JP2017103271A - 半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法、及びレーザー光源装置の製造方法 - Google Patents

半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法、及びレーザー光源装置の製造方法 Download PDF

Info

Publication number
JP2017103271A
JP2017103271A JP2015233052A JP2015233052A JP2017103271A JP 2017103271 A JP2017103271 A JP 2017103271A JP 2015233052 A JP2015233052 A JP 2015233052A JP 2015233052 A JP2015233052 A JP 2015233052A JP 2017103271 A JP2017103271 A JP 2017103271A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light source
laser light
housing
source module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015233052A
Other languages
English (en)
Other versions
JP6718224B2 (ja
Inventor
潤 成沢
Jun Narusawa
潤 成沢
笠原 健
Takeshi Kasahara
健 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photon R&d Inc
Toyota Tsusho Electronics Corp
Original Assignee
Photon R&d Inc
Toyota Tsusho Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photon R&d Inc, Toyota Tsusho Electronics Corp filed Critical Photon R&d Inc
Priority to JP2015233052A priority Critical patent/JP6718224B2/ja
Priority to CN201611079547.0A priority patent/CN106816810A/zh
Publication of JP2017103271A publication Critical patent/JP2017103271A/ja
Application granted granted Critical
Publication of JP6718224B2 publication Critical patent/JP6718224B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】高品質を維持しつつ複数のレーザーダイオードがコンパクトに配列可能な半導体レーザー光源モジュール、レーザー光源装置及び製造方法を提供する。【解決手段】半導体レーザー光源モジュールは、複数の半導体レーザーダイオード(101R、101G、101B)と、内部に半導体レーザーダイオードを密閉する筐体と、筐体の開口部を封止しつつ半導体レーザーダイオードの出射光を透過させる窓部108などを備え、半導体レーザーダイオードは各々底板106により離隔されて筐体内面の所定の固着範囲に固着され、筐体内の各部は、半導体レーザーダイオードを劣化させない無反応材料を用いて筐体内に設けられ、筐体部材中少なくとも固着範囲をなす底板は熱伝導性の金属部材又は不揮発性無機材料で形成され、筐体内部には不活性ガス又はドライエアが充填され、筐体は無反応材料で又は筐体部材同士直接封止される。【選択図】図3

