WO2023164810A1 - 激光发射器、激光雷达、激光测距装置及可移动平台 - Google Patents

激光发射器、激光雷达、激光测距装置及可移动平台 Download PDF

Info

Publication number
WO2023164810A1
WO2023164810A1 PCT/CN2022/078664 CN2022078664W WO2023164810A1 WO 2023164810 A1 WO2023164810 A1 WO 2023164810A1 CN 2022078664 W CN2022078664 W CN 2022078664W WO 2023164810 A1 WO2023164810 A1 WO 2023164810A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
collimating
circuit board
laser emitter
Prior art date
Application number
PCT/CN2022/078664
Other languages
English (en)
French (fr)
Inventor
陈亚林
王栗
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/078664 priority Critical patent/WO2023164810A1/zh
Priority to CN202280069218.5A priority patent/CN118140363A/zh
Publication of WO2023164810A1 publication Critical patent/WO2023164810A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • the present application relates to the technical field of laser radar, in particular to a laser emitter, a laser radar, a laser distance measuring device and a movable platform.
  • lidar Due to its excellent performance in map construction, obstacle avoidance, ranging and other fields, lidar is widely used in robotics, AGV (logistics handling), unmanned driving and other industries.
  • a cylindrical lens is usually used as a fast-axis collimating lens in lidar, and the cylindrical lens is patch-bonded on the packaging cover of the light-emitting unit to compress the divergence angle of the fast-axis beam.
  • the cylindrical lens is patch-bonded on the packaging cover of the light-emitting unit to compress the divergence angle of the fast-axis beam.
  • this application is proposed in order to provide a laser transmitter, a laser radar, a laser distance measuring device and a movable platform to solve the above problems.
  • a laser emitter is provided, and the laser emitter includes:
  • a cover body which is arranged on the first surface of the circuit board and forms an accommodation space with the circuit board, the cover body includes a packaging part and an alignment part, and the alignment part and the packaging part are integrally formed structure, the collimating part is used to collimate the laser light passing through the cover;
  • the light-emitting unit is arranged on the circuit board in the accommodating space, and the laser light emitted by the light-emitting unit is collimated by the collimating part and then emitted.
  • the collimating part and the packaging part on the cover of the laser emitter are integrally formed, and the collimating part is used to collimate the laser passing through the cover, so that it can be prepared by integral molding
  • the collimation part effectively reduces the packaging difficulty of the cover or the laser emitter, improves the production efficiency of the laser emitter and the accuracy of the collimation part, and can also make the overall package size of the laser emitter smaller.
  • the present application also provides a laser radar, including the above-mentioned laser emitter.
  • the present application also provides a laser distance measuring device, which includes: a laser transmitter, a reflection module and a laser receiver, and the laser transmitter and the laser receiver are related to the reflection module Mirror symmetrical arrangement, the outgoing light emitted by the laser transmitter is reflected by the environmental target and the return light is reflected by the transmitting module to the laser receiver, so as to determine the distance between the environmental target and the laser distance measuring device distance;
  • the laser receiver is a line array receiver, and at least two receiving units in the line array receiver are arranged in a line along a first direction, and the first direction is parallel to the reflection surface of the reflection module and perpendicular to the light return direction.
  • the laser receiver is a line array receiver
  • at least two receiving units in the line array receiver are arranged in a line along the first direction, and the first direction is parallel to the reflection surface of the reflection module and It is perpendicular to the light return direction, therefore, it can effectively reduce the optical crosstalk path and astigmatism between lines.
  • the present application also provides a movable platform, including: a platform body, and the above-mentioned laser distance measuring device; wherein, the laser distance measuring device is arranged on the platform body.
  • Fig. 1 is the optical path schematic diagram of a kind of laser emitter without collimating lens
  • Fig. 2 is the optical path schematic diagram of a kind of laser emitter that collimating lens is arranged
  • Fig. 3 is a structural schematic diagram of a laser transmitter
  • Fig. 4 is a schematic structural diagram of the laser ranging system described in the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of the laser emitter described in the embodiment of the present application.
  • Fig. 6 is a structural schematic diagram of a laser receiver in a laser distance measuring device
  • FIG. 7 is a schematic structural diagram of the laser receiver in the laser distance measuring device according to the embodiment of the present application.
  • Fig. 8 is a schematic structural view of the special-shaped lens in the laser distance measuring device according to the embodiment of the present application.
  • Fig. 9 is a schematic diagram of the return light offset in the laser distance measuring device according to the embodiment of the present application.
  • Fig. 10 is a schematic diagram of the return light offset on the surface of the laser receiver according to the embodiment of the present application.
  • 10 laser transmitter; 20: laser receiver; 30: half mirror; 40: collimating lens; 11: cover body; 12: cylindrical lens; 50: scanning module; 51: first mirror; 52: Second reflector; 501: swing axis; 502: rotation axis; 13: circuit board; 131: accommodation space; 111: packaging part; 112: collimation part; 101: light emitting unit; 102: substrate; 1121: collimation section ; 1122: connecting section; 201: receiving unit; 301: first reflective surface; 302: second reflective surface.
  • first and second are only used to describe different components conveniently, and should not be understood as indicating or implying a sequence relationship, relative importance, or implicit indication.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • lidar has many application scenarios, and different application scenarios have different performance requirements for radar.
  • lidar can be applied to vehicles to sense external environment information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental objects.
  • lidar can be installed in various positions such as lights, bumpers, and roofs of vehicles.
  • FOV Field of view
  • the common requirement for lidar is that under a limited volume, the lidar FOV (Field of view) is also large.
  • FOV Field of view
  • the range of different FOVs of the lidar must be different.
  • the center of the FOV has the largest range, and the closer to the edge, the more attenuation.
  • FIG. 1 shows a schematic diagram of an optical path of a laser transmitter without a collimating lens.
  • FIG. 2 shows a schematic diagram of an optical path of a laser transmitter with a collimating lens.
  • the collimator lens as a cylindrical lens as an example, when there is no cylindrical lens 12 , the laser spot size in the fast axis direction is D1, and the half angle of divergence is ⁇ 1 .
  • a cylindrical lens 12 is added in front of the laser emitter.
  • the spot size in the fast axis direction is reduced from D1 to D2 (D1>D2), and the divergence angle is changed from ⁇ 1 Reduced to ⁇ 2 ( ⁇ 1 > ⁇ 2 ), the fast-axis divergence angle can be effectively compressed through the cylindrical lens 12, reducing the spot size.
  • the cylindrical lens 12 is usually pasted on the cover body 11 of the laser emitter in a mounting manner. However, during the process of mounting the cylindrical lens 12 , it is difficult to control the alignment time and precision of the cylindrical lens, resulting in high production cost and poor mass production feasibility.
  • the laser emitter includes: a circuit board; a cover body, which is arranged on the first surface of the circuit board and forms an accommodation space with the circuit board, the cover body includes a packaging part and a collimation part, the The collimating part and the packaging part are integrally formed, the collimating part is used to collimate the laser light passing through the cover; the light emitting unit is arranged on the circuit board in the accommodating space, and the emitting The laser emitted by the unit is collimated by the collimator and then emitted.
  • the collimation part and the packaging part on the laser emitter cover are integrally formed, and the collimation part is used to collimate the laser passing through the cover, so that the collimator can be prepared
  • the straight part effectively reduces the packaging difficulty of the cover or the laser emitter, improves the production efficiency of the laser emitter and the accuracy of the collimation part, and can also make the overall package size of the laser emitter smaller.
  • the laser transmitter, laser radar, laser distance measuring device and movable platform provided by the embodiment of the application
  • the laser transmitter, laser radar, laser distance measuring device and movable platform provided by the embodiment of the application Specific description of the application scenario:
  • a coaxial optical path can be used in the laser ranging system, that is, the beam emitted by the laser ranging system and the reflected beam share at least part of the optical path in the laser ranging system.
  • the laser pulse sequence reflected by the detection object enters the receiving circuit after passing through the scanning module.
  • the laser distance measuring system may also adopt an off-axis optical path, that is, the beam emitted by the laser distance measuring system and the reflected beam are respectively transmitted along different optical paths in the laser distance measuring system.
  • the laser ranging system can specifically include: a laser transmitter 10, a collimating lens 40, a scanning module 50, the scanning module 50 includes a first reflector 51 and a second reflector 52, the first reflector 51 and the second reflector 52 The second reflector 52 is sequentially arranged on the optical path of the laser light, and is used to change the propagation direction of the laser light.
  • the laser light emitted by the laser emitter 10 is collimated by the collimating lens 40 , then passes through the first reflector 51 and the second reflector 52 in sequence, and then emits to the environmental target.
