JP2017206738A - 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置 - Google Patents

粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置 Download PDF

Info

Publication number
JP2017206738A
JP2017206738A JP2016099493A JP2016099493A JP2017206738A JP 2017206738 A JP2017206738 A JP 2017206738A JP 2016099493 A JP2016099493 A JP 2016099493A JP 2016099493 A JP2016099493 A JP 2016099493A JP 2017206738 A JP2017206738 A JP 2017206738A
Authority
JP
Japan
Prior art keywords
particles
powder material
light
metal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016099493A
Other languages
English (en)
Inventor
有由見 米▲崎▼
Yuumi Yonezaki
有由見 米▲崎▼
正浩 松岡
Masahiro Matsuoka
正浩 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2016099493A priority Critical patent/JP2017206738A/ja
Publication of JP2017206738A publication Critical patent/JP2017206738A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】金属材料で構成される粒子であって、レーザーの吸収率を高めることができる、粉末床溶融結合法用の粉末材料を提供すること。【解決手段】本発明に関する、粉末床溶融結合法用の粉末材料は、複数の複合粒子を含む粉末材料であって、前記複合粒子は、金属母粒子と、前記金属母粒子を被覆する膜を形成している光透過性の樹脂と、前記光透過性の樹脂の表面に付着して前記光透過性の樹脂同士を結着させているバインダーとを含む。前記複合粒子の、前記バインダーを介して前記光透過性の樹脂同士が結着した部位における、隣接する前記金属母粒子間の距離の平均値は、0.2μm以上2.0μm以下である。【選択図】 図1