Description

この発明は、複数波長の光を出射して表示やセンサに用いる半導体レーザー光源モジュール、レーザー光源装置及びこれらの製造方法に関する。
従来、所定波長のレーザー光を出射してのデータの読み取りや画像処理、光通信、プロジェクタによる画像の表示や、内視鏡検査などの医療診断、眼科などにおける治療といった種々の用途で利用されるレーザー光源装置がある。近年、このようなレーザー光源装置をスマートフォンといった小型携帯端末やウェアラブル端末に内蔵させる技術が注目されている。この場合、レーザープロジェクタ装置やレーザー光源には、小型化、薄型化や軽量化が要求される。特許文献1には、半導体レーザー素子をフレーム上に搭載し、樹脂で封止する技術が開示されている。一方、特許文献2には、単色発光の半導体レーザー素子をはんだと低融点ガラスを用いて封止することで、有機物との反応による半導体レーザー素子の劣化を防ぐ技術が開示されている。
更に、RGBの3原色や赤外線(IR)のレーザー光を出射するレーザー光源装置を組み合わせて、画像表示処理、特に投影型プロジェクタに用いる技術がある。投影型プロジェクタとしては、MEMS(Micro Electro Mechanical Systems)又はDMD(Digital Micromirror Device)によるスキャン型やLCOS(Liquid Crystal on Silicon)によるものが知られている。
特許第3723426号公報 特許第4678154号公報
このように複数波長の光を出射し、合波することで種々の色の画像や映像を出力する装置を小型端末に内蔵させる場合には、より一層の軽薄短小化が必要となる。しかしながら、上述のように複数の波長に係る複数個の半導体レーザー光源装置を配列させると、半導体レーザー光源装置全体のサイズが増大し、微小スペースで効率的にこれらのレーザー光を合波させるのが困難になる。また、半導体レーザー光源装置を単純に緊密配置させることで、狭い範囲での発熱量が増大して効果的な放熱が困難になるという課題がある。更に、上述のように、青色発光レーザー素子などでは、有機物との反応を防ぐ必要があり、有機物を用いずに封止する必要があるが、従来の技術では、効果的に放熱を行わせながらコンパクト且つ品質を落とさずに複数波長のダイオードを配列したモジュールを製造するのが困難であるという課題がある。
この発明の目的は、高品質を維持しつつ、複数波長のダイオードがコンパクトに配列可能な半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法及びレーザー光源装置の製造方法を提供することにある。
上記目的を達成するため、本発明の半導体レーザー光源モジュールは、
2以上の所定数の半導体レーザーダイオードと、
前記所定数の半導体レーザーダイオードが内部に配置されて密閉された筐体と、
前記筐体の内部と外部とに跨って設けられ、外部から印加される電圧に応じて前記所定数の半導体レーザーダイオードに各々所定の電流を流す前記所定数の組の電極対と、
前記筐体の一の開口部を封止するように直接又は枠部材を介して固着され、前記半導体レーザーダイオードの出射光を透過させて前記筐体の内部から出力させる透過部材と、
を備え、
前記所定数の半導体レーザーダイオードは、各々絶縁体により離隔されて前記筐体の内面における所定の固着範囲に対して固着されており、
前記筐体の内部の各部は、前記半導体レーザーダイオードを劣化させない無反応材料を用いて前記筐体内に設けられており、
前記筐体を構成する筐体部材のうち少なくとも前記固着範囲をなす固着部は、熱伝導性の金属部材又は不揮発性無機材料で形成され、
前記筐体の内部には、不活性ガス又はドライエアが充填され、
前記筐体は、前記半導体レーザーダイオードを劣化させない無反応材料を用いて、又は前記筐体部材同士で直接封止されている
ことを特徴としている。
また、上記目的を達成するため、本発明のレーザー光源装置は、
請求項1〜11の何れか一項に記載の半導体レーザー光源モジュールと、
前記半導体レーザー光源モジュールから出射される所定数のレーザー光を合波する合波部と、
を備えることを特徴としている。
また、上記目的を達成するため、本発明の半導体レーザー光源モジュールの製造方法は、
筐体の内部と外部とに跨って電極対を形成する工程、
前記筐体の内面における所定の固着範囲に対し、2以上の所定数の半導体レーザーダイオードを絶縁体で互いに離隔された状態で接合する工程、
前記半導体レーザーダイオードと前記電極対とをワイヤボンディングする工程、
前記筐体の一の開口部に前記半導体レーザーダイオードからの出射光を透過させる透過部材を直接又は枠部材を介して固着して、前記一の開口部を封止する工程、
前記筐体の内部に不活性ガス又はドライエアを充填する工程、
前記筐体の開口部を封止する工程、
を含み、
前記筐体を構成する筐体部材のうち少なくとも前記固着範囲をなす固着部は、熱伝導性の金属部材又は不揮発性無機材料で形成され、
前記筐体の内部の各部は、前記半導体レーザーダイオードを劣化させない無反応材料を用いて前記筐体内に設けられ、
前記筐体の開口部及び接合面の封止は、前記半導体レーザーダイオードを劣化させない無反応材料を用いて、又は前記筐体部材同士で直接行われる
ことを特徴としている。
また、上記目的を達成するため、本発明のレーザー光源装置の製造方法は、
請求項14又は15記載の半導体レーザー光源モジュールの製造方法で製造された半導体レーザー光源モジュールを有するレーザー光源装置の製造方法であって、
前記封止された前記所定数の半導体レーザーダイオードの出射光を合波する合波部を所定波長の光で硬化する光硬化型接着剤で前記半導体レーザー光源モジュールに対して仮留めする工程、
前記半導体レーザーダイオードから出射させて仮留めされた前記合波部の位置を調整する工程、
前記所定波長の光を照射して、位置の調整がなされた前記合波部を固定する工程、
を含むことを特徴としている。
本発明に従うと、半導体レーザー光源モジュール及びレーザー光源装置において、高品質を維持しつつ、複数波長のダイオードをコンパクトに配列することが出来るという効果がある。
第1実施形態の半導体レーザー光源モジュールの外観を示す斜視図である。 窓部の形状の他の例を示す図である。 第1実施形態の半導体レーザー光源モジュール内部の断面図である。 半導体レーザー光源モジュールを含むレーザー光源装置の全体斜視図である。 レーザー光源装置の製造工程を示す図である。 第2実施形態のレーザー光源装置の外観を示す斜視図である。 第2実施形態のレーザー光源装置の断面図である。
以下、本発明の実施の形態を図面に基づいて説明する。
[第1実施形態]
先ず、本発明の第1実施形態の半導体レーザー光源モジュール及びレーザー光源装置について説明する。
この第1実施形態の半導体レーザー光源モジュール100は、単独でレーザー光源装置としても用いられ得るパッケージである。
図1は、第1実施形態の半導体レーザー光源モジュール100の全体構成を示す斜視図である。
半導体レーザー光源モジュール100は、3色(2以上の所定数)のレーザー光を同時に出射可能であり、赤色光源ベアチップ101R及びそのサブマウント102Rと、緑色光源ベアチップ101G及びそのサブマウント102Gと、青色光源ベアチップ101B及びそのサブマウント102Bと、電極1031R、1032R、1031G、1032G、1031B、1032Bと、ボンディングワイヤ1041R、1042R、1041G、1042G、1041B、1042Bと、ケース105(ケース部)と、底板106と、蓋部107と、窓部108(透過部材)などを備える。
以下では、赤色光源ベアチップ101R、緑色光源ベアチップ101G及び青色光源ベアチップ101Bの一部又は全てをまとめてLDベアチップ101(Laser Diode)などとも記す。また、以下では、サブマウント102R、102G、102Bの一部又は全部をまとめてサブマウント102とも記す。
赤色光源ベアチップ101Rは、赤色のレーザー光を単一横モード(Single Transverse Mode; STM)で出射する表面実装型のレーザーダイオード(LD)のベアチップであり、サブマウント102Rの一方の面に接合されてチップオンサブマウント(CoS)構造をなしている。
緑色光源ベアチップ101Gは,緑色のレーザー光をSTMで出射する表面実装型のLDベアチップであり、サブマウント102Gの一方の面に接合されたCoS構造となっている。
青色光源ベアチップ101Bは、青色のレーザー光をSTMで出射する表面実装型のLDベアチップであり、サブマウント102Bの一方の面に接合されたCoS構造となっている。
サブマウント102は、何れも熱伝導性の高い絶縁部材、例えば、窒化アルミニウム(AlN)で形成されている。サブマウント102のLDベアチップに接合されている面とは反対側の面は、それぞれ、レーザー光の出射方向を+x方向に揃え、y方向に一列に微小間隔で(例えば、1.2mm間隔やそれ以下など、緊密に)底板106上の定められた位置(固着範囲)に接合されている。これにより、後述のように合波器と組み合わせる際に当該合波器との光学的な整合が取りやすい。接合(固着)には、エポキシ樹脂などLDベアチップ101と反応して劣化させる揮発性成分を含まないはんだ材(無反応材料)、例えば、フラックスを含まない金属合金によるものが用いられる。
ケース105は、内部にLDベアチップ101を収容する空間を有する筐体をなし、ここでは、直方体形状の三側面と残り一側面の周縁を構成している。開放されたケース105の上下面は、一方(下方、−z方向)が底板106で封止され、他方(上方、+z方向)、即ち、底板106と対向する面が蓋部107により封止される。また、周縁のみが設けられた一側面(+x方向)の当該周縁は、上辺及び下辺が水平方向(+x方向)に伸展され、これらの間の開口部に窓部108が取り付けられて内部からレーザー光が出射される。
底板106は、ケース105の底面(底板106と接する側)より大きく形成され、この底板106上、即ち、筐体の内面側には、上述のサブマウント102及びLDベアチップ101に加えて、LDベアチップ101によるレーザー光の出射方向(窓部108の側)とは反対側(−x方向)に複数の電極1031R、1032R、1031G、1032G、1031B、1032B(以下では、まとめて電極1031、1032などとも記す)が±y方向に一列に配列されてケース105の内外に亘って設けられている。各電極1031、1032は、それぞれ中央部分がケース105と底板106との間を通り、ケース105の内部と外部とを跨って+x方向に延在して設けられている。電極1031、1032は、それぞれ予め設定された領域(電極形成範囲)にタングステンやAu(金)ペーストを印刷しパターンとした方法で薄膜形成されたプリント配線である。各LDベアチップ101に対応する陽極である電極1031と陰極である電極1032とからなる電極対の間に外部から所定の電圧が印加されると、流れる電流に応じてLDベアチップ101から各々レーザー光が出射される。