  • the first reflector 51 swings back and forth along the swing axis 501 and can also be called a swing reflector or a vibrating mirror; the second reflector 52 rotates along the rotation axis 502 and can also be called a rotating reflector.
  • the first reflector 51 and the second reflector 52 are arranged in sequence, so that the outgoing laser can form a two-dimensional scan and obtain a larger viewing angle, thereby improving the laser range. The reliability of the ranging system, and reduce the cost of the laser ranging system.
  • the laser emitter 10 may specifically include: a circuit board 13; a cover body 11, which is arranged on the first surface of the circuit board 13 and forms an accommodating space 131 with the circuit board 13, and the cover body 11 includes an encapsulation portion 111 And the collimating part 112, the collimating part 112 and the packaging part 111 are integrally formed, the collimating part 112 is used to collimate the laser light passing through the cover 11; the light emitting unit 101 is arranged on the circuit board 13 in the accommodation space 131, The laser light emitted by the emitting unit is collimated by the collimator 112 and then emitted.
  • the collimating part 112 on the cover body 11 of the laser transmitter 10 and the packaging part 111 are integrally formed, and the collimating part 112 is used to collimate the laser light passing through the cover body 11, so that the integrally formed
  • the collimation part 112 is prepared in this way, which effectively reduces the packaging difficulty of the cover body 11 or the laser emitter 10, improves the production efficiency of the laser emitter 10 and the accuracy of the collimation part 112, and can also make the laser emitter 10 Overall package size is smaller.
  • the circuit board 13 can play a role of supporting the cover body 11 and the light emitting unit 101 , and a circuit for controlling the light emitting unit 101 can be integrated in the circuit board 13 .
  • the circuit board 13 can also be arranged on the control board of the laser radar by means of mounting and welding.
  • the collimator 112 is used to perform fast-axis collimation on the laser light emitted by the light emitting unit 101 .
  • the light emitting unit 101 is used to emit laser light (light pulse sequence).
  • the light emitting unit 101 includes but not limited to a pulse laser diode (PLD).
  • PLD pulse laser diode
  • the number of light emitting units 101 may be one, or at least two. In the case where the number of light emitting units 101 is at least two, at least two light emitting units 101 can be arranged linearly on the circuit board 13, or at least two light emitting units 101 can also be arranged in an array on the circuit board 13, for this The embodiment of this application is not limited.
  • the laser emitter 10 may further include: a substrate 102 through which the light emitting unit 101 is disposed on the circuit board 13 .
  • the light emitting unit 101 and the substrate 102 , and the substrate 102 and the circuit board 13 may be connected by glue.
  • other components, such as capacitors, can also be arranged on the circuit board 13 in the accommodation space 131 , which will not be described in detail here in this application.
  • the collimating part 112 is arranged on the side of the cover body 11 opposite to the first surface, that is, it can be understood that the laser emitter 10 is a vertical cavity surface emitting laser; or, the collimating part 112 is arranged on the cover body 11, which intersects with the first surface, that is, it can be understood that the laser emitter 10 is an edge-emitting laser.
  • the vertical cavity surface emitting laser and the edge emitting laser can be selected according to actual needs.
  • the laser emitter 10 includes but is not limited to an edge-emitting laser.
  • the laser emitter 10 is taken as an edge-emitting laser as an example for schematic illustration.
  • the collimating part 112 is a light-transmitting area.
  • the collimating part 112 may include but not limited to plastic parts or glass parts.
  • the encapsulation part 111 can be made of the same material as the collimation part 112 or not. Specifically, the encapsulation part 111 can be a non-transparent area to improve the appearance of the laser emitter 10 .
  • the collimation part 112 in order to reduce the difficulty of packaging the laser transmitter 10, or to reduce the difficulty of drafting when the collimation part 112 and the packaging part 111 are integrally injection molded, can be set as an asymmetric structure . As shown in FIG. 5 , when the mold is pulled in a direction perpendicular to the first surface of the circuit board 13 , since the collimation portion 112 has an asymmetric structure, the difficulty of pulling the mold can be effectively reduced.
  • the light-emitting surface of the collimator 112 is arc-shaped toward a direction away from the light-emitting unit 101 .
  • the collimating part 112 can occupy the entire side of the laser emission direction of the laser emitter 10, as shown in Figure 5, that is, the entire right side has a collimating function; Part of the side of the laser emitter 10 in the direction of laser emission.
  • the collimation part 112 can cover the entire right side of the cover body 11, that is, the entire right side has a collimation function; or, the right side Some areas in the middle have collimation function.
  • the collimating part 112 may specifically include: a collimating section 1121, and connecting sections 1122 arranged on both sides of the collimating section 1121; the connecting section 1122 on one side is connected to the packaging part 111, and The connecting section 1122 on one side is connected to the circuit board 13 ; the laser light emitted by the light emitting unit 101 is collimated by the collimating section 1121 and then emitted.
  • the collimation section 1121 collimates the laser light emitted by the light emitting unit 101 .
  • the connecting section 1122 arranged on both sides of the collimating section 1121 is connected to the side of the packaging part 111 or the circuit board 13 , so that the packaging process of the laser emitter 10 is simpler and the mass production is less difficult.
  • FIG. 5 is a schematic cross-sectional structure
  • the collimating section 1121 and the connecting section 1122 are presented as line segments in FIG. 5 , but they are plane structures in the three-dimensional structural schematic diagram.
  • the collimating section 1121 may be a spherical structure or an aspheric structure.
  • the collimation section 1121 has a spherical structure, that is, the curvature of each point of the light transmission area corresponding to the collimation section 1121 is the same, and the collimation section 1121 is an aspherical structure, which can be understood as the curvature of each point of the light transmission area corresponding to the collimation section 1121 is different, or , the curvature of at least part of the light-transmitting region corresponding to the collimation section 1121 is different from that of the rest of the region.
  • At least one side of the connecting section 1122 on both sides of the collimating section 1121 may be a planar structure.
  • the processing difficulty of the planar structure is lower, and the inclination angle of the planar structure is also easier to control. Therefore, at least one of the connecting sections 1122 on both sides is a planar structure, which can make the draft angle easier to control and the draft difficulty more difficult. Low.
  • the connection section 1122 on the side close to the circuit board 13 has a planar structure, which makes it easier to control the draft angle formed between the connection section 1122 and the circuit board 13 .
  • connecting sections 1122 on both sides of the collimating section 1121 can also be curved surface structures, or one side is a planar structure and the other side is a curved surface structure.
  • those skilled in the art can choose to set according to requirements , which is not limited in this embodiment of the present application.
  • the collimating section 1121 is tangent to the connecting section 1122, so that the connection between the collimating section 1121 and the connecting section 1122 can be made smoother, effectively reducing the packaging part 111 and the collimating part 112. Difficulty of injection molding.
  • the tangent between the collimating section 1121 and the connecting section 1122 can be understood as that when the collimating section 1121 is a planar structure, the planar structure is located on a tangent line at the connection point with the collimating section 1121 .
  • the angle between the connecting section 1122 close to the circuit board 13 and the first surface can be set as an obtuse angle ( a > 90° in Fig. 5).
  • the obtuse angle is greater than or equal to 93°, so that the draft angle can be greater than 3°, thereby making the draft less difficult.
  • the collimating section 1121 may be located at the center of the side where the laser emitting direction is located, or may also be located at other non-central positions.
  • the projection lengths of the connecting segments 1122 on both sides are different (the projections of the connecting segments on both sides in the vertical direction), so that In the direction perpendicular to the first surface, the collimation section 1121 is disposed at a non-central position, that is, it can be understood that the collimation section 1121 is located at an upper or lower position in FIG. 5 .
  • the collimation section 1121 is opposite to the light-emitting unit 101 so as to collimate the laser light emitted by the light-emitting unit 101 along the fast axis. Therefore, the specific position of the collimation section 1121 can also be related to the position Relatedly, those skilled in the art can set the curvature of the collimating section 1121 and the length of the connecting sections 1122 on both sides of the collimating section 1121 according to specific requirements.
  • the light-emitting units 101 and the collimator 112 can be in one-to-one correspondence, that is, the laser light emitted by each light-emitting unit 101 can be collimated by its corresponding collimator.
  • the straight part 112 emits after being collimated.
  • the light emitting units 101 may correspond to the cover bodies 11 one by one, and each cover body 11 is provided with a collimator 112 to collimate the laser light emitted by its corresponding light emitting unit 101; or, at least two light emitting units Unit 101 corresponds to one cover body 11, and each cover body 11 is provided with at least two collimating parts 112, that is, two or more light-emitting units 101 can be packaged in the same cover body 11, and at least two collimating parts 112 are arranged on the cover body 11 There are two collimating parts 112 so that each light emitting unit 101 can correspond to one collimating part 112 on the cover body 11 , so that the number of cover bodies 11 can be reduced.