Description

本発明は、粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置に関する。
近年、複雑な形状の立体造形物を比較的容易に製造できる種々の方法が開発されている。こうして製造された立体製造物は、最終製品の形状または性質を確認するための試作品の製造などの用途に用いられる。このとき、最終製品の種類や、試作品で確認したい性質等に応じて、立体造形物を製造するための材料も適宜選択される。たとえば、最終製品が金属製の機械部品などの場合には、試作品の材料として、金属材料が用いられることがある。
金属材料からの立体造形物の製造は、金属材料で構成される粒子を用いた粉末床溶融結合法によって行うことができる。粉末床溶融結合法では、粒子を含む粉末材料を平らに敷き詰めて薄膜を形成し、薄膜上の所望のE位置にレーザーを照射して、上記粒子を選択的に焼結または溶融結合させることで、立体造形物を厚さ方向に微分割した層(以下、単に「造形物層」ともいう。)のひとつを形成する。こうして形成された層の上に、さらに粉末材料を敷き詰め、レーザーを照射して粒子を選択的に焼結または溶融結合させることで、次の造形物層を形成する。この手順を繰り返して、造形物層を積み上げていくことで、所望の形状の立体造形物が製造される。
特許文献1には、上記金属材料で構成される粒子の平均粒子径を数十μm程度にすることが記載されている。特許文献1には、上記粒子の平均粒子径が数十μm程度であると、造形時の粒子の凝集による積層間強度の低下が発生しにくくなり、かつ、造形物の密度が十分に高まると記載されている。
特許文献2には、平均粒子径が小さい(数μm程度)の複数の金属粒子をバインダーによって互いに接着させて、平均粒子径が数十μmの結合粒子とすることが記載されている。特許文献2には、平均粒子径が小さい金属粒子は熱容量が小さく、温度が高まりやすいため、上記結合粒子は、加熱時により溶融および焼結しやすいと記載されている。
特開2014−105373号公報 特開2015−96646号公報
最終製品の製造には、求められる製品の性能に応じて、多様な種類の金属材料が使用可能であることが望ましい。たとえば、熱を吸収および放散する性能が求められる製品を製造するためには、熱伝導率が高い銅を用いることが望ましいし、軽量化が求められる製品を製造するためには、アルミニウムを用いることが望ましい。しかし、粉末床溶融結合法では、銅やアルミニウムのように反射率が高く、レーザーのエネルギーを吸収しにくい材料を用いて造形しようとすると、造形時間が長くなったり、粒子が溶融しなかった部分が造形物中の欠損となって造形物の機械的強度および寸法精度が低下したりすることがある。そのため、反射率が高い金属材料で構成される粒子でも、レーザーのエネルギーをより吸収しやすくして、レーザーの照射による金属粒子の焼結または溶融結合が容易となる技術の開発が求められている。
また、ニッケルや鉄のように反射率が低い金属材料で構成される粒子でも、レーザーのエネルギーをより吸収しやすくすれば、造形時間の短縮化や、造形物の機械的強度および寸法精度の向上が期待される。
ここで、特許文献2によれば、平均粒子径が数μm程度の複数の金属粒子を互いに接着させて平均粒子径が数十μm程度の結合粒子にすれば、加熱時により焼結しやすくなるとされている。しかし、本発明者らの検討によれば、特許文献2に記載の結合粒子でも、レーザーの吸収率を十分に高められているとはいえず、造形時間も十分に短縮できているとは言えない。また、立体造形が普及するにつれて、造形物に求められる機械的強度や精度も高くなっているところ、特許文献2に記載の結合粒子では、これらの要請に適うように、造形物の機械的強度および寸法精度を十分に向上できているとはいい難い。
本発明は、前記課題に鑑みてなされたものであり、金属材料で構成される粒子であって、レーザーの吸収率を高めることができる、粉末床溶融結合法用の粉末材料を提供することをその目的とする。本発明はさらに、そのような粉末材料の製造方法、そのような粉末材料を用いた立体造形物の製造方法、および立体造形物の製造装置を提供することを、その目的とする。
本発明の第一は、以下の粉末材料に関する。
[1]複数の複合粒子を含む粉末材料の薄層にレーザー光を選択的に照射して、前記複数の複合粒子が焼結または溶融結合してなる造形物層を形成し、前記造形物層を積層することによる立体造形物の製造に使用される粉末材料であって、前記複合粒子は、金属母粒子と、前記金属母粒子を被覆する膜を形成している光透過性の樹脂と、前記光透過性の樹脂の表面に付着して前記光透過性の樹脂同士を結着させているバインダーとを含み、前記複合粒子の、前記バインダーを介して前記光透過性の樹脂同士が結着した部位における、隣接する前記金属母粒子間の距離の平均値は、0.2μm以上2.0μm以下である、粉末材料。
[2]前記金属母粒子を被覆する光透過性の樹脂の膜厚の平均値は、0.1μm以上1.0μm以下である、[1]に記載の粉末材料。
[3]前記金属母粒子の粒子径の平均値は、1.0μm以上8.0μm以下である、[1]または[2]に記載の粉末材料。
[4]前記複合粒子の粒子径の平均値は、20μm以上60μm以下である、[1]〜[3]のいずれかに記載の粉末材料。
[5]前記金属母粒子の粒子径の平均値に対する、前記金属母粒子を被覆する光透過性の樹脂の膜厚の平均値の比は、0.100以上0.125以下である、[1]〜[4]のいずれかに記載の粉末材料。
[6]前記複合粒子の円形度の平均値は、0.92以上1.0以下である、[1]〜[5]のいずれかに記載の粉末材料。
[7]前記金属母粒子は、アルミニウム、コバルト、銅、鉄、ニッケルおよびチタンからなる群から選択される少なくとも1種の金属を主成分として含有する、[1]〜[6]のいずれかに記載の粉末材料。
[8]前記光透過性の樹脂は、熱可塑性樹脂である、[1]〜[7]のいずれかに記載の粉末材料。
[9]前記金属母粒子を被覆する光透過性の樹脂の膜は、金属酸化物の微粒子を含む、[1]〜[8]のいずれかに記載の粉末材料。
[10]前記金属母粒子を被覆する光透過性の樹脂の膜は、フラックスを含む、[1]〜[9]のいずれかに記載の粉末材料。
本発明の第二は、以下の粉末材料の製造方法に関する。
[11]金属母粒子と、光透過性の樹脂を含んで前記金属母粒子を被覆する被覆樹脂層と、を有し、前記被覆樹脂層の膜厚は0.1μm以上1.0μm以下である、複数の単位粒子を用意する工程と、バインダーを介して前記単位粒子を互いに接着させて前記複合粒子を作製する工程とを含む、[1]〜[10]のいずれかに記載の粉末材料の製造方法。
[12]前記単位粒子を用意する工程は、メカノケミカル法で前記光透過性の樹脂を前記金属母粒子の表面に固着させて金属母粒子を被覆させる工程である、[11]に記載の製造方法。
[13]前記接着させる工程は、スプレードライ法で前記単位粒子を接着させる工程である、[11]または[12]に記載の製造方法。
本発明の第三は、以下の立体造形物の製造方法に関する。
[14][1]〜[10]のいずれかに記載の粉末材料または[11]〜[13]のいずれかに記載の製造方法で製造された粉末材料の薄層を形成する工程と、前記薄層にレーザー光を選択的に照射して、前記粉末材料に含まれる前記複合粒子が焼結または溶融結合してなる造形物層を形成する工程と、前記薄層を形成する工程と前記造形物層を形成する工程とをこの順に繰り返し、前記造形物層を積層する工程と、を含む立体造形物の製造方法。
本発明の第四は、以下の立体造形装置に関する。
[15]造形ステージと、[1]〜[10]のいずれかに記載の粉末材料の薄膜を前記造形ステージ上に形成する薄膜形成部と、前記薄膜にレーザーを照射して、前記複合粒子が焼結または溶融結合してなる造形物層を形成するレーザー照射部と、前記造形ステージを、その鉛直方向の位置を可変に支持するステージ支持部と、前記薄膜形成部、前記レーザー照射部および前記ステージ支持部を制御して、前記造形物層を繰り返し形成させて積層させる制御部と、を備える、立体造形装置。
本発明によれば、金属材料で構成される粒子であって、レーザーの吸収率を高めることができる、粉末床溶融結合法用の粉末材料、そのような粉末材料の製造方法、そのような粉末材料を用いた立体造形物の製造方法、および立体造形物の製造装置が提供される。
図1Aは本発明の一実施形態における複合粒子の形態を表す模式図である。図1Bは上記本発明の一実施形態における複合粒子を構成する単位粒子の形状を表す模式図である。図1Cは上記本発明の一実施形態における複合粒子の断面の端部を模式的に示す部分断面図である。 図2Aは上記本発明の一実施形態における複合粒子の別の断面の端部を模式的に示す部分断面図である。図2Bは上記本発明の一実施形態における複合粒子のさらに別の断面の端部において、複合粒子の内部に入り込んだレーザーLの光路を示す模式光路図である。 図3は本発明の一実施形態における立体造形装置の構成を概略的に示す側面図である。 図4は本発明の一実施形態における立体造形装置の制御系の主要部を示す図である。
前記の課題を解決すべく、本発明者らは粉末床溶融結合法に用いる粉末材料について鋭意検討を行った。その結果、本発明者らは、複数の金属粒子(以下、単に「金属母粒子」ともいう。)を互いに近接させ、金属母粒子同士の間に、レーザーが透過できる間隔が形成されるように、金属母粒子同士を接着した、平均粒子径が数十μm程度の粒子(以下、単に「複合粒子」ともいう。)とすると、複合粒子がレーザーをより吸収しやすくなることを見出した。
上記概念に基づく、本発明の一実施形態に関する複合粒子100を図1に模式的に示す。図1Aに示すように、複合粒子100は、複数の粒子10が互いに接着してなる(以下、複合粒子100を構成する粒子10を単に「単位粒子10」ともいう。)。また、図1Bに模式的に示すように、単位粒子10は、金属母粒子12と、上記金属母粒子を被覆する膜(以下、単に「被覆樹脂層」ともいう。)を形成する光透過性の樹脂14とを含む。複合粒子100の断面の端部を模式的に示す部分断面図である図1Cに示すように、複合粒子100では、光透過性の樹脂14の表面に付着したバインダー16を介して複数の単位粒子10の被覆樹脂層同士が結着している。なお、複合粒子100において、単位粒子10は明瞭に認識し得る1個の粒子の形状を保持していてもよいし、部分的に隣り合う単位粒子10の被覆樹脂層同士が融合して、複数の単位粒子10が結合していてもよい。本明細書において、被覆樹脂層同士または光透過性の樹脂14同士が結着しているとは、明瞭に認識し得る単位粒子10同士が隙間なく接している態様と、隣り合う単位粒子10の被覆樹脂層同士が融着している態様との、双方を意味する。ただし、本発明者の知見によれば、バインダーを用いずに十分な量の単位粒子10同士を互いに接着させて、十分な大きさの粒子径を有する複合粒子100とすることは、困難である。なお、上記結着は、バインダー16によって互いに接着した2つの単位粒子10同士が、粉末粒子の流動などによって分離しない程度の強さであればよい。
このとき、バインダー16を介して上記光透過性の樹脂14同士が結着した部位における、隣接する上記金属母粒子12間の距離(複合粒子100の別の断面の端部を模式的に示す部分断面図である図2Aに示す距離p)の平均値は、0.2μm以上2.0μm以下である。距離pの平均値を0.2μm以上2.0μm以下とすることで、複合粒子100のさらに別の断面の端部において、複合粒子100の内部に入り込んだレーザーLの光路を示す模式光路図である図2Bに示すように、複合粒子100に照射されたレーザーLは、光透過性の樹脂14を透過して複合粒子100の内部に入り込めるため、複合粒子100の、レーザーを吸収できる表面積が拡大される。また、複合粒子100の内部に入り込んだレーザーLは、金属母粒子12の表面で複数回反射することができるため、複合粒子100は、照射されたレーザーのエネルギーを複数回にわたって吸収できる。これらの作用により、複合粒子100は、特許文献2に記載のような平均粒子径が数μm程度の複数の金属粒子を結合させてなる粒子よりも、レーザーを吸収しやすくなり、焼結または溶融結合しやすくなると考えられる。また、そのため、複合粒子100を用いて粉末床溶融結合法で造形物を製造すれば、造形時間が短縮化され、造形物の機械的強度および寸法精度が向上すると考えられる。なお、複合粒子100の構成および複合粒子100に入射したレーザーの挙動をわかりやすくするため、図2Aおよび図2Bではバインダー16を省略している。
これに対し、特許文献1に記載のような、単一の金属粒子では、粒子の表面積は上記複合粒子ほど大きくなく、また、照射されたレーザーは表面で単回のみ反射される。また、特許文献2に記載のような結合粒子では、金属粒子が光透過性の樹脂を介さずに直接結合しているため、上記結合粒子の表面は金属粒子が隙間なく密着した構造となっている。そのため、上記結合粒子の表面積は特許文献1に記載のような従来の金属粒子とさほど変わらず、また、上記結合粒子に照射されたレーザーは表面で単回のみ反射されて結合粒子内部での複数回の反射が生じない。そのため、特許文献1および特許文献2などに記載の粒子では、複合粒子100と比べて、レーザーの吸収率が低いと考えられる。
以下、本発明の代表的な実施形態を詳細に説明する。
1.粉末材料
本実施形態は、粉末床溶融結合法による立体造形物の製造に使用される粉末材料に係る。上記粉末材料は、上記複合粒子100を含む。上記粉末材料は、レーザーの照射による前記複合粒子100の焼結や溶融結合が十分に生じる範囲において、レーザー吸収剤およびフローエージェントを含む複合粒子100以外の材料をさらに含んでもよい。
1−1.複合粒子100
図1Aは、本実施形態に係る粉末材料が含む、複合粒子100の模式的な形態を表す図である。図1Aに示すように、複合粒子100は、複数の単位粒子10が互いに接着してなる。
図1Bに示すように、単位粒子10は、金属母粒子12と、被覆樹脂層を形成している光透過性の樹脂14とを含む。図1Cに示すように、バインダー16によって上記光透過性の樹脂14同士が結着して複数の単位粒子10が互いに接着して、複合粒子100が形成される。
複合粒子100における、バインダー16を介して光透過性の樹脂14同士が結着した部位における、金属母粒子12間の距離pの平均値は、0.2μm以上2.0μm以下である。距離pの平均値を0.2μm以上とすることで、金属母粒子12の間に十分な間隔を形成して、複合粒子100に照射されたレーザーを容易に複合粒子100の内部に入り込ませることができると考えられる。また、距離pの平均値を2.0μm以下とすることで、造形物中の不純物となり得る光透過性の樹脂14の量を少なくして、造形物の機械的強度および精度を高めることができると考えられる。上記観点からは、距離pの平均値は、0.2μm以上2.0μm以下であることが好ましく、0.4μm以上1.8μm以下であることがより好ましく、0.6μm以上1.6μm以下であることがさらに好ましい。
距離pの平均値は、透過型電子顕微鏡(TEM)で撮像した複合粒子100の断面図において、バインダー16を介して光透過性の樹脂14同士が結着した部位をはさんで対向する金属母粒子12間の距離(図2Aに示す距離p)を任意に20か所測定し、それらの平均値を算出して求めることができる。このとき、任意に選択した20個の複合粒子100について上記距離pの平均値を算出し、これらの平均値を、粉末材料における距離pの平均値とすることが好ましい。なお、上記距離pは、光透過性の樹脂14同士が比較的広範囲にわたって融着している領域を除いて選択することが好ましい。
