JP2017152434A - 半導体装置及び光インターコネクトシステム - Google Patents

半導体装置及び光インターコネクトシステム Download PDF

Info

Publication number
JP2017152434A
JP2017152434A JP2016031126A JP2016031126A JP2017152434A JP 2017152434 A JP2017152434 A JP 2017152434A JP 2016031126 A JP2016031126 A JP 2016031126A JP 2016031126 A JP2016031126 A JP 2016031126A JP 2017152434 A JP2017152434 A JP 2017152434A
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
optical
metal electrode
cap layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016031126A
Other languages
English (en)
Other versions
JP6656016B2 (ja
Inventor
奥村 滋一
Jiichi Okumura
滋一 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Photonics Electronics Technology Research Association
Original Assignee
Fujitsu Ltd
Photonics Electronics Technology Research Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Photonics Electronics Technology Research Association filed Critical Fujitsu Ltd
Priority to JP2016031126A priority Critical patent/JP6656016B2/ja
Publication of JP2017152434A publication Critical patent/JP2017152434A/ja
Application granted granted Critical
Publication of JP6656016B2 publication Critical patent/JP6656016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】応答特性を劣化させることなく、暗電流を低減する。【解決手段】半導体装置を、基板1の上方に設けられ、Geを含む吸収層2と、吸収層を覆い、Siを含むキャップ層3と、キャップ層上に設けられた金属電極4とを備え、キャップ層が、吸収層と金属電極との間に設けられた部分の厚さがそれ以外の部分の厚さよりも薄くなっているものとする。【選択図】図1