  • the laser emitter provided by the embodiment of the present application at least includes the following advantages:
  • the collimating part and the packaging part on the cover of the laser emitter are integrally formed, and the collimating part is used to collimate the laser passing through the cover, so that the collimating part can be prepared by integral molding , effectively reducing the packaging difficulty of the cover or the laser transmitter, improving the production efficiency of the laser transmitter and the accuracy of the collimation part, and making the overall packaging size of the laser transmitter smaller.
  • An embodiment of the present application also provides a laser radar, including the laser emitter in any of the foregoing embodiments.
  • the collimating part and the packaging part on the cover of the laser transmitter in the laser radar are integrally formed, the collimating part is used to collimate the laser light passing through the cover, so that the integrally formed
  • the collimation part is prepared in this way, which effectively reduces the packaging difficulty of the cover body or the laser emitter, improves the production efficiency of the laser emitter and the accuracy of the collimation part, and can also make the overall package size of the laser emitter smaller.
  • the volume of the lidar can be effectively reduced, and the application range of the lidar can be wider.
  • the embodiment of the present application also provides a laser distance measuring device.
  • the laser distance measuring device may specifically include: a laser transmitter, a reflection module and a laser receiver.
  • the laser transmitter and the laser receiver are related to the reflection
  • the module is arranged mirror-symmetrically, and the outgoing light emitted by the laser transmitter is reflected by the environmental target and the return light is reflected by the transmitting module to the laser receiver to determine the distance between the environmental target and the laser distance measuring device.
  • distance wherein, the laser receiver is a line array receiver, along a first direction, at least two receiving units in the line array receiver are arranged in a line, and the first direction is parallel to the reflective module
  • the reflective surface is perpendicular to the light returning direction.
  • the laser receiver is a line array receiver
  • at least two receiving units in the line array receiver are arranged in a line along the first direction, and the first direction is parallel to the reflection surface of the reflection module and perpendicular to the reflection surface of the reflection module.
  • Light orientation therefore, can effectively reduce optical crosstalk paths and astigmatism between lines.
  • the laser emitter is used to emit laser light (optical pulse sequence), including but not limited to a line array emitter.
  • the laser receiver is used to receive the return light reflected by the environmental target.
  • the receiving unit of the laser receiver includes but not limited to Avalanche Photo Diode (APD).
  • the laser ranging device may further include a collimation module and a scanning module, and the emitted light is collimated by the collimation module and then emitted to an environmental target through the scanning module.
  • the collimation module is mainly used to collimate the laser (laser pulse sequence) emitted by the laser transmitter;
  • the scanning module is mainly used to change the direction of the laser emitted by the laser transmitter and emit it to the environmental target, or to reflect the laser beam back from the environmental target The returned light changes direction and is reflected to the laser receiver for reception.
  • the collimation module and the scanning module are sequentially arranged along the optical path of the laser light emitted by the laser transmitter, for details, reference may be made to the location setting of the collimation module and the scanning module in FIG. 4 .
  • the reflecting module may include at least one half mirror; the collimating module may include at least one collimating lens; and the scanning module may include at least one first reflecting mirror.
  • the laser emitter 10 emits laser light through the half-mirror 30, and after being collimated by the collimator lens 40, it reaches the scanning module.
  • the scanning module is shown in the first mirror 51 of FIG. 4 and the second reflector 52 .
  • the middle area of the half mirror 30 is used for transmitting the emitted laser light, and can also be used for reflecting back light so that the back light reaches the laser receiver 20 .
  • FIG. 6 it shows a schematic structural diagram of a laser receiver in a laser distance measuring device.
  • the half-mirror 30 has a first reflective surface 301 and a second reflective surface 302 opposite, and the laser receiver 20 includes at least two receivers arranged in a line in the left-right direction in the orientation shown in Figure 6 Unit 201.
  • the return light reflected by the environmental target is reflected by the half mirror 30, a part of the return light (the optical path shown by the solid line in Figure 6) is directly reflected by the first reflective surface 301 to the laser receiver.
  • the first receiving unit 201 of the device 20, and this part of the returned light will also be reflected by the second reflective surface 302 (this part of the returned light is refracted on the first reflective surface 301 in turn, reflected by the second reflective surface 302, and again by the first reflective surface 301 refraction, the optical path shown by the dotted line in FIG.
  • the second receiving unit 201 adjacent to or separated from several receiving units 201 can also receive the return light signal, causing crosstalk of the return light signal.
  • the laser receiver 20 by setting the laser receiver 20 as a line array receiver, at least two receiving units 201 in the line array receiver are arranged in a line along the first direction, and the first direction is parallel to the reflective module
  • the reflective surface is perpendicular to the light return direction, thereby effectively reducing the optical crosstalk path and astigmatism between lines.
  • FIG. 7 it shows a schematic structural diagram of a laser receiver in a laser distance measuring device according to an embodiment of the present application.
  • the first direction is the front-back direction in the orientation shown in FIG. 7 , that is, the direction parallel to the Y-axis.
  • the X-axis direction is the collimation or the fast axis direction (that is, the direction of the light output or the return light, which refers to the reverse direction of the return light after being collimated by the collimator lens, as shown in Figure 7).
  • the collimator lens 40 is placed vertically in the direction parallel to the Z axis.
  • at least two receiving units 201 in the line array receiver are adjusted from being arranged in line with the direction parallel to the X axis to being aligned with the direction of the Y axis. Place them in a row in parallel.
  • the laser receiver 20 is a line array receiver
  • at least two receiving units 201 in the line array receiver are arranged in a line, and the first direction is parallel to the reflection surface of the reflection module and vertical
  • the first direction is parallel to the reflection surface of the reflection module and vertical
  • the laser receiver 20 is a line array receiver
  • the first direction is parallel to the reflection surface of the reflection module and vertical
  • the return light reflected by the environmental target is reflected by the half mirror 30
  • a part of the return light (the optical path shown by the solid line in Figure 7) is directly reflected to the laser through the first reflective surface 301
  • a receiving unit 201 of the receiver 20 after this part of the returned light is reflected by the second reflective surface 302 (refracted at the first reflective surface 301, reflected by the second reflective surface 302, and refracted again by the first reflective surface 301, as shown in Figure 7
  • the optical path shown by the dotted line it cannot be received by other receiving units 201, so that the problem of back light crosstalk can be effectively avoided.
  • At least one collimator lens 40 can also be set to be a special-shaped lens with an asymmetric structure; along the second direction, the optical axis position of the special-shaped lens is deviated from the center position of the first reflector 51; the second direction perpendicular to the first direction and the optical axis direction of the special-shaped lens, so that the overall optical path of the laser distance measuring device is shifted according to the required orientation under the condition that the volume of the laser distance measuring device remains unchanged.
  • FIG. 8 it shows a schematic structural diagram of the special-shaped lens in the laser distance measuring device according to the embodiment of the present application.
  • the center position of the first reflector 51 is located on the rotation axis 501 of the first reflector 51 .
  • the optical axis of collimating lens 40 passes through the center position of first reflector 51;
  • collimating lens 40 is an asymmetric special-shaped lens In the case of , as shown by the dotted line in FIG.
  • the position of the optical axis of the special-shaped lens deviates from the center position of the first reflector 51, that is, the position of the optical axis of the special-shaped lens is higher or lower than the swing axis 501 of the first reflector 51. s position.
  • the first mirror 51 is arranged symmetrically with respect to the swing axis 501 .
  • the laser beam through the collimator lens 40 swings back and forth along the swing axis 501 through the first reflector 51 (vibrating mirror) to realize scanning in the longitudinal direction (longitudinal FOV as shown in FIG. 4 ).
  • the second mirror 52 rotates along the rotation axis 502 to realize scanning in the horizontal direction (horizontal FOV as shown in FIG. 4 ).
  • the heights of the first reflector 51 and the second reflector 52 are limited due to the limited volume of the whole machine (or in other words, the first reflector and the second reflector 52 are limited).
  • the positions of the two mirrors are fixed and cannot be shifted), and then the optical path of the laser distance measuring device or the vertical FOV and the horizontal FOV are fixed.
  • the detection distance in a certain direction (for example, below the longitudinal FOV) is required to be high, it is necessary to reduce the light shielding below the FOV, that is, the overall optical path of the laser ranging device needs to be moved upwards, while the overall optical path of the laser ranging device When moving upward, it is necessary to move the collimating lens 40 upward, in order to avoid interference between the top of the collimating lens 40 and the casing of the laser distance measuring device.
  • the collimating lens 40 is configured as an asymmetric special-shaped lens.
