JP2017079296A - 熱処理方法 - Google Patents

熱処理方法 Download PDF

Info

Publication number
JP2017079296A
JP2017079296A JP2015207661A JP2015207661A JP2017079296A JP 2017079296 A JP2017079296 A JP 2017079296A JP 2015207661 A JP2015207661 A JP 2015207661A JP 2015207661 A JP2015207661 A JP 2015207661A JP 2017079296 A JP2017079296 A JP 2017079296A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor wafer
diffusion
heat treatment
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015207661A
Other languages
English (en)
Other versions
JP6598630B2 (ja
Inventor
青山 敬幸
Takayuki Aoyama
敬幸 青山
光 河原▲崎▼
Hikaru Kawarazaki
光 河原▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2015207661A priority Critical patent/JP6598630B2/ja
Priority to TW105133108A priority patent/TWI668763B/zh
Priority to US15/297,213 priority patent/US10446397B2/en
Publication of JP2017079296A publication Critical patent/JP2017079296A/ja
Application granted granted Critical
Publication of JP6598630B2 publication Critical patent/JP6598630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/547Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/30Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
    • H05B41/34Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp to provide a sequence of flashes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】不純物の活性化および拡散制御の双方を行うことができる熱処理方法を提供する。【解決手段】フラッシュランプの駆動回路に絶縁ゲートバイポーラトランジスタ(IGBT)を組み込み、フラッシュランプの発光パターンを自在に規定することによって、フラッシュ光照射を受ける半導体ウェハーの表面の温度変化パターンを調整することができる。半導体ウェハーの表面温度をフラッシュ光照射により予備加熱温度Tpから拡散温度Tdにまで昇温し、1ミリ秒以上10ミリ秒以下拡散温度Tdに維持することにより、不純物が拡散する拡散長さを制御することができる。続いて、半導体ウェハーWの表面温度を拡散温度Tdから活性化温度Taにまで昇温することによって、不純物の活性化も行うことができる。【選択図】図10