また、底板106の下面(筐体の外面側)には、金めっきがなされて、当該底板106を介した放熱を更に効率良く外部に行わせることを可能としている。
蓋部107は、ケース105の上面と同サイズで形成されている。
ケース105、底板106及び蓋部107の部材(筐体部材)には、熱伝導性が高く且つ不揮発性のものが用いられる。ここでは、電気伝導度の低い高絶縁性セラミックス(不揮発性無機材料、熱伝導性絶縁部材、絶縁体)、例えば、AlN又はアルミナ(Al)が用いられ、積層焼結法で生成されたものが好ましく用いられる。上述の電極1031、1032をなす薄膜が底板106及びケース105の層間に挟まれて焼結されることで、当該電極1031、1032の周囲が隙間なく密閉される。
このように、サブマウント102が固着される底板106の部材(固着部)に高絶縁性のものが用いられる場合、LDベアチップ101は、CoSではなく、サブマウント102を備えない状態でそのまま直接底板106に固着されても良い。サブマウント102を用いないことで、LDベアチップ101の出射光の間隔を更に狭めることが出来る。
LDベアチップ101とサブマウント102との接合、サブマウント102と底板106との接合、LDベアチップ101と電極1031、1032とのボンディングワイヤ1041、1042を介した接合は、何れもはんだ材を用いてなされている。
LDベアチップ101とサブマウント102とは、予め接合されたパッケージ製品が用いられても良い。
サブマウント102(又はベアチップ101)と底板106との接合に用いられるはんだ材としては、融点の低いものが好ましく用いられ、ここでは、融点が220℃の錫銀銅合金(フラックスを含まない)が用いられている。これらサブマウント102と底板106とを接合する場合には、先に底板106に金薄膜を蒸着した後、当該金薄膜に対してサブマウント102がはんだ付けされる。 LDベアチップ101と電極1031、1032との間の接合には、金はんだが用いられる。
また、底板106とケース105との間は、ケース105のセラミックス材料の焼結によって隙間なく接合されている。
また、蓋部107とケース105との接合面には、いずれも金めっきがなされ、当該金めっき面同士がとはんだ材(無反応材料)により密着される。
窓部108は、出射されるRGB3色のレーザー光に対して透明な材質で形成され、内部から外部に出力させる光学部品である。窓部108には、例えば、ガラス材が用いられる。窓部108の形状としては、半導体レーザー光源モジュール100と組み合わされる構成や用途に応じて適宜選択される。例えば、ここでは、各色のレーザー光を一列に配列された平行なビーム光に各々集光する結合レンズのアレイ構造が選択されている。
図2は、窓部108の形状の他の例を示す図である。
図2(a)には、レーザー光を発散光状の点光源としてそのまま透過させる平板状の窓部108aが示されている。また、図2(b)には、レーザー光を各々速軸方向にコリメートさせるシリンドリカルレンズ構造(円筒の軸がy方向に沿っている)が示されている。
窓部108とケース105との接合面には、それぞれ金めっきを施した上でエポキシ樹脂などのLDベアチップ101と反応して劣化させる揮発性成分を含まないはんだ材(無反応材料)により接合される。或いは、窓部108の外周が多成分低融点のガラスを用いたモールド部材(枠部材)により固定されて当該モールド部材が直接ケース105に固着され、又は、モールド部材の外周に更に金めっきが施されて、同様のはんだ材によりケース105と接合されても良い。LDベアチップ101と反応して劣化させる成分を含む材料には、各種接着剤も含まれる。即ち、半導体レーザー光源モジュール100内の各部の接着にこのような接着剤は一切用いられない。
これらのように、ケース105の内部は、完全に密閉され、LDベアチップ101が設けられた内部と外部との間の空気、埃や塵などの出入はない。また、密閉箇所は全てはんだ材により接合されることで、接着剤の揮発性成分などが内部に進入しない。このケース105の内部には、窒素ガスといった不活性ガスやドライエアが充填されている。
図3は、本実施形態の半導体レーザー光源モジュール100の内部を示す断面図である。
図3(a)は、xy面内で切断した断面図であり、図3(b)は、図3(a)における緑色光源ベアチップ101Gを含む断面で切断したxz面内断面図である。
上述のように、底板106上に形成された電極1031、1032は、ケース105の下部を通ってケース105の内外に亘って各々一列に設けられている。
ケース105の内部において、LDベアチップ101は、それぞれ陽極側が電極1031R、1031G、1031Bにワイヤボンディングにより結線され、陰極側が電極1032R、1032G、1032Bにワイヤボンディングにより結線されている。陽極側の結線に用いられるボンディングワイヤ1041R、1041G、1041B、及び陰極側の結線に用いられるボンディングワイヤ1042R、1042G、1042B(以下、まとめてボンディングワイヤ1041、1042などとも記す)には、何れも金線が用いられている。
図4は、半導体レーザー光源モジュールを組み込んだレーザー光源装置1の全体斜視図である。
このレーザー光源装置1は、半導体レーザー光源モジュール100aと、3つの結合レンズ200R、200G、200Bと、合波器300(合波部)などを備える。
半導体レーザー光源モジュール100aは、底板106aがx方向に延出している点を除き、半導体レーザー光源モジュール100と同一であり、同一の構成要素には同一の符号を付して説明を省略する。
結合レンズ200Rは、半導体レーザー光源モジュール100aから窓部108を通して出射された赤色レーザーの平行光を合波器300の導波路320Rの入り口に集光して導く。結合レンズ200Gは、半導体レーザー光源モジュール100aから窓部108を通して出射された緑色レーザーの平行光を合波器300の導波路320Gの入り口に集光して導く。結合レンズ200Bは、半導体レーザー光源モジュール100aから窓部108を通して出射された青色レーザーの平行光を合波器300の導波路320Bの入り口に集光して導く。
結合レンズ200R、200G、200B(以下、まとめて結合レンズ200とも記す)は、それぞれ、所定波長の光、例えば、紫外光(UV光)により硬化する紫外線(UV)硬化型接着剤を用いて底板106aの上記延出部分に固着される。
合波器300は、3本の導波路320R、320G、320B(以下まとめて導波路320とも記す)を有する。合波器300の一側面には、これらの導波路320の各々への入射口が設けられ、当該一側面とは反対側の側面には、合波された一条のレーザービームを出射する出射口330が設けられている。導波路320は、それぞれ、側面に入力波長の光を全反射する薄膜材、例えば、アルミニウムが用いられた中空のチューブ(中空型ライトガイド)である。或いは、入力されるレーザー光の波長に応じた各種周知の光ファイバが用いられても良いが、何れにせよ、半導体レーザー光源モジュール100aから出射されるSTMのレーザー光に適合するSTM光ファイバやPLC(Planar Lightwave Circuit)のSTMライトガイドなどが用いられる。
合波器300は、出射光と正確に位置合わせされて固定される必要であり、底板106aに対して各種樹脂接着剤、例えば、上述のUV硬化型接着剤など、容易且つμmオーダーでの精密な位置決めが可能な方法で接合される。
なお、結合レンズ200は、合波部に含まれ得る。
次に、本実施形態のレーザー光源装置1の製造方法について説明する。
図5は、本実施形態のレーザー光源装置1の製造工程を順に示す図である。
先ず、底板106a上に電極1031、1032をタングステンやAuペーストを印刷パターンとする方法で形成する。次いで、底板106aとケース105とを焼結により電極1031、1032を挟んで密着させる(ステップS11)。
次に、ケース105及び窓部108、底板106a及びサブマウント102、並びにケース105及び蓋部107の各接合部に金めっきを行う。また、底板106の下面に金めっきを行う(ステップS12)。
次に、底板106の上面にCoS構造のLDベアチップ101及びサブマウント102をエポキシフリーのはんだで接合する(ステップS13)。このとき、先ず、底板106の上面に電極1031、1032と短絡しない範囲に金属(金)薄膜を蒸着により形成し、当該金属薄膜上にレジスト膜などを用いてサブマウント102の接合範囲に高精度ではんだ材の薄膜パターンを形成する。それから、各サブマウント102をこの薄膜パターンに位置合わせをする実装を行った後に当該はんだ材を融点まで加熱して、まとめてそれぞれ正確な位置にサブマウント102及びLDベアチップ101を固着、接合する。ここで、各サブマウント102を各々順番に実装していく際、はんだ材の合金の中で最も低融点の金属のみが溶ける温度で加熱することで当該サブマウント102を仮固定し、以降のサブマウント102を実装する際の振動などで位置ずれが生じないようにしても良い。
それから、各電極1031、1032とLDベアチップ101との間をボンディングワイヤ1041、1042により金はんだを用いて結線する(ステップS14)。なお、電極1031、1032とボンディングワイヤ1041、1042の間に金めっきパターンで更に電極が形成されても良い。
また、ケース105に対して窓部108をエポキシフリーのはんだで接着する(ステップS15)。
なお、ステップS15の工程は、ステップS13、S14の工程の前に行われても良い。
それから、窒素ガス(不活性ガス)又はドライエアをケース105の内部にパージしながら蓋部107をケース105にはんだ付けしてケース105を密閉する(ステップS16)ことで、半導体レーザー光源モジュール100aが得られる。
