JP2017103412A - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
JP2017103412A
JP2017103412A JP2015237439A JP2015237439A JP2017103412A JP 2017103412 A JP2017103412 A JP 2017103412A JP 2015237439 A JP2015237439 A JP 2015237439A JP 2015237439 A JP2015237439 A JP 2015237439A JP 2017103412 A JP2017103412 A JP 2017103412A
Authority
JP
Japan
Prior art keywords
layer
electrolytic capacitor
solid electrolytic
zinc oxide
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015237439A
Other languages
English (en)
Inventor
佐藤 弘樹
Hiroki Sato
弘樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2015237439A priority Critical patent/JP2017103412A/ja
Priority to US15/345,321 priority patent/US20170162336A1/en
Priority to CN201611046712.2A priority patent/CN106910633A/zh
Publication of JP2017103412A publication Critical patent/JP2017103412A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/032Inorganic semiconducting electrolytes, e.g. MnO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】耐熱性と低ESR特性とを備えた固体電解質コンデンサを提供することである。【解決手段】本発明にかかる固体電解コンデンサ1は、陽極体11と、陽極体11の表面に配置された誘電体層12と、誘電体層12の表面に配置され、1(S/cm)以上の導電率を有する酸化亜鉛を用いて構成された固体電解質層13と、を備える。また、本発明にかかる固体電解コンデンサでは、誘電体層12と固体電解質層13との間に、誘電体層12と固体電解質層13との間の相互拡散を抑制するための拡散抑制層21を形成してもよい。【選択図】図1

Description

本発明は固体電解コンデンサに関し、特に電解質に導電性の酸化亜鉛を用いた固体電解コンデンサに関する。
一般的に、電解コンデンサの電解質として、エチレングリコールやγ−ブチロラクトンなどの低分子の有機溶媒を主成分とし、アジピン酸、セバシン酸、ホウ酸、リン酸やその塩などの電解質を溶解させた組成を有する電解液が用いられている。また、他の電解質として、ポリチオフェン、ポリピロール、ポリアニリンまたはその誘導体を用いた導電性高分子や二酸化マンガンなども用いられている。
特許文献1には、弁金属の陽極体に形成された誘電体被膜に隣接する固体電解質の形成方法に関する技術が開示されている。
特開平4−240710号公報
近年、車載用途等において電解コンデンサの使用温度の向上が望まれている。しかしながら、電解コンデンサの電解液や導電性高分子などの有機材料は、高温時に揮発したり分解したりするため、コンデンサの機能が低下するという問題がある。
このような問題は、二酸化マンガンを電解質として用いることで解決することができる。しかしながら、二酸化マンガンは導電性が低いためコンデンサの等価直列抵抗(ESR:Equivalent Series Resistance)が高くなるという問題がある。
上記課題に鑑み本発明の目的は、耐熱性と低ESR特性とを備えた固体電解質コンデンサを提供することである。
本発明にかかる固体電解コンデンサは、陽極体と、前記陽極体の表面に配置された誘電体層と、前記誘電体層の表面に配置され、1(S/cm)以上の導電率を有する酸化亜鉛を用いて構成された固体電解質層と、を備える。