複合粒子100の粒子径の平均値は、20μm以上60μm以下であることが好ましい。上記粒子径の平均値が20μm以上であると、複合粒子の流動性が高まり、薄層をより短時間で形成することができるため、造形物をより短時間で造形することができると考えられる。上記粒子径の平均値が60μm以下であると、より高精細な立体造形物を製造することが可能となる。上記観点からは、複合粒子100の平均粒子径は、20μm以上50μm以下であることがより好ましく、20μm以上40μm以下であることがさらに好ましい。
複合粒子100の円形度の平均値は、0.92以上1.0以下であることが好ましい。上記円形度が0.92以上であると、複合粒子の流動性が高まり、薄層をより短時間で形成することができるため、造形物をより短時間で造形することができると考えられる。上記観点からは、複合粒子100の円形度は、0.94以上1.0以下であることがより好ましく、0.96以上1.0以下であることが好ましい。
複合粒子100の円形度は、透過型電子顕微鏡(TEM)で撮像した複合粒子100の断面図において、複合粒子100の長径と短径との平均値をその複合粒子100の円相当径として上記円相当径を直径とする円の周囲長を求め、またその複合粒子100の投影像の周囲長を求め、上記円の周囲長を上記投影像の周囲長で除算して、求めることができる。このとき、任意に選択した20個の複合粒子100について上記円形度を算出し、これらの平均値を、粉末材料における円形度の平均値とすることが好ましい。
1−1−1.金属母粒子12
金属母粒子12は、造形しようとする造形物の材料である金属を主成分とする粒子である。
レーザーの吸収率をより高める観点からは、金属母粒子12の粒子径の平均値(b)は、1.0μm以上8.0μm以下であることが好ましい。上記粒子径の平均値(b)が1.0μm以上であると、複合粒子100における金属母粒子12の間の距離pが十分に広くなり、複合粒子100の内部にレーザーがより入り込みやすくなる。上記粒子径の平均値(b)が8.0μm以下であると、複合粒子100の内部に入り込んだレーザーの進行を金属母粒子12が阻害しにくく、複合粒子100のより内部までレーザーを入り込ませることができる。また、金属母粒子12の粒子の平均値径(b)が1.0μm以上8.0μm以下であると、金属母粒子12の熱容量が十分に小さく、金属母粒子12の温度が高まりやすいため、造形時間をより短くすることができる。上記観点からは、金属母粒子12の粒子径の平均値(b)は、1.5μm以上7.0μm以下であることが好ましく、2.0μm以上6.0μm以下であることがより好ましく、2.5μm以上5.0μm以下であることがさらに好ましい。
金属母粒子12の粒子径の平均値(b)は、透過型電子顕微鏡(TEM)で撮像した複合粒子100の断面図において、任意に20個選択した金属母粒子12間の粒子径(長径と短径との平均値)を算出し、それらの平均値を算出して求めることができる。このとき、任意に選択した20個の複合粒子100について上記粒子径の平均値(b)の平均値を算出し、これらの平均値を、粉末材料における粒子径の平均値(b)とすることが好ましい。
金属母粒子12に主成分として含まれる金属材料の例には、アルミニウム、クロム、コバルト、銅、金、鉄、マグネシウム、シリコン、モリブデン、ニッケル、パラジウム、白金、ロジウム、銀、錫、チタン、タングステンおよび亜鉛、ならびにこれらの元素を含む合金が含まれる。前記合金の例には、真鍮、インコネル、モネル、ニクロム、鋼およびステンレスが含まれる。これらのうち、汎用性が高い材料であるという観点から、アルミニウム、コバルト、銅、鉄、ニッケルおよびチタンが好ましい。最終的に得られる造形物の組成を均一にしやすくする観点から、金属母粒子12は、一種類の材料からなることが好ましいが、上記複合粒子100の構成が可能な限りにおいて、二種類の材料を組み合わせて用いてもよい。
これらの金属のうち、波長が1.06μmである光に対する反射率が0.70以上である金属材料を含む金属粒子は、バルク状だとレーザーを吸収しにくく、焼結または溶融結合が生じにくい。しかし、上記複合粒子100の構成にすることで、金属母粒子によるレーザーのエネルギーの吸収率を高めることができる。そのため、これらの金属を含む粒子でも、レーザーの照射による焼結または溶融結合が容易になり、粉末床溶融結合法での立体造形が可能となる。上記効果は、波長が1.06μmである光に対する反射率が0.85以上である金属材料を含む金属粒子においてより顕著にみられ、波長が1.06μmである光に対する反射率が0.90以上である金属材料を含む金属粒子においてさらに顕著にみられる。
波長が1.06μmである光に対する反射率が0.70以上である金属材料の例には、銅、アルミニウムおよびインコネルが含まれる。波長が1.06μmである光に対する反射率が0.85以上である金属材料の例には、銅およびアルミニウムが含まれる。波長が1.06μmである光に対する反射率が0.90以上である金属材料の例には、銅が含まれる。
一方で、金属粒子をより焼結または溶融結合しやすくし、立体造形に必要な時間を短縮する観点からは、波長が1.06μmである光に対する金属材料の反射率は0.65以下であることが好ましく、0.50以下であることがより好ましく、0.20以下であることがさらに好ましい。
波長が1.06μmである光に対する反射率が0.65以下である金属材料の例には、クロム、鉄、鉛、ニッケル、鋼、チタン、タングステンおよび亜鉛が含まれる。波長が1.06μmである光に対する反射率が0.50以下である金属材料の例には、鋼、チタンおよび亜鉛が含まれる。波長が1.06μmである光に対する反射率が0.50以下である金属材料の例には、鋼が含まれる。
金属母粒子12は、ガスアトマイズ法、水アトマイズ法、プラズマアトマイズ法および遠心力アトマイズ法を含む、公知のアトマイズ法で作製することができる。
1−1−2.被覆樹脂層
被覆樹脂層は、光透過性の樹脂14が金属母粒子12を被覆して形成された層である。被覆樹脂層は、金属母粒子12の表面の少なくとも一部を被覆していればよいが、前記金属母粒子12の間の距離pを十分に広くして、複合粒子100の内部にレーザーをより入り込みやすくする観点からは、金属母粒子12の表面の全部を被覆することが好ましい。
光透過性とは、光透過性の樹脂14を厚さ1mmに成形した材料について、分光光度計(日立製作所製、U−4100)を用いて23℃で測定した、波長が1.06μmである光に対する透過率が98%以上であることを意味する。
また、被覆樹脂層によるレーザーの反射を抑制して、複合粒子100の内部にレーザーをより入り込ませやすくする観点からは、光透過性の樹脂14の屈折率は1.65未満であることが好ましい。
上記屈折率は、たとえば、光透過性の樹脂14を厚さ1mmに成形した材料について、屈折計(島津製作所製、カルニュー精密屈折計 KPR−3000)を用いて23℃で測定して得られる、波長587.6nm、486.1 nmおよび656.3nmに対する屈折率から算出したアッベ数νに基づいて算出した値とすることができる。
被覆樹脂層の膜厚の平均値(a)は、0.1μm以上1.0μm以下であることが好ましい。被覆樹脂層の膜厚の平均値(a)を0.1μm以上とすることで、金属母粒子12の間に十分な間隔を形成して、複合粒子100に照射されたレーザーを容易に複合粒子100の内部に入り込ませることができると考えられる。また、被覆樹脂層の膜厚の平均値(a)を1.0μm以下とすることで、造形物中の不純物となり得る光透過性の樹脂14の量を少なくして、造形物の機械的強度および精度をより高めることができると考えられる。上記観点からは、被覆樹脂層の膜厚の平均値(a)は、0.1μm以上1.0μm以下であることが好ましく、0.2μm以上0.9μm以下であることがより好ましく、0.3μm以上0.8μm以下であることがさらに好ましい。
被覆樹脂層の膜厚は、イオンビーム加工等によって複合粒子100を切断し、透過型電子顕微鏡(TEM)で撮像した複合粒子100の断面図において、光透過性の樹脂14同士が広範囲にわたって融着していない、1個の粒子であると明瞭に認識し得る単位粒子10を選択し、上記単位粒子10における4か所の膜厚を測定して、それらの平均値を算出して求めることができる。さらに、任意に選択した20個の単位粒子10について被覆樹脂層の膜厚を算出し、これらの平均値を、その複合粒子における被覆樹脂層の膜厚の平均値(a)とすることができる。また、任意に選択した20個の複合粒子100について被覆樹脂層の膜厚の平均値(a)を算出し、これらの平均値を、粉末材料における被覆樹脂層の膜厚の平均値(a)の平均値とすることが好ましい。
また、前記金属母粒子の粒子径の平均値(b)に対する、被覆樹脂層の膜厚の平均値(a)の比(a/b)は、0.100以上0.125以下であることが好ましい。a/bを0.100以上とすることで、金属母粒子12の間に十分な間隔を形成して、複合粒子100に照射されたレーザーを容易に複合粒子100の内部に入り込ませることができると考えられる。また、a/bを0.125以下とすることで、造形物中の不純物となり得る光透過性の樹脂14の量を少なくして、造形物の機械的強度および精度をより高めることができると考えられる。上記観点からは、a/bは、0.100以上0.125以下であることが好ましく、0.105以上0.125以下であることがより好ましく、0.111μm以上0.125μm以下であることがさらに好ましい。
a/bは、前述した方法で求めた粉末材料全体の被覆樹脂層の膜厚の平均値(a)を、粉末材料全体の金属母粒子の粒子径の平均値(b)で除算して求めることができる。
加熱して単位粒子10を作製することで均一な膜厚を有する被覆樹脂層を形成しやすくして、複合粒子100の内部にレーザーをより入り込みやすくする観点からは、被覆樹脂層を構成する光透過性の樹脂14は熱可塑性樹脂であることが好ましい。熱可塑性である光透過性の樹脂14の例には、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリメチルメタクリレート(PMMA)などのアクリル樹脂、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリエーテルサルフォン(PES)、およびシクロオレフィンポリマー(COP)が含まれる。光透過性の樹脂14は、一種類の材料からなることが好ましいが、上記複合粒子100の構成が可能な限りにおいて、二種類の材料を組み合わせて用いてもよく、このとき、二種類の光透過性の樹脂14によって1つの金属母粒子12が被覆されていてもよいし、互いに異なる種類の光透過性の樹脂14で被覆された複数の金属母粒子12から1つの複合粒子100が構成していてもよいし、互いに異なる種類の光透過性の樹脂14を含む複数の複合粒子100を粉末材料が含んでいてもよい。
また、金属母粒子12の間に十分な間隔を形成して、複合粒子100に照射されたレーザーを容易に複合粒子100の内部に入り込ませ、かつ、造形物中の不純物となり得る光透過性の樹脂14の量を少なくして、造形物の機械的強度および精度をより高める観点からは、光透過性の樹脂14の含有量は、たとえば、100質量部の金属母粒子12に対して、3質量部以上50質量部以下であればよく、4質量部以上40質量部以下であることが好ましく、5質量部以上30質量部以下であることがより好ましい。
被覆樹脂層は、金属酸化物の微粒子を含むことができる。粉末床溶融結合法による造形時に、レーザーを吸収した複合粒子100が発した熱が隣接する複合粒子100に伝導することがある。隣接する複合粒子100に熱が伝導すると、レーザーを吸収した複合粒子100が溶融しにくくなって造形時間が長くなったり、レーザーを照射していない領域の複合粒子100が溶融して造形物の寸法精度が低下したりしやすくなる。金属は熱伝導率が高いため、特に金属材料で構成される粒子を用いた粉末床溶融結合法によって造形物を製造するときに、上記熱の伝導による造形時間の長期化および寸法精度の低下が生じやすい。これに対し、熱伝導率が低い金属酸化物の微粒子を被覆樹脂層が含むと、被覆樹脂層の熱伝導率が低くなるため、造形時間をより短くすることが可能となる。また、熱伝導率が低い金属酸化物の微粒子を被覆樹脂層が含むと、被覆樹脂層の熱伝導率が低くなるため、隣接する複合粒子100への熱の伝導が抑制され、造形物の寸法精度をより高めることも可能となる。金属酸化物の微粒子は、被覆樹脂層の層内または表面のいずれに含まれていてもよいが、被覆樹脂層の内部の熱伝導率を一様に低くして隣接する複合粒子100への熱の伝導をより抑制する観点からは、被覆樹脂層の層内にほぼ均一に分散していることが好ましい。
粉末材料が含有する金属酸化物の微粒子の量は、上記造形物の寸法精度を高める効果が奏され、かつ、光透過性の樹脂14中のレーザーの透過を過剰に阻害しない程度であればよく、たとえば、100質量部の光透過性の樹脂14に対して、0.1質量部以上2.0質量部以下であればよく、0.5質量部以上1.5質量部以下であることが好ましく、0.75質量部以上1.2質量部以下であることがより好ましい。
上記金属酸化物の微粒子を構成する金属酸化物の種類は、金属母粒子12を構成する金属よりも熱伝導率が低い限りにおいて特に限定されない。上記金属酸化物の例には、シリカ、チタニア、アルミナおよびチタン酸ストロンチウムが含まれる。
被覆樹脂層に均一に分散しやすくする観点からは、金属酸化物の微粒子の平均粒子径は、10nm以上300nm以下であることが好ましく、20nm以上200nm以下であることがより好ましく、30nm以上100nm以下であることがさらに好ましい。
また、被覆樹脂層は、フラックスを含むことができる。一般に、金属粒子を含む粉末材料を大気中などで保存すると、金属粒子の表面に酸化膜が形成されやすい。上記酸化膜は表面エネルギーが小さいため、金属粒子表面が上記酸化膜で覆われた状態のままでは、レーザーを照射して溶融状態になっても濡れ広がらず、だまになってしまう。そのため、造形物の密度が低下し、結果として造形物の機械的強度の低下が生じる可能性がある。複合粒子100においても、金属母粒子12を構成する金属が酸化されると、複合粒子100の表面エネルギーが小さくなって、濡れ性が低下する可能性がある。これに対し、フラックスを被覆樹脂層が含むと、レーザー照射時にフラックスが溶融して、上記酸化膜を還元除去するため、複合粒子100の表面エネルギーを大きくして溶融金属の濡れ性を高め、空隙のない高密度の造形物を作製することが可能となり、結果として造形物の機械的強度をより高めることが可能となる。フラックスは、被覆樹脂層の層内または表面のいずれに含まれていてもよいが、造形物の密度の低下を十分に抑制する観点からは、被覆樹脂層の層内にほぼ均一に分散していることが好ましい。
フラックスの含有量は、上記造形物の寸法精度を高める効果が奏され、かつ、光透過性の樹脂14中のレーザーの透過を過剰に阻害しない程度であればよく、たとえば、100質量部の光透過性の樹脂14に対して、0.5質量部以上5.0質量部以下であればよく、0.75質量部以上4.5質量部以下であることが好ましく、1.0質量部以上4.0質量部以下であることがより好ましい。
フラックスは、はんだ付けなどに用いられる公知のフラックスであればよい。フラックスの例には、樹脂系フラックス、有機水溶性フラックスおよび無機フラックスが含まれる。