  • the upper half of the collimator lens 40 is cut off so that the collimator lens 40 is moved upwards on the basis of the original position (moved upward along the Z axis in the orientation shown in Figure 8), so that The overall optical axis of the collimator lens 40 can be moved upward for a certain distance, and after the light beam is reflected by the first reflector 51, the outgoing light beam will move downward, so that the detection distance of the laser distance measuring device below the whole machine can meet the requirements.
  • the X-axis direction is the collimation or fast-axis direction
  • the collimator lens 40 is placed vertically parallel to the Z-axis direction.
  • the entire optical path of the laser distance measuring device is moved upwards, that is, moved upwards along the Z-axis direction, and the upper half of the collimator lens 40 in the Z-axis direction is cut off to make the collimator lens an asymmetrical shaped lens. , so that the collimator lens 40 can be moved upward along the Z-axis direction, and then the position of the first reflector 51 can be shifted by the laser beam passing through the special-shaped lens.
  • the lower half of the collimator lens 40 along the Z-axis direction can be cut off according to requirements, so as to adjust the optical path to move downward along the Z-axis, or the left half of the collimator lens 40 can be cut along the Y-axis direction or by Half part is cut off to adjust the optical path to move left or right along the Y axis.
  • the collimator lens 40 can be adjusted according to actual needs.
  • the embodiment of this application only takes the upward movement of the overall optical path of the collimator lens as an example, and other references are implemented. That's it.
  • the optical path of the laser distance measuring device can be changed while the overall volume of the laser distance measuring device remains unchanged, so as to meet the needs of users. Ranging needs.
  • the scanning module 50 may also include a second reflective mirror 52 having at least one reflective surface; the outgoing light emitted by the laser transmitter 10 is reflected by the special-shaped lens, the first reflective mirror 51 and the second reflective mirror 52 in sequence Then shoot out to the environment target.
  • the reflective module may specifically include a half-mirror 30; the half-mirror 30 is provided with a transmissive area and a reflective area, the transmissive area is used to emit the laser light emitted by the laser transmitter 10, and the reflective area It is used to reflect the return light reflected by the environmental target to the laser receiver 20 .
  • the light-transmitting area can be arranged at the center of the half-mirror 30 , and the emitting area can surround the circumference of the light-transmitting area.
  • the laser emitter 10 may include, but not limited to, the laser emitter 10 described in the foregoing embodiments.
  • the laser emitter 10 can specifically include: a circuit board 13; a cover 11, which is arranged on the first surface of the circuit board 13 and forms an accommodation space 131 with the circuit board 13, the cover 11 includes a packaging part 111 and a collimation part 112, The collimating part 112 and the encapsulating part 111 are integrally formed, and the collimating part 112 is used to collimate the laser light passing through the cover body 11; the light-emitting unit 101 is arranged on the circuit board 13 in the accommodation space 131, and the laser light emitted by the emitting unit passes through The collimating part 112 collimates and emits to the environmental target.
  • the specific principles and implementation methods of the laser emitters provided in the embodiments of the present application are the same or similar to those of the laser emitters in the foregoing embodiments, and have the advantages described in the foregoing embodiments, which will not be
  • the distance and orientation detected by the laser ranging device can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, etc.
  • the laser ranging device can measure the time of light propagation between the laser ranging device and the detection object (environmental target), that is, the light time-of-flight (Time-of-Flight, TOF), to detect the distance between the detection object and the laser detection object. distance from the device.
  • the detection object environmental target
  • TOF Time-of-Flight
  • the rotation speed of the second mirror 52 changes with the frame rate And change.
  • the time-of-flight of the laser distance measuring device causes a serious deviation of the light spot.
  • the offset of the return light spot caused by the time-of-flight is the displacement of the solid line and the dotted line on the surface of the laser receiver 20 in FIG. 9 .