Description

本発明は、半導体装置及び光インターコネクトシステムに関する。
例えばサーバのCPU間のデータ伝送量の増大に伴い、従来のCu配線を用いた電気信号による伝送での対応が限界に近づきつつある。
このボトルネックを解消するためには、光インターコネクト、すなわち、光信号によるデータ伝送が必要となる。
さらには、低消費電力、小面積化の観点から、光送受信に必要となる光送信器や光受信器に備えられる変調器、受光器、合波器、分波器等の各種光コンポーネント(光素子)をSi基板上に集積化することになる。
この場合、Si基板上に形成した光導波路での損失が小さい波長1.30−1.55μmを伝送波長帯として使用することが好ましい。
上記の波長帯での光伝送で適用されるSi基板上の受光器(フォトディテクタ)には、1.55μm近傍に吸収端を有する同じIV族のGeを吸収層に適用することが好ましい。
これまでに、例えば非特許文献1、2に示すようなGe受光器が報告されている。
特開平6−69528号公報 特開2013−207231号公報
Junichi Fujikata et al., "Si Waveguide-Integrated Metal-Semiconductor-Metal and p-i-n-Type Ge Photodiodes Using Si-Capping Layer", Japanese Journal of Applied Physics, 52 (2013) 04CG10 奥村滋一等、「選択成長Siキャップ層適用低暗電流Ge受光器の開発」、第76回応用物理学会秋季学術講演会 講演予稿集(2015 名古屋国際会議場)、14a−2N−11
ところで、受光器において、暗電流を低減することは、ノイズ低減の上で重要である。
低暗電流を実現するために、例えば吸収層としてのGe層の表面にSiキャップ層を形成することが提案されている。
しかしながら、SiはGeよりもバンドギャップが大きいため、Siキャップ層で電圧降下が発生し、Ge層への電界強度がSiキャップ層を設けない場合と比較して低下してしまう。
その結果、フォトキャリアの電極への掃引が低下し、Ge層を用いたフォトディテクタの応答特性が劣化してしまうことになる。
なお、ここでは、受光器における課題として説明しているが、これに限られるものではなく、例えば変調器などの他の光素子も同様の課題を有する。
本発明は、応答特性を劣化させることなく、暗電流を低減することを目的とする。
1つの態様では、半導体装置は、基板の上方に設けられ、Geを含む吸収層と、吸収層を覆い、Siを含むキャップ層と、キャップ層上に設けられた金属電極とを備え、キャップ層は、吸収層と金属電極との間に設けられた部分の厚さがそれ以外の部分の厚さよりも薄くなっている。
1つの態様では、光インターコネクトシステムは、光送信器と、光送信器に光伝送路を介して接続された光受信器とを備え、光送信器又は光受信器は、上述の半導体装置を備える。
1つの側面として、応答特性を劣化させることなく、暗電流を低減することができるという効果を有する。
本実施形態にかかる半導体装置の構成を示す模式的断面図である。 本実施形態にかかる半導体装置(MSM型PD)の製造方法を説明するための模式的平面図である。 本実施形態にかかる半導体装置(MSM型PD)の製造方法を説明するための模式的断面図である。 本実施形態にかかる半導体装置(MSM型PD)の製造方法を説明するための模式的断面図である。 (A)、(B)は、本実施形態にかかる半導体装置(MSM型PD)の製造方法を説明するための模式図であって、(A)は断面図であり、(B)は平面図である。 (A)、(B)は、本実施形態にかかる半導体装置(MSM型PD)の構成及びその製造方法を説明するための模式図であって、(A)は断面図であり、(B)は平面図である。 本実施形態にかかる半導体装置(PIN型PD)の製造方法を説明するための模式的断面図である。 本実施形態にかかる半導体装置(PIN型PD)の製造方法を説明するための模式的断面図である。 本実施形態にかかる半導体装置(PIN型PD)の製造方法を説明するための模式的断面図である。 本実施形態にかかる半導体装置(PIN型PD)の製造方法を説明するための模式的断面図である。 本実施形態にかかる半導体装置(PIN型PD)の製造方法を説明するための模式的断面図である。 (A)、(B)は、本実施形態にかかる半導体装置(PIN型PD)の構成及びその製造方法を説明するための模式図であって、(A)は断面図であり、(B)は平面図である。 本実施形態にかかる半導体装置(MSM型変調器)の構成を示す模式的平面図である。 本実施形態にかかる半導体装置(PIN型変調器)の構成を示す模式的平面図である。 本実施形態にかかる光インターコネクトシステムの構成を示す模式図である。
以下、図面により、本発明の実施の形態にかかる半導体装置及び光インターコネクトシステムについて、図1〜図15を参照しながら説明する。
本実施形態にかかる半導体装置は、例えば光通信やデータ通信用の光送信器や光受信器、特に、光インターコネクトシステムを構成する光送信器や光受信器に適用可能な半導体装置であって、例えば受光器や変調器などの半導体光素子を備える光集積素子である。
特に、低消費電力、小面積化の観点から、Si基板又はSOI(Silicon on Insulator)基板上に集積された受光器や変調器などの半導体光素子を備えるシリコンフォトニクス集積素子に適用するのが好ましい。
本実施形態では、半導体光素子は、Geを吸収層に用い、Siキャップ層を備えるGe受光器(Geフォトディテクタ)であって、図1に示すように、基板1の上方に設けられ、Ge吸収層2と、Ge吸収層2を覆うSiキャップ層3と、Siキャップ層3上に設けられた金属電極4とを備える。なお、Ge受光器5をシリコンフォトニクス用Ge受光器ともいう。
本実施形態では、基板1は、Si基板6上にBOX層7、SOI層(Si層)8を備えるSOI基板である。また、Si基板6の面方位は(001)であり、SOI層8はi−Si層である。また、Ge吸収層2はi−Ge吸収層である。また、金属電極4はAl電極である。また、Siキャップ層3やSOI層8の表面は保護膜としてのSiO膜9で覆われている。
