに応じた値であって、本実施形態では4%に設定される。減算値diff1が第1判定値TH1以上であると判断された場合(S103:NO)、下側固定値Lfixを第1下限値DL1から変更せず、S107へ移行する。減算値diff1が第1判定値TH1より小さいと判断された場合(S103:YES)、S104へ移行する。
S104では、変調処理部463は、下側固定値Lfixを第2下限値DL2に変更する。
現在の下側固定値Lfixが第2下限値DL2である場合(S102:NO)に移行するS105では、変調処理部463は、減算値diff1が第2判定値TH2より大きいか否かを判断する。第2判定値TH2は、第1判定値TH1より大きい所定値(例えば8%)に設定される。減算値diff1が第2判定値TH2以下であると判断された場合(S105:NO)、下側固定値Lfixを第2下限値DL2から変更せず、S107へ移行する。減算値diff1が第2判定値TH2より大きいと判断された場合(S105:YES)、S106へ移行する。
S106では、変調処理部463は、下側固定値Lfixを第1下限値DL1に変更する。
S107では、変調処理部463は、最も小さい相のデューティが下側固定値Lfixとなるように、下べた変調処理を行い、出力デューティDu3、Dv3、Dw3を演算する。出力デューティDu3、Dv3、Dw3は、式(1)〜(3)で演算される。演算された出力デューティDu3、Dv3、Dw3は、デッドタイム調整部464に出力される。
Du3=Du2−MinDuty+Lfix ・・・(1)
Dv3=Dv2−MinDuty+Lfix ・・・(2)
Dw3=Dw2−MinDuty+Lfix ・・・(3)
変調処理を図6および図7に基づいて説明する。図6および図7は、一定通電にてモータ80を一定回転させた場合の例であって、図6が低回転時、図7が高回転時である。また、図6および図7において、(a)が入力デューティDu2、Dv2、Dw2、(b)が出力デューティDu3、Dv3、Dw3を示している。また、図6(c)は、図6(b)の区間C1を拡大した図であり、図7(c)は、図7(b)の区間C2を拡大した図である。図6および図7では、横軸を電気角、縦軸をデューティまたは減算値diff1とし、図6(b)、(c)、および、図7(c)は、縦方向に拡大している。なお、上述の通り、本実施形態では、第1下限値DL1=0%であるが、煩雑になることを避けるため、図6(b)、(c)および図7(b)、(c)では、横軸を0よりも下側にずらして記載している。また、説明を簡略化するため、図6および図7では、デッドタイムが0での波形を示す。なお、デッドタイムが0でない場合、相電流の方向に応じてデッドタイム補償量Ddtの加減算が切り替わることによるデューティの増減があるものの、下側固定値Lfixの切り替えに係る箇所の波形は、デッドタイムが0である場合と同様である。
図6および図7に示すように、本実施形態では、下側固定値Lfixを切り替えることで、全ての相のデューティが回避デューティDaとならないようにしている。図6および図7では、下側固定値Lfixが第1下限値DL1である期間を期間P1、第2下限値DL2である期間を期間P2としている。
本実施形態では、減算値diff1が第1判定値TH1より小さくなったタイミング、すなわち図6中のθ11、θ13、θ15および図7中のθ21、θ23、θ25にて、下側固定値Lfixを第1下限値DL1から第2下限値DL2に切り替えている。ここで、第2下限値DL2と第1下限値DL1との切り替えを、同一の判定値にて行った場合、電気角θeや振幅の変動等により、下側固定値Lfixが頻繁に切り替わるハンチングが生じる虞がある。そこで本実施形態では、下側固定値Lfixが第2下限値DL2に切り替わった場合、減算値diff1が第2判定値TH2を超えるまでの間、下側固定値Lfixが第2下限値DL2での下べた変調処理を継続する。
また、減算値diff1が第2判定値TH2より大きくなったタイミング、すなわち図6中のθ12、θ14、θ16および図7中のθ22、θ24、θ26にて、下側固定値Lfixを第2下限値DL2から第1下限値DL1に切り替えている。そして、下側固定値Lfixが第1下限値DL1に切り替わった場合、減算値diff1が第1判定値TH1より小さくなるまでの間、下側固定値Lfixが第1下限値DL1での下べた変調処理を継続する。
これにより、下側固定値Lfixの切り替えに伴うハンチングを防止することができるので、ハンチングにより生じる音や振動の発生を抑制することができる。
図4に戻り、デッドタイム調整部464は、下側固定値Lfixが第1下限値DL1のとき、すなわち最も小さい相のデューティが0%となるように下べた変調されているとき、デッドタイム補償部462にて予め補正されているデッドタイム補償量Ddtを調整する調整処理を行い、調整後デューティDu4、Dv4、Dw4を演算する。また、デッドタイム調整部464は、下側固定値Lfixが第2下限値DL2の場合、調整処理は行わず、出力デューティDu3、Dv3、Dw3を、そのまま調整後デューティDu4、Dv4、Dw4とする。