本発明により、耐熱性と低ESR特性とを備えた固体電解質コンデンサを提供することができる。
実施の形態1にかかる固体電解コンデンサを示す断面図である。 実施の形態2にかかる固体電解コンデンサを示す断面図である。 実施例1〜21における電解質、電解質の導電率、拡散抑制層、容量(120Hz)、容量(100kHz)、漏れ電流不良率を示す表である。 実施例22〜42における電解質、電解質の導電率、拡散抑制層、容量(120Hz)、容量(100kHz)、漏れ電流不良率を示す表である。
<実施の形態1>
以下、図面を参照して本発明の実施の形態について説明する。図1は、実施の形態1にかかる固体電解コンデンサを示す断面図である。図1に示すように、本実施の形態にかかる固体電解コンデンサ1は、陽極体11と、陽極体11の表面に配置された誘電体層12と、誘電体層12の表面に形成された固体電解質層13と、陰極体16と、を備える。ここで、陰極体16は、グラファイト層14と銀層15とを有しており、固体電解質層13と陰極(不図示)とを接続する陰極引出層として機能する。
陽極体11は弁金属を用いて形成されている。弁金属には、例えばアルミニウム、タンタル、ニオブ、チタン、ジルコニウム、ハフニウム、タングステン、及びこれらを含む合金等を用いることができる。なお、これらの弁金属は一例であり、本実施の形態にかかる固体電解コンデンサでは陽極体11上に形成された誘電体層と導電性酸化亜鉛電解質との間に整流作用が発現する材料であればどのような材料を用いてもよい。
誘電体層12は、例えば弁金属である陽極体11を陽極酸化することにより形成することができる。例えば、陽極体11にアルミニウムを用いた場合は、陽極体11を陽極酸化することで、陽極体11の表面に酸化アルミニウム被膜(誘電体層12)を形成することができる。一例を挙げると、誘電体層12の厚さは1nm〜2μm程度である。
固体電解質層13は、誘電体層12と陰極体16との間に形成されている。導通がとれ、整流作用が発現し容量が引き出せれば特に限定されないが、一例を挙げると、固体電解質層13の厚さは10nm〜500μm程度である。なお、固体電解質層13の詳細については後述する。
固体電解質13の表面にはグラファイト層14が形成されている。グラファイト層14の形成方法の一例としては、カーボンペースト(例えば、カーボン粒子とグラファイトと樹脂で構成)を用いて形成されている。グラファイト層14は、固体電解質層13上に直接接するように形成されている。銀層15は、グラファイト層14の表面に形成されている。例えば、銀ペースト層15は、銀粒子とエポキシ樹脂とを混合して形成することができる。一例を挙げると、グラファイト層14の厚さは10nm〜100μm程度、銀ペースト層15の厚さは1μm〜300μm程度である。
なお、陰極体(陰極引出層)16は、グラファイト層14または銀層15のどちらか一方のみを用いて構成されていてもよい。すなわち、固体電解質層13と陰極(不図示)とを電気的に接続することができる構成であれば、どのような構成であってもよい。
本実施の形態にかかる固体電解コンデンサ1は、固体電解質層13に導電性を備える酸化亜鉛を用いて構成した点を特徴としている。以下で、本実施の形態にかかる固体電解コンデンサ1が備える固体電解質層13について詳細に説明する。
固体電解コンデンサ1における固体電解質層13は、誘電体層12に電荷を蓄電するために、誘電体層12との間において整流作用が発現することが必要である。酸化亜鉛(ZnO)は絶縁性の材料であるが、ドーパントを添加したり酸素欠損を形成したりすることで導電性を付与することができる。導電率を上昇させ、整流作用が発現すればドーパントの種類は限定されないが、例えば第3族の元素(Sc、Y等)、第4族の元素(Ti、Zr、Hf)、第13族の元素(B、Al、Ga、In等)や第14族の元素(Si、Ge、Sn等)、V(バナジウム)、F(フッ素)などが挙げられる。導電性の観点から、好ましくは、B(ホウ素)やAl(アルミニウム)やGa(ガリウム)を用いる。このような、酸素欠損を用いた1S/cm以上の導電性酸化亜鉛、またはドーパントを含有した導電性酸化亜鉛において、誘電体層との間に整流作用が発現し、蓄電が確認されたのは初めてである。