このようにして形成された半導体レーザー光源モジュール100aの底板6aに対し、結合レンズ200及び合波器300を光硬化型接着剤、ここではUV硬化型接着剤で仮留めする(ステップS17)。外部から電極1031、1032間に所定の電圧を印加して半導体レーザー光源モジュール100aから各色のレーザー光を出射させながら合波器300の出射口330から適切に合波されたレーザー光が出力されるように、仮留めされた結合レンズ200及び合波器300の位置を調整(アクティブ調芯)し、適切な相対位置関係へと調整が完了した段階でUV光を照射して、UV硬化型接着剤を速やかに硬化させる(ステップS18)ことで、レーザー光源装置1が得られる。
以上のように、本実施形態の半導体レーザー光源モジュール100は、3波長を各々出力する3つの半導体レーザーダイオード(LDベアチップ101及びサブフレーム102)と、これら半導体レーザーダイオードが内部に配置されて密閉された筐体(ケース105、底板106及び蓋部107)と、筐体の内部と外部とに跨って設けられ、外部から印加される電圧に応じて3つの半導体レーザーダイオードに各々所定の電流を流す3組の電極1031、1032の対と、筐体の一の開口部を封止するように直接又はモールド部材を介して固着され、半導体レーザーダイオードの出射光を透過させて筐体の内部から出力させる窓部108と、を備え、3つの半導体レーザーダイオードは、各々絶縁体、ここでは、底板106により離隔されて筐体の内面における所定の固着範囲に対し、鈴銀銅合金といったはんだ材及び金めっきを用いて固着されており、筐体内部の各部は、半導体レーザーダイオードを劣化させないはんだ材や金属めっきなどを用いて当該筐体内に設けられており、筐体を構成する筐体部材のうち少なくとも底板106は、熱伝導性の不揮発性無機材料である窒化アルミニウム(AlN)又はアルミナ(Al)により形成され、筐体の内部には、不活性ガス又はドライエアが充填され、筐体は、半導体レーザーダイオードを劣化させないはんだ材やめっき材料などを用いて、又は筐体部材同士が熔接されて直接封止されている。
これにより、複数波長のレーザー光を各々出射する複数の半導体レーザーダイオードを高密度で実装し、これら複数の半導体レーザーダイオードからの熱を効果的に放熱し、全ての半導体レーザーダイオードを封止して、半導体レーザーダイオードに問題を生じさせるエポキシ樹脂などの成分と接触させない。
従って、複数波長のレーザー光を同時出力可能なコンパクトな半導体レーザー光源モジュールの品質を高く維持したまま劣化を防いで信頼性の高い高寿命なモジュールを得ることが出来る。
また、これら同時出力された複数波長のレーザー光を容易に合波器300などに導いて、当該複数波長のレーザー光を用いた各種装置に利用することが出来る。
また、筐体を構成する部材のうち少なくともサブマウント102が固着される底板106は、熱伝導性絶縁部材であるAlN又はアルミナ(Al)により形成されている。従って、LDベアチップ101間の絶縁性(1014Ωm以上など)を確保しながら、複数のLDベアチップ101の発熱に対して効率良く半導体レーザー光源モジュール100の底面全面から排熱を行うことが出来る。
また、電極1031、1032の組からなる電極対は、筐体の一の内面から外部に亘る所定の電極形成範囲に薄膜形成され、筐体のうち電極対と接触する部分は、熱伝導性絶縁部材により形成されている。従って、電極の絶縁性を確保しつつ、やや加工がし難い熱伝導性絶縁部材の加工を最小限に抑えて容易に半導体レーザー光源モジュール100を得ることが出来る。また、LDベアチップ101からボンディングワイヤ1041、1042などを伝わって加熱される電極の熱も効率良く筐体に放熱することが出来る。
また、筐体は、底板106が伸展して内面が当該筐体の外部に延出された形状を有し、電極対は、底板106の内面と延出された外部とに亘って形成されているので、底板106の平面上に容易に電極を形成することが出来、コストや手間を低減させることが出来る。
また、電極形成範囲を挟む底板106とケース105の間は、焼結により密着形成されており、電極対は、焼結に係る温度よりも高温の融点を有するタングステンやAuペーストを印刷しパターンとする方法などで形成されている。これにより、底板106上にタングステン電極又はAu電極の薄膜を形成後に容易に底板106とケース105とを密着させて、また、熱で電極1031、1032に問題を生じさせず、且つ熱伝導性絶縁部材であるAlN又はアルミナ(Al)などの加工の手間を更に削減することが出来る。従って、コストや手間を低減させ、容易に大量生産が可能となり、歩留まりを向上させることが出来る。
また、筐体と窓部108との直接又はモールド部材を介した固着面には、各々金属めっきがなされ、当該めっき面同士がエポキシ樹脂などのLDベアチップ101を劣化させる揮発性成分を含まないはんだ材により接合されるので、筐体内部にLDベアチップ101に問題を生じさせる成分を混入させずに確実に筐体と窓部108との接合面を密閉することが出来る。
また、筐体は、サブマウント102(LDベアチップ101)が固着される底板106と対向する上面が開放されたケース105と、当該上面を封止する蓋部107とを有し、ケース105と蓋部107とがLDベアチップ101を劣化させる揮発性成分を含まないはんだ部材及び金めっきを用いて固着される。従って、筐体内部におけるLDベアチップ101の実装を容易に行うことが出来、その後、LDベアチップ101に問題を生じさせる成分を筐体内部に混入させずに確実に蓋部107を封止することが出来る。
また、窓部108は、LDベアチップ101の出射光を各々少なくとも速軸方向にコリメートさせるレンズ構造を有するように選択されたり、当該出射光を一列に並んだ平行なビーム光とさせるレンズ構造を有するように選択されたりして、適切に接合される。このように、用途に応じて適切な窓部108が設けられることで、その後複数の出射光を合波させる際に調整の手間や部品点数を低減させることが出来る。従って、合波器に対して出力しやすく(即ち、光学的に結合しやすく)利用しやすい半導体レーザー光源モジュール100を得ることが出来、利用の幅を容易に広げることが出来る。
また、本実施形態のレーザー光源装置1は、半導体レーザー光源モジュール100aと、この半導体レーザー光源モジュール100aから出射される所定数(3色)のレーザー光を合波する結合レンズ200及び合波器303とを備える。
従って、封止されて一体形成された半導体レーザー光源モジュール100aに対して少ない部品点数で容易にコンパクト且つ精密に複数波長のレーザー光を合波させて出力するレーザー光源装置1を得ることが出来る。
また、結合レンズ200及び合波器300は、紫外光(UV光)で硬化するUV硬化型接着剤により、半導体レーザー光源モジュール100aから出射される光を入射させて合波する相対位置関係で、固定されている。即ち、結合レンズ200及び合波器300は、精密に調芯がなされた段階でUV光の照射により速やかに硬化させることが出来るので、精密な調芯が容易に行われ得る。また、UV硬化型接着剤に含まれる揮発性成分は、既に封止されている筐体内部のLDベアチップ101に対して悪さをしないので、精密な調整に係る実装工程が非常に簡便になる。
また、本実施形態の半導体レーザー光源モジュール100の製造方法は、筐体(ケース105、底板106及び蓋部107)の内部と外部とに跨って電極1031、1032の対を形成する工程(ステップS11)、筐体の内面における所定の固着範囲に対し、所定数(3つ)の半導体レーザーダイオード(LDベアチップ101、サブマウント102)を絶縁体、ここでは、底板106で互いに離隔された状態でLDベアチップ101を劣化させない鈴銀銅合金といったはんだ材及び金めっきを用いて接合する工程(ステップS12、S13)、半導体レーザーダイオードと電極の対とをボンディングワイヤ1041、1042により金めっきでワイヤボンディングする工程(ステップS14)、筐体の一の開口部に半導体レーザーダイオードからの出射光を透過させる窓部108を直接又はモールド部材を介して半導体レーザーダイオードを劣化させないはんだ材及び必要に応じて金めっきを用いて固着して、前記一の開口部を封止する工程(ステップS15)、筐体の内部に不活性ガスを充填する工程(ステップS16)、ケース105の上面といった筐体の開口部を蓋部107などにより封止する工程(ステップS16など)、を含み、筐体を構成する筐体部材のうち少なくとも半導体ダイオードの固着範囲をなす底板106は、熱伝導性の不揮発性無機材料である窒化アルミニウム又はアルミナ(Al)で形成され、筐体の開口部及び接合面の封止は、半導体レーザーダイオードを劣化させないはんだ材やめっき材料などを用いて、又は筐体部材同士で直接熔接などが行われる。
このような手順により、複数波長のレーザー光を各々出射する複数の半導体レーザーダイオードを高密度で実装し、これら複数の半導体レーザーダイオードからの熱を効果的に放熱し、全ての半導体レーザーダイオードを封止して、半導体レーザーダイオードに問題を生じさせるエポキシ樹脂などの成分と接触させない半導体レーザー光源装置を得ることが出来る。
従って、複数波長のレーザー光を同時出力可能なコンパクトな半導体レーザー光源モジュールの品質を高く維持したまま劣化を防いで信頼性の高い高寿命なモジュールを得ることが出来る。
また、特殊な工程を必要とせず、容易且つ確実に各工程を進めていくことが出来るので、管理性と生産性を向上させて高い信頼性とコストの低下とを実現することが出来る。
また、ステップS12、S13の工程は、底板106に対する半導体レーザーダイオード(サブマウント102、即ち、LDベアチップ101)の固着範囲に対してはんだ材の薄膜パターンを形成する工程、半導体レーザーダイオードを形成された薄膜パターンに一致させて配置する工程、薄膜パターンを加熱して一度溶解させ、半導体レーザーダイオードを固着範囲に精密に固着させる工程、を含む。
このような工程により複数の半導体レーザーダイオード(サブマウント102及びLDベアチップ101)をまとめて精密に正しい位置に固着させることが出来るので、高品質且つ効率良くコンパクトな半導体レーザー光源モジュールを得ることが出来る。
また、特に、レーザー光を正確な出射方向に出力させることが出来るので、出力後の合波器300などと光学的な整合が取りやすく、即ち、位置調整がより容易になる。
また、本実施形態のレーザー光源装置1の製造方法では、半導体レーザー光源モジュール100aにおいて封止された3つの半導体レーザーダイオードの出射光を合波する合波器300をUV光で硬化するUV硬化型接着剤で半導体レーザー光源モジュール100aに対して仮留めする工程(ステップS17)、半導体レーザーダイオードからレーザー光を出射させて仮留めされた合波器300の位置を調整する工程(ステップS18)、f光を照射して、位置の調整がなされた合波器300を固定する工程、を含む。