なお、本実施形態では、基板1をSOI基板としているが、これに限られるものではなく、例えばSi基板を用いても良い。つまり、基板1は、Si基板又はSOI基板であれば良く、また、Si基板を含む基板であれば良い。また、吸収層2をGe層(Ge吸収層)としているが、これに限られるものではなく、例えばGeSi層(SiよりもGeが多いGeSi層)を用いても良い。つまり、吸収層2は、Ge層又はGeSi層であれば良く、また、Geを含む吸収層であれば良い。また、キャップ層3をSi層(Siキャップ層)としているが、これに限られるものではなく、例えばSiGe層(GeよりもSiが多いSiGe層)を用いても良い。つまり、キャップ層3は、Si層又はSiGe層であれば良く、また、Siを含むキャップ層であれば良い。
また、本実施形態では、Ge吸収層2は、メサ構造になっている。なお、ここでは、後述するように、メサ構造になっているGe吸収層2は、選択成長によって形成されるため、これを選択成長Geメサ構造ともいう。そして、Siキャップ層3が、Ge吸収層2の表面全体を覆っている。つまり、Siキャップ層3は、メサ構造になっているGe吸収層2の上面だけでなく側面も含めて表面全体を覆っている。
なお、本実施形態では、Ge吸収層2は、SOI層8の表面上に設けられているが、これに限られるものではなく、例えばGe吸収層2の下地層(ここではSOI層8)が凹部を有し、その凹部にGe吸収層2が設けられていても良い。また、Ge吸収層2は、メサ構造になっていなくても良く、例えば平面状のGe吸収層、平面状のSiキャップ層が積層された構造になっていても良い。また、メサ構造になっているGe吸収層2の表面全体をSiキャップ層3で覆っているが、これに限られるものではなく、メサ構造になっているGe吸収層2の上面だけがSiキャップ層3で覆われるようにしても良い。
特に、本実施形態では、Siキャップ層3は、Ge吸収層2と金属電極4との間に設けられた部分の厚さがそれ以外の部分の厚さよりも薄くなっている。つまり、金属電極4が形成されている領域(即ち、金属電極4と接する領域)のSiキャップ層3の厚さが、金属電極4が形成されていない領域(即ち、金属電極4と接しない領域)のSiキャップ層3の厚さと比較して薄くなっている。これにより、応答特性を劣化させることなく、暗電流を低減することができる。
このように構成しているのは、以下の理由による。
受光器において、暗電流を低減することは、ノイズ低減の上で重要である。
そこで、低暗電流を実現するために、吸収層としてのGe層の表面にSiキャップ層を設けることが考えられる。
ここで、暗電流は、一般に、接合電流成分(接合成分)と表面電流成分(表面成分)の2つの成分からなる。
このうち、接合電流成分は、金属電極からGe(バルク)層を介して流れる電流の成分である。
Ge層と金属電極の間の接合はオーミック接合であるため、Siキャップ層がない場合、接合電流成分は非常に大きい。これに対し、Siキャップ層を設けることで、金属電極との間にショットキー障壁が形成されるため、接合電流成分を低減し、ひいては、暗電流を低減することができる。
表面電流成分は、Geの最表面のダングリングボンドによる表面準位(局在準位)を介して流れる電流成分である。
Ge層の最表面に保護膜がない場合、又は、例えばSiO、SiNなどの絶縁膜でGe層の表面が覆われている場合、最表面のGeのダングリングボンドにより局在準位が形成され、これを介した表面電流が増大する。これに対し、Siキャップ層を設けることで、SiとGeの間で共有結合が形成され、ダングリングボンドが解消されるため、表面電流成分を低減し、ひいては、暗電流を低減することができる。
しかしながら、SiはGeよりもバンドギャップが大きいため、Siキャップ層で電圧降下が発生し、Ge層への電界強度がSiキャップ層を設けない場合と比較して低下してしまう。
その結果、フォトキャリアの電極への掃引が低下し、Ge層を用いたフォトディテクタの応答特性が劣化してしまうことになる。
さらに検討したところ、Siキャップ層を厚くすることで、金属電極との間の実効的なショットキー障壁が増大し、接合電流成分が低下することがわかった。また、Siキャップ層の最表面にはダングリングボンドによる局在準位が存在するが、Siキャップ層が薄いとGe層からこの局在準位にキャリアがエスケイプしやすいのに対し、Siキャップ層を厚くすることで、キャリアのエスケイプが抑制され、表面電流成分が低下することがわかった。
しかしながら、Siキャップ層を厚くすると、Siキャップ層で大きな電圧降下が発生し、Ge層への電界強度が低下してしまい、この結果、フォトキャリアの電極への掃引が低下し、フォトディテクタの応答特性が劣化してしまうことがわかった。
具体的には、Ge層の表面全体を覆うSiキャップ層の膜厚を変えて、接合電流成分と表面電流成分がどのように変化するかを検討したところ、Siキャップ層を薄くすると接合電流成分、表面電流成分ともに増加し、Siキャップ層を厚くすると接合電流成分、表面電流成分ともに減少することがわかった。
一方で、Siキャップ層の薄膜化による各電流成分の増加率に着目すると、例えば約16nmから約5nmへの薄膜化で、接合電流成分は9倍程度の増加率であるのに対して、表面電流成分は24倍程度と大きいことがわかった。
この点を考慮すると、応答特性の劣化を抑制することによる高速動作の実現と低暗電流を両立するためには、金属電極と接する領域のSiキャップ層の厚さを薄くして電圧降下を低くし、Ge層への電界を増大し、フォトキャリアの掃引効果を高めると同時に、電圧降下に寄与しない金属電極と接する領域以外の領域のSiキャップ層の厚さを厚くして表面リーク電流を低減して暗電流を低減することが有効である。
そこで、応答特性を劣化させることなく、暗電流を低減できるようにすべく、上述のように、金属電極4と接する領域のSiキャップ層3の厚さが、金属電極4と接しない領域のSiキャップ層3の厚さと比較して薄くなるようにしている。