ここで、ドーパントをドープして形成した導電性の酸化亜鉛は、酸素欠損により導電性を付与した酸化亜鉛よりも高い耐熱性を備える。つまり、ドーパントをドープした導電性の酸化亜鉛は高い導電性と高い耐熱性を備える材料であり、誘電体層12上に形成した際に整流作用が発現する材料である。なお、酸素欠損により導電性を付与した酸化亜鉛についても、本発明の目的を達成するための耐熱性を十分備えている。
また、さらなる耐熱性の改善を目的に電解質に用いている導電性酸化亜鉛を酸素遮断してもよい。例えば、素子をモールド剤、メッキなどで覆う、缶封止する、グラファイト層や銀層に酸素を通しにくい物質や酸素を捕捉する物質を含有させる、などが挙げられる。
固体電解質層13は、例えばスパッタリング法やイオンプレーディング法、気相蒸着法、メッキ法、液相析出法、溶液へ分散した粉末を付着させる方法などを用いて形成することができる。例えば、誘電体層12の形状がエッチングで形成された形状や粉末焼結体のような凹凸の大きい形状の場合は、容量を引き出すために誘電体層12の凹凸の奥深くまで電解質を形成する必要がある。この場合は、例えば気相蒸着法、メッキ法、液相析出法等の凹凸の奥深くまで含浸することができる方法を用いて固体電解質層13を形成することが好ましい。
固体電解質層13を形成する際の温度は、高温(例えば、300℃程度)であってもよく、また室温であってもよい。また、固体電解質層13を形成する際は、誘電体層12を形成した後の陽極体11を加熱しながら酸化亜鉛を形成してもよく、また酸化亜鉛を形成した後、酸化亜鉛の導電率を向上させるためにアニール処理を行ってもよい。
固体電解質層13を形成する際の雰囲気は、大気中、不活性ガス中のどちらであってもよい。酸化亜鉛中に酸素欠損を形成する際は、不活性ガス、若しくは弱い還元雰囲気中で固体電解質層13を形成することが好ましい。不活性ガスには、アルゴン、ヘリウム、窒素ガス等を用いることができる。還元雰囲気には水素等を用いることができる。また、固体電解質層13を形成した後、水素ガス等を用いて酸化亜鉛を還元してもよい。例えば、酸化亜鉛を形成後、水素ガス雰囲気下で処理をすることで酸化亜鉛に酸素欠損を形成することができる。
本実施の形態において、固体電解質層13である酸化亜鉛は1(S/cm)以上の導電率、より好ましくは10(S/cm)以上の導電率、更に好ましくは50(S/cm)以上の導電率を有する。導電率は形成時・形成後の雰囲気や時間、温度をコントロールすることで調整することができる。また、ドーパント濃度を調整することで導電率を調整してもよい。また、これらの両方を用いて調整してもよい。
本実施の形態において、固体電解質層13である酸化亜鉛は、B、Al、及びGaのうちの少なくとも一つを含むドーパントを0.01〜20at%含んでいてもよい。この場合は、酸化亜鉛の導電率を5(S/cm)以上とすることができる。ドーパントは、最終的に酸化亜鉛固体電解質に取り込まれていればよく、例えば、形成前に混合する、形成時に共存させておく、形成後に拡散させて取り込ませるなどの方法がとれる。
また、本実施の形態において、固体電解質層13である酸化亜鉛はドーパントであるAlを0.1〜15.0at%含んでいてもよい。この場合は、酸化亜鉛の導電率を10(S/cm)以上とすることができる。
また、本実施の形態において、固体電解質層13である酸化亜鉛はドーパントであるGaを0.1〜15.0at%含んでいてもよい。この場合は、酸化亜鉛の導電率を10(S/cm)以上とすることができる。
また、本実施の形態において、固体電解質層13である酸化亜鉛は、酸素欠損を形成することで導電性が付与されていてもよい。
以上で説明したように、本実施の形態にかかる固体電解コンデンサでは、電解質に固体電解質(無機材料)を用いて構成している。よって、電解質を導電性高分子などの有機材料を用いて構成した場合よりも、固体電解コンデンサの耐熱性を向上させることができる。また、本実施の形態にかかる固体電解コンデンサでは、1(S/cm)以上の導電率を有する酸化亜鉛を用いて固体電解質層を構成している。よって、導電性が低い二酸化マンガンを用いて固体電解質層を構成した場合よりも、固体電解コンデンサのESR特性を向上させることができる(つまり、ESR特性を低くすることができる)。また、低ESR化したことによって、高周波側でも容量の低下を少なくすることができる。
以上で説明したように、本実施の形態にかかる発明により、耐熱性と低ESR特性とを備えた固体電解質コンデンサを提供することができる。