このように、出力された複数波長のレーザー光を合波に係る組み立て工程を、封止され、出力方向が定められた半導体レーザー光源モジュール100と、合波器300との間の相対位置調整に落とし込むことで、位置調整が合波器300の調芯のみにより容易に行われて精度の向上と手間の削減が同時に図れるとともに、封止後の半導体レーザー光源モジュール100に対し、LDベアチップ101に対する悪影響を心配せずにUV硬化型接着剤を用いて接着を行うことが出来る。従って、仮留めと調芯後の最終固着との二段階で、合理的に精度の良い組立を行うことが出来る。
[第2実施形態]
次に、第2実施形態の半導体レーザー光源モジュール及びレーザー光源装置について説明する。
図6は、本実施形態のレーザー光源装置1bの全体構成を示す斜視図である。
このレーザー光源装置1bは、半導体レーザー光源モジュール100bと、ロングパスフィルタ210R、210G、210B(長波長通過フィルタ;以下、まとめてロングパスフィルタ210とも記す)などを備える。
本実施形態の半導体レーザー光源モジュール100bは、電極1031、1032の代わりに円柱電極1131R、1131G、1131B、1132R、1132G、1132Bを備え、また、ケース105、底板106及び蓋部107の代わりにケース115、底板116及び蓋部117が用いられている。これら以外の構成については、上記第1実施形態の半導体レーザー光源モジュール100と同一であり、同一の符号を付して説明を省略する。
本実施形態の半導体レーザー光源モジュール100bでは、ケース115、底板116及び蓋部117として、電気伝導性部材であり且つ熱伝導性部材である金属部材が用いられている。金属部材としては種々の材料が選択され得るが、熱伝導性の高さ、加工のしやすさ及び材料コストなどに基づいて、例えば、無酸素銅板、アルミ板や銅タングステン(Cu−W)のような合金がより好ましく選択される。この場合、底板116のサブマウント102との固着面には、金属薄膜が蒸着されなくても良く、直接はんだ材がマスクパターンなどにより固着範囲に薄膜形成されれば良い。
これらの金属部材間は、シーム熔接又はレーザー熔接されて直接固着され、又はLDベアチップ101を劣化させるエポキシ樹脂などの揮発性成分を含まないはんだ材によって接合される。1131G、1131B、1132R、1132G、1132B(以下まとめて円柱電極1131、1132とも記す)がそれぞれ底板116を貫通して設けられる。
ロングパスフィルタ210Rは、赤色レーザー光よりも波長の長い光を通過させ、当該波長以下の光を反射させる。ロングパスフィルタ210Rは、半導体レーザー光源モジュール100aにより出射された赤色レーザーの平行光に対して45度傾けて基台410上に配置されて、赤色レーザー光を反射させて向きを90度変化させる。
ロングパスフィルタ210Gは、緑色レーザー光よりも波長の長い光を通過させ、当該波長以下の光を反射させる。ロングパスフィルタ210Gは、半導体レーザー光源モジュール100aにより出射された緑色レーザーの平行光に対して45度傾けて、且つ当該緑色レーザー光の反射位置と、ロングパスフィルタ210Rにより反射された赤色レーザー光の通過位置とが一致するように配置される。これにより、ロングパスフィルタ210Gで反射された緑色レーザー光とロングパスフィルタ210Gを通過した赤色レーザー光とが同一の線上に重なる。
ロングパスフィルタ210Bは、青色レーザー光よりも波長の長い光を通過させ、当該波長以下の光を反射させる。ロングパスフィルタ210Bは、半導体レーザー光源モジュール100aにより出射された青色レーザーの平行光に対して45度傾けて、当該青色レーザー光の反射位置と、ロングパスフィルタ210Rにより反射された赤色レーザー光及びロングパスフィルタ210Gにより反射された緑色レーザー光の通過位置とが一致するように配置される。これにより、ロングパスフィルタ210Bで反射された青色レーザー光と、緑色レーザー光及び赤色レーザー光とが同一の線上に重なって、位置上の平行ビーム光がレーザー光源装置1aから出力される。
これらロングパスフィルタ210は、何れも底板116上に接着剤を用いて接合させることが出来る。接着剤としては、例えば、UV硬化型のものなどが用いられ、半導体レーザー光源モジュール100bに対する位置関係の精密な調整が終了した後にUV光を照射することで正確且つ強固に固定される。
図7は、本実施形態のレーザー光源装置1bの断面図を示す。
図7(a)は、xy面内で切断した断面図であり、図7(b)は、図7(a)における青色光源ベアチップ101Bを含む断面で切断したxz面内断面図である。
底板116には、各々別個に6個の貫通孔が設けられて、当該貫通孔を各々円柱電極1131、1132が貫通している。これらの貫通孔は、各々円柱電極1131、1132より太く形成され、円柱電極1131、1132が導電性部材である底板116に接触して短絡しないように離隔させて、絶縁部411R、412R、411G、412G、411B、412B(以下まとめて絶縁部411、412とも記す)が充填されている。
絶縁部411、412には、ガラス材が用いられ、例えば、円柱電極1131、1132と、貫通孔の隙間を埋めるシーリングガラスとして溶融密封により配置される。
以上のように、本実施形態の半導体レーザー光源モジュール100b及びレーザー光源装置1bでは、半導体レーザーダイオードとしてLDベアチップ101が絶縁部材からなるサブマウント102上に形成されたCoSが用いられ、筐体部材のうち少なくともサブマウント102が固着される部分をなす底板116は、電気伝導性部材により形成され、サブマウント102は底板116の上面(筐体の内面側)に対し、LDベアチップ101を劣化させるエポキシ樹脂などの成分を含まないはんだ材を用いて固定されている。
この場合であっても、高密度で並列配置された複数のLDベアチップ101から筐体外部に効率良く排熱が可能であり、且つ、まとめて封止されることで適切にLDベアチップ101を保護して長寿命化を図りつつ、コンパクトなモジュールから適切な複数波長の光を容易に合波可能に出力させることが出来る。
また、各LDベアチップ101に対応する円柱電極1131、1132からなる電極対は、底板116を貫通して設けられた貫通孔を介して当該筐体の内部と外部とを跨いで配置され、この貫通孔は、ガラス材などの不揮発性無機材料をシーリングガラスとして封止され、また、このガラス材により底板116と電極対とが絶縁されている。従って、金属部材の加工容易性を生かして適宜な向きに電極を設けることを可能としつつ、コンパクトなモジュール中で容易且つ適切に絶縁性を維持して各LDベアチップ101を動作させることが出来る。
なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、上記実施形態では、筐体がAlNやアルミナ(Al)のみで形成された例と、金属部材のみで形成された例とを挙げて説明したが、これらが組み合わされても良い。また、筐体部材の全てが必ずしも熱伝導性の高いものである必要はなく、少なくともLDベアチップ101やサブマウント102が固着される範囲をなす部分、ここでは底板106、116の一部又は全部(固着部)においてこれらが用いられて確実に放熱されれば、他の部分、例えば、蓋部107、117は、異なる材質のものであっても、不揮発性無機材料などであってLDベアチップ101を劣化させる成分が揮発せず、且つ密封状態を適宜に保てるものであれば、放熱性の低いものであっても良い。
また、上記実施の形態では、RGB3色のLDベアチップ101を配列した例を示したが、他の色が含まれていても良いし、2色のみであっても良い。また、含まれる色(波長)には、赤外線(IR)が含まれていても良い。
また、上記実施の形態では、不活性ガスやドライエアをパージしながら密封処理を行ったが、不活性ガスやドライエアの雰囲気ガス中で密封処理が行われても良い。
また、上記実施の形態では、電極対が設けられる面は、必ずしもLDベアチップ101やサブマウント102が固着される面と同一でなくても良い。また、蓋部107、117が設けられる面は、LDベアチップ101やサブマウント102が設けられる面と対向しなくても良い。但し、これらLDベアチップ101やサブマウント102が設けられる面と対向する面が開放されることで、マスクパターンの形成やはんだ材薄膜の形成及び加熱などの各処理がより容易に行われる。
また、上記実施の形態で示した、各部を接合する際に用いられるLDベアチップ101を劣化させない無反応材料の例示は、上記のフラックスを含まない金属合金によるはんだ材などに限られない。また、これらは一部又は全部が重複していても良いし、全ての箇所で異なっていても良い。
また、上記実施の形態では、紫外線(UV)硬化型接着剤を用いて結合レンズ200や合波器300などを半導体レーザー光源モジュール100aに対して固定させたが、その他のものであっても良い。いずれにせよ、半導体レーザー光源モジュール100aの筐体内部は密閉されているので、LDベアチップ101に問題を生じさせる揮発性成分などについては制限なく調整及び固着を行うことが出来る。
その他、上記実施の形態で示した構成、構造や製造工程の具体的な細部は、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
1、1b レーザー光源装置
100、100a、100b 半導体レーザー光源モジュール
101B 青色光源ベアチップ
101G 緑色光源ベアチップ
101R 赤色光源ベアチップ
102R、102G、102B サブマウント
105、115 ケース
106、116 底板
107、117 蓋部
108 窓部
411R、411G、411B、412R、412G、412B 絶縁部
200R、200G、200B 結合レンズ
210R、210G、210B ロングパスフィルタ
300 合波器
320R、320G、320B 導波路
330 出射口
1031R、1031G,1031B、1032R、1032G、1032B 電極
1041R、1041G、1041B、1042R、1042G、1042B ボンディングワイヤ
1131R、1131G、1131B、1132R、1132G、1132B 円柱電極