被覆樹脂層は、上記金属酸化物の微粒子およびフラックスのいずれか一方のみを含んでもよいし、両方を含んでもよい。
1−1−3.バインダー16
バインダー16は、被覆樹脂層の表面に付着して、光透過性の樹脂14同士を結着させる。
バインダー16を構成する材料は、被覆樹脂層を構成する光透過性の樹脂14に対する接着性を有する材料であればよいが、後述するスプレードライ法などの湿式法による複合粒子100の製造を容易にする観点からは、水または溶剤に容易に溶解する樹脂であることが好ましい。バインダー16を構成する材料の例には、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、アクリル樹脂が含まれる。
また、バインダー16によるレーザーの吸収または反射を抑制して、複合粒子100によりレーザーを吸収させやすくする観点からは、バインダー16の、波長が1.06μmである光に対する透過率が98%以上であることが好ましい。同様に、バインダー16の屈折率は1.65未満であることが好ましい。バインダー16の上記透過率および屈折率は、光透過性の樹脂14について前述した方法と同様にして測定することができる。
バインダー16の含有量は、100質量部の金属母粒子12に対して、0.05質量部以上1.0質量部以下であることが好ましい。上記バインダー16の含有量を0.05質量部以上とすることで、単位粒子10同士をより互いに接着させやすくして、複合粒子100の粒子径などを制御しやすくすることができる。上記バインダー16の含有量を1.0質量部以下とすることで、造形物中の不純物となり得るバインダー16の量を少なくして、造形物の機械的強度および精度をより高めることができると考えられる。上記観点からは、バインダー16の含有量は、100質量部の金属母粒子12に対して、0.05質量部以上0.5質量部以下であることがより好ましく、0.07質量部以上0.3質量部以下であることがさらに好ましい。
1−2.その他の材料
1−2−1.レーザー吸収剤
レーザーの光エネルギーをより効率的に熱エネルギーに変換する観点から、粉末材料は、レーザー吸収剤をさらに含んでもよい。レーザー吸収剤は、使用する波長のレーザーを吸収して熱を発する材料であればよい。このようなレーザー吸収剤の例には、カーボン粉末、ナイロン樹脂粉末、顔料および染料が含まれる。これらのレーザー吸収剤は、一種類のみ用いても、二種類を組み合わせて用いてもよい。
レーザー吸収剤の量は、複合粒子の溶融および結合が容易になる範囲で適宜設定することができ、たとえば、粉末材料の全質量に対して、0質量%より多く3質量%未満とすることができる。
1−2−2.フローエージェント
粉末材料の流動性をより向上させ、立体造形物の製造時における粉末材料の取り扱いを容易にする観点から、粉末材料は、フローエージェントをさらに含んでもよい。フローエージェントは、摩擦係数が小さく、自己潤滑性を有する材料であればよい。このようなフローエージェントの例には、二酸化ケイ素および窒化ホウ素が含まれる。これらのフローエージェントは、一種類のみ用いても、二種類を組み合わせて用いてもよい。上記粉末材料は、フローエージェントによって流動性が高まっても、複合粒子が帯電しにくく、薄膜を形成するときに複合粒子をさらに密に充填させることができる。
フローエージェントの量は、粉末材料の流動性がより向上し、かつ、複合粒子の溶融結合が十分に生じる範囲で適宜設定することができ、たとえば、粉末材料の全質量に対して、0.0質量%より多く2.0質量%未満とすることができる。
1−3.粉末材料の製造方法
前記複合粒子100は、そのまま粉末材料として用いることができる。粉末材料が前記その他の材料を含む場合、粉末状にした前記その他の材料と前記複合粒子とを撹拌混合して粉末材料を得ることができる。
複合粒子100は、金属母粒子と、光透過性の樹脂を含んで前記金属母粒子を被覆する被覆樹脂層と、を有し、前記被覆樹脂層の膜厚は0.1μm以上1.0μm以下である、複数の単位粒子10をバインダー16によって互いに接着させて、作製することができる。具体的には、前記粒子は、(1−1)上記単位粒子10を用意する工程と、(1−2)複数の上記単位粒子10をバインダー16によって互いに接着させる工程と、によって作製することができる。
1−3−1.単位粒子10を用意する工程(工程(1−1))
本工程では、上述した金属母粒子12と、上述した光透過性の樹脂14を含んで前記金属母粒子を被覆する被覆樹脂層と、を有し、上記被覆樹脂層の膜厚は0.1μm以上1.0μm以下である、単位粒子10を用意する。単位粒子10は、樹脂で被覆された金属粒子を作製する乾式または湿式の公知の方法によって作製することができる。これらのうち、均一な膜厚を有する被覆樹脂層が形成しやすく、かつ、溶媒除去工程が不必要であり作業工程を簡素化できる観点からは、乾式の方法が好ましく、金属母粒子の球形状を維持しながら、被覆樹脂層を形成できる観点からは、メカノケミカル法がより好ましい。
メカノケミカル法とは、粉砕、摩砕および摩擦などで粒子の表面活性または表面電荷を高めて粒子を化学的に処理する方法である。具体的には、高速撹拌装置内に金属母粒子12および光透過性の樹脂14を投入し撹拌して、せん断力および表面電荷の差などによって、光透過性の樹脂14を金属母粒子12の表面に付着させる。その後、さらに光透過性の樹脂14の融点より5℃程度低い温度に加熱しながら、さらに撹拌することで、光透過性の樹脂14が金属母粒子12の表面に固着して金属母粒子12を被覆する。
光透過性の樹脂14の量は、金属母粒子12の粒子径などにもよるが、光透過性の樹脂14がすべての金属母粒子12を均一に被覆したときの被覆樹脂層の膜厚の平均値(a)が0.1μm以上1.0μm以下となる量であることが好ましく、上述したa/bが0.100以上0.125以下となる量であることがより好ましい。たとえば、光透過性の樹脂14の量は、100質量部の金属母粒子12に対して、3質量部以上50質量部以下であることが好ましく、4質量部以上40質量部以下であることがより好ましく、5質量部以上30質量部以下であることがさらに好ましい。
被覆樹脂層が上述した金属酸化物の微粒子またはフラックスを含むときは、金属酸化物の微粒子またはフラックスを光透過性の樹脂14とともに撹拌混合すればよい。このときの金属酸化物の微粒子の量は、100質量部の光透過性の樹脂14に対して、0.1質量部以上2.0質量部以下であればよく、0.5質量部以上1.5質量部以下であることが好ましく、0.75質量部以上1.2質量部以下であることがより好ましい。また、フラックスの量は、100質量部の光透過性の樹脂14に対して、0.5質量部以上5.0質量部以下であればよく、0.75質量部以上4.5質量部以下であることが好ましく、1.0質量部以上4.0質量部以下であることがより好ましい。
なお、金属母粒子12は、市販のものを購入してもよいし、ガスアトマイズ法、水アトマイズ法、プラズマアトマイズ法および遠心力アトマイズ法を含むアトマイズ法などの公知の方法で作製してもよい。作製した金属母粒子12は、粒子径の平均値(b)が1.0μm以上8.0μm以下であることが好ましい。
また、上述した構成を有する単位粒子10を入手可能なときは、上述の単位粒子10の作製は省略して、入手した単位粒子10を用いてもよい。
1−3−2.複数の単位粒子10をバインダー16によって互いに接着させる工程(工程(1−2))
本工程では、複数の複数の単位粒子10を上述したバインダー16によって互いに接着させる。複数の単位粒子10は、粒子をバインダーによって互いに結着させる乾式または湿式の公知の方法によって互いに接着させることができる。上記結着させる方法の例には、噴霧乾燥(スプレードライ)法、転動造粒法、流動層造粒法、および撹拌造粒法が含まれる。これらのうち、造粒中の加熱による光透過性の樹脂14などの変質を抑制し、濃縮、濾過、粉砕、分級および乾燥などの工程を省略可能にして本工程を容易に行い、かつ、複合粒子100の粒子径および円形度の分布幅を小さくする観点からは、スプレードライ法が好ましい。
スプレードライ法とは、粒子を含む液滴の表面積を増大させながら瞬間的に乾燥および造粒を行う方法である。具体的には、単位粒子10およびバインダー16を溶解または懸濁させた液体を回転するディスクに注ぐか、または回転するノズルから射出して、単位粒子10を含む液滴を噴霧する。同時に、上記噴霧された液滴に熱風を接触させて上記液滴を瞬間的に乾燥させて、単位粒子10が互いに接着してなる複合粒子100を得る。樹脂被覆層を有する金属母粒子を、バインダーを介して接着することにより、接着に伴う樹脂被覆層の厚みの変化を抑制し、隣り合う金属母粒子間の距離を所期の値に保つことができる。
上記バインダーの量は、100質量部の金属母粒子12に対して、0.05質量部以上1.0質量部以下であることが好ましく、0.05質量部以上0.5質量部以下であることがより好ましく、0.07質量部以上0.3質量部以下であることがさらに好ましい。
複合粒子100の粒子径の平均値(b)は、公知の方法によって調整することができる。たとえば、スプレードライ法における回転ディスクやノズルの形状、回転速度などを変更して、所望の粒子径の平均値(b)を有する複合粒子100を得ることができる。
複合粒子100の円形度の平均値も、公知の方法によって調整することができる。たとえば、上記製造した粉末材料をハイブリダイゼーションシステムなどの撹拌装置でさらに撹拌して、所望の円形度の平均値を有する複合粒子100を得ることができる。
2.立体造形物の製造方法
本実施形態は、前記粉末材料を用いた、立体造形物の製造方法に係る。本実施形態に係る方法は、前記粉末材料を用いるほかは、通常の粉末床溶融結合法と同様に行い得る。具体的には、本実施形態に係る方法は、(2−1)前記粉末材料の薄層を形成する工程と、(2−2)形成された薄層にレーザー光を選択的に照射して、前記粉末材料に含まれる複合粒子が焼結または溶融結合してなる造形物層を形成する工程と、(2−3)工程(2−1)および工程(2−2)をこの順に複数回繰り返し、前記造形物層を積層する工程と、を含む。工程(2−2)により、立体造形物を構成する造形物層のひとつが形成され、さらに工程(2−3)で工程(2−1)および工程(2−2)を繰り返し行うことで、立体造形物の次の層が積層されていき、最終的な立体造形物が製造される。
2−1.粉末材料からなる薄層を形成する工程(工程(2−1))
本工程では、前記粉末材料の薄層を形成する。 たとえば、粉末供給部から供給された前記粉末材料を、リコータによって造形ステージ上に平らに敷き詰める。薄層は、造形ステージ上に直接形成してもよいし、すでに敷き詰められている粉末材料またはすでに形成されている造形物層の上に接するように形成してもよい。
薄層の厚さは、造形物層の厚さと同じとする。薄層の厚さは、製造しようとする立体造形物の形状などに応じて任意に設定することができるが、通常、0.05mm以上1.0mm以下である。薄層の厚さを0.05mm以上とすることで、次の層を形成するためのレーザー照射によって下の層の粒子が焼結または溶融結合されることを防ぐことができる。薄層の厚さを1.0mm以下とすることで、レーザーを薄層の下部まで伝導させて、薄層を構成する粉末材料に含まれる複合粒子を、厚み方向の全体にわたって十分に焼結または溶融結合させることができる。前記観点からは、薄層の厚さは0.05mm以上0.50mm以下であることがより好ましく、0.05mm以上0.30mm以下であることがさらに好ましく、0.05mm以上0.10mm以下であることがさらに好ましい。また、薄層の厚み方向の全体にわたってより十分に複合粒子を焼結または溶融結合させ、積層間の割れをより生じにくくする観点からは、薄層の厚さは、後述するレーザーの焦点スポット径との差が0.10mm以内になるよう設定することが好ましい。
2−2.複合粒子が焼結または溶融結合してなる造形物層を形成する工程(工程(2−2))
本工程では、形成された粉末材料からなる薄層のうち、造形物層を形成すべき位置にレーザーを選択的に照射し、照射された位置の複合粒子を焼結または溶融結合させる。焼結または溶融結合した複合粒子は、隣接する粉末と溶融し合って焼結体または溶融体を形成し、造形物層となる。このとき、レーザーのエネルギーを受け取った複合粒子は、すでに形成された層の金属材料とも焼結または溶融結合するため、隣り合う層間の接着も生じる。
レーザーの波長は、前記複合粒子を構成する金属材料が吸収する範囲内で設定すればよい。
レーザーの出力時のパワーは、後述するレーザーの走査速度において、前記複合粒子を構成する金属材料が十分に焼結または溶融結合する範囲内で設定すればよい。具体的には、100W以上500W以下とすることができる。前記粉末材料は、金属材料の種類によらず、上記エネルギー範囲のレーザーにおいて、高速の走査速度でも複合粒子の焼結または溶融結合が容易になり、立体造形物の製造が可能となる。造形速度を速めて、かつ、製造コストを低く抑える観点からは、レーザーの出力時のパワーは150W以上500W以下であることが好ましく、250W以上500W以下であることがより好ましい。
レーザーの走査速度は、製造コストを高めず、かつ、装置構成を過剰に複雑にしない範囲内で設定すればよい。具体的には、500mm/sec以上4000mm/sec以下とすることが好ましく、1000mm/sec以上3500mm/sec以下とすることがより好ましく、1500mm/sec以上3000mm/sec以下とすることがさらに好ましい。
レーザーの焦点スポット径は、製造しようとする立体造形物の形状などに応じて適宜設定することができる。
2−3.その他
焼結または溶融結合中に複合粒子を構成する金属材料が酸化または窒化することによる、立体造形物の強度の低下を防ぐ観点からは、少なくとも工程(2−2)は減圧下または不活性ガス雰囲気中で行うことが好ましい。減圧するときの圧力は10−2Pa以下であることが好ましく、10−3Pa以下であることがより好ましい。本実施形態で使用することができる不活性ガスの例には、窒素ガスおよび希ガスが含まれる。これらの不活性ガスのうち、入手の容易さの観点からは、窒素(N)ガス、ヘリウム(He)ガスまたはアルゴン(Ar)ガスが好ましい。製造工程を簡略化する観点からは、工程(2−1)および工程(2−2)の両方を減圧下または不活性ガス雰囲気中で行うことが好ましい。
複合粒子をより焼結または溶融結合させやすくする観点からは、工程(2−2)の前に粉末材料による薄層を予備加熱してもよい。たとえば、ヒーターなどの温度調整装置により、上記造形物層を形成すべき領域を選択的に加熱したり、装置内の全体を予め加熱したりして、薄層の表面を金属材料の融点よりも15℃以下、好ましくは金属材料の融点よりも5℃以下にすることができる。
また、形成された造形物層が再び溶融することによる造形物の寸法精度の低下を抑制する観点からは、温度調整装置により、上記造形物層を形成すべき領域を選択的に冷却したり、装置内の全体を冷却したりしてもよい。
3.立体造形装置