なお、本実施の形態では、固体電解質層13の原料は、誘電体層12の上に堆積させることができる材料であればどのような材料を用いてもよい。例えば、目的とする構成元素を含む単体、酸化物、各種化合物等を用いることができる。また、これらの混合物を使用してもよい。固体電解質層13が2種以上の元素を含む場合は、予めこれらの元素を混合した材料を用いてもよい。
また、固体電解質層13は、一層でもよく、また多層構造であってもよい。例えば、固体電解質層13を酸化亜鉛のみで形成する場合は、固体電解質層13の内側(誘電体層12側)を液相析出法で形成し、固体電解質層13の外側を気相蒸着法やスパッタリング法で形成して、固体電解質層13を2層構造としてもよい。
<実施の形態2>
次に、本発明の実施の形態2について説明する。図2は、実施の形態2にかかる固体電解コンデンサを示す断面図である。本実施の形態にかかる固体電解コンデンサ2は、誘電体層12と固体電解質層13との間に拡散抑制層21が形成されている点が実施の形態1で説明した固体電解コンデンサ1と異なる。これ以外は、実施の形態1で説明した固体電解コンデンサ1と同様であるので、同一の構成要素には同一の符号を付し重複した説明は省略する。
図2に示すように、本実施の形態にかかる固体電解コンデンサ2は、誘電体層12と固体電解質層13との間に拡散抑制層21が形成されている。拡散抑制層21は、誘電体層12と固体電解質層13との間の相互拡散を抑制する機能を備える。例えば、拡散抑制層21は、シリコン(Si)、シリコーン(ケイ素を含む化合物)、導電性高分子、二酸化マンガン、又は樹脂を用いて構成することができる。
拡散抑制層21を構成する材料に、シリコン、シリコーン、樹脂などの導電性がない材料を用いる場合は、拡散抑制層21の厚さは可能な限り薄くすることが好ましく、例えば1μm以下とすることが好ましい。拡散抑制層21の厚さが1μmよりも厚い場合は、固体電解コンデンサの容量の低下やESR特性の上昇の原因となる。また、高温下で固体電解質層13を形成する場合は、耐熱性を備えるシリコン、シリコーン、二酸化マンガンを拡散抑制層21の材料に用いることが好ましい。また、拡散抑制層21に樹脂を用いる場合は、誘電体層12(酸化被膜)を修復する観点から、スルホ基、カルボキシ基、又は水酸基を有する樹脂を用いて構成することが好ましい。拡散抑制層21の形成方法としては、例えば、陽極体11の表面に誘電体層12を形成した後、拡散抑制層21の原料を含む溶液の浸漬と乾燥を繰り返すことで形成することができる。
拡散抑制層21の材料として樹脂を用いる場合は、例えば、ポリビニルアルコール、ポリ酢酸ビニル、ポリカーボネート、ポリアクリレート、ポリメタアクリレート、ポリスチレン、ポリウレタン、ポリアクリロニトリル、ポリブタジエン、ポリイソプレン、ポリエーテル、ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリイミド、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、セルロース、ニトロセルロース、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、脂環式エポキシやその変性体等を用いることができる。なお、これらの材料は一例であり、誘電体層12の表面に薄く拡散抑制層21を形成することができる材料であればどのような材料を用いてもよい。粉末焼結体などの細孔内部への形成が必要な場合は溶解タイプのものを用いることが望ましい。また、これらの樹脂は、元となるモノマーやオリゴマーを誘電体層上で反応させ、形成したものでもよい。
本実施の形態にかかる固体電解コンデンサ2では、誘電体層12と固体電解質層13間に、誘電体層12と固体電解質層13との間の拡散を抑制するための拡散抑制層21を形成している。よって、固体電解コンデンサ2を高温下で使用した際に、誘電体層12と固体電解質層13との間で、固体電解質から誘電体へ亜鉛やドーパント等が拡散することや、その逆に誘電体から固体電解質へTaやAl等が拡散すること、または誘電体と固体電解質との間で相互拡散することにより固体電解コンデンサ2が劣化することを抑制することができる。ここで定義する拡散とは、原子拡散のことである。