ここでは、出力デューティDu3が第1下限値DL1=0%に下べた変調されている場合を例に説明する。U相のデューティが0%の場合、SW素子11がオフ、SW素子14がオンの状態が継続されるため、デッドタイムの影響を受けない。そのため、デッドタイム補償部462で予め補正されているデッドタイム補償量Ddt分の調整を行う。本実施形態では、最も小さい相であるU相の出力デューティDu3を調整することに替えて、V相およびW相の出力デューティDv3、Dw3を調整することで、調整処理を行う。
U相電流Iuが負のときには、U相の出力デューティDu3にはデッドタイム補償量Ddtが減算されているので、出力デューティDu3にデッドタイム補償量Ddtを加算することに替えて、出力デューティDv3、Dw3からデッドタイム補償量Ddtを減算する(式(4)〜(6)参照)。また、式(7)、(8)に示すように、出力デューティDv3、Dw3からデッドタイム補償量Ddtを減算することで、線間電圧としては、出力デューティDu3にデッドタイム補償量Ddtを加算したのと同じ効果を得ることができる。
Du4=Du3 ・・・(4)
Dv4=Dv3−Ddt ・・・(5)
Dw4=Dw3−Ddt ・・・(6)
Du4−Dv4=(Du3+Ddt)−Dv3 ・・・(7)
Du4−DW4=(Du3+Ddt)−Dw3 ・・・(8)
また、U相電流Iuが正のときには、U相の出力デューティDu3にはデッドタイム補償量Ddtが加算されているので、出力デューティDu3からデッドタイム補償量Ddtを減算することに替えて、出力デューティDv3、Dw3にデッドタイム補償量Ddtを加算する(式(9)〜(11)参照)。また、式(12)、(13)に示すように、出力デューティDv3、Dw3にデッドタイム補償量Ddtを加算することで、線間電圧として、出力デューティDu3からデッドタイム補償量Ddtを減算したのと同じ効果を得ることができる。
Du4=Du3 ・・・(9)
Dv4=Dv3+Ddt ・・・(10)
Dw4=Dw3+Ddt ・・・(11)
Du4−Dv4=(Du3−Ddt)−Dv3 ・・・(12)
Du4−Dw4=(Du3−Ddt)−Dw3 ・・・(13)
最も小さい相のデューティが出力デューティDv3=0の場合、出力デューティDu3、Dw3を調整し、最も小さい相のデューティが出力デューティDw3=0の場合、出力デューティDu3、Dv3を調整する。調整方法の詳細は、最も小さい相のデューティが出力デューティDu3である場合と同様である。
擬似デューティ演算部465は、デューティ指令値Du*、Dv*、Dw*を演算する。
3相2相変換部41における処理からデッドタイム調整部464までの処理を「制御演算処理」とすると、当該制御演算処理を行うには、所定の時間を要する。ここで、例えば、制御演算処理の演算頻度と同様の頻度でデューティ更新を行うと、音が発生する場合等、制御演算処理よりも高い頻度でのデューティ更新が所望されることがある。そこで、擬似デューティ演算部465では、所望の頻度でのデューティ更新が可能となるように、擬似デューティ演算処理を行う。例えば、特開2012−125022のように、前回演算値と今回演算値とを線形補間することで、中間値を演算可能である。制御演算処理での演算値に加え、中間値を用いることで、制御演算処理に要する時間によらず、所望の頻度でのデューティ更新が可能となる。擬似デューティ演算部465は、デッドタイム調整部464にて演算された調整後デューティDu4、Dv4、Dw4に加え、擬似デューティ演算部465にて演算された中間値を、デューティ指令値Du*、Dv*、Dw*として、デューティ更新部47に出力する(図3参照)。
以上説明したように、本実施形態の電力変換装置1は、巻線組81を備えるモータ80の電力を変換するものであって、インバータ部10と、制御部40と、を備える。
インバータ部10は、巻線組81の各相に対応して設けられる複数のスイッチング素子11〜16を有する。
制御部40は、PWM制御によってSW素子11〜16のオンオフ作動を制御することで巻線組81の電流を制御するものであって、変調処理部463を有する。変調処理部463は、最も小さい入力デューティDu2、Dv2、Dw2である最小デューティminDutyが、第1下限値DL1または第2下限値DL2である下側固定値Lfixとなるように中性点電圧を低電圧側にシフトする下シフト処理を行う。
本実施形態では、下シフト処理における第1下限値DL1から第2下限値DL2への切り替えに係る第1判定値TH1と、第2下限値DL2から第1下限値DL1への切り替えに係る第2判定値TH2とは、異なる値である。
変調処理部463は、入力デューティDu2、D2、Dw2の差に基づき、第1下限値DL1または第2下限値DL2を選択する。