本実施形態は、前記粉末材料を用いて、立体造形物を製造する装置に係る。本実施形態に係る装置は、前記粉末材料を用いるほかは、粉末床溶融結合法による立体造形物の製造を行う公知の装置と同様の構成とし得る。具体的には、本実施形態に係る立体造形装置300は、その構成を概略的に示す側面図である図3に記載のように、開口内に位置する造形ステージ310、コアシェル構造を有する樹脂粒子を含む粉末材料の薄膜を前記造形ステージ上に形成する薄膜形成部320、前記造形ステージ上に形成される薄膜表面または装置内を加熱または冷却する温度調整部330、薄膜にレーザーを照射して、前記樹脂粒子が溶融結合してなる造形物層を形成するレーザー照射部340、鉛直方向の位置を可変に造形ステージ310を支持するステージ支持部350、および上記各部を支持するベース390を備える。
立体造形装置300は、その制御系の主要部を示す図4に記載のように、薄膜形成部320、温度調整部330、レーザー照射部340、およびステージ支持部350を制御して、前記造形物層を繰り返し形成させて積層させる制御部360、各種情報を表示するための表示部370、ユーザーからの指示を受け付けるためのポインティングデバイス等を含む操作部375、制御部360の実行する制御プログラムを含む各種の情報を記憶する記憶部380、ならびに外部機器との間で立体造形データ等の各種情報を送受信するためのインターフェース等を含むデータ入力部385を備えてもよい。また、立体造形装置は、造形ステージ310上に形成された薄層の表面のうち、造形物層を形成すべき領域の温度を測定する温度測定器335を備えてもよい。立体造形装置300には、立体造形用のデータを生成するためのコンピューター装置400が接続されてもよい。
造形ステージ310には、薄膜形成部320による薄層の形成、温度調整部330による温度の調整およびレーザー照射部340によるレーザーの照射によって造形物層が形成され、この造形物層が積層されることにより、立体造形物が造形される。
薄膜形成部320は、たとえば、造形ステージ310が昇降する開口の縁部と、水平方向にほぼ同一平面上にその縁部がある開口、開口から鉛直方向下方に延在する粉末材料収納部、および粉末材料収納部の底部に設けられ開口内を昇降する供給ピストンを備える粉末供給部321、ならびに供給された粉末材料を造形ステージ310上に平らに敷き詰めて、粉末材料の薄層を形成するリコータ322aを備えた構成とすることができる。
なお、粉末供給部321は、造形ステージ310に対して鉛直方向上方に設けられた粉末材料収納部、およびノズルを備えて、前記造形ステージと水平方向に同一の平面上に、粉末材料を吐出する構成としてもよい。
温度調整部330は、薄層の表面のうち造形物層を形成すべき領域を加熱するか、形成された造形物層の表面を冷却し、その温度を維持できるものであればよい。たとえば、温度調整部330は、造形ステージ310上に形成された薄層の表面を加熱または冷却可能な第1の温度調整装置331を備えた構成としてもよいし、造形ステージ上に供給される前の粉末材料を加熱する第2の温度調整装置332をさらに備えた構成としてもよい。また、温度調整部330は、上記造形物層を形成すべき領域を選択的に加熱する構成であってもよいし、装置内の全体を予め加熱しておいて、上記形成された薄膜の表面を所定の温度に調温する構成であってもよい。
温度測定器335は、上記造形物層を形成すべき領域の表面温度を非接触で測定できるものであればよく、たとえば、赤外線センサまたは光高温計とすることができる。
レーザー照射部340は、レーザー光源341およびガルバノミラー342aを含む。レーザー照射部340は、レーザーを透過させるレーザー窓343およびレーザーの焦点距離を薄層の表面にあわせるためのレンズ(不図示)を備えていてもよい。レーザー光源341は、前記波長のレーザーを、前記出力で出射する光源であればよい。レーザー光源341の例には、YAGレーザー光源、ファイバーレーザー光源およびCOレーザー光源が含まれる。ガルバノミラー342aは、レーザー光源341から出射したレーザーを反射してレーザーをX方向に走査するXミラーおよびY方向に走査するYミラーから構成されてもよい。レーザー窓343は、レーザーを透過させる材料からなるものであればよい。
ステージ支持部350は、造形ステージ310を、その鉛直方向の位置を可変に支持する。すなわち、造形ステージ310は、ステージ支持部350によって鉛直方向に精密に移動可能に構成されている。ステージ支持部350としては、種々の構成を採用できるが、例えば、造形ステージ310を保持する保持部材と、この保持部材を鉛直方向に案内するガイド部材と、ガイド部材に設けられたねじ孔に係合するボールねじ等で構成することができる。
制御部360は、中央処理装置等のハードウェアプロセッサを含んでおり、立体造形物の造形動作中、立体造形装置300全体の動作を制御する。
また、制御部360は、たとえばデータ入力部385がコンピューター装置400から取得した立体造形データを、造形物層の積層方向について薄く切った複数のスライスデータに変換するよう構成されてもよい。スライスデータは、立体造形物を造形するための各造形物層の造形データである。スライスデータの厚み、すなわち造形物層の厚みは、造形物層の一層分の厚さに応じた距離(積層ピッチ)と一致する。
表示部370は、たとえば液晶ディスプレイ、有機ELディスプレイ等で構成することができる。
操作部375は、たとえばキーボードやマウスなどのポインティングデバイスを含むものとすることができ、テンキー、実行キー、スタートキー等の各種操作キーを備えてもよい。
記憶部380は、たとえばROM、RAM、磁気ディスク、HDD、SSD等の各種の記憶媒体を含むものとすることができる。
立体造形装置300は、制御部360の制御を受けて、装置内を減圧する、減圧ポンプなどの減圧部(不図示)、または、制御部360の制御を受けて、不活性ガスを装置内に供給する、不活性ガス供給部(不図示)を備えていてもよい。
3−1.立体造形装置300を用いた立体造形
制御部360は、データ入力部385がコンピューター装置400から取得した立体造形データを、造形物層の積層方向について薄く切った複数のスライスデータに変換する。その後、制御部360は、立体造形装置300における以下の動作の制御を行う。
粉末供給部321は、制御部360から出力された供給情報に従って、モーターおよび駆動機構(いずれも不図示)を駆動し、供給ピストンを鉛直方向上方(図中矢印方向)に移動させ、前記造形ステージと水平方向同一平面上に、粉末材料を押し出す。
その後、リコータ駆動部322は、制御部360から出力された薄膜形成情報に従って水平方向(図中矢印方向)にリコータ322aを移動して、粉末材料を造形ステージ310に運搬し、かつ、薄層の厚さが造形物層の1層分の厚さとなるように粉末材料を押圧する。
温度調整部330は、制御部360から出力された温度情報に従って形成された薄層の表面または装置内の全体を加熱する。上記温度情報は、たとえば、データ入力部385から入力されたコア樹脂を構成する材料が溶融する温度(Tmc)のデータに基づいて制御部360が記憶部380から引き出した、上記温度との差が5℃以上50℃以下となる温度に薄層の表面を加熱するための情報とすることができる。温度調整部330は、薄層が形成された後に加熱を開始してもよいし、薄層が形成される前から形成されるべき薄層の表面に該当する箇所または装置内の加熱を行っていてもよい。
その後、レーザー照射部340は、制御部360から出力されたレーザー照射情報に従って、薄膜上の、各スライスデータにおける立体造形物を構成する領域に適合して、レーザー光源341からレーザーを出射し、ガルバノミラー駆動部342によりガルバノミラー342aを駆動してレーザーを走査する。レーザーの照射によって粉末材料に含まれる樹脂粒子が溶融結合し、造形物層が形成される。
その後、ステージ支持部350は、制御部360から出力された位置制御情報に従って、モーターおよび駆動機構(いずれも不図示)を駆動し、造形ステージ310を、積層ピッチだけ鉛直方向下方(図中矢印方向)に移動する。
表示部370は、必要に応じて、制御部360の制御を受けて、ユーザーに認識させるべき各種の情報やメッセージを表示する。操作部375は、ユーザーによる各種入力操作を受け付けて、その入力操作に応じた操作信号を制御部360に出力する。たとえば、形成される仮想の立体造形物を表示部370に表示して所望の形状が形成されるか否かを確認し、所望の形状が形成されない場合は、操作部375から修正を加えてもよい。
制御部360は、必要に応じて、記憶部380へのデータの格納または記憶部380からのデータの引き出しを行う。
また、制御部360は、薄層の表面のうち、造形物層を形成すべき領域の温度の情報を温度測定器335から受け取り、前記造形物層を形成すべき領域の温度が、前記コア樹脂を構成する材料が溶融する温度(Tmc)よりも5℃以上50℃以下、好ましくは5℃以上25℃以下になるように、温度調整部330による加熱を制御してもよい。
これらの動作を繰り返すことで、造形物層が積層され、立体造形物が製造される。
以下において、本発明の具体的な実施例を説明する。なお、これらの実施例によって、本発明の範囲は限定して解釈されない。下記実施例及び比較例において「部」の表示を用いるが、特に断りがない限り「質量部」を表す。
1.粉末材料の作製
1−1.粉末材料1
1000部の銅粒子(三井金属鉱業株式会社製、Cu1050Y、平均粒子径:0.75μm)と85部のアクリル樹脂(日本ペイント株式会社製、N4000、平均粒子径:0.1μm)を撹拌混合装置(株式会社奈良機械製作所製、LMA5型)に投入し、回転数を695rpmとして室温で10分間撹拌した。その後、さらに85部のアクリル樹脂(日本ペイント株式会社製、N4000、平均粒子径:0.1μm)を加え、回転数を695rpmとして室温で10分間撹拌した。このようにして混合された粒子を、回転数を780rpmとして115℃で30分間加熱撹拌して、上記アクリル樹脂で被覆された銅粒子を作製した。
この被覆された銅粒子を、バインダーとしての2.0部のポリビニルアルコール(株式会社クラレ製、クラレポバール)および998部の水とともに混合して、上記銅粒子が分散した分散液を作製した。スプレードライ装置(株式会社プリス製、PR−05K)で、回転ディスクの速度を18000rpm、乾燥温度を130℃として上記分散液を噴霧造粒して、構成する複合粒子の平均粒子径が15μmである粉末材料1を製造した。
なお、上記銅粒子および上記複合粒子の平均粒子径は、レーザー回折/散乱式粒子径分布測定装置(株式会社堀場製作所製、Partica LA−960)で測定して得られた値である。
1−2.粉末材料2
上記銅粒子として三井金属鉱業株式会社製、MA−C015K(平均粒子径:1.5μm)を用い、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料1と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料2を製造した。
1−3.粉末材料3
上記銅粒子として三井金属鉱業株式会社製、MA−C025K(平均粒子径:2.4μm)を用い、上記添加するアクリル樹脂の量をいずれも90部とし、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料1と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料3を製造した。
1−4.粉末材料4
上記銅粒子として三井金属鉱業株式会社製、MA−C05K(平均粒子径:5.8μm)を用い、上記分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料1と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料4を製造した。
1−5.粉末材料5
上記添加するアクリル樹脂の量をいずれも63部とし、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料2と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料5を製造した。
1−6.粉末材料6
上記添加するアクリル樹脂の量をいずれも65部とし、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料3と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料6を製造した。
1−7.粉末材料7
上記添加するアクリル樹脂の量をいずれも63部とし、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料4と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料7を製造した。
1−8.粉末材料8
200部の粉末材料5をハイブリダイゼーションシステム(株式会社奈良機械製作所製、NHS−1型)に投入して、回転数を8000rpmとして75℃で20分間撹拌して、構成する複合粒子の平均粒子径が30μmである粉末材料8を製造した。
1−9.粉末材料9
200部の粉末材料6をハイブリダイゼーションシステム(株式会社奈良機械製作所製、NHS−1型)に投入して、回転数を8000rpmとして75℃で20分間撹拌して、構成する複合粒子の平均粒子径が30μmである粉末材料9を製造した。
1−10.粉末材料10
200部の粉末材料7をハイブリダイゼーションシステム(株式会社奈良機械製作所製、NHS−1型)に投入して、回転数を8000rpmとして75℃で20分間撹拌して、構成する複合粒子の平均粒子径が30μmである粉末材料10を製造した。
1−11.粉末材料11
上記銅粒子の代わりにアルミニウム粒子(東洋アルミニウム株式会社製、TFS−A05P、平均粒子径:5.0μm)を用い、上記添加するアクリル樹脂の量をいずれも215部とし、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料1と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料を製造した。200部の上記粉末材料をハイブリダイゼーションシステム(株式会社奈良機械製作所製、NHS−1型)に投入して、回転数を8000rpmとして75℃で20分間撹拌して、構成する複合粒子の平均粒子径が30μmである粉末材料11を製造した。
1−12.粉末材料12
2回に分けて添加する上記アクリル樹脂に代えて、いずれも、65部の上記アクリル樹脂と0.65部のシリカ粉末(cabot社製、R805、平均粒子径:100nm)とを使用し、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料6と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料を製造した。200部の上記粉末材料をハイブリダイゼーションシステム(株式会社奈良機械製作所製、NHS−1型)に投入して、回転数を8000rpmとして75℃で20分間撹拌して、構成する複合粒子の平均粒子径が30μmである粉末材料12を製造した。
1−13.粉末材料13