なお、本実施の形態にかかる固体電解コンデンサ2では、拡散抑制層21の材料に導電性高分子や樹脂を用いることを許容している。つまり、拡散抑制層21の厚さは固体電解質層13の厚さよりも薄いため、拡散抑制層21の材料に導電性高分子や樹脂を用いたとしても固体電解コンデンサの耐熱性に与える影響は小さいといえる。
次に、本発明の実施例について説明する。
以下、実施例に基づき本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。以下の実施例では簡易な構成のコンデンサを評価しているが、粉末焼結体やエッチングされた箔などを用いた場合も同様の効果が期待できる。
<実施例1>
固体電解コンデンサの陽極体には弁金属であるタンタル板を用いた。そして、タンタル板をリン酸水溶液中において100Vで電解酸化し、タンタル板の表面全体に約170nmの誘電体層(酸化被膜層)を形成した。その後、スパッタ法を用いて、この誘電体層の表面に約1μmの導電性酸化亜鉛膜からなる固体電解質層を形成した。固体電解質層を形成した面積は70cmである。そして、固体電解質層の上にグラファイト層(約1μm)と銀ペースト層(約10μm)を形成して実施例1にかかる固体電解コンデンサを得た。
作製した固体電解コンデンサの容量は、LCRメータを用いて測定した。容量は120Hzと100kHzの値を評価した。また、作製した固体電解コンデンサに対して、125℃電圧印加試験(1.0W.V)を1000時間実施し、電圧印加試験評価終了時の固体電解コンデンサの不良率(漏れ電流で評価)についても調査した。この時、漏れ電流値が0.1CV以上(0.1×初期容量×化成電圧)の場合を規格外として判断した。
また、タンタル板の表面に酸化亜鉛膜を形成した方法と同様の方法を用いてガラス基板上に酸化亜鉛膜を作製した。そして、作製した酸化亜鉛膜の導電率を、三菱化学アナリテック株式会社製のロレスタGP MCT−T610型を用いて測定した抵抗値と酸化亜鉛膜の膜厚とから算出した。これらの結果を図3の表に示す。
<実施例2>
実施例2にかかる固体電解コンデンサとして、ガリウムを0.1at%添加した酸化亜鉛を固体電解質層として用いた固体電解コンデンサを作製した。これ以外は実施例1と同様である。
<実施例3>
実施例3にかかる固体電解コンデンサとして、アルミニウムを0.1at%添加した酸化亜鉛を固体電解質層として用いた固体電解コンデンサを作製した。これ以外は実施例1と同様である。
<実施例4>
実施例4にかかる固体電解コンデンサとして、ガリウムを3at%添加した酸化亜鉛を固体電解質層として用いた固体電解コンデンサを作製した。これ以外は実施例1と同様である。
<実施例5>
実施例5にかかる固体電解コンデンサとして、アルミニウムを3at%添加した酸化亜鉛を固体電解質層として用いた固体電解コンデンサを作製した。これ以外は実施例1と同様である。
<実施例6>
実施例6にかかる固体電解コンデンサとして、ガリウムを15at%添加した酸化亜鉛を固体電解質層として用いた固体電解コンデンサを作製した。これ以外は実施例1と同様である。
<実施例7>
実施例7にかかる固体電解コンデンサとして、アルミニウムを15at%添加した酸化亜鉛を固体電解質層として用いた固体電解コンデンサを作製した。これ以外は実施例1と同様である。
<実施例8〜14>
実施例8〜14にかかる固体電解コンデンサとして、二酸化マンガンからなる拡散抑制層(100nm)を誘電体層と固体電解質層との間に形成した固体電解コンデンサを作製した。これ以外は実施例1〜7と同様である。なお、実施例8〜14で用いた固体電解質層はそれぞれ、実施例1〜7で用いた固体電解質層と対応している。
<実施例15〜21>
実施例15〜21にかかる固体電解コンデンサとして、シリコーンからなる拡散抑制層(5nm)を誘電体層と固体電解質層との間に形成した固体電解コンデンサを作製した。これ以外は実施例1〜7と同様である。なお、実施例15〜21で用いた固体電解質層はそれぞれ、実施例1〜7で用いた固体電解質層と対応している。
<実施例22〜28>
実施例22〜28にかかる固体電解コンデンサとして、導電性高分子からなる拡散抑制層(100nm)を誘電体層と固体電解質層との間に形成した固体電解コンデンサを作製した。導電性高分子は、NMP(N−メチル−2−ピロリドン)溶液に溶解したポリアニリンを浸漬し乾燥することを繰り返すことで形成した。これ以外は実施例1〜7と同様である。なお、実施例22〜28で用いた固体電解質層はそれぞれ、実施例1〜7で用いた固体電解質層と対応している。
<実施例29〜35>