本実施形態では、入力デューティDu2、D2、Dw2の差に基づき、下側固定値Lfixを第1下限値DL1とするか、第2下限値DL2とするかを選択しているので、全ての相のデューティが回避デューティDaとならないようにすることができる。これにより、線間電圧の歪みを低減することができる。また、第1判定値TH1と第2判定値TH2とを異なる値とすることで、下側固定値Lfixの切り替え前後でのハンチングを防ぐことができる。これにより、ハンチングの発生による音や振動の発生を抑制することができる。特に、本実施形態のようにデッドタイム補償処理等、細かな補償処理を行っている場合、デューティの変動等が生じやすいが、第1判定値TH1と第2判定値TH2を異なる値とすることで、下側固定値Lfixの切り替えを適切に行うことができる。
変調処理部463は、下シフト処理を行う場合、2番目に小さい入力デューティである中間デューティmidDutyと、最も小さい入力デューティである最小デューティminDutyとの差に基づき、下側固定値Lfixとする第1下限値DL1または第2下限値DL2を選択する。これにより、第1下限値DL1または第2下限値DL2を適切に選択することができる。
第2下限値DL2は、第1下限値DL1より大きい値である。第2判定値TH2は、第1判定値TH1より大きい値である。
変調処理部463は、2番目に小さい入力デューティである中間デューティmidDutyから最も小さい入力デューティである最小デューティminDutyを減算した減算値diff1が第1判定値TH1より小さい場合、下側固定値Lfixを第1下限値DL1から第2下限値DL2に切り替える。また、変調処理部463は、減算値diff1が第2判定値TH2より大きい場合、下側固定値Lfixを第2下限値DL2から第1下限値DL1に切り替える。
これにより、下側固定値Lfixの切り替え前後におけるハンチングの発生を適切に防ぐことができる。
電力変換装置1は、インバータ部10の低電位側に設けられる電流検出部20を備える。詳細には、電流検出部20の電流検出素子21〜23は、下アーム素子14〜16と下側母線18との間に設けられる。これにより、相電流Iu、Iv、Iwを適切に検出することができる。
本実施形態では、電流検出部20の電流検出素子21〜23は、シャント抵抗であるので、下アーム素子14〜16は、シャント抵抗での発熱により、上アーム素子11〜13より温度上昇しやすい。本実施形態では、変調処理部463における変調処理を下べた変調とすることで、変調処理を行わない場合、或いは、後述の上べた変調を行う場合と比較し、下アーム素子14〜16がオンされる期間が短くなる。これにより、素子間での発熱の偏りが低減される。
本実施形態では、入力デューティDu2、Dv2、Dw2が「相電圧指令値」に対応する。また、第1下限値DL1が「第1固定値」に対応し、第2下限値DL2が「第2固定値」に対応する。
(第2実施形態)
本発明の第2実施形態を図8に示す。
本実施形態は、変調処理部463における処理が第1実施形態と異なっているので、この点を中心に説明する。
本実施形態では、変調処理部463は、最も大きい相のデューティが上側固定値Hfixとなるように変調することで、中性点電圧が高電圧側にシフトされる上シフト処理が行われる。本実施形態では、上シフト処理が「変調処理」に対応する。以下、最も大きい相のデューティが上側固定値Hfixとなるように変調することを、「上べた変調」とする。
変調処理部463は、上側固定値Hfixを、第1上限値DH1とするか、第2上限値DH2とするかを、入力デューティDu2、Dv2、Dw2の差に基づいて切り替える。本実施形態では、第1上限値DH1を100%とする。また、第2上限値DH2は、デッドタイムに応じて設定される値である。本実施形態では、上記実施形態と同様、デッドタイムを4%とすると、第2上限値DH2は、96(=100−4)%とする。
また、上べた変調時の回避デューティDaは、96<Da<100である。なお、デューティ100%は、上アーム素子11〜13をオン、下アーム素子14〜16をオフすることで出力可能であるので、回避デューティDaから除外する。
ここで、最大デューティMaxDutyから中間デューティMidDutyを減算した値を減算値diff2とすると、0<diff2<4の場合、最も大きい相のデューティが第1上限値DH1となるように上べた変調すると、真ん中の相のデューティが回避デューティDaとなり、線間電圧に歪みが生じる。そのため、全ての相のデューティが回避デューティDaとならないように、減算値diff2に応じて、上側固定値Hfixを切り替えている。
また、上側固定値Hfixを、第1上限値DH1から第2上限値DH2に切り替える場合と、第2上限値DH2から第1上限値DH1に切り替える場合とで、同一の判定値を用いると、切り替え前後でハンチングが生じる虞があり、ハンチングが生じると音や振動の原因となる。
そこで本実施形態では、上べた変調処理における上側固定値Hfixを、第1上限値DH1から第2上限値DH2に切り替える場合と、第2上限値DH2と第1上限値DH1に切り替える場合の判定値とを異なる値とし、ヒステリシスを持たせることで、上側固定値Hfixの切り替えに伴うハンチングを防止している。