ところで、Metal-Semiconductor-Metal(MSM)型のフォトディテクタ(PD)5Aとする場合、金属電極4は、図6(B)に示すように、対向して設けられた2つの櫛形電極4A、4Bとすれば良い。つまり、2つの櫛形電極4A、4Bのくし部が交互に配置されるように、2つの櫛形電極4A、4Bを対向して設ければ良い。ここでは、メサ構造になっているGe吸収層2の上部(平坦部)を覆うSiキャップ層3上に、2つの櫛形電極4A、4Bを対向して設ければ良い。なお、MSM型PDをダブルショットキー型PDともいう。
また、PIN型のPD5Bとする場合、図12(B)に示すように、キャップ層3の金属電極4Cの下方の部分を、n型及びp型の一方(ここではn型)のドーパントがドーピングされたもの、即ち、n型半導体層(ここではn−Si層及びn−Ge層)10とし、Ge吸収層2の下方に設けられたSi層(SOI層)8を、n型及びp型の他方(ここではp型)のドーパントがドーピングされたもの、即ち、p−Si層8Aとし、Siキャップ層3上に設けられた金属電極4C(ここではn側電極)のほかに、Si層(SOI層)8(具体的にはSi層8のp型のドーパントがドーピングされたp−Si層8A)に接続された他の金属電極4D(例えばAl電極;ここではp側電極)を設ければ良い。ここでは、メサ構造になっているGe吸収層2(Siキャップ層付きGeメサ構造)の上方及び下方に設けられたSi層3、8に、それぞれ、p型又はn型のドーパントをドーピングし、メサ構造のGe吸収層2の上方のSi層3上に金属電極4Cを設けるとともに、メサ構造のGe吸収層2の下方のSi層8に接続されるように他の金属電極4Dを設けている。
なお、このPIN型PDの構造において、n型のドーパントがドーピングされている領域10をなくしてショットキー型PDとしても良い。これをシングルショットキー型PDともいう。
また、図6(B)、図12(B)に示すように、Ge吸収層2の下方に設けられたSi層8(ここではSi台座部8X)の一の側にSi導波路コア層8Y、8Zを備えるものとすれば良い。例えば、SOI基板1のSOI層8をパターニングして、PDを形成するためのSi台座部8Xと、これに連なるSi導波路コア層としてのSiテーパ部8Y及びSi細線部8Zとを形成し、PDにSi導波路が接続されるようにすれば良い。
次に、上述のように構成されるGeフォトディテクタ5の製造方法について説明する。
ここでは、まず、図2〜図6を参照しながら、SOIウェハ上の導波路結合型のMSM型PD5Aの製造方法を例に挙げて説明し、その後に、図7〜図12を参照しながら、SOIウェハ上の導波路結合型のPIN型PD5Bの製造方法を例に挙げて説明する。
まず、SOIウェハ上の導波路結合型のMSM型PD5Aは、以下のようにして製造する。
ここでは、SOI基板1として、面方位が(001)のSi基板6に、厚さが約3.0μmのBOX層7、厚さが約0.3μmのSOI層8を備えるものを用いる(図6(A)参照)。
まず、SOI基板1上に、レジストを塗布し、EBリソグラフィによって、露光及び現像を行なって、PDを構成するGe吸収層2の下地層となるSi台座部8X及びこれに連なるSi導波路コア(ここではSiテーパ部8Y及びSi細線部8Z)を形成するためのレジストパターンを形成する。
次に、図2に示すように、例えばICPドライエッチングによって、SOI基板1のSOI層(Si層)8をパターニングして、Ge成長用のSi台座部8X及びSi導波路コア8Y、8Zを形成する。なお、Si導波路コア8Y、8Zによって構成される導波路をSiパッシブ導波路又はSi細線導波路という。
次に、図3に示すように、Si台座部8X上に、Ge選択成長用の酸化膜(SiO膜)マスク9Aをパターニングし、Ge吸収層2及びSiキャップ層3を選択成長させる。
ここで、Ge吸収層2の選択成長は、例えば減圧化学気層成長(LP−CVD)法によって行なう。Geの原料としてはGeH(ゲルマン)、Siの原料としてはDCS(ジクロロシラン)、キャリアガスとしてはH(水素)を用いれば良い。ここでは、例えば、i−Ge層2を約1μm、Siキャップ層3を約16nm成長させる。また、Ge選択成長エリア(Geエピタキシャル成長エリア)のサイズは、例えば幅約10μm、長さ約30μmとする。
次に、図4に示すように、例えばプラズマCVD法によって、SiO膜9Bを約1μm形成する。これにより、Siキャップ層3及びSi層8を覆うSiO膜9が形成される。
次に、レジストを塗布し、Ge吸収層2の直上にコンタクトホール用のレジストパターンを形成した後、図5に示すように、例えば誘導性結合プラズマ(ICP)ドライエッチングによって、SiO膜9を約1μm、Siキャップ層3を約6nmエッチングして、コンタクトホール11を形成する。ここで、エッチングガスは、例えばCF系を用いれば良い。その後、レジストを剥離する。また、コンタクトホール11の底部(Siキャップ層3と接する部分)のエッチングパターンは、例えば、幅約6μm、長さ約2μmのスリット状のパターンとし、各パターンの間隔は約1μm、個数は8個とする。
次に、例えばスパッタリング法によって、金属電極4を形成すべく、Al層を約0.5μmの厚さになるように形成する。
次に、レジストを塗布し、パターニングし、例えばICPドライエッチングによって、図6(A)、図6(B)に示すように、金属電極4としてのAl電極を形成する。ここでは、例えば図6(B)に示すような櫛形電極4A、4B(櫛形電極パターン)を形成する。
このようにして、SOIウェハ上の導波路結合型のMSM型PD5Aを製造することができる。
次に、SOIウェハ上の導波路結合型のPIN型PD5Bは、以下のようにして製造する。
まず、上述のMSM型PDの製造方法と同様に、SOI層(Si層)8をパターニングして、SOIウェハ上に、Ge成長用のSi台座部8X及びSi導波路コア8Y、8Zを形成する(図2に示すパターン参照)。
次に、Si台座部8XのGe吸収層2の下地層となり、かつ、p側電極(p型電極)4Dが接続されるSi層(SOI層)8へのBのイオン注入を行なう。