実施例29〜35にかかる固体電解コンデンサとして、ポリエステルからなる拡散抑制層(100nm)を誘電体層と固体電解質層との間に形成した固体電解コンデンサを作製した。これ以外は実施例1〜7と同様である。なお、実施例29〜35で用いた固体電解質層はそれぞれ、実施例1〜7で用いた固体電解質層と対応している。
<実施例36〜42>
実施例36〜42にかかる固体電解コンデンサとして、スルホン化ポリエステルからなる拡散抑制層(100nm)を誘電体層と固体電解質層との間に形成した固体電解コンデンサを作製した。これ以外は実施例1〜7と同様である。なお、実施例36〜42で用いた固体電解質層はそれぞれ、実施例1〜7で用いた固体電解質層と対応している。
<評価結果の検討>
実施例1〜7を比較すると、酸化亜鉛にドーパントを添加していない実施例1では電解質の導電率は8(S/cm)であったが、酸化亜鉛にドーパントを添加した実施例2〜7では電解質の導電率は11〜545(S/cm)となった。よって、電解質である酸化亜鉛にドーパント(ガリウムやアルミニウム)を添加した場合は、電解質の導電率が上昇した。特に、ドーパントの添加量が3at%である実施例4および実施例5ではそれぞれ、電解質の導電率が562(S/cm)、545(S/cm)となり高い値を示した。
また、100kHzにおける容量に着目すると、酸化亜鉛にドーパントを添加していない実施例1では容量が2.6(μF)であったが、酸化亜鉛にドーパントを添加した実施例2〜7では容量が6.7〜7.4(μF)となった。よって、電解質である酸化亜鉛にドーパント(ガリウムやアルミニウム)を添加した場合は、100kHzにおける容量が上昇した。これは、電解質の抵抗が下がったことにより電荷が誘電体層に近接したことによるものである。
また、拡散抑制層の効果を検証するために、拡散抑制層の材料に二酸化マンガンを用いた固体電解コンデンサ(実施例8〜14)、シリコーンを用いた固体電解コンデンサ(実施例15〜21)、導電性高分子を用いた固体電解コンデンサ(実施例22〜23)、ポリエステルを用いた固体電解コンデンサ(実施例29〜35)、スルホン化ポリエステルを用いた固体電解コンデンサ(実施例36〜42)をそれぞれ作製した。このとき、実施例1〜7と比較するために、固体電解質層に酸化亜鉛、ガリウム添加の酸化亜鉛、アルミニウム添加の酸化亜鉛をそれぞれ用いたサンプルを作製した。
実施例1〜7と、実施例8〜42とを比較すると、拡散抑制層を形成した場合(実施例8〜42)は、拡散抑制層を形成しなかった場合(実施例1〜7)と比べて、漏れ電流不良率が低下した。具体的には、拡散抑制層を形成しなかった場合(実施例1〜7)は、漏れ電流不良率が7〜8%であったが、拡散抑制層を形成した場合(実施例8〜42)は、漏れ電流不良率が1〜5%と低い値となった。特に、拡散抑制層にシリコーンを用いた場合(実施例15〜21)、スルホン化ポリエステルを用いた場合(実施例36〜42)は、漏れ電流不良率が1%〜2%となり、良好な特性が得られた。
以上、本発明を上記実施の形態および実施例に即して説明したが、本発明は上記実施の形態および実施例の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。
1、2 固体電解コンデンサ
11 陽極体
12 誘電体層
13 固体電解質層
14 グラファイト層
15 銀ペースト層
16 陰極体
21 拡散抑制層

Claims (12)

  1. 陽極体と、
    前記陽極体の表面に配置された誘電体層と、
    前記誘電体層の表面に配置され、1(S/cm)以上の導電率を有する酸化亜鉛を用いて構成された固体電解質層と、を備える、
    固体電解コンデンサ。
  2. 前記酸化亜鉛は、少なくとも一つのドーパントを含有する、請求項1に記載の固体電解コンデンサ。
  3. 前記ドーパントは、B、Al、及びGaのうちの少なくとも一つを含有する、請求項2に記載の固体電解コンデンサ。
  4. 前記ドーパントの添加量は0.01〜20at%の範囲である、請求項2または3に記載の固体電解コンデンサ。
  5. 前記酸化亜鉛の導電率が5(S/cm)以上である、請求項4に記載の固体電解コンデンサ。
  6. 前記酸化亜鉛はドーパントであるAlを0.1〜15.0at%含有する、請求項1に記載の固体電解コンデンサ。