Claims (16)

  1. 2以上の所定数の半導体レーザーダイオードと、
    前記所定数の半導体レーザーダイオードが内部に配置されて密閉された筐体と、
    前記筐体の内部と外部とに跨って設けられ、外部から印加される電圧に応じて前記所定数の半導体レーザーダイオードに各々所定の電流を流す前記所定数の組の電極対と、
    前記筐体の一の開口部を封止するように直接又は枠部材を介して固着され、前記半導体レーザーダイオードの出射光を透過させて前記筐体の内部から出力させる透過部材と、
    を備え、
    前記所定数の半導体レーザーダイオードは、各々絶縁体により離隔されて前記筐体の内面における所定の固着範囲に対して固着されており、
    前記筐体の内部の各部は、前記半導体レーザーダイオードを劣化させない無反応材料を用いて前記筐体内に設けられており、
    前記筐体を構成する筐体部材のうち少なくとも前記固着範囲をなす固着部は、熱伝導性の金属部材又は不揮発性無機材料で形成され、
    前記筐体の内部には、不活性ガス又はドライエアが充填され、
    前記筐体は、前記半導体レーザーダイオードを劣化させない無反応材料を用いて、又は前記筐体部材同士で直接封止されている
    ことを特徴とする半導体レーザー光源モジュール。
  2. 前記筐体部材のうち少なくとも前記固着部は、熱伝導性絶縁部材により形成されていることを特徴とする請求項1記載の半導体レーザー光源モジュール。
  3. 前記電極対は、前記筐体の一の内面から外部に亘る所定の電極形成範囲に薄膜形成され、前記筐体のうち前記電極対と接触する部分は、前記熱伝導性絶縁部材により形成されていることを特徴とする請求項2記載の半導体レーザー光源モジュール。
  4. 前記筐体は、一の内面が当該筐体の外部に延出された形状を有し、
    前記電極対は、当該一の内面と前記延出された外部とに亘る前記電極形成範囲に形成されていることを特徴とする請求項3記載の半導体レーザー光源モジュール。
  5. 前記電極形成範囲を挟む前記筐体部材間は、焼結により密着形成されており、前記電極対は、前記焼結に係る温度よりも高温の融点を有する部材で形成されていることを特徴とする請求項4記載の半導体レーザー光源モジュール。
  6. 前記半導体レーザーダイオードは、ベアチップが絶縁部材からなるサブマウント上に形成されたCoSであり、
    前記筐体部材のうち少なくとも前記固着部は、電気伝導性部材により形成され、
    前記サブマウントは前記固着範囲に前記半導体レーザーダイオードを劣化させない無反応材料を用いて固定されている
    ことを特徴とする請求項1記載の半導体レーザー光源モジュール。
  7. 前記電極対は、前記筐体部材を貫通して設けられた貫通孔を介して当該筐体の内部と外部とを跨いで配置され、
    前記貫通孔は、前記不揮発性無機材料により封止され、また、前記筐体と前記電極対とが絶縁されていることを特徴とする請求項6記載の半導体レーザー光源モジュール。
  8. 前記筐体と前記透過部材との直接又は前記枠部材を介した固着面には、各々金属めっきがなされ、当該めっき面同士が前記半導体レーザーダイオードを劣化させない無反応材料により接合されていることを特徴とする請求項1〜7の何れか一項に記載の半導体レーザー光源モジュール。
  9. 前記筐体は、前記固着範囲と対向する上面が開放されたケース部と、当該上面を封止する蓋部とを有し、前記ケース部と前記蓋部とが前記半導体レーザーダイオードを劣化させない無反応材料を用いて、又は直接固着されていることを特徴とする請求項1〜8の何れか一項に記載の半導体レーザー光源モジュール。
  10. 前記透過部材は、前記半導体レーザーダイオードの出射光を各々少なくとも速軸方向にコリメートさせるレンズ構造を有することを特徴とする請求項1〜9の何れか一項に記載の半導体レーザー光源モジュール。
  11. 前記透過部材は、前記半導体レーザーダイオードの出射光を一列に並んだ平行なビーム光とさせるレンズ構造を有することを特徴とする請求項1〜9の何れか一項に記載の半導体レーザー光源モジュール。
  12. 請求項1〜11の何れか一項に記載の半導体レーザー光源モジュールと、
    前記半導体レーザー光源モジュールから出射される所定数のレーザー光を合波する合波部と、
    を備えることを特徴とするレーザー光源装置。
  13. 前記合波部は、所定波長の光で硬化する光硬化型接着剤により、前記半導体レーザー光源モジュールから出射される光を入射させて合波する相対位置関係で、固定されていることを特徴とする請求項12記載のレーザー光源装置。
  14. 筐体の内部と外部とに跨って電極対を形成する工程、
    前記筐体の内面における所定の固着範囲に対し、2以上の所定数の半導体レーザーダイオードを絶縁体で互いに離隔された状態で接合する工程、
    前記半導体レーザーダイオードと前記電極対とをワイヤボンディングする工程、
    前記筐体の一の開口部に前記半導体レーザーダイオードからの出射光を透過させる透過部材を直接又は枠部材を介して固着して、前記一の開口部を封止する工程、
    前記筐体の内部に不活性ガス又はドライエアを充填する工程、
    前記筐体の開口部を封止する工程、
    を含み、
    前記筐体を構成する筐体部材のうち少なくとも前記固着範囲をなす固着部は、熱伝導性の金属部材又は不揮発性無機材料で形成され、
    前記筐体の内部の各部は、前記半導体レーザーダイオードを劣化させない無反応材料を用いて前記筐体内に設けられ、
    前記筐体の開口部及び接合面の封止は、前記半導体レーザーダイオードを劣化させない無反応材料を用いて、又は前記筐体部材同士で直接行われる
    ことを特徴とする半導体レーザー光源モジュールの製造方法。
  15. 前記所定数の半導体レーザーダイオードを接合する工程は、
    前記固着範囲に対して前記第1の無反応材料の薄膜パターンを形成する工程、
    前記半導体レーザーダイオードを前記薄膜パターンに一致させて配置する工程、
    前記薄膜パターンを加熱して前記半導体レーザーダイオードを前記固着範囲に固着させる工程、
    を含むことを特徴とする請求項14記載の半導体レーザー光源モジュールの製造方法。
  16. 請求項14又は15記載の半導体レーザー光源モジュールの製造方法で製造された半導体レーザー光源モジュールを有するレーザー光源装置の製造方法であって、
    前記封止された前記所定数の半導体レーザーダイオードの出射光を合波する合波部を所定波長の光で硬化する光硬化型接着剤で前記半導体レーザー光源モジュールに対して仮留めする工程、
    前記半導体レーザーダイオードから出射させて仮留めされた前記合波部の位置を調整する工程、
    前記所定波長の光を照射して、位置の調整がなされた前記合波部を固定する工程、
    を含むことを特徴とするレーザー光源装置の製造方法。
JP2015233052A 2015-11-30 2015-11-30 半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法、及びレーザー光源装置の製造方法 Active JP6718224B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015233052A JP6718224B2 (ja) 2015-11-30 2015-11-30 半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法、及びレーザー光源装置の製造方法
CN201611079547.0A CN106816810A (zh) 2015-11-30 2016-11-30 半导体激光光源模块及其制造方法、激光光源装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015233052A JP6718224B2 (ja) 2015-11-30 2015-11-30 半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法、及びレーザー光源装置の製造方法