例えば、レジストを塗布し、i線ステッパによって露光し、ウェットエッチングによって現像を行なう。そして、レジストがパターニングされたSOI基板をイオン注入装置に投入し、例えばドーズ量約6.0×1014cm−2、注入エネルギー約30keVの条件でBのイオン注入を行なう。
次に、SOI基板をイオン注入装置から取り出し、Oアッシング法によってレジストを剥離後、アニール装置に投入し、例えば約1000℃で約5秒間アニールを施し、Bイオンを活性化させる。
このようなBイオン注入、アニール工程を経て、図7に示すように、Si層8に、部分的に、約1.0×1019cm−3のキャリア濃度のp−Si層8Aが形成される。
次に、上述のMSM型PDの製造方法と同様に、図8に示すように、Ge選択成長用のSiOパターン9A(9)を形成し、Ge吸収層2及びSiキャップ層3を選択成長させ、さらに、SiO膜9B(9)を形成する。
次に、上述のMSM型PDの製造方法と同様に、コンタクトホール用のレジスト12をパターニングした後、例えばICPドライエッチングによって、図9に示すように、SiO層9を約1μm、Siキャップ層3を約5nmエッチングして、コンタクトホール11を形成する。ここで、コンタクトホール11の底部のエッチングパターンは、例えば、幅約6μm、長さ約26μmの長方形状のパターンとする。
次に、図10に示すように、レジスト12はそのままにして、例えば、ドーズ量約6.0×1014cm−2、注入エネルギー約30keVの条件でPのイオン注入を行なう。
次に、レジスト12を剥離後、アニール装置に投入し、例えば約1000℃で約5秒間アニールを施し、Pイオンを活性化させる。
このようなPイオン注入、アニール工程を経て、Siキャップ層3及びGe吸収層2に、部分的に、約1.0×1019cm−3のキャリア濃度のn型半導体層10(ここではn−Si層及びn−Ge層)が形成される。
次に、Si層8に形成されたp−Si層8Aへのコンタクトホール用のレジストパターンを形成した後、図11に示すように、例えばICPドライエッチングによって、コンタクトホール13を形成し、レジストを剥離する。
次に、例えばスパッタリング法によって、金属電極4としてのn側電極4C及びp側電極4Dを形成すべく、Al層を約500nmの厚さになるように形成する。
次に、レジストを塗布し、パターニングし、図12(A)、図12(B)に示すように、例えばICPドライエッチングによって、n側電極4C及びp側電極4DとしてのAl電極を形成する。
このようにして、SOIウェハ上の導波路結合型のPIN型PD5Bを製造することができる。
したがって、本実施形態にかかる半導体装置及び光インターコネクトシステムによれば、応答特性を劣化させることなく、暗電流を低減することができるという効果が得られる。
例えば、上述の実施形態のMSM型PD5Aでは、Siキャップ層3の厚さが約10nmで均一のものと比較して、暗電流を1/10程度にすることができる。
つまり、例えば、電極面積が約360μm、電極周辺長が480μmのMSM型PDの場合、Siキャップ層の厚さが約10nmで均一のものでは、暗電流の表面成分が約619nA、接合成分が約40nAで、合計約659nAとなる。一方、上述の実施形態のMSM型PD5Aのように、Siキャップ層3の厚さが電極領域で約10nm、電極以外の領域で約16nmのものでは、暗電流の表面成分が約37nA、接合成分が約40nAで、合計約77nAとなる。このように、本発明を適用することで、Siキャップ層3の厚さが薄くて均一なものと同等の応答特性を保持しながら、暗電流を1/10程度に低減することが可能となる。
なお、上述の実施形態では、受光器(フォトディテクタ)5を例に挙げて説明しているが、これに限られるものではなく、例えば図13、図14に示すような変調器14などの他の半導体光素子に本発明を適用することもできる。
例えば、上述のMSM型PD5A、即ち、Si層8(ここではSi台座部8X)の一の側にSi導波路コア層8Y、8Zを備えるMSM型PD5Aの素子構造において、図13に示すように、Si層8(ここではSi台座部8X)の一の側と異なる他の側(ここでは反対側)に他のSi導波路コア層8YA、8ZAを設け、両端に導波路が接続(光結合)されるようにすることで、ショットキー型変調器14Aとして用いることができる。この場合、ショットキー型変調器14Aは、ショットキー型の電界吸収型変調器(EA変調器)である。なお、EA変調器14Aの素子構造は、PD5Aの素子構造と同じであり、その製造方法も同じである。
また、例えば、上述のPIN型PD5B、即ち、Si層8(ここではSi台座部8X)の一の側にSi導波路コア層8Y、8Zを備えるPIN型PD5Bの素子構造において、図14に示すように、Si層8(ここではSi台座部8X)の一の側と異なる他の側(ここでは反対側)に他のSi導波路コア層8YA、8ZAを設け、両端に導波路が接続(光結合)されるようにすることで、PIN型変調器14Bとして用いることができる。この場合、PIN型変調器14Bは、PIN型の電界吸収型変調器(EA変調器)である。なお、EA変調器14Bの素子構造は、PD5Bの素子構造と同じであり、その製造方法も同じである。
なお、上述のPIN型PD5Bのn型のドーパントがドーピングされている領域10をなくしたシングルショットキー型PDの素子構造において、Si層の一の側と異なる他の側に他のSi導波路コア層を設け、両端に導波路が接続(光結合)されるようにすることで、シングルショットキー型変調器として用いることができる。この場合、シングルショットキー型変調器は、シングルショットキー型の電界吸収型変調器(EA変調器)である。なお、EA変調器の素子構造は、PDの素子構造と同じであり、その製造方法も同じである。
また、上述のように構成される受光器5は、光インターコネクトシステムを構成する光受信器に用いることができ、また、上述のように構成される変調器14は、光インターコネクトシステムを構成する光送信器に用いることができる。