  • the offset of the return light spot caused by the time of flight is T.
  • the Adjust the laser transmitter 10 to one side of the laser receiver 20 during the initial focusing so that as the detection distance becomes farther, the received light spot always moves on the laser receiver 20 and can be effectively received by the laser receiver 20 technical effect.
  • An embodiment of the present application also provides a movable platform, including: a platform body, and the laser distance measuring device described in any one of the above embodiments; wherein, the laser distance measuring device is arranged on the platform body.
  • the movable platform with a laser distance measuring device can measure the external environment, for example, measure the distance between the movable platform and obstacles for obstacle avoidance, perform two-dimensional or three-dimensional mapping of the external environment, and the like.
  • the movable platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the laser ranging device can also be installed on the arm, tripod, etc. of the unmanned aerial vehicle.
  • the platform body is the body of the car.
  • the car may be an automatic driving car or a semi-automatic driving car, which is not limited here.
  • the laser ranging device is applied to a remote-controlled car
  • the platform body is the body of the remote-controlled car.
  • the platform body is a robot.
  • the laser distance measuring device is applied to the camera, the platform body is the camera itself.
  • the technical solution provided by the embodiment of this application passes through the collimation part and the packaging part on the cover of the laser emitter to form an integral structure, and the collimation part is used to collimate the laser transmitter through the cover.
  • the laser of the body so that the collimation part can be prepared by integral molding, which effectively reduces the difficulty of packaging the cover or the laser emitter, improves the production efficiency of the laser emitter and the accuracy of the collimation part, and can also make
  • the overall package size of the laser transmitter is smaller, which in turn allows the movable platform to be smaller.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光发射器(10)、激光测距装置、激光雷达及可移动平台,激光发射器(10)包括:电路板(13);罩体(11),设置于电路板(13)的第一表面并与电路板(13)之间形成容纳空间(131),罩体(11)包括封装部(111)和准直部(112),准直部(112)与封装部(111)为一体成型结构,准直部(112)用于准直通过罩体(11)的激光;发光单元(101),设置于容纳空间(131)内的电路板(13)上,发光单元(101)发射的激光通过准直部(112)准直后出射。

Description

激光发射器、激光雷达、激光测距装置及可移动平台 技术领域
本申请涉及激光雷达技术领域,尤其涉及激光发射器、激光雷达、激光测距装置及可移动平台。
背景技术
激光雷达由于在地图构建、避障、测距等领域有着优异的性能,因此,被广泛应用于机器人、AGV(物流搬运)、无人驾驶等行业。
激光雷达中通常采用柱透镜作为快轴准直透镜,将柱透镜贴片式粘接于发光单元的封装罩上,以压缩快轴光束的发散角。然而,上述方式粘贴柱透镜时,很难将柱透镜与发光单元对准,不但导致对准精度低,而且生产效率也很低。
申请内容
鉴于上述问题,提出了本申请,以便提供一种解决上述问题的激光发射器、激光雷达、激光测距装置及可移动平台。
在本申请的一个实施例中,提供了一种激光发射器,所述激光发射器包括:
电路板;
罩体,设置于所述电路板的第一表面并与所述电路板之间形成容纳空间,所述罩体包括封装部和准直部,所述准直部与所述封装部为一体成型结构,所述准直部用于准直通过所述罩体的激光;
发光单元,设置于所述容纳空间内的所述电路板上,所述发光单元发射的激光通过所述准直部准直后出射。
本申请实施例提供的技术方案,通过激光发射器的罩体上的准直部与封装部为一体成型结构,准直部用于准直通过罩体的激光,从而可以通过一体成型的方式制备准直部,有效降低了罩体或者说是激光发射器的封装难度,提升了激光发射器的生产效率以及准直部的精度,并且还可以使激光发射器的整体封装尺寸更小。
相应地,本申请还提供了一种激光雷达,包括上述激光发射器。
相应地,本申请还提供了一种激光测距装置,所述激光测距装置包括: 激光发射器,反射模块和激光接收器,所述激光发射器和所述激光接收器关于所述反射模块镜像对称设置,所述激光发射器发射的出射光经环境目标反射回的回光经所述发射模块反射至所述激光接收器,以确定所述环境目标与所述激光测距装置之间的距离;
其中,所述激光接收器为线阵列接收器,沿第一方向,所述线阵列接收器中的至少两个接收单元一字排列,所述第一方向平行于所述反射模块的反射面并垂直于所述回光方向。
本申请实施例提供的技术方案,由于激光接收器为线阵列接收器,沿第一方向,线阵列接收器中的至少两个接收单元一字排列,第一方向平行于反射模块的反射面并垂直于回光方向,因此,可以有效减少线间光串扰路径和像散。
相应地,本申请还提供了一种可移动平台,包括:平台本体,以及上述的激光测距装置;其中,所述激光测距装置设于所述平台本体上。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是无准直透镜的一种激光发射器的光路示意图;
图2是有准直透镜的一种激光发射器的光路示意图;
图3是一种激光发射器的结构示意图;
图4是本申请实施例所述激光测距系统的一种结构示意图;
图5是本申请实施例所述激光发射器的一种结构示意图;
图6是一种激光接收器在激光测距装置中的结构示意图;
图7是本申请实施例所述激光接收器在激光测距装置中的结构示意图;
图8是本申请实施例所述异形透镜在激光测距装置中的结构示意图;
图9是本申请实施例所述回光偏移量在激光测距装置中的示意图;
图10是本申请实施例所述激光接收器表面的回光偏移量的示意图。
附图标记说明
10:激光发射器;20:激光接收器;30:半透半反镜;40:准直透镜; 11:罩体;12:柱透镜;50:扫描模块;51:第一反射镜;52:第二反射镜;501:摆动轴;502:旋转轴;13:电路板;131:容纳空间;111:封装部;112:准直部;101:发光单元;102:基板;1121:准直段;1122:连接段;201:接收单元;301:第一反射面;302:第二反射面。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在本申请的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的发明人发现,激光雷达的应用场景较多,不同的应用场景对雷达的性能要求也不一样。在一些实施方式中,激光雷达可以应用于车辆,用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。具体的,激光雷达可以设置于车辆的车灯、保险杠、车顶等多种位置。在车载激光雷达的这些应用场景中,对激光雷达的共性需求即在有限的体积下,激光雷达FOV(Field of view)也较大。当激光雷达体积有限制的时候,激光雷达不同FOV的量程必然有区别,一般FOV中心量程最大,越靠近边缘衰减越多。为了减小激光雷达出光光斑尺寸和边缘FOV的 出光遮挡,在激光发射器前面增加准直透镜,如柱透镜,以压缩出光发散角,减小快轴光斑。如图1,示出了无准直透镜的一种激光发射器的光路示意图。如图2,示出了有准直透镜的一种激光发射器的光路示意图。如图1和图2所示,以准直透镜为柱透镜为例,在没有柱透镜12时,激光雷达快轴方向光斑尺寸为D1,发散角半角为θ 1。如图2所示,在激光发射器前面增加柱透镜12,当保持激光发射器的出光效率不变时,快轴方向光斑尺寸由D1减小至D2(D1>D2),发散角由θ 1减小至θ 21>θ 2),通过柱透镜12可以有效压缩快轴发散角,减小光斑尺寸。如图3所示,柱透镜12通常以贴装的方式粘贴于激光发射器的罩体11上。然而,在贴装柱透镜12的过程中,柱透镜的对准时间及精度很难控制,导致生产成本较高、量产可行性较差。
基于上述问题,本申请实施例提供了一种激光发射器、激光雷达、激光测距装置及可移动平台。具体的,激光发射器包括:电路板;罩体,设置于所述电路板的第一表面并与所述电路板之间形成容纳空间,所述罩体包括封装部和准直部,所述准直部与所述封装部为一体成型结构,所述准直部用于准直通过所述罩体的激光;发光单元,设置于所述容纳空间内的所述电路板上,所述发射单元发射的激光通过所述准直部准直后出射。