本実施形態における変調処理を図8に示すフローチャートに基づいて説明する。変調処理は、変調処理部463にて行われる処理である。
最初のS201は、図5中のS101と同様である。
S202は、変調処理部463は、現在の上側固定値Hfixが第1上限値DH1か否かを判断する。現在の上側固定値Hfixが第1上限値DH1ではない、すなわち第2上限値DH2であると判断された場合(S202:NO)、S205へ移行する。現在の上側固定値Hfixが第1上限値DH1であると判断された場合(S202:YES)、S203へ移行する。
S203では、変調処理部463は、減算値diff2が第1判定値TH1より小さいか否かを判断する。第1判定値TH1は、上記実施形態と同様、デッドタイムに応じた値であって、本実施形態では4%に設定される。減算値diff2が第1判定値TH1以上であると判断された場合(S203:NO)、上側固定値Hfixを第1上限値DH1から変更せず、S207へ移行する。減算値diff2が第1判定値TH1より小さいと判断された場合(S203:YES)、S204へ移行する。
S204では、変調処理部463は、上側固定値Hfixを第2上限値DH2に変更する。
現在の上側固定値Hfixが第2上限値DH2である場合(S202:NO)に移行するS205では、変調処理部463は、減算値diff2が第2判定値TH2より大きいか否かを判断する。第2判定値TH2は、第1判定値TH1より大きい所定値(例えば8%)に設定される。減算値diff2が第2判定値TH2以下であると判断された場合(S205:NO)、上側固定値Hfixを第2上限値DH2から変更せず、S207へ移行する。減算値diff2が第2判定値TH2より大きいと判断された場合(S205:YES)、S206へ移行する。
S206では、変調処理部463は、上側固定値Hfixを第1上限値DH1に変更する。
S207の処理は、図5中のS107と同様である。
本実施形態では、変調処理部463は、最も大きい入力デューティDu2、Dv2、Dw2である最大デューティMaxDutyが第1上限値DH1または第2上限値DH2である上側固定値Hfixとなるよう中性点電圧を高電圧側にシフトする上シフト処理を行う。
本実施形態では、上シフト処理における第1上限値DH1から第2上限値DH2への切り替えに係る第1判定値TH1と、第2上限値DH2から第1上限値DH1への切り替えに係る第2判定値TH2とを異なる値である。
変調処理部463は、入力デューティDu2、D2、Dw2の差に基づき、第1上限値DH1または第2上限値DH2を選択する。
これにより、上記実施形態と同様の効果を奏する。
本実施形態では、入力デューティDu2、Dv2、Dw2が「相電圧指令値」に対応する。また、第1上限値DH1が「第1固定値」に対応し、第2上限値DH2が「第2固定値」に対応する。
(他の実施形態)
(ア)変調処理部
上記実施形態では、変調処理部は、デューティ変換処理、デッドタイム補償処理、変調処理、デッドタイム調整処理、および、擬似デューティ演算処理を、この順で行う。他の実施形態では、処理順を入れ替えてもよい。また、デッドタイム補償処理、デッドタイム調整処理、および、擬似デューティ演算処理の少なくとも1つを省略してもよい。
上記実施形態では、デッドタイム調整部は、下側固定値が第1下限値である場合、デューティが最も小さい相に替えて、2番目に小さい相および最も大きい相のデューティを調整する。他の実施形態では、デッドタイム調整部は、下側固定値が第1下限値である場合、最も小さい相のデューティを調整してもよい。
上記実施形態では、変調処理部は、相電圧指令値をデューティ換算した値を用いて各処理を行う。他の実施形態では、変調処理部は、デューティ換算前の相電圧指令値そのものを用いて各処理を行ってもよい。すなわち、相電圧指令値は、上記実施形態における入力デューティに限らず、相電圧指令値そのものであってもよいし、相電圧指令値から換算されるデューティ等、どのような値であってもよい。
第1実施形態では、下べた変調時において、変調処理部は、中間デューティと最小デューティとの差に基づいて、第1下限値または第2下限値を選択するとともに、第1下限値または第2下限値の一方から他方への切り替えを判定する。他の実施形態では、下べた変調時において、変調処理部は、中間デューティと最小デューティとの差に替えて、最大デューティと中間デューティとの差、または、最大デューティと最小デューティとの差に基づいて、第1下限値または第2下限値を選択してもよいし、第1下限値または第2下限値の一方から他方への切り替えを判定してもよい。
第2実施形態では、上べた変調時において、変調処理部は、最大デューティと中間デューティとの差に基づいて、第1上限値または第2上限値を選択するとともに、第1上限値または第2上限値の一方から他方への切り替えを判定する。他の実施形態では、上べた変調時において、変調処理部は、最大デューティと中間デューティとの差に替えて、中間デューティと最小デューティとの差、または、最大デューティと最小デューティとの差に基づいて、第1上限値または第2上限値を選択してもよいし、第1上限値または第2上限値の一方から他方への切り替えを判定してもよい。