つまり、光送信器と、光送信器に光伝送路(ここでは光ファイバ)を介して接続された光受信器とを備える光インターコネクトシステムにおいて、光送信器又は光受信器を、上述のように構成される半導体装置に備えられる半導体光素子としての受光器5又は変調器14を備えるものとして構成することができる。この場合、光送信器を、変調器として、上述のように構成される半導体装置に備えられる半導体光素子としての変調器14を備えるものとすれば良い。また、光受信器を、受光器として、上述のように構成される半導体装置に備えられる半導体光素子としての受光器5を備えるものとすれば良い。
例えば、図15に示すように、光インターコネクトシステム20を構成する光送信器を、Si基板上に光素子を集積したSi光素子集積基板(Tx)21とし、光素子として、レーザ22、上述の実施形態の変調器14(例えばPIN型Ge変調器14B;変調器素子)、及び合波器23を集積したものとすれば良い。また、光インターコネクトシステム20を構成する光受信器を、Si基板上に光素子を集積したSi光素子集積基板(Rx)24とし、光素子として、上述の実施形態の受光器5(例えばPIN型Ge受光器5B;半導体受光素子)及び分波器25とすれば良い。そして、これらのSi光素子集積基板21、24を光ファイバ26で接続して、光インターコネクトシステム20を構成すれば良い。ここでは、レーザ22、変調器14、受光器5を、それぞれ、4つ備えるものを例に挙げて説明する。
この場合、一のSi光素子集積基板21に搭載された4つのレーザ22を用いて異なる4波長の連続光を発生させる。異なる4波長の連続光は、それぞれ、Si導波路を通過し、各Si導波路に接合された上述の実施形態の変調器14によって信号光に変換される。その後、例えばアレイ導波路(Array waveguide:AWG)のような合波器23によって1本の導波路に波長多重(WDM)化される。多重化された4波長の信号光は光ファイバ26を導波し、別のSi光素子集積基板24の導波路に結合される。その後、異なる4波長の信号光は、例えばAWGのような分波器25によって再び異なる4つの導波路に分波される。各導波路を進行してきた信号光は、上述の実施形態の受光器5によって電気信号に変換される。
なお、本発明は、上述した実施形態に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
以下、上述の実施形態に関し、更に、付記を開示する。
(付記1)
基板の上方に設けられ、Geを含む吸収層と、
前記吸収層を覆い、Siを含むキャップ層と、
前記キャップ層上に設けられた金属電極とを備え、
前記キャップ層は、前記吸収層と前記金属電極との間に設けられた部分の厚さがそれ以外の部分の厚さよりも薄くなっていることを特徴とする半導体装置。
(付記2)
前記キャップ層は、Si層又はSiGe層であることを特徴とする、付記1に記載の半導体装置。
(付記3)
前記吸収層は、Ge層又はGeSi層であることを特徴とする、付記1又は2に記載の半導体装置。
(付記4)
前記基板は、Si基板又はSOI(Silicon on Insulator)基板であることを特徴とする、付記1〜3のいずれか1項に記載の半導体装置。
(付記5)
前記吸収層は、メサ構造になっていることを特徴とする、付記1〜4のいずれか1項に記載の半導体装置。
(付記6)
前記キャップ層は、前記吸収層の表面全体を覆っていることを特徴とする、付記1〜5のいずれか1項に記載の半導体装置。
(付記7)
前記金属電極は、対向して設けられた2つの櫛形電極であることを特徴とする、付記1〜6のいずれか1項に記載の半導体装置。
(付記8)
前記吸収層の下方に設けられたSi層と、
前記Si層の一の側に設けられたSi導波路コア層とを備えることを特徴とする、付記7に記載の半導体装置。
(付記9)
前記Si層の前記一の側と異なる他の側に設けられた他のSi導波路コア層を備えることを特徴とする、付記8に記載の半導体装置。
(付記10)
前記吸収層の下方に設けられたSi層と、
前記Si層に接続された他の金属電極とを備え、
前記キャップ層の前記金属電極の下方の部分にn型及びp型の一方のドーパントがドーピングされており、
前記Si層にn型及びp型の他方のドーパントがドーピングされていることを特徴とする、付記1〜6のいずれか1項の半導体装置。
(付記11)
前記Si層の一の側に設けられたSi導波路コア層を備えることを特徴とする、付記10に記載の半導体装置。
(付記12)
前記Si層の前記一の側と異なる他の側に設けられた他のSi導波路コア層を備えることを特徴とする、付記11に記載の半導体装置。
(付記13)
光送信器と、
前記光送信器に光伝送路を介して接続された光受信器とを備え、
前記光送信器又は前記光受信器は、付記1〜12のいずれか1項に記載の半導体装置を備えることを特徴とする光インターコネクトシステム。
(付記14)
前記光送信器は、変調器として、前記半導体装置を備えることを特徴とする、付記13に記載の光インターコネクトシステム。
(付記15)
前記光受信器は、受光器として、前記半導体装置を備えることを特徴とする、付記13又は14に記載の光インターコネクトシステム。
1 基板
2 吸収層(Ge吸収層)
3 キャップ層(Siキャップ層)
4 金属電極(Al電極)
4A、4B 櫛形電極
4C 金属電極
4D 他の金属電極
5 受光器(Ge受光器)
5A MSM型PD
5B PIN型PD
6 Si基板
7 BOX層
8 SOI層(Si層)
8A p−Si層
8X Si台座部
8Y Siテーパ部(Si導波路コア層)
8Z Si細線部(Si導波路コア層)
8YA、8ZA 他のSi導波路コア層
9、9A、9B SiO
10 n型半導体層(n−Si層及びn−Ge層)
11 コンタクトホール
12 レジスト
13 コンタクトホール
14 変調器
14A ショットキー型変調器
14B PIN型変調器
20 光インターコネクトシステム
21 Si光素子集積基板(光送信器)
22 レーザ
23 合波器
24 Si光素子集積基板(光受信器)
25 分波器
26 光ファイバ