上記銅粒子の代わりにアルミニウム粒子(東洋アルミニウム株式会社製、TFS−A05P、平均粒子径:5.0μm)を用い、2回に分けて添加する上記アクリル樹脂に代えて、いずれも、243部の上記アクリル樹脂と2.43部のシリカ粉末(cabot社製、R805、平均粒子径:100nm)とを使用し、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料6と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料を製造した。200部の上記粉末材料をハイブリダイゼーションシステム(株式会社奈良機械製作所製、NHS−1型)に投入して、回転数を8000rpmとして75℃で20分間撹拌して、構成する複合粒子の平均粒子径が30μmである粉末材料13を製造した。
1−14.粉末材料14
2回に分けて添加する上記アクリル樹脂に代えて、いずれも、65部の上記アクリル樹脂と4.25部のフラックス(株式会社タムラ化研製、TF−31KT、固形分濃度46%)とを使用し、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料6と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料を製造した。200部の上記粉末材料をハイブリダイゼーションシステム(株式会社奈良機械製作所製、NHS−1型)に投入して、回転数を8000rpmとして75℃で20分間撹拌して、構成する複合粒子の平均粒子径が30μmである粉末材料14を製造した。
1−15.粉末材料15
上記銅粒子の代わりにアルミニウム粒子(東洋アルミニウム株式会社製、TFS−A05P、平均粒子径:5.0μm)を用い、2回に分けて添加する上記アクリル樹脂を、いずれも、243部の上記アクリル樹脂と15.85部のフラックス(株式会社タムラ化研製、TF−31KT、固形分濃度46%)とを使用し、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料6と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料を製造した。200部の上記粉末材料をハイブリダイゼーションシステム(株式会社奈良機械製作所製、NHS−1型)に投入して、回転数を8000rpmとして75℃で20分間撹拌して、構成する複合粒子の平均粒子径が30μmである粉末材料15を製造した。
1−16.粉末材料16
1000部の銅粒子(三井金属鉱業株式会社製、MA−C025K、平均粒子径:2.4μm)を、バインダーとしての2.0部のポリビニルアルコール(株式会社クラレ製、クラレポバール)および998部の水とともに混合して、バインダー濃度が0.2質量%である、上記銅粒子が分散した分散液を製造した。スプレードライ装置(株式会社プリス製、PR−05K)で回転ディスクの速度を12000rpm、乾燥温度を130℃として上記分散液を噴霧造粒して、構成する複合粒子の平均粒子径が30μmである粉末材料16を製造した。
1−17.粉末材料17
上記銅粒子として日本アトマイズ加工株式会社製、HXR−Cu(平均粒子径:10μm)を用い、上記添加するアクリル樹脂の量をいずれも82部とし、分散液を噴霧造粒するときの回転ディスクの速度を12000rpm、乾燥温度を130℃とした以外は粉末材料1と同様にして、構成する複合粒子の平均粒子径が30μmである粉末材料17を製造した。
1−18.粉末材料18
上記分散液を噴霧造粒するときの回転ディスクの速度を9000rpm、乾燥温度を130℃とした以外は粉末材料17と同様にして、構成する複合粒子の平均粒子径が70μmである粉末材料18を製造した。
1−19.粉末材料の測定
粉末材料1〜粉末材料18のそれぞれ構成する複合粒子を、集束イオンビーム加工装置(株式会社日立ハイテクサイエンス社製、SMI2050)で切断して、粒子薄片を作製した。透過型電子顕微鏡(日本電子株式会社製、JEM−2010F)を用いて倍率10000倍で撮像した上記粒子薄片の電子顕微鏡写真を得た。
上記電子顕微鏡写真を観察したところ、粉末材料1〜15、17、18では、金属母粒子が透明と視認できる樹脂によって被覆した被覆樹脂層を有する単位粒子がバインダーを介して結着して複合粒子を形成していることが確認された。また、粉末材料16では、大半の表面がポリビニルアルコールによって覆われずに露出した状態の金属母粒子(つまり、樹脂によって被覆されていない金属母粒子)同士がバインダーとしてのポリビニルアルコールで結合して複合粒子を形成していることが確認された。
上記電子顕微鏡写真を観察して、透明の樹脂同士が広範囲にわたって融着しておらず、1個の粒子であると明瞭に認識し得る、金属粒子が被覆樹脂層で被覆されてなる単位粒子を選択し、上記単位粒子における4か所の被覆樹脂層の膜厚を測定して、それらの平均値を算出して、その単位粒子の被覆樹脂層の膜厚を求めた。任意に選択した20個の単位粒子について被覆樹脂層の膜厚を算出し、これらの平均値を、その単位粒子における被覆樹脂層の膜厚の平均値(a)とした。さらに、任意に選択した20個の複合粒子について被覆樹脂層の膜厚の平均値(a)を算出し、これらの平均値を、その粉末材料における被覆樹脂層の膜厚の平均値(a)とした。
また、上記電子顕微鏡写真を観察して、バインダーを介して光透過性の樹脂同士が結着した部位をはさんで対向する金属母粒子12間の距離pを任意に20か所測定し、それらの平均値を算出して、その複合粒子の距離pの平均値とした。さらに、任意に選択した20個の複合粒子100について上記距離pの平均値を算出し、これらの平均値を、その粉末材料における距離pの平均値とした。
また、それぞれの粉末材料について、上記求めた膜厚の平均値(a)を、その粉末材料の作製に使用した金属母粒子の粒子径の平均値(b)で除算して、その粉末材料におけるa/bとした。
また、上記電子顕微鏡写真を観察して、複合粒子の長径と短径との平均値をその複合粒子の円相当径として上記円相当径を直径とする円の周囲長を求め、またその複合粒子の投影像の周囲長を求め、上記円の周囲長を上記投影像の周囲長で除算して、その複合粒子の円形度を求めた。任意に選択した20個の複合粒子について上記円形度の平均値を算出し、これらの平均値を、その粉末材料における円形度の平均値とした。
表1に、粉末材料1〜粉末材料18の、金属母粒子の主成分、金属母粒子の粒子径の平均値(b)、被覆樹脂層の膜厚の平均値(a)、金属酸化物の微粒子の含有量、フラックスの含有量、隣接する金属母粒子間の距離pの平均値、a/b、複合粒子の粒子径の平均値、および複合粒子の円形度を示す。
Figure 2017206738
2.評価
2−1.レーザー光吸収率
30mm×26mmにカットしたスライドグラス(松浪硝子工業株式会社製、S1111/白縁磨 No.1)を2枚用意して、両面テープ2枚重ね分のスペースを空けて重ね合わせ、コの字型に三方向を封止した。封止していない一方から、粉末材料1〜粉末材料18のそれぞれを、空気が含まれないように封入し、測定用試料とした。各測定用試料について、分光光度計(株式会社日立ハイテクノロジーズ社製、U−4100)を用いてファイバーレーザー波長(1.05μm)における反射率を測定した。上記粉末材料の主成分は金属であるため、透過率はほぼ0であると仮定して、1から上記測定された反射率を減算した値を、それぞれの粉末材料の吸収率とした。得られた吸収率をもとに、下記の基準でそれぞれの粉末材料を評価した。
○: 吸収率が30%以上である
△: 吸収率が25%以上30%未満である
×: 吸収率が25%未満である
2−2.造形速度
粉末材料1〜粉末材料18のそれぞれを、粉体層厚みが0.2mmとなるように敷き詰めて、波長を1.07μm、出力を300W、焦点スポット径を紛体層表面で60μmとしたレーザーを、走査速度を2000mm/sec、1500mm/sec、1000mm/sec、または500mm/secとして、それぞれの走査速度で、粉体層表面の10mm×10mmの正方形状の区画に照射した。このようにして得られた正方形の造形物の表面を光学顕微鏡で観察して、造形物に複合粒子の大きさ(約0.03mm)より大きい欠損(造形物が形成されず、空隙となった部分)があるかを確認した。上記欠損がない造形物を製造できたレーザーの走査速度のうち、最も速い速度をもとに、下記の基準でそれぞれの粉末材料を評価した。
◎: 上記最も速い速度は2000mm/secである
○: 上記最も速い速度は1500mm/secである
△: 上記最も速い速度は1000mm/secである
×: 上記最も速い速度は500mm/secであるか、または500mm/secでも欠損が生じた
2−3.造形物の機械的強度
粉末材料1〜粉末材料18のそれぞれを、粉体層厚みが0.2mmとなるように敷き詰めて、波長を1.07μm、出力を300W、焦点スポット径を紛体層表面で60μm、走査速度を2000mm/secとしたレーザーを照射して、造形物の層を形成した。これを繰り返して、幅50mm、長さ80mmの長方形状の試験片を作製した。この試験片の長辺の各両端から15mmの位置をつかんで、破断するまで、50mm/minの速度で互いに離れる方向に力を加え、破断したときに印加されていた力をその試験片の最大引張強さ[N/mm]とした。得られた最大引張強さをもとに、下記の基準でそれぞれの粉末材料を評価した。
◎: 最大引張強さは60N/mm以上である
○: 最大引張強さは40N/mm以上60N/mm未満である
△: 最大引張強さは20N/mm以上40N/mm未満である
×: 最大引張強さは20N/mm未満である
2−4.粉末材料の流動性
粉末材料1〜粉末材料18のそれぞれのゆるめ嵩密度およびタップ嵩密度を、以下の方法によって求めた。各粉末材料を100g秤量し、25mLメスシリンダーに流し入れた後、1分間経過後の体積値を読み取り、これをゆるめ嵩密度とした。また、同様に100g秤量して25mLメスシリンダーに流し入れた後、メスシリンダーをタップデンサーに固定して250回タップした後に体積値を読み取り、これをタップ嵩密度とした。得られた値により算出したハウスナー比(上記タップ密度を上記ゆるめ嵩密度で除算して得られる値)をもとに、下記の基準でそれぞれの粉末材料を評価した。
◎: ハウスナー比は1.00以上1.06未満である
○: ハウスナー比は1.06以上1.15未満である
△: ハウスナー比は1.15以上1.25未満である
×: ハウスナー比は1.25以上である
2−5.造形物の寸法精度
粉末材料1〜粉末材料18のそれぞれを、粉体層厚みが0.2mmとなるように敷き詰めて、波長を1.07μm、出力を300W、焦点スポット径を紛体層表面で60μm、走査速度を2000mm/secとしたレーザーを照射して、造形物の層を形成した。これを繰り返して、10mm×10mm×10mmの試験片を作製した。この試験片の縦方向および横方向の寸法をデジタルノギス(株式会社ミツトヨ製、スーパキャリパCD67−S PS/PM、「スーパキャリパ」は同社の登録商標)で測定した。製造しようとした寸法と測定された縦横の寸法との差を平均して、造形物の寸法精度のずれとした。得られたずれの大きさをもとに、下記の基準でそれぞれの粉末材料を評価した。
◎: ずれは0.2mm未満である
○: ずれは0.2mm以上0.5mm未満である
△: ずれは0.5mm以上1.0mm未満である
×: ずれは1.0mm以上である
粉末材料1〜粉末材料18の評価結果を表2に示す。
Figure 2017206738
金属母粒子と、前記金属母粒子を被覆する膜を形成している光透過性の樹脂と、前記光透過性の樹脂の表面に付着して前記光透過性の樹脂同士を結着させているバインダーとを含む複合粒子から構成され、バインダーを介して前記光透過性の樹脂同士が結着した部位における、隣接する前記金属母粒子間の距離の平均値が、0.2μm以上2.0μm以下である、粉末材料1〜粉末材料15は、レーザー光吸収率が高く、速い造形速度でも欠損が少ない造形物を製造可能であった。
また、金属母粒子の粒子径(b)の平均値が1.0μm以上8.0μm以下である粉末材料2〜粉末材料15は、金属母粒子の粒子径(b)の平均値が1.0μm未満である粉末材料1よりもレーザーの吸収率がより高かった。これは、粉末材料2〜粉末材料15では、複合粒子における金属母粒子の間の距離pが十分に広いため、複合粒子の内部にレーザーがより入り込みやすかったものと考えられる。
また、複合粒子の粒子径の平均値が20μm以上60μm以下である粉末材料2〜粉末材料15は、複合粒子の粒子径の平均値が20μm未満である粉末材料1よりも流動性がより高かった。そのため、粉末材料2〜粉末材料15は、より短時間で薄層を形成することができ、造形物をより短時間で造形することができた。
また、a/bが、0.100以上0.125以下である粉末材料5〜粉末材料15は、レーザー光吸収率を低下させずに、造形物の機械的強度および寸法精度をより高めることができた。これは、金属母粒子の間に十分な間隔を設けてレーザーの多重反射を可能にしつつ、光透過性の樹脂の量を少なくすることで、造形物の機械的強度および寸法精度を低減させる不純物の量を減らすことができたからと考えられる。
また、複合粒子の円形度が0.92以上1.0以下である粉末材料8〜粉末材料15は、粉末材料の流動性がより高まった。
また、被覆樹脂層が金属酸化物の微粒子を含む粉末材料12および粉末材料13は、造形物の造形速度および寸法精度をより高めることができた。これは、金属酸化物の微粒子によって複合粒子の熱伝導率が低くなり、複合粒子からエネルギーが放出されにくいため、複合粒子が焼結または溶融結合しやすくなって造形速度が速くなり、かつ、隣接する複合粒子の溶融による寸法精度の低下も生じにくくなったためと考えられる。
また、被覆樹脂層がフラックスを含む粉末材料14および粉末材料15は、造形物の機械的強度を高めることができた。これは、フラックスによって金属母粒子の表面の酸化物が除去されて、金属母粒子の表面エネルギーが高くなり、複合粒子が焼結または溶融結合しやすくなったためと考えられる。
一方で、被覆樹脂層を有さない粉末材料16は、レーザー光吸収率、造形速度、機械的強度および寸法精度が高くならなかった。これは、金属母粒子が光透過性の樹脂を介さずに直接結合しているため、粒子の表面において金属粒子が隙間なく密着した構造となっており、粒子の表面積がさほど大きくならず、また、合粒子に照射されたレーザーは表面で単回のみ反射されるためと考えられる。
また、バインダーを介して前記光透過性の樹脂同士が結着した部位における、隣接する前記金属母粒子間の距離の平均値が、2.0μmよりも大きい、粉末材料17および18は、造形物の機械的強度および寸法精度が高くならなかった。これは、不純物としての上記光透過性の樹脂の量が多かったためと考えられる。
本発明に係る粉末材料によれば、反射率の高い金属材料でも粉末床溶融結合法による立体造形がより容易に可能となり、また、反射率の低い金属材料でもより短時間での粉末床溶融結合法による立体造形が可能となる。そのため、本発明は、粉末床溶融結合法による立体造形のさらなる普及に寄与するものと思われる。
10 単位粒子
12 金属母粒子
14 光透過性の樹脂
16 バインダー
100 複合粒子
300 立体造形装置
310 造形ステージ
320 薄膜形成部
321 粉末供給部
322 リコータ駆動部
322a リコータ
330 温度調整部
331 第1の温度調整装置
332 第2の温度調整装置
335 温度測定器
340 レーザー照射部
341 レーザー光源
342 ガルバノミラー駆動部
342a ガルバノミラー
343 レーザー窓
350 ステージ支持部
360 制御部
370 表示部
375 操作部
380 記憶部
385 データ入力部
390 ベース
400 コンピューター装置