本申请实施例提供的技术方案,通过激光发射器罩体上的准直部与封装部为一体成型结构,准直部用于准直通过罩体的激光,从而可以通过一体成型的方式制备准直部,有效降低了罩体或者说是激光发射器的封装难度,提升了激光发射器的生产效率以及准直部的精度,并且还可以使激光发射器的整体封装尺寸更小。
在对本申请实施例提供的激光发射器、激光雷达、激光测距装置及可移动平台进行解释说明之前,先对本申请实施例提供的激光发射器、激光雷达、激光测距装置及可移动平台的应用场景作出具体说明:
在实际应用中,激光测距系统中可以采用同轴光路,也即激光测距系统出射的光束和经反射回来的光束在激光测距系统内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,激光测距系统也可以采用异轴光路,也即激光测距系统出射的光束和经反射回来的光束在激光测距系统内分别沿不同的光路传输。
参照图4,示出了本申请实施例所述激光测距系统的一种结构示意图。如图4所示,激光测距系统具体可以包括:激光发射器10、准直透镜40、扫描模块50,扫描模块50包括第一反射镜51和第二反射镜52,第一反射镜51和第二反射镜52依次设置于激光的光路上,用于改变激光的传播方向。在本申请实施例中,激光发射器10发出的激光经过准直透镜40准直后,依次经第一反射镜51、第二反射镜52后出射至环境目标。其中,第一反射镜51沿摆动轴501来回摆动,又可以称之为摆动反射镜或振镜;第二反射镜52沿旋转轴502旋转,又可以称之为旋转反射镜。本申请实施例所述激光测距系统中,通过第一反射镜51、第二反射镜52依次设置,可以使出射激光形成二维方向上的扫描,获得更大的视场角,从而提高激光测距系统的可靠性,以及降低激光测距系统的成本。
本申请各实施例所述激光发射器可以应用于上述激光测距系统中。参照图5,示出了本申请实施例的一种激光发射器的结构示意图。本申请实施例中,激光发射器10具体可以包括:电路板13;罩体11,设置于电路板13的第一表面并与电路板13之间形成容纳空间131,罩体11包括封装部111和准直部112,准直部112与封装部111为一体成型结构,准直部112用于准直通过罩体11的激光;发光单元101,设置于容纳空间131内的电路板13上,发射单元发射的激光通过准直部112准直后出射。本申请实施例中,通过激光发射器10罩体11上的准直部112与封装部111为一体成型结构,准直部112用于准直通过罩体11的激光,从而可以通过一体成型的方式制备准直部112,有效降低了罩体11或者说是激光发射器10的封装难度,提升了激光发射器10的生产效率以及准直部112的精度,并且还可以使激光发射器10的整体封装尺寸更小。
在本申请实施例中,电路板13可以起到支撑罩体11和发光单元101的作用,电路板13内可以集成有控制发光单元101的电路。在实际应用中,电路板13还可以通过贴装焊接等方式设置于激光雷达的控制板上。
在本申请实施例中,准直部112用于对发光单元101发出的激光进行快轴准直。发光单元101用于发射激光(光脉冲序列)。发光单元101包括但不限于脉冲激光二极管(pulse laser diode,PLD)。在一些实施例中,发光单元101的数量可以为一个,或至少两个。在发光单元101的数量为至少两 个的情况下,至少两个发光单元101可以在电路板13上线性排列,或,至少两个发光单元101也可以在电路板13上阵列方式排列,对此本申请实施例不作限定。
如图5所示,激光发射器10还可以包括:基板102,发光单元101通过基板102设置于电路板13上。具体的,发光单元101与基板102、基板102与电路板13之间可以通过胶水粘接连接。需要说明的是,在容纳空间131内的电路板13上还可以设置有其他元器件,例如电容等,本申请在此不再赘述。
在本申请实施例中,准直部112设置于罩体11上与第一表面相对的侧面,即可以理解为激光发射器10为垂直腔面发射激光器;或,准直部112设置于罩体11上与第一表面相交的周侧面,即可以理解为激光发射器10为边发射激光器。在实际应用中,垂直腔面发射激光器与边发射激光器可以根据实际需求选择设置。本申请实施例中,激光发射器10包括但不限于边发射激光器,本申请实施例中,以激光发射器10为边发射激光器为例进行示意性说明。
在本申请实施例中,准直部112为透光区域,具体的,准直部112可以包括但不限于塑胶件或玻璃件等。封装部111可以为与准直部112相同材质或非相同材质,具体的,封装部111可以为非透光区域,以提升激光发射器10的外观美观度。
在本申请的一些实施例中,为了降低激光发射器10封装难度,或者说是降低准直部112与封装部111的一体注塑成型时的拔模难度,准直部112可以设置为非对称结构。如图5所示,在沿垂直于电路板13第一表面的方向拔模时,由于准直部112为非对称结构,因此,拔模难度可以有效降低。
如图5所示,准直部112的出光面朝向远离发光单元101的方向呈圆弧状。在本申请实施例中,准直部112可以占据激光发射器10激光发射方向的整个侧面,如图5所示方位即整个右侧面均具有准直功能;或者,准直部112也可以占据激光发射器10激光发射方向的部分侧面。在本申请实施例提供的技术方案中,以图5中的方位为例,准直部112可以覆盖罩体11整个右侧面,即整个右侧面均具有准直功能;或者,右侧面中部分区域具有准直功能。
在本申请的一些实施例中,准直部112具体可以包括:准直段1121,以及设置于准直段1121两侧的连接段1122;其中一侧的连接段1122与封装部 111相连,另一侧的连接段1122与电路板13相连;发光单元101发射的激光通过准直段1121准直后出射。在本申请实施例中,准直段1121对发光单元101发射的激光起到准直作用。通过在准直段1121两侧设置的连接段1122与封装部111或电路板13侧相连接,这样可以使激光发射器10的封装工艺更加简单,量产难度更低。
需要说明的是,由于图5为剖面结构示意图,因此在图5中准直段1121、连接段1122为线段的方式呈现,但是在三维结构示意图中均为面结构。
在本申请实施例中,准直段1121可以为球面结构或非球面结构。准直段1121为球面结构即准直段1121对应的透光区域的各点曲率相同,准直段1121为非球面结构可以理解为准直段1121对应的透光区域的各点曲率不同,或者,准直段1121对应的透光区域中至少部分区域与其余区域的曲率不同。
在一些实施例中,为了使准直部112的加工工艺更加简单,还可以设置准直段1121两侧的连接段1122中,至少一侧为平面结构。在实际应用中,平面结构加工难度更低,平面结构的倾斜角度也更容易控制,因此,两侧的连接段1122中至少一侧为平面结构可以使拔模角更加容易控制,拔模难度更低。例如,在靠近电路板13一侧的连接段1122为平面结构,这样可以使连接段1122与电路板13之间形成的拔模角度更加容易控制。可以理解的是,准直段1121两侧的连接段1122也可以均为曲面结构,或者,其中一侧为平面结构,另一侧为曲面结构,对此,本领域技术人员可以根据需求选择设置,本申请实施例对此不作限定。
在本申请的一些实施例中,准直段1121与连接段1122相切,这样,可以使准直段1121与连接段1122之间的连接更加顺滑,有效降低封装部111与准直部112注塑成型的难度。本申请实施例中,准直段1121与连接段1122相切可以理解为在准直段1121为平面结构时,平面结构位于与准直段1121的连接点处的切线上。
在本申请实施例中,由于准直部112与罩体11为注塑一体成型结构,为了降低拔模难度,可以设置靠近电路板13的连接段1122与第一表面之间的夹角为钝角(如图5中a>90°)。具体的,钝角大于或等于93°,这样,可以使拔模角大于3°,进而使拔模难度更低。
在实际应用中,准直段1121可以位于激光发射方向所在侧面的中心位置, 或者,也可以位于其他非中心的位置。例如,在沿垂直于第一表面的方向(图5所示方位中上下方位),两侧的连接段1122的投影长度不同(两侧的连接段在垂直方向上的投影),这样也就相当于沿垂直于第一表面的方向,将准直段1121设置于非中心的位置,即可以理解为准直段1121位于图5中偏上或偏下位置。本领域技术人员应知,准直段1121与发光单元101之间相对,以将发光单元101发射的激光进行快轴准直,因此,准直段1121的具体位置也可以与发光单元101的位置相关,本领域技术人员可以根据具体需求设置准直段1121的曲率以及准直段1121两侧连接段1122的长度。
在本申请实施例中,在发光单元101的数量为多个的情况下,发光单元101与准直部112可以一一对应,即每一个发光单元101发射出的激光均可以由其对应的准直部112进行准直后出射。在实际应用中,发光单元101可以与罩体11一一对应,每个罩体11上设置有一个准直部112,以准直其对应的发光单元101发射的激光;或,至少两个发光单元101对应一个罩体11,每个罩体11上设置有至少两个准直部112,即两个或多个发光单元101可以封装于同一个罩体11内,在罩体11上设置至少两个准直部112,以使每个发光单元101可以对应罩体11上的一个准直部112,这样,可以减少罩体11的数量。
综上所述,本申请实施例提供的激光发射器至少包括以下优点:
本申请实施例中,通过激光发射器的罩体上的准直部与封装部为一体成型结构,准直部用于准直通过罩体的激光,从而可以通过一体成型的方式制备准直部,有效降低了罩体或者说是激光发射器的封装难度,提升了激光发射器的生产效率以及准直部的精度,并且还可以使激光发射器的整体封装尺寸更小。
本申请实施例还提供了一种激光雷达,包括上述任一实施例中的激光发射器。
需要说明的是,本申请实施例提供的激光发射器的具体原理和实现方式均与前述实施例的激光发射器相同或类似,此处不再赘述。
在本申请实施例中,由于激光雷达中的激光发射器的罩体上的准直部与封装部为一体成型结构,准直部用于准直通过罩体的激光,从而可以通过一 体成型的方式制备准直部,有效降低了罩体或者说是激光发射器的封装难度,提升了激光发射器的生产效率以及准直部的精度,并且还可以使激光发射器的整体封装尺寸更小,进而使激光雷达体积有效减少,激光雷达的应用范围可以更广。
本申请实施例还提供了一种激光测距装置,所述激光测距装置具体可以包括:激光发射器,反射模块和激光接收器,所述激光发射器和所述激光接收器关于所述反射模块镜像对称设置,所述激光发射器发射的出射光经环境目标反射回的回光经所述发射模块反射至所述激光接收器,以确定所述环境目标与所述激光测距装置之间的距离;其中,所述激光接收器为线阵列接收器,沿第一方向,所述线阵列接收器中的至少两个接收单元一字排列,所述第一方向平行于所述反射模块的反射面并垂直于所述回光方向。本申请实施例中,由于激光接收器为线阵列接收器,沿第一方向,线阵列接收器中的至少两个接收单元一字排列,第一方向平行于反射模块的反射面并垂直于回光方向,因此,可以有效减少线间光串扰路径和像散。
本申请实施例中,激光发射器用于发射激光(光脉冲序列),包括但不限于线阵列发射器。本申请实施例中,激光接收器用于接收经环境目标反射回来的回光。激光接收器的接收单元包括但不限于雪崩光电二极管(Avalanche Photo Diode,APD)。