(イ)電流検出部
上記実施形態では、電流検出部は、インバータ部の低電位側に設けられる。他の実施形態では、電流検出部をインバータ部の高電位側に設けてもよいし、インバータ部と巻線組との間に設けてもよい。上記実施形態では、電流検出素子は、シャント抵抗である。他の実施形態では、電流検出素子は、相電流を検出可能なものであれば、シャント抵抗に限らず、例えばホールIC等、どのようなものを用いてもよい。
(ウ)回転電機
上記実施形態では、回転電機には、1組の巻線組が設けられる。他の実施形態では、回転電機には、複数の巻線組が設けられていてもよい。複数の巻線組が設けられる場合、電力変換装置には、巻線組の数に応じた複数のインバータ部が設けられ、巻線組ごとにインバータ部が設けられるようにしてもよい。また、複数のインバータ部に対応して設けられる巻線組は、1つの回転電機に用いられてもよいし、複数の回転電機に用いられてもよい。
上記実施形態では、回転電機は、3相のブラシレスモータである。他の実施形態では、回転電機は、ブラシレスモータに限らず、どのようなモータとしてもよい。また、回転電機は、モータに限らず、発電機であってもよいし、電動機と発電機の機能を併せ持つ、所謂モータジェネレータであってもよい。
上記実施形態では、回転電機は、電動パワーステアリング装置に適用される。他の実施形態では、電力変換装置を電動パワーステアリング装置以外の装置に適用してもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
1・・・電力変換装置
10・・・インバータ部
11〜16・・・スイッチング素子
20・・・電流検出部
40・・・制御部
463・・・変調処理部
80・・・モータ(回転電機)
81・・・巻線組

Claims (4)

  1. 3相の巻線組(81)を備える回転電機(80)の電力を変換する電力変換装置であって、
    前記巻線組の各相に対応して設けられる複数のスイッチング素子(11〜16)を有するインバータ部(10)と、
    PWM制御により前記スイッチング素子のオンオフ作動を制御することで、前記巻線組の電流を制御するものであって、最も小さい相電圧指令値が第1下限値または第2下限値である下側固定値となるように中性点電圧を低電圧側にシフトする下シフト処理、或いは、最も大きい前記相電圧指令値が第1上限値または第2上限値である上側固定値となるよう前記中性点電圧を高電圧側にシフトする上シフト処理である変調処理を行う変調処理部(463)を有する制御部(40)と、
    を備え、
    前記第1下限値または前記第1上限値を第1固定値とし、前記第2下限値または前記第2上限値を第2固定値とすると、
    前記変調処理における前記第1固定値から前記第2固定値への切り替えに係る第1判定値と、前記第2固定値から前記第1固定値への切り替えに係る第2判定値とは、異なる値であって、
    前記変調処理部は、前記相電圧指令値の差に基づき、前記第1固定値または前記第2固定値を選択する電力変換装置。
  2. 前記変調処理部は、前記下シフト処理を行う場合、2番目に小さい前記相電圧指令値と最も小さい前記相電圧指令値との差に基づき、前記下側固定値とする前記第1下限値または前記第2下限値を選択する請求項1に記載の電力変換装置。
  3. 前記第2下限値は、前記第1下限値より大きい値であり、
    前記第2判定値は、前記第1判定値より大きい値であって、
    前記変調処理部は、
    2番目に小さい前記相電圧指令値から最も小さい前記相電圧指令値を減算した減算値が前記第1判定値より小さい場合、前記下側固定値を前記第1下限値から前記第2下限値に切り替え、
    前記減算値が前記第2判定値より大きい場合、前記下側固定値を前記第2下限値から前記第1下限値に切り替える請求項2に記載の電力変換装置。
  4. 前記インバータ部の低電位側に設けられる電流検出部(20)を備える請求項1〜3のいずれか一項に記載の電力変換装置。
JP2016120649A 2016-06-17 2016-06-17 電力変換装置 Active JP6699385B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016120649A JP6699385B2 (ja) 2016-06-17 2016-06-17 電力変換装置
DE102017209886.4A DE102017209886B4 (de) 2016-06-17 2017-06-12 Leistungsumwandlungs-Vorrichtung
US15/624,561 US10116235B2 (en) 2016-06-17 2017-06-15 Power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120649A JP6699385B2 (ja) 2016-06-17 2016-06-17 電力変換装置