Claims (15)

  1. 複数の複合粒子を含む粉末材料の薄層にレーザー光を選択的に照射して、前記複数の複合粒子が焼結または溶融結合してなる造形物層を形成し、前記造形物層を積層することによる立体造形物の製造に使用される粉末材料であって、
    前記複合粒子は、金属母粒子と、前記金属母粒子を被覆する膜を形成している光透過性の樹脂と、前記光透過性の樹脂の表面に付着して前記光透過性の樹脂同士を結着させているバインダーとを含み、
    前記複合粒子の、前記バインダーを介して前記光透過性の樹脂同士が結着した部位における、隣接する前記金属母粒子間の距離の平均値は、0.2μm以上2.0μm以下である、粉末材料。
  2. 前記金属母粒子を被覆する光透過性の樹脂の膜厚の平均値は、0.1μm以上1.0μm以下である、請求項1に記載の粉末材料。
  3. 前記金属母粒子の粒子径の平均値は、1.0μm以上8.0μm以下である、請求項1または2に記載の粉末材料。
  4. 前記複合粒子の粒子径の平均値は、20μm以上60μm以下である、請求項1〜3のいずれか1項に記載の粉末材料。
  5. 前記金属母粒子の粒子径の平均値に対する、前記金属母粒子を被覆する光透過性の樹脂の膜厚の平均値の比は、0.100以上0.125以下である、請求項1〜4のいずれか1項に記載の粉末材料。
  6. 前記複合粒子の円形度の平均値は、0.92以上1.0以下である、請求項1〜5のいずれか1項に記載の粉末材料。
  7. 前記金属母粒子は、アルミニウム、コバルト、銅、鉄、ニッケルおよびチタンからなる群から選択される少なくとも1種の金属を主成分として含有する、請求項1〜6のいずれか1項に記載の粉末材料。
  8. 前記光透過性の樹脂は、熱可塑性樹脂である、請求項1〜7のいずれか1項に記載の粉末材料。
  9. 前記金属母粒子を被覆する光透過性の樹脂の膜は、金属酸化物の微粒子を含む、請求項1〜8のいずれか1項に記載の粉末材料。
  10. 前記金属母粒子を被覆する光透過性の樹脂の膜は、フラックスを含む、請求項1〜9のいずれか1項に記載の粉末材料。
  11. 金属母粒子と、光透過性の樹脂を含んで前記金属母粒子を被覆する被覆樹脂層と、を有し、前記被覆樹脂層の膜厚は0.1μm以上1.0μm以下である、複数の単位粒子を用意する工程と、
    バインダーを介して前記単位粒子を互いに接着させて前記複合粒子を作製する工程とを含む、
    請求項1〜10のいずれか1項に記載の粉末材料の製造方法。
  12. 前記単位粒子を用意する工程は、メカノケミカル法で前記光透過性の樹脂を前記金属母粒子の表面に固着させて金属母粒子を被覆させる工程である、請求項11に記載の製造方法。
  13. 前記接着させる工程は、スプレードライ法で前記単位粒子を接着させる工程である、請求項11または12に記載の製造方法。
  14. 請求項1〜10のいずれか1項に記載の粉末材料または請求項11〜13のいずれか1項に記載の製造方法で製造された粉末材料の薄層を形成する工程と、
    前記薄層にレーザー光を選択的に照射して、前記粉末材料に含まれる前記複合粒子が焼結または溶融結合してなる造形物層を形成する工程と、
    前記薄層を形成する工程と前記造形物層を形成する工程とをこの順に繰り返し、前記造形物層を積層する工程と、
    を含む立体造形物の製造方法。
  15. 造形ステージと、
    請求項1〜10のいずれか1項に記載の粉末材料の薄膜を前記造形ステージ上に形成する薄膜形成部と、
    前記薄膜にレーザーを照射して、前記複合粒子が焼結または溶融結合してなる造形物層を形成するレーザー照射部と、
    前記造形ステージを、その鉛直方向の位置を可変に支持するステージ支持部と、
    前記薄膜形成部、前記レーザー照射部および前記ステージ支持部を制御して、前記造形物層を繰り返し形成させて積層させる制御部と、
    を備える、立体造形装置。
JP2016099493A 2016-05-18 2016-05-18 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置 Pending JP2017206738A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099493A JP2017206738A (ja) 2016-05-18 2016-05-18 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099493A JP2017206738A (ja) 2016-05-18 2016-05-18 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置