Claims (10)

  1. 基板の上方に設けられ、Geを含む吸収層と、
    前記吸収層を覆い、Siを含むキャップ層と、
    前記キャップ層上に設けられた金属電極とを備え、
    前記キャップ層は、前記吸収層と前記金属電極との間に設けられた部分の厚さがそれ以外の部分の厚さよりも薄くなっていることを特徴とする半導体装置。
  2. 前記吸収層は、メサ構造になっていることを特徴とする、請求項1に記載の半導体装置。
  3. 前記キャップ層は、前記吸収層の表面全体を覆っていることを特徴とする、請求項1又は2に記載の半導体装置。
  4. 前記金属電極は、対向して設けられた2つの櫛形電極であることを特徴とする、請求項1〜3のいずれか1項に記載の半導体装置。
  5. 前記吸収層の下方に設けられたSi層と、
    前記Si層の一の側に設けられたSi導波路コア層とを備えることを特徴とする、請求項4に記載の半導体装置。
  6. 前記Si層の前記一の側と異なる他の側に設けられた他のSi導波路コア層を備えることを特徴とする、請求項5に記載の半導体装置。
  7. 前記吸収層の下方に設けられたSi層と、
    前記Si層に接続された他の金属電極とを備え、
    前記キャップ層の前記金属電極の下方の部分にn型及びp型の一方のドーパントがドーピングされており、
    前記Si層にn型及びp型の他方のドーパントがドーピングされていることを特徴とする、請求項1〜3のいずれか1項の半導体装置。
  8. 前記Si層の一の側に設けられたSi導波路コア層を備えることを特徴とする、請求項7に記載の半導体装置。
  9. 前記Si層の前記一の側と異なる他の側に設けられた他のSi導波路コア層を備えることを特徴とする、請求項8に記載の半導体装置。
  10. 光送信器と、
    前記光送信器に光伝送路を介して接続された光受信器とを備え、
    前記光送信器又は前記光受信器は、請求項1〜9のいずれか1項に記載の半導体装置を備えることを特徴とする光インターコネクトシステム。
JP2016031126A 2016-02-22 2016-02-22 半導体装置及び光インターコネクトシステム Active JP6656016B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031126A JP6656016B2 (ja) 2016-02-22 2016-02-22 半導体装置及び光インターコネクトシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031126A JP6656016B2 (ja) 2016-02-22 2016-02-22 半導体装置及び光インターコネクトシステム