Publications (2)

Publication Number Publication Date
JP2017225297A true JP2017225297A (ja) 2017-12-21
JP6699385B2 JP6699385B2 (ja) 2020-05-27

Family

ID=60481516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120649A Active JP6699385B2 (ja) 2016-06-17 2016-06-17 電力変換装置

Country Status (3)

Country Link
US (1) US10116235B2 (ja)
JP (1) JP6699385B2 (ja)
DE (1) DE102017209886B4 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078108A (ja) * 2018-11-05 2020-05-21 株式会社デンソー 回転電機の制御装置
JP2020089091A (ja) * 2018-11-27 2020-06-04 ニチコン株式会社 インバータ装置、その制御方法及び制御プログラム
CN113258844A (zh) * 2020-02-12 2021-08-13 株式会社丰田自动织机 变换器控制装置及车载用流体机械

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018076680A2 (pt) * 2016-07-20 2019-04-02 Nsk Ltd. dispositivo de direção elétrica
JP6373434B1 (ja) * 2017-03-24 2018-08-15 三菱電機株式会社 交流回転電機の制御装置
JP6963495B2 (ja) * 2017-12-22 2021-11-10 サンデンホールディングス株式会社 電力変換装置
US10793183B2 (en) * 2017-12-22 2020-10-06 Trw Automotive U.S. Llc Torque overlay steering apparatus
DE102018100786A1 (de) * 2018-01-15 2019-07-18 Jungheinrich Aktiengesellschaft Verfahren zur Ansteuerung einer mindestens dreiphasigen elektrischen Maschine
JP7070330B2 (ja) * 2018-10-26 2022-05-18 株式会社デンソー 回転電機の制御装置
CN112994576B (zh) * 2019-12-18 2022-08-16 杭州绿能新能源汽车部件有限公司 一种电机控制方法、系统和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206392A (ja) * 2007-02-20 2008-09-04 Gm Global Technology Operations Inc 電気駆動装置内のpwm電圧ひずみを低減させるための方法および装置
JP2011019378A (ja) * 2009-07-10 2011-01-27 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP4681453B2 (ja) * 2003-09-02 2011-05-11 日本精工株式会社 電動パワーステアリング装置の制御装置
JP2012125022A (ja) * 2010-12-07 2012-06-28 Denso Corp 電力変換装置
JP2015061381A (ja) * 2013-09-18 2015-03-30 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155392A (ja) * 1989-11-10 1991-07-03 Toshiba Corp 電流検出装置
JP3899850B2 (ja) * 2001-06-13 2007-03-28 株式会社豊田自動織機 電源装置
US7288924B2 (en) * 2004-07-16 2007-10-30 Cellex Power Products, Inc. Digital input current control for switch mode power supplies
JP2007236062A (ja) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法並びにディスク駆動装置
JP6623740B2 (ja) 2015-12-17 2019-12-25 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681453B2 (ja) * 2003-09-02 2011-05-11 日本精工株式会社 電動パワーステアリング装置の制御装置