Publications (2)

Publication Number Publication Date
JP2017103271A true JP2017103271A (ja) 2017-06-08
JP6718224B2 JP6718224B2 (ja) 2020-07-08

Family

ID=59016982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015233052A Active JP6718224B2 (ja) 2015-11-30 2015-11-30 半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法、及びレーザー光源装置の製造方法

Country Status (2)

Country Link
JP (1) JP6718224B2 (ja)
CN (1) CN106816810A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431959B2 (en) 2017-10-02 2019-10-01 Nichia Corporation Light emitting device and optical device
KR20200014534A (ko) * 2018-08-01 2020-02-11 하이맥스 테크놀로지스 리미티드 프로젝터, 프로젝터를 가진 전자 장치 및 관련 제조 방법
JP2020140991A (ja) * 2019-02-27 2020-09-03 京セラ株式会社 光素子搭載用パッケージ、電子装置及び電子モジュール
WO2020195659A1 (ja) * 2019-03-25 2020-10-01 パナソニック株式会社 半導体レーザ装置
JP2021022665A (ja) * 2019-07-29 2021-02-18 日亜化学工業株式会社 レーザ光源、光学デバイス、およびレーザ光源の製造方法
JP2021158318A (ja) * 2020-03-30 2021-10-07 豊田合成株式会社 レーザー光源モジュール
WO2022063740A1 (en) * 2020-09-25 2022-03-31 Miro Analytical Ag Gas analyser apparatus and method
JP7469985B2 (ja) 2020-08-05 2024-04-17 シャープ福山レーザー株式会社 発光装置および発光装置セット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112868146B (zh) * 2018-10-17 2024-06-04 奥斯兰姆奥普托半导体股份有限两合公司 激光设备和用于制造激光设备的方法
WO2023164810A1 (zh) * 2022-03-01 2023-09-07 深圳市大疆创新科技有限公司 激光发射器、激光雷达、激光测距装置及可移动平台