在本申请的一些实施例中,激光测距装置还可以包括准直模块和扫描模块,出射光经准直模块准直后经扫描模块出射至环境目标。准直模块主要用于对激光发射器发射的激光(激光脉冲序列)进行准直;扫描模块主要用于将激光发射器发射的激光改变方向并出射至环境目标,或将经环境目标反射回来的回光改变方向并反射至激光接收器接收。本申请实施例中,准直模块和扫描模块沿激光发射器发射的激光的光路依次设置,具体可以参照图4中准直模块与扫描模块的位置设置。
示例性地,反射模块可以包括至少一个半透半反镜;准直模块可以包括至少一个准直透镜;扫描模块可以包括至少一个第一反射镜。具体地,如图1和图2所示,激光发射器10发射激光经过半透半反镜30出射,经准直透镜40准直后到达扫描模块,扫描模块如图4的第一反射镜51和第二反射镜 52。其中,由于采用同轴光路,半透半反镜30的中间区域用于发射的激光透过,同时也可用于反射回光以使回光到达激光接收器20。
以下结合附图,具体对本申请实施例所述激光测距装置的减小线间串扰的具体原理进行解释说明。
参照图6,示出了一种激光接收器在激光测距装置中的结构示意图。如图6所示,半透半反镜30具有相对的第一反射面301和第二反射面302,激光接收器20包括至少两个在图6所示方位中沿左右方向一字排列的接收单元201。如图6所示,当经环境目标反射回来的回光经半透半反镜30进行反射时,一部分回光(图6中实线所示光路)直接经第一反射面301反射至激光接收器20的第一接收单元201,而这部分回光也会经由第二反射面302反射(这部分回光依次在第一反射面301折射、第二反射面302反射、第一反射面301再次折射,图6中虚线所示光路)至第一接收单元201相邻或间隔若干个接收单元201的第二接收单元201,这就导致第一接收单元201除了能接收到回光信号外,相邻或间隔若干个接收单元201的第二接收单元201也能收到该回光信号,造成回光信号串扰。
基于上述问题,本申请实施例中,通过设置激光接收器20为线阵列接收器,沿第一方向,线阵列接收器中的至少两个接收单元201一字排列,第一方向平行于反射模块的反射面并垂直于回光方向,从而有效减少线间光串扰路径和像散。参照图7,示出了本申请实施例的激光接收器在激光测距装置的结构示意图。本申请实施例中,第一方向如图7所示方位中前后方向,即Y轴平行的方向。XYZ坐标系下,X轴方向是准直或者是快轴方向(也即出光或者回光方向,指的是经过准直透镜准直后的回光反向,图7所示方位左右方向),准直透镜40是按照平行Z轴方向竖直放置,本申请实施例中,线阵接收器中的至少两个接收单元201就从与X轴平行方向一字排开放置调整为与Y轴方向平行方向一字排开放置。
如图7所示,由于激光接收器20为线阵列接收器,沿第一方向,线阵列接收器中的至少两个接收单元201一字排列,第一方向平行于反射模块的反射面并垂直于回光方向,因此,当经环境目标反射回来的回光经半透半反镜30进行反射时,一部分回光(图7中实线所示光路)直接经第一反射面301反射至激光接收器20的一接收单元201,这部分回光经由第二反射面302反 射后(依次在第一反射面301折射、第二反射面302反射、第一反射面301再次折射,如图7中虚线所示光路),则无法被其他接收单元201所接收,这样就可以有效避免回光串扰问题。
需要说明的是,在实际应用中,本领域技术人员还可以将本申请上述各实施例,结合调整半透半反镜30的折射率、半透半反镜30的厚度以及半透半反镜30的倾斜角等多个参数,进一步减少回光串扰问题,对此本申请实施例不作具体限定。
在本申请实施例中,还可以设置至少一个准直透镜40可为非对称结构的异形透镜;沿第二方向,异形透镜的光轴位置偏于第一反射镜51的中心位置;第二方向垂直于第一方向和异形透镜的光轴方向,这样,就在激光测距装置体积不变的情况下,使激光测距装置的整体光路按照需要方位进行偏移。
参照图8,示出了本申请实施例所述异形透镜在激光测距装置中的结构示意图。本申请实施例中,第一反射镜51的中心位置位于第一反射镜51的转轴501上。如图8实线所示,在准直透镜40为轴对称结构的情况下,准直透镜40的光轴穿过第一反射件51的中心位置;当准直透镜40为非对称的异形透镜的情况下,如图8中虚线所示,异形透镜的光轴位置偏于第一反射镜51的中心位置,即异形透镜光轴的位置高于或低于第一反射镜51的摆动轴501的位置。本申请实施例中,第一反射镜51是关于摆动轴501对称设置。
结合图4,在本申请实施例中,经准直透镜40的激光经过第一反射镜51(振镜)沿摆动轴501来回摆动实现纵向方向的扫描(如图4所示纵向FOV),经第二反射镜52沿旋转轴502旋转实现水平方向的扫描(如图4所示水平FOV)。
在实际应用中,当激光测距装置的体积不变时,由于整机体积受限,第一反射镜51和第二反射镜52的高度是受限的(或者说是第一反射镜和第二反射镜的位置是固定无法偏移的),进而激光测距装置的光路或者说是纵向FOV和水平FOV是固定的。若对某一方向(例如,纵向FOV下方)的探测距离要求较高,则需减小FOV下方的出光遮挡,即需要将激光测距装置的整体光路向上方移动,而激光测距装置整体光路向上移动时,必然需要向上移动准直透镜40,为了避免准直透镜40上方与激光测距装置的外壳干涉。本申请实施例中,通过将准直透镜40设置为非对称的异形透镜。结合图8中虚 线所示,将准直透镜40的上半部分削掉从而将准直透镜40在原位置基础上向上移动(在图8所示方位中沿Z轴向上移动),这样,就可以使经准直透镜40的整体光轴向上移动一定距离,光束经第一反射镜51反射后,出射的光束会向下移动,使激光测距装置整机的下方的探测距离满足要求。
需要说明的是,如图8所示,XYZ坐标系下,X轴方向是准直或者是快轴方向,准直透镜40是按照平行Z轴方向竖直放置。本申请实施例中,将激光测距装置整体光路向上移动即沿Z轴方向向上移动,将准直透镜40的Z轴方向上的上半部分削掉使准直透镜为非对称结构的异形透镜,从而可以使准直透镜40沿Z轴方向向上移动,进而使经异形透镜的激光在第一反射镜51的位置发生偏移。
可以理解的是,可以根据需求将准直透镜40沿Z轴方向的下半部分削掉,以调整光路沿Z轴向下移动,或,沿Y轴方向将准直透镜40左半部分或由半部分削掉,以调整光路沿Y轴向左或向右移动,具体可以根据实际需求对准直透镜40进行调整,本申请实施例仅以准直透镜整体光路向上移动为例,其他参照执行即可。
在本申请实施例中,通过将准直透镜40设置为非对称结构的异形透镜,从而可以在激光测距装置整体体积不变的情况下,改变激光测距装置的光路,从而满足用户的不同测距需求。
在本申请实施例中,扫描模块50还可以包括具有至少一个反射面的第二反射镜52;激光发射器10发射的出射光依次经异形透镜、第一反射镜51和第二反射镜52反射后出射至环境目标。
在本申请实施例中,反射模块具体可以包括半透半反镜30;半透半反镜30上设置有透射区域和反射区域,透射区域用于将激光发射器10发射的激光出射,反射区域用于将经环境目标反射回来的回光反射至激光接收器20。本申请实施例中,半透半反镜30中,透光区域可以设置于半透半反镜30的中心位置,发射区域可以围绕于透光区域的周向。
在本申请实施例中,激光发射器10可以包括但不限于上述各实施例中所述激光发射器10。激光发射器10具体可以包括:电路板13;罩体11,设置于电路板13的第一表面并与电路板13之间形成容纳空间131,罩体11包括封装部111和准直部112,准直部112与封装部111为一体成型结构,准直 部112用于准直通过罩体11的激光;发光单元101,设置于容纳空间131内的电路板13上,发射单元发射的激光通过准直部112准直后出射至环境目标。本申请实施例提供的激光发射器的具体原理和实现方式均与前述实施例的激光发射器相同或类似,且具有上述各实施例所述优点,此处不再赘述。
在本申请实施例中,激光测距装置探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。示例性地,激光测距装置可以通过测量激光测距装置和探测物(环境目标)之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),以探测探测物到激光探测装置的距离。
在实际应用中,由于激光测距装置的应用场景多样,在不同的场景需求下(例如,10Hz、15Hz、20Hz、25Hz等不同帧率范围),第二反射镜52的转速随帧率的变化而变化。如图9和图10所示,当第二反射镜52在高转速时,激光测距装置的飞行时间导致的光斑偏移较为严重。飞行时间导致的回光光斑偏移量,如图9中实线与虚线在激光接收器20表面的位移。如图10所示,飞行时间导致的回光光斑偏移量为T。本申请实施例中,在保证激光测距装置的性能前提下,为了使激光接收器20的感光面的尺寸尽量小,为兼容远近探测距离需求并为补偿飞行时间导致的光斑偏移,可在初始对焦时将激光发射器10调整至激光接收器20的一侧,以达到随着探测距离的变远,接收到的光斑始终在激光接收器20上移动且能被激光接收器20有效接收的技术效果。
本申请实施例还提供了一种可移动平台,包括:平台本体,以及上述任一实施例所述的激光测距装置;其中,激光测距装置设于平台本体上。
需要说明的是,本申请实施例提供的激光测距装置的具体原理和实现方式均与前述实施例的激光测距装置类似,此处不再赘述。
本申请实施例中,具有激光测距装置的可移动平台可以对外部环境进行测量,例如,测量可移动平台与障碍物的距离用于避障、对外部环境进行二维或三维的测绘等。
在本申请的一些实施方式中,可移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当激光测距装置应用于无人飞行器时,平台本体为无人飞行器的机身,当然,激光测距装置也可以设于无人飞行器的 机臂、脚架等位置。当激光测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当激光测距装置应用于遥控车时,平台本体为遥控车的车身。当激光测距装置应用于机器人时,平台本体为机器人。当激光测距装置应用于相机时,平台本体为相机本身。
综上所述,本申请实施例提供的技术方案,相比于传统的方案,通过激光发射器的罩体上的准直部与封装部为一体成型结构,准直部用于准直通过罩体的激光,从而可以通过一体成型的方式制备准直部,有效降低了罩体或者说是激光发射器的封装难度,提升了激光发射器的生产效率以及准直部的精度,并且还可以使激光发射器的整体封装尺寸更小,进而使可移动平台的体积也可以更小。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (23)

  1. 一种激光发射器,其特征在于,所述激光发射器包括:
    电路板;
    罩体,设置于所述电路板的第一表面并与所述电路板之间形成容纳空间,所述罩体包括封装部和准直部,所述准直部与所述封装部为一体成型结构,所述准直部用于准直通过所述罩体的激光;
    发光单元,设置于所述容纳空间内的所述电路板上,所述发光单元发射的激光通过所述准直部准直后出射。
  2. 根据权利要求1所述的激光发射器,其特征在于,所述准直部为非对称结构。
  3. 根据权利要求1所述的激光发射器,其特征在于,所述准直部的出光面朝向远离所述发光单元的方向呈圆弧状。
  4. 根据权利要求1所述的激光发射器,其特征在于,所述准直部包括:准直段,以及设置于所述准直段两侧的连接段;
    其中一侧的所述连接段与所述封装部相连,另一侧的所述连接段与所述电路板相连;
    所述发光单元发射的激光通过所述准直段准直后出射。
  5. 根据权利要求4所述的激光发射器,其特征在于,所述准直段为球面结构或非球面结构。