  7. 前記酸化亜鉛はドーパントであるGaを0.1〜15.0at%含有する、請求項1に記載の固体電解コンデンサ。
  8. 前記酸化亜鉛の導電率が10(S/cm)以上である、請求項6または7に記載の固体電解コンデンサ。
  9. 前記酸化亜鉛は酸素欠損を形成することで導電性が付与されている、請求項1に記載の固体電解コンデンサ。
  10. 前記誘電体層と前記固体電解質層との間には、前記誘電体層と前記固体電解質層間の相互拡散を抑制するための拡散抑制層が形成されている、請求項1乃至9のいずれか一項に記載の固体電解コンデンサ。
  11. 前記拡散抑制層は、シリコン、シリコーン、導電性高分子、二酸化マンガン、又は樹脂を用いて構成されている、請求項10に記載の固体電解コンデンサ。
  12. 前記拡散抑制層は、スルホ基、カルボキシ基、又は水酸基を含む樹脂を用いて構成されている、請求項10に記載の固体電解コンデンサ。
JP2015237439A 2015-12-04 2015-12-04 固体電解コンデンサ Withdrawn JP2017103412A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015237439A JP2017103412A (ja) 2015-12-04 2015-12-04 固体電解コンデンサ
US15/345,321 US20170162336A1 (en) 2015-12-04 2016-11-07 Solid electrolytic capacitor
CN201611046712.2A CN106910633A (zh) 2015-12-04 2016-11-23 固体电解质电容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237439A JP2017103412A (ja) 2015-12-04 2015-12-04 固体電解コンデンサ

Publications (1)

Publication Number Publication Date
JP2017103412A true JP2017103412A (ja) 2017-06-08

Family

ID=58798490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237439A Withdrawn JP2017103412A (ja) 2015-12-04 2015-12-04 固体電解コンデンサ

Country Status (3)

Country Link
US (1) US20170162336A1 (ja)
JP (1) JP2017103412A (ja)
CN (1) CN106910633A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194092A1 (ja) * 2018-04-02 2019-10-10 日本ケミコン株式会社 電解コンデンサ
WO2023171426A1 (ja) * 2022-03-09 2023-09-14 パナソニックIpマネジメント株式会社 コンデンサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2509613C3 (de) * 1975-03-05 1978-04-20 Siemens Ag, 1000 Berlin Und 8000 Muenchen Trocken-Elektrolytkondensator
JP4188631B2 (ja) * 2002-07-15 2008-11-26 Necトーキン株式会社 固体電解コンデンサの製造方法
US7051429B2 (en) * 2003-04-11 2006-05-30 Eastman Kodak Company Method for forming a medium having data storage and communication capabilities
CN1259244C (zh) * 2003-08-29 2006-06-14 中国科学院过程工程研究所 一种制备纳米导电氧化锌粉体的方法
US7729103B2 (en) * 2007-03-20 2010-06-01 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of producing the same