Publications (1)

Publication Number Publication Date
JP2017206738A true JP2017206738A (ja) 2017-11-24

Family

ID=60414855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099493A Pending JP2017206738A (ja) 2016-05-18 2016-05-18 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置

Country Status (1)

Country Link
JP (1) JP2017206738A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548866A (zh) * 2019-10-18 2019-12-10 广东工业大学 一种表面粗糙的金属粉末、制备方法及在sls/slm技术中的应用
JP6825148B1 (ja) * 2020-06-02 2021-02-03 株式会社ソディック 積層造形装置
CN113733567A (zh) * 2021-08-30 2021-12-03 华中科技大学 一种纳米颗粒/高分子材料复合功能器件、其制备和应用
JP2022095756A (ja) * 2018-06-27 2022-06-28 旭化成株式会社 ポリアセタール粉末及びその使用方法、並びに付加製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052333A (ja) * 2000-08-09 2002-02-19 Sekisui Chem Co Ltd 微粒子の被覆方法、被覆微粒子、異方性導電接着剤、異方性導電接合膜及び導電接続構造体
JP2004027335A (ja) * 2002-06-28 2004-01-29 Honda Motor Co Ltd 磁石用粉末のコーティング方法
JP2006521264A (ja) * 2003-02-18 2006-09-21 ダイムラークライスラー・アクチェンゲゼルシャフト 層造形法による三次元体製造のためのコーティングされた粉末粒子
JP2015218395A (ja) * 2014-05-16 2015-12-07 ゼロックス コーポレイションXerox Corporation 3d印刷のための安定化された金属ナノ粒子
JP2016028878A (ja) * 2013-09-30 2016-03-03 株式会社リコー 立体造形用粉末材料、硬化液、及び立体造形用キット、並びに、立体造形物の製造方法及び製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052333A (ja) * 2000-08-09 2002-02-19 Sekisui Chem Co Ltd 微粒子の被覆方法、被覆微粒子、異方性導電接着剤、異方性導電接合膜及び導電接続構造体
JP2004027335A (ja) * 2002-06-28 2004-01-29 Honda Motor Co Ltd 磁石用粉末のコーティング方法
JP2006521264A (ja) * 2003-02-18 2006-09-21 ダイムラークライスラー・アクチェンゲゼルシャフト 層造形法による三次元体製造のためのコーティングされた粉末粒子
JP2016028878A (ja) * 2013-09-30 2016-03-03 株式会社リコー 立体造形用粉末材料、硬化液、及び立体造形用キット、並びに、立体造形物の製造方法及び製造装置
JP2015218395A (ja) * 2014-05-16 2015-12-07 ゼロックス コーポレイションXerox Corporation 3d印刷のための安定化された金属ナノ粒子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022095756A (ja) * 2018-06-27 2022-06-28 旭化成株式会社 ポリアセタール粉末及びその使用方法、並びに付加製造方法
JP7194851B2 (ja) 2018-06-27 2022-12-22 旭化成株式会社 ポリアセタール粉末及びその使用方法、並びに付加製造方法
CN110548866A (zh) * 2019-10-18 2019-12-10 广东工业大学 一种表面粗糙的金属粉末、制备方法及在sls/slm技术中的应用
JP6825148B1 (ja) * 2020-06-02 2021-02-03 株式会社ソディック 積層造形装置
JP2021188101A (ja) * 2020-06-02 2021-12-13 株式会社ソディック 積層造形装置
CN113733567A (zh) * 2021-08-30 2021-12-03 华中科技大学 一种纳米颗粒/高分子材料复合功能器件、其制备和应用

Similar Documents

Publication Publication Date Title
WO2017217302A1 (ja) 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置
WO2017104234A1 (ja) 粉末材料、立体造形物の製造方法および立体造形装置
JP6662381B2 (ja) 立体造形物の製造方法
WO2017094345A1 (ja) 粉末材料、立体造形物の製造方法および立体造形装置
JP2017206738A (ja) 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置
JP2017193090A (ja) 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置
US20190001556A1 (en) Additive manufacturing material for powder rapid prototyping manufacturing
JP2018530501A (ja) 積層造形プロセスおよび製品
WO2018154917A1 (ja) 粉末材料およびこれに用いる被覆粒子の製造方法、粉末材料を用いた立体造形物の製造方法、ならびに立体造形装置
Mader et al. Melt‐extrusion‐based additive manufacturing of transparent fused silica glass
US11167476B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaping device
Florio et al. An innovative selective laser melting process for hematite‐doped aluminum oxide
JP6798326B2 (ja) 粉末材料、およびこれを用いた立体造形物の製造方法、ならびに立体造形装置
Liu et al. Processing and characterizations of 2% PF/silica sand core–shell composite powders by selective laser sintering with a higher transmittance fiber laser
WO2017163834A1 (ja) 粉末材料、および立体造形物の製造方法
JP2018199862A (ja) 炭素被覆金属紛体、それを含む付加製造用の粉末材料、及び、付加製造物の製造方法
WO2018084056A1 (ja) 金属粉末、粉末焼結積層造形物及びその製造方法
JP6680114B2 (ja) 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置
WO2017119218A1 (ja) 粉末材料、立体造形物の製造方法および立体造形装置
WO2019013069A1 (ja) 粉末材料、および立体造形物の製造方法
WO2019117016A1 (ja) 立体造形物の製造方法、およびそれに用いる粉末材料
Zolotovskaya et al. Surface plasmon resonance assisted rapid laser joining of glass
KR20160097565A (ko) 적층가공을 통한 고강도 3차원 구조체 제조방법 및 이를 위한 합금재료
JP7172134B2 (ja) 粉末材料、およびこれを用いた立体造形物の製造方法
JP2013006228A (ja) 超砥粒工具およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707