JP2008206392A (ja) * 2007-02-20 2008-09-04 Gm Global Technology Operations Inc 電気駆動装置内のpwm電圧ひずみを低減させるための方法および装置
JP2011019378A (ja) * 2009-07-10 2011-01-27 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2012125022A (ja) * 2010-12-07 2012-06-28 Denso Corp 電力変換装置
JP2015061381A (ja) * 2013-09-18 2015-03-30 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078108A (ja) * 2018-11-05 2020-05-21 株式会社デンソー 回転電機の制御装置
JP7063240B2 (ja) 2018-11-05 2022-05-09 株式会社デンソー 回転電機の制御装置
JP2020089091A (ja) * 2018-11-27 2020-06-04 ニチコン株式会社 インバータ装置、その制御方法及び制御プログラム
JP7154972B2 (ja) 2018-11-27 2022-10-18 ニチコン株式会社 インバータ装置、その制御方法及び制御プログラム
CN113258844A (zh) * 2020-02-12 2021-08-13 株式会社丰田自动织机 变换器控制装置及车载用流体机械
JP2021129354A (ja) * 2020-02-12 2021-09-02 株式会社豊田自動織機 インバータ制御装置及び車載用流体機械
JP7251496B2 (ja) 2020-02-12 2023-04-04 株式会社豊田自動織機 インバータ制御装置及び車載用流体機械
CN113258844B (zh) * 2020-02-12 2023-06-02 株式会社丰田自动织机 变换器控制装置及车载用流体机械

Also Published As

Publication number Publication date
JP6699385B2 (ja) 2020-05-27
DE102017209886B4 (de) 2023-08-03
US10116235B2 (en) 2018-10-30
DE102017209886A1 (de) 2017-12-21
US20170366101A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6699385B2 (ja) 電力変換装置
US10526005B2 (en) Power converter
JP4706324B2 (ja) モータ駆動システムの制御装置
KR101027231B1 (ko) 영구 자석 동기 전동기의 벡터 제어 장치
JP5765589B2 (ja) 電力変換装置
JP5574790B2 (ja) モータ駆動装置
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
WO2010038727A1 (ja) 交流電動機の制御装置および制御方法
JP6260502B2 (ja) モータ制御装置
JP4350077B2 (ja) インバータ装置、モータ装置、伝達比可変装置、および操舵補助装置
US20200130730A1 (en) Motor control unit and electric power steering apparatus equipped with the same
CN111418147B (zh) 马达驱动系统
US9461575B2 (en) Rotary electric machine control apparatus
JP6436005B2 (ja) 回転電機制御装置
JP2018098832A (ja) モータ制御装置、および、これを用いた電動パワーステアリング装置
JP2017112766A (ja) 電力変換装置、および、これを用いた電動パワーステアリング装置
JP4603340B2 (ja) モータ制御装置、および操舵装置
JP2012218498A (ja) 電動パワーステアリング制御装置
JP5412820B2 (ja) 交流電動機の制御装置及び制御方法
JP6400231B2 (ja) 回転電機の制御装置
JP2015126641A (ja) 電動機の制御装置
JP2012249424A (ja) モータ制御装置
JP6015346B2 (ja) 3相交流モータの制御装置及び制御方法
JP5556601B2 (ja) 回転機の制御装置
JP2012095412A (ja) 回転機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250