  6. 根据权利要求4所述的激光发射器,其特征在于,两侧的所述连接段中,至少一侧为平面结构。
  7. 根据权利要求4所述的激光发射器,其特征在于,所述准直段与所述连接段相切。
  8. 根据权利要求4所述的激光发射器,其特征在于,靠近所述电路板的所述连接段与所述第一表面之间的夹角为钝角。
  9. 根据权利要求8所述的激光发射器,其特征在于,所述钝角大于或等于93°。
  10. 根据权利要求4所述的激光发射器,其特征在于,沿垂直于所述第一表面的方向,两侧的所述连接段的投影长度不同。
  11. 根据权利要求1所述的激光发射器,其特征在于,所述发光单元的 数量为至少两个,至少两个所述发光单元在所述电路板上阵列排列,所述发光单元与所述准直部一一对应。
  12. 根据权利要求11所述的激光发射器,其特征在于,所述发光单元与所述罩体一一对应,每个所述罩体上设置有一个所述准直部;
    或,至少两个所述发光单元对应一个所述罩体,每个所述罩体上设置有至少两个所述准直部。
  13. 根据权利要求1所述的激光发射器,其特征在于,所述封装部为非透光区域。
  14. 根据权利要求1所述的激光发射器,其特征在于,所述准直部设置于所述罩体上与所述第一表面相对的侧面;
    或,所述准直部设置于所述罩体上与所述第一表面相交的周侧面。
  15. 根据权利要求1所述的激光发射器,其特征在于,所述准直部为塑胶件或玻璃件。
  16. 一种激光雷达,包括:权利要求1至15任一项所述的激光发射器。
  17. 一种激光测距装置,其特征在于,所述激光测距装置包括:激光发射器,反射模块和激光接收器,所述激光发射器和所述激光接收器关于所述反射模块镜像对称设置,所述激光发射器发射的出射光经环境目标反射回的回光经所述发射模块反射至所述激光接收器,以确定所述环境目标与所述激光测距装置之间的距离;
    其中,所述激光接收器为线阵列接收器,沿第一方向,所述线阵列接收器中的至少两个接收单元一字排列,所述第一方向平行于所述反射模块的反射面并垂直于所述回光方向。
  18. 根据权利要求17所述的激光测距装置,其特征在于,所述激光测距装置还包括准直模块和扫描模块,所述出射光经所述准直模块准直后经所述扫描模块出射至所述环境目标。
  19. 根据权利要求18所述的激光测距装置,其特征在于,所述准直模块包括至少一个准直透镜,所述至少一个准直透镜为非对称结构的异形透镜;
    所述扫描模块包括至少一个第一反射镜,沿第二方向,所述异形透镜的光轴位置偏于所述第一反射镜的中心位置;
    所述第二方向垂直于所述第一方向和所述异形透镜的光轴方向。
  20. 根据权利要求19所述的激光测距装置,其特征在于,所述扫描模块 还包括具有至少一个反射面的第二反射镜;
    所述激光发射器发射的出射光依次经所述异形透镜、所述第一反射镜和所述第二反射镜反射后出射至所述环境目标。
  21. 根据权利要求17所述的激光测距装置,其特征在于,所述反射模块包括半透半反镜,所述半透半反镜上设置有透射区域和反射区域,所述透射区域用于将所述激光发射器发射的激光出射,所述反射区域用于将经环境目标反射回来的回光反射至所述激光接收器。
  22. 根据权利要求17所述的激光测距装置,其特征在于,激光发射器包括:电路板;
    罩体,设置于所述电路板的第一表面并与所述电路板之间形成容纳空间,所述罩体包括封装部和准直部,所述准直部与所述封装部为一体成型结构,所述准直部用于准直通过所述罩体的激光;
    发光单元,设置于所述容纳空间内的所述电路板上,所述发射单元发射的激光通过所述准直部准直后出射至所述环境目标。
  23. 一种可移动平台,其特征在于,包括:平台本体,以及权利要求17至22的激光测距装置;
    其中,所述激光测距装置设于所述平台本体上。
PCT/CN2022/078664 2022-03-01 2022-03-01 激光发射器、激光雷达、激光测距装置及可移动平台 WO2023164810A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/078664 WO2023164810A1 (zh) 2022-03-01 2022-03-01 激光发射器、激光雷达、激光测距装置及可移动平台
CN202280069218.5A CN118140363A (zh) 2022-03-01 2022-03-01 激光发射器、激光雷达、激光测距装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078664 WO2023164810A1 (zh) 2022-03-01 2022-03-01 激光发射器、激光雷达、激光测距装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2023164810A1 true WO2023164810A1 (zh) 2023-09-07

Family

ID=87882773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078664 WO2023164810A1 (zh) 2022-03-01 2022-03-01 激光发射器、激光雷达、激光测距装置及可移动平台

Country Status (2)

Country Link
CN (1) CN118140363A (zh)
WO (1) WO2023164810A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154151A1 (en) * 2006-01-03 2007-07-05 Chen Tony K T Laser module and method of making
CN101005190A (zh) * 2006-01-16 2007-07-25 方础光电科技股份有限公司 激光模块及其制造方法
CN106816810A (zh) * 2015-11-30 2017-06-09 光研公司 半导体激光光源模块及其制造方法、激光光源装置及其制造方法
CN107976675A (zh) * 2017-11-14 2018-05-01 中国人民解放军国防科技大学 一种基于阵列探测的太赫兹频段接收端孔径编码成像雷达装置
CN108110608A (zh) * 2018-02-06 2018-06-01 深圳市光脉电子有限公司 一种可阵列式激光器及其管芯制备工艺
CN108445469A (zh) * 2018-05-11 2018-08-24 天津大学 一种多线激光雷达的转镜扫描装置及方法
CN209979845U (zh) * 2019-01-07 2020-01-21 深圳市大疆创新科技有限公司 一种测距装置及移动平台
CN113640773A (zh) * 2021-08-10 2021-11-12 上海市激光技术研究所 一种激光雷达系统
CN114076929A (zh) * 2020-08-11 2022-02-22 宁波舜宇车载光学技术有限公司 激光雷达系统、车辆以及激光雷达探测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154151A1 (en) * 2006-01-03 2007-07-05 Chen Tony K T Laser module and method of making
CN101005190A (zh) * 2006-01-16 2007-07-25 方础光电科技股份有限公司 激光模块及其制造方法
CN106816810A (zh) * 2015-11-30 2017-06-09 光研公司 半导体激光光源模块及其制造方法、激光光源装置及其制造方法
CN107976675A (zh) * 2017-11-14 2018-05-01 中国人民解放军国防科技大学 一种基于阵列探测的太赫兹频段接收端孔径编码成像雷达装置
CN108110608A (zh) * 2018-02-06 2018-06-01 深圳市光脉电子有限公司 一种可阵列式激光器及其管芯制备工艺
CN108445469A (zh) * 2018-05-11 2018-08-24 天津大学 一种多线激光雷达的转镜扫描装置及方法
CN209979845U (zh) * 2019-01-07 2020-01-21 深圳市大疆创新科技有限公司 一种测距装置及移动平台
CN114076929A (zh) * 2020-08-11 2022-02-22 宁波舜宇车载光学技术有限公司 激光雷达系统、车辆以及激光雷达探测方法
CN113640773A (zh) * 2021-08-10 2021-11-12 上海市激光技术研究所 一种激光雷达系统

Also Published As

Publication number Publication date
CN118140363A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
CN108445467B (zh) 一种扫描激光雷达系统
CN109597050B (zh) 一种激光雷达
US11428788B2 (en) Laser measurement module and laser radar
CN109613515A (zh) 一种激光雷达系统
US20210041560A1 (en) Distance detection apparatuses
WO2021057809A1 (zh) 激光雷达及其控制方法和具有激光雷达的设备
WO2023092859A1 (zh) 激光雷达发射装置、激光雷达装置及电子设备
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
CN110531369A (zh) 一种固态激光雷达
CN209979845U (zh) 一种测距装置及移动平台
US20230152427A1 (en) Laser radar receiving system
CN213544818U (zh) 能够减少盲区的激光雷达
WO2023164810A1 (zh) 激光发射器、激光雷达、激光测距装置及可移动平台
CN112946666A (zh) 一种激光雷达系统
CN219162433U (zh) 镜组消光结构及激光雷达
WO2022257558A1 (zh) 飞行时间模组、终端及深度检测方法
US20210341588A1 (en) Ranging device and mobile platform
WO2023050398A1 (zh) 激光雷达发射装置、激光雷达装置及电子设备
CN114563773A (zh) 能够减少盲区的激光雷达
CN108254734A (zh) 激光测距装置
CN112946665A (zh) 一种激光雷达系统
WO2024045884A1 (zh) 激光雷达、电子设备及车辆
CN219302659U (zh) 发射模组及激光雷达
CN116009009B (zh) Tof激光测量系统、激光发射和接收模组以及激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929261

Country of ref document: EP

Kind code of ref document: A1