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259609A (ja) * 2003-02-26 2004-09-16 Kyocera Corp 半導体素子収納用パッケージ
JP2005215231A (ja) * 2004-01-29 2005-08-11 Nippon Sheet Glass Co Ltd 光学部品およびその製造方法
JP2006128514A (ja) * 2004-10-29 2006-05-18 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置およびそれを用いた光モジュール
JP2009176764A (ja) * 2008-01-21 2009-08-06 Sharp Corp キャップ部材およびそれを用いた半導体装置
JP2011018761A (ja) * 2009-07-08 2011-01-27 Sanyo Electric Co Ltd 半導体レーザ装置、半導体レーザ装置の製造方法及び光ピックアップ並びに光学装置
JP2011138953A (ja) * 2009-12-28 2011-07-14 Sanyo Electric Co Ltd 半導体レーザ装置および光ピックアップ装置
WO2012014798A1 (ja) * 2010-07-30 2012-02-02 ソニー株式会社 光源ユニット、照明装置および表示装置
JP2012094765A (ja) * 2010-10-28 2012-05-17 Sanyo Electric Co Ltd 半導体レーザ装置および光装置
WO2013080396A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 窒化物半導体発光装置
JP2014011271A (ja) * 2012-06-28 2014-01-20 Kyocera Corp 素子収納用パッケージおよび実装構造体
US20150055667A1 (en) * 2013-05-13 2015-02-26 Osram Opto Semiconductors Gmbh Laser component and method of producing it

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036375A (en) * 1996-07-26 2000-03-14 Kyocera Corporation Optical semiconductor device housing package
US6546030B2 (en) * 2000-06-29 2003-04-08 Fuji Photo Film Co., Ltd. Semiconductor laser unit employing an inorganic adhesive
JP2009105106A (ja) * 2007-10-22 2009-05-14 Hitachi Ltd 光送受信モジュール
JP5324894B2 (ja) * 2008-11-21 2013-10-23 パナソニック株式会社 半導体装置およびその製造方法
US20110280267A1 (en) * 2010-05-14 2011-11-17 Sanyo Electric Co., Ltd. Semiconductor laser apparatus and optical apparatus
DE102014202220B3 (de) * 2013-12-03 2015-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Deckelsubstrats und gehäustes strahlungsemittierendes Bauelement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259609A (ja) * 2003-02-26 2004-09-16 Kyocera Corp 半導体素子収納用パッケージ
JP2005215231A (ja) * 2004-01-29 2005-08-11 Nippon Sheet Glass Co Ltd 光学部品およびその製造方法
JP2006128514A (ja) * 2004-10-29 2006-05-18 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置およびそれを用いた光モジュール
JP2009176764A (ja) * 2008-01-21 2009-08-06 Sharp Corp キャップ部材およびそれを用いた半導体装置
JP2011018761A (ja) * 2009-07-08 2011-01-27 Sanyo Electric Co Ltd 半導体レーザ装置、半導体レーザ装置の製造方法及び光ピックアップ並びに光学装置
JP2011138953A (ja) * 2009-12-28 2011-07-14 Sanyo Electric Co Ltd 半導体レーザ装置および光ピックアップ装置
WO2012014798A1 (ja) * 2010-07-30 2012-02-02 ソニー株式会社 光源ユニット、照明装置および表示装置
JP2012094765A (ja) * 2010-10-28 2012-05-17 Sanyo Electric Co Ltd 半導体レーザ装置および光装置
WO2013080396A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 窒化物半導体発光装置
JP2014011271A (ja) * 2012-06-28 2014-01-20 Kyocera Corp 素子収納用パッケージおよび実装構造体
US20150055667A1 (en) * 2013-05-13 2015-02-26 Osram Opto Semiconductors Gmbh Laser component and method of producing it

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10770866B2 (en) 2017-10-02 2020-09-08 Nichia Corporation Light emitting device
US10431959B2 (en) 2017-10-02 2019-10-01 Nichia Corporation Light emitting device and optical device
US11710943B2 (en) 2017-10-02 2023-07-25 Nichia Corporation Light emitting device
US11271372B2 (en) 2017-10-02 2022-03-08 Nichia Corporation Optical apparatus
KR20200014534A (ko) * 2018-08-01 2020-02-11 하이맥스 테크놀로지스 리미티드 프로젝터, 프로젝터를 가진 전자 장치 및 관련 제조 방법
KR102146361B1 (ko) 2018-08-01 2020-08-21 하이맥스 테크놀로지스 리미티드 프로젝터, 프로젝터를 가진 전자 장치 및 관련 제조 방법
JP7260329B2 (ja) 2019-02-27 2023-04-18 京セラ株式会社 光素子搭載用パッケージ、電子装置及び電子モジュール
JP2020140991A (ja) * 2019-02-27 2020-09-03 京セラ株式会社 光素子搭載用パッケージ、電子装置及び電子モジュール
WO2020195659A1 (ja) * 2019-03-25 2020-10-01 パナソニック株式会社 半導体レーザ装置
JP2021022665A (ja) * 2019-07-29 2021-02-18 日亜化学工業株式会社 レーザ光源、光学デバイス、およびレーザ光源の製造方法
JP7428867B2 (ja) 2019-07-29 2024-02-07 日亜化学工業株式会社 レーザ光源、光学デバイス、およびレーザ光源の製造方法
JP2021158318A (ja) * 2020-03-30 2021-10-07 豊田合成株式会社 レーザー光源モジュール
JP7469985B2 (ja) 2020-08-05 2024-04-17 シャープ福山レーザー株式会社 発光装置および発光装置セット
WO2022063740A1 (en) * 2020-09-25 2022-03-31 Miro Analytical Ag Gas analyser apparatus and method

Also Published As

Publication number Publication date
JP6718224B2 (ja) 2020-07-08
CN106816810A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
JP6718224B2 (ja) 半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法、及びレーザー光源装置の製造方法
US9971235B2 (en) Light source device, projector, and method of manufacturing light source device
TWI578651B (zh) 光源裝置
US20190324360A1 (en) Light source device, projector, and method of manufacturing light source device
US10795248B2 (en) Light source device and projector
TWI847881B (zh) 發光模組之製造方法、發光模組及投影機
JP2017138566A (ja) 光源装置、光源装置の製造方法およびプロジェクター
JPWO2018037551A1 (ja) 内視鏡用光モジュール、内視鏡、および内視鏡用光モジュールの製造方法
CN111313224A (zh) 发光模块的制造方法、发光模块以及投影仪
JP5669919B2 (ja) レーザ光源
JP6485002B2 (ja) 光源装置
JP2006080597A (ja) 撮像モジュール及び撮像モジュールの製造方法
US9885945B2 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
US12044956B2 (en) Light-emitting device and projection display apparatus
US10824064B2 (en) Light source device and projector
JP4967911B2 (ja) 光源装置およびその製造方法、プロジェクタ、モニター装置
KR20080107581A (ko) 녹색 레이저 광 패키지
WO2023109778A1 (zh) 激光器及投影光源
US20220077649A1 (en) Semiconductor light emitting device
WO2021070587A1 (ja) 発光デバイス
JP2008300488A (ja) 光源装置、プロジェクタ、モニタ装置
JP2009043766A (ja) 光源装置およびその製造方法、プロジェクタ、モニター装置
TW202437572A (zh) 發光模組之製造方法、發光模組及投影機
CN118251811A (zh) 激光器及投影光源
JP2012064719A (ja) 光源装置、ディスプレイ装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250