Description

本発明は、不純物が導入された半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)に対して光を照射することによって該基板を加熱する熱処理方法に関する。
半導体デバイスの製造プロセスにおいて、不純物導入は半導体ウェハー内にpn接合を形成するための必須の工程である。現在、不純物導入は、イオン打ち込み法とその後のアニール法によってなされるのが一般的である。イオン打ち込み法は、ボロン(B)、ヒ素(As)、リン(P)といった不純物の元素をイオン化させて高加速電圧で半導体ウェハーに衝突させて物理的に不純物注入を行う技術である。注入された不純物はアニール処理によって活性化される。この際に、アニール時間が数秒程度以上であると、打ち込まれた不純物が熱によって深く拡散し、その結果接合深さが要求よりも深くなり過ぎて良好なデバイス形成に支障が生じるおそれがある。
そこで、極めて短時間で半導体ウェハーを加熱するアニール技術として、近年フラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、不純物が注入された半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。
キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。このため、キセノンフラッシュランプによる極短時間の昇温であれば、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。
また、特許文献1には、絶縁ゲートバイポーラトランジスタ(IGBT)を使用してフラッシュランプに流れる電流を制御することにより、フラッシュランプの発光出力波形を調整して半導体ウェハーの表面温度を目標温度に10ミリ秒程度維持することが開示されている。半導体ウェハーの表面温度を目標温度に数ミリ秒〜数十ミリ秒維持することによって、不純物の活性化に加えて、不純物注入時に半導体ウェハーに導入された欠陥の回復をも行うことができる。
特開2013−201453号公報
フラッシュランプの有する最たる技術上の特徴は発光時間が極めて短いことであり、それ故にフラッシュランプアニールによれば不純物を拡散させることなく不純物活性化のみを実行することができるのである。一方、近年、ソース・ドレインのエクステンションのゲート下のオーバーラップ長を最適化することによってCMOS等の半導体デバイスをさらに高性能化することが求められており、そのためには不純物を拡散を適正に制御することが必要となる。しかしながら、従来のフラッシュランプアニールにおいては、不純物の拡散を可能な限り抑制することが基本的な前提となっており、不純物の拡散を制御することはできなかった。
本発明は、上記課題に鑑みてなされたものであり、不純物の活性化および拡散制御の双方を行うことができる熱処理方法を提供することを目的とする。
上記課題を解決するため、請求項1の発明は、不純物が導入された基板に対して光を照射することによって該基板を加熱する熱処理方法において、前記基板に光を照射することによって前記基板の表面温度を不純物の拡散が生じる拡散温度に所定時間維持する拡散工程と、前記拡散工程の後、前記基板に光を照射することによって前記基板の表面温度を不純物の活性化が生じる活性化温度にまで昇温する活性化工程と、を備えることを特徴とする。
また、請求項2の発明は、請求項1の発明に係る熱処理方法において、前記活性化温度は前記拡散温度よりも高温であることを特徴とする。
また、請求項3の発明は、請求項1または請求項2の発明に係る熱処理方法において、前記拡散工程と前記活性化工程との間に、前記基板の表面温度を前記活性化温度よりも低下させる冷却工程をさらに備えることを特徴とする。
また、請求項4の発明は、請求項1または請求項2の発明に係る熱処理方法において、前記拡散工程と前記活性化工程とを複数回繰り返すことを特徴とする。
また、請求項5の発明は、請求項1から請求項4のいずれかの発明に係る熱処理方法において、前記基板の表面の不純物が導入された領域にキャップ膜を成膜することを特徴とする。
また、請求項6の発明は、請求項1から請求項5のいずれかの発明に係る熱処理方法において、前記拡散工程では、前記基板の表面温度を拡散温度に1ミリ秒以上10ミリ秒以下維持することを特徴とする。
また、請求項7の発明は、請求項1から請求項6のいずれかの発明に係る熱処理方法において、前記基板の少なくとも表面の材質はゲルマニウムであり、前記拡散温度は600℃以上750℃以下であることを特徴とする。
また、請求項8の発明は、請求項1から請求項6のいずれかの発明に係る熱処理方法において、前記基板の少なくとも表面の材質はシリコンであり、前記拡散温度は1100℃以上1250℃以下であることを特徴とする。
請求項1から請求項8の発明によれば、基板に光を照射することによって基板の表面温度を不純物の拡散が生じる拡散温度に所定時間維持する拡散工程と、基板に光を照射することによって基板の表面温度を不純物の活性化が生じる活性化温度にまで昇温する活性化工程と、を備えるため、導入された不純物が拡散する拡散長さを制御することができ、不純物の活性化および拡散制御の双方を行うことができる。
特に、請求項3の発明によれば、拡散工程と活性化工程との間に、基板の表面温度を活性化温度よりも低下させるため、拡散工程にて基板に蓄積された熱を一旦放熱することができ、活性化工程後の基板を迅速に降温させることができる。
特に、請求項5の発明によれば、基板の表面の不純物が導入された領域にキャップ膜を成膜するため、加熱処理中に基板の表面から不純物が脱離して不純物濃度が低下するのを防止することができる。
本発明に係る熱処理装置の構成を示す縦断面図である。 保持部の全体外観を示す斜視図である。 保持部を上面から見た平面図である。 保持部を側方から見た側面図である。 移載機構の平面図である。 移載機構の側面図である。 複数のハロゲンランプの配置を示す平面図である。 フラッシュランプの駆動回路を示す図である。 図1の熱処理装置での処理対象となる半導体ウェハーに形成されたデバイス構造を示す図である。 第1実施形態における半導体ウェハーの表面温度の変化を示す図である。 第3実施形態における半導体ウェハーの表面温度の変化を示す図である。 第4実施形態における半導体ウェハーの表面温度の変化を示す図である。 半導体ウェハーの表面温度の変化の他の例を示す図である。
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
<第1実施形態>
図1は、本発明に係る熱処理装置1の構成を示す縦断面図である。本実施形態の熱処理装置1は、基板として円板形状の半導体ウェハーWに対してフラッシュ光照射を行うことによってその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。熱処理装置1に搬入される前の半導体ウェハーWには不純物が導入されており、熱処理装置1による加熱処理によって導入された不純物の活性化処理および拡散量の制御が実行される。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。
チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。
また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。
チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。また、反射リング68,69の内周面は電解ニッケルメッキによって鏡面とされている。
また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。
また、チャンバー6の内壁上部には熱処理空間65に処理ガス(本実施形態では窒素ガス(N))を供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は窒素ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、窒素ガス供給源85から緩衝空間82に窒素ガスが送給される。緩衝空間82に流入した窒素ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。なお、処理ガスは窒素ガスに限定されるものではなく、アルゴン(Ar)、ヘリウム(He)などの不活性ガス、または、酸素(O)、水素(H)、塩素(Cl)、塩化水素(HCl)、オゾン(O)、アンモニア(NH)などの反応性ガスであっても良い。
一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、窒素ガス供給源85および排気部190は、熱処理装置1に設けられた機構であっても良いし、熱処理装置1が設置される工場のユーティリティであっても良い。
また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。
図2は、保持部7の全体外観を示す斜視図である。また、図3は保持部7を上面から見た平面図であり、図4は保持部7を側方から見た側面図である。保持部7は、基台リング71、連結部72およびサセプター74を備えて構成される。基台リング71、連結部72およびサセプター74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
基台リング71は円環形状の石英部材である。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(図1参照)。円環形状を有する基台リング71の上面に、その周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。なお、基台リング71の形状は、円環形状から一部が欠落した円弧状であっても良い。
平