JP5411249B2 (ja) * 2008-03-19 2014-02-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物およびそれから作製されたフィルム
TWI617029B (zh) * 2009-03-27 2018-03-01 半導體能源研究所股份有限公司 半導體裝置
JP2013082995A (ja) * 2011-09-26 2013-05-09 Hitachi Kokusai Electric Inc 半導体装置の製造方法、半導体装置および基板処理装置
WO2014087617A1 (ja) * 2012-12-07 2014-06-12 パナソニック株式会社 固体電解コンデンサの製造方法
CN103730586B (zh) * 2013-12-31 2015-12-02 京东方科技集团股份有限公司 层叠式有机发光二极体及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194092A1 (ja) * 2018-04-02 2019-10-10 日本ケミコン株式会社 電解コンデンサ
JPWO2019194092A1 (ja) * 2018-04-02 2021-04-08 日本ケミコン株式会社 電解コンデンサ
WO2023171426A1 (ja) * 2022-03-09 2023-09-14 パナソニックIpマネジメント株式会社 コンデンサ

Also Published As

Publication number Publication date
CN106910633A (zh) 2017-06-30
US20170162336A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP5884068B2 (ja) 固体電解コンデンサの製造方法
EP3664112B1 (en) Solid electrolytic capacitor, and method for producing solid electrolytic capacitor
JP4983744B2 (ja) 固体電解コンデンサの製造方法
US6876083B2 (en) Electrolytic capacitor and a fabrication method therefor
US9287055B2 (en) Solid electrolytic capacitor and method for manufacturing same
EP1592029B1 (en) Production method for the capacitor
JP6585891B2 (ja) 固体電解コンデンサ
TW201023220A (en) Method of manufacturing solid electrolytic capacitor
JPWO2012157241A1 (ja) 電極箔とその製造方法、およびコンデンサ
JP5895227B2 (ja) 固体電解コンデンサ及びその製造方法
JP4285523B2 (ja) 固体電解コンデンサ用電極箔とその製造方法
JP2017103412A (ja) 固体電解コンデンサ
JPWO2013088845A1 (ja) 固体電解コンデンサ
JP2006278788A (ja) 固体電解コンデンサおよびその製造方法
KR20130076793A (ko) 전극 구조체의 제조 방법, 전극 구조체 및 콘덴서
JP2000114108A (ja) 固体電解コンデンサとその製造方法
JP4454526B2 (ja) 固体電解コンデンサおよびその製造方法
JP5799196B2 (ja) 固体電解コンデンサおよびその製造方法
JP4329800B2 (ja) 固体電解コンデンサとその製造方法
JP2018073937A (ja) 固体電解コンデンサ
WO2015059913A1 (ja) 電解コンデンサとその製造方法および電極箔とその製造方法
JP5274344B2 (ja) 固体電解コンデンサ
CN103151339A (zh) 电容构造及其制作方法
JP4114700B2 (ja) 固体電解コンデンサとその製造方法
JP4114325B2 (ja) 固体電解コンデンサとその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20181128