Publications (2)

Publication Number Publication Date
JP2017152434A true JP2017152434A (ja) 2017-08-31
JP6656016B2 JP6656016B2 (ja) 2020-03-04

Family

ID=59742094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031126A Active JP6656016B2 (ja) 2016-02-22 2016-02-22 半導体装置及び光インターコネクトシステム

Country Status (1)

Country Link
JP (1) JP6656016B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204820A (ja) * 2018-05-21 2019-11-28 日本電信電話株式会社 光検出器
US11081610B2 (en) * 2019-02-07 2021-08-03 Newport Fab, Llc Anode up—cathode down silicon and germanium photodiode
US11616156B2 (en) 2019-04-23 2023-03-28 Fujitsu Optical Components Limited Semiconductor device comprising a monitor including a second semiconductor layer in which dark current is changed by a heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177122A (ja) * 1997-12-16 1999-07-02 Nec Corp 半導体光検出器及びその製造方法
US20090101909A1 (en) * 2007-10-17 2009-04-23 Nano Photonics, Inc. Semiconductor photodetectors
JP2013532902A (ja) * 2010-07-23 2013-08-19 インテル コーポレイション 高速、高光帯域、及び、高効率の共振空洞感度増強光検出器
US20150097256A1 (en) * 2013-10-03 2015-04-09 Globalfoundries Singapore Pte. Ltd. Semiconductor devices including avalanche photodetector diodes integrated on waveguides and methods for fabricating the same
JP2015144163A (ja) * 2014-01-31 2015-08-06 技術研究組合光電子融合基盤技術研究所 SiGeフォトダイオード

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177122A (ja) * 1997-12-16 1999-07-02 Nec Corp 半導体光検出器及びその製造方法
US20090101909A1 (en) * 2007-10-17 2009-04-23 Nano Photonics, Inc. Semiconductor photodetectors
JP2013532902A (ja) * 2010-07-23 2013-08-19 インテル コーポレイション 高速、高光帯域、及び、高効率の共振空洞感度増強光検出器
US20150097256A1 (en) * 2013-10-03 2015-04-09 Globalfoundries Singapore Pte. Ltd. Semiconductor devices including avalanche photodetector diodes integrated on waveguides and methods for fabricating the same
JP2015144163A (ja) * 2014-01-31 2015-08-06 技術研究組合光電子融合基盤技術研究所 SiGeフォトダイオード

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204820A (ja) * 2018-05-21 2019-11-28 日本電信電話株式会社 光検出器
WO2019225439A1 (ja) * 2018-05-21 2019-11-28 日本電信電話株式会社 光検出器
US11081610B2 (en) * 2019-02-07 2021-08-03 Newport Fab, Llc Anode up—cathode down silicon and germanium photodiode
US11616156B2 (en) 2019-04-23 2023-03-28 Fujitsu Optical Components Limited Semiconductor device comprising a monitor including a second semiconductor layer in which dark current is changed by a heater

Also Published As

Publication number Publication date
JP6656016B2 (ja) 2020-03-04

Similar Documents

Publication Publication Date Title
US9577136B2 (en) Semiconductor light-receiving element and method for manufacturing same
JP5232981B2 (ja) SiGeフォトダイオード
JP7090479B2 (ja) 光半導体素子及び光伝送装置
US9653639B2 (en) Laser using locally strained germanium on silicon for opto-electronic applications
WO2014155450A1 (ja) シリコンベース電気光学変調装置
US9735296B2 (en) Semiconductor light receiving device
JP6184539B2 (ja) 半導体受光素子、光電融合モジュール、半導体受光素子の製造方法
JP6378928B2 (ja) Ge系半導体装置、その製造方法及び光インターコネクトシステム
JP6744138B2 (ja) 半導体装置及びその製造方法、光インターコネクトシステム
JP6527611B1 (ja) 半導体受光素子、光電融合モジュール、半導体受光素子の製造方法
JP5370857B2 (ja) ゲルマニウム受光器およびその製造方法
JP6656016B2 (ja) 半導体装置及び光インターコネクトシステム
JP2015046429A (ja) 受光素子およびその製造方法
JP5746222B2 (ja) 光−電子デバイス
WO2020069253A1 (en) Strained germanium silicon modulators for integrated high-speed broadband modulation
CN112670820B (zh) 电吸收调制激光器各功能区电隔离的实现方法
JP6726248B2 (ja) 半導体受光素子、及び光電融合モジュール
JP6423159B2 (ja) Ge系半導体装置、その製造方法及び光インターコネクトシステム
JP7125822B2 (ja) 光半導体素子及び光伝送装置
JP2020170819A (ja) 光半導体素子及び光伝送装置
JP4091476B2 (ja) 光検出器及び光検出器内蔵シリコン光導波路
JP7275843B2 (ja) 光半導体素子
US11886003B2 (en) Optical waveguide
Lin et al. Germanium photodetectors with 60-nm absorption coverage extension and∼ 2× quantum efficiency enhancement across L-band
JP2009128694A (ja) 光スイッチ素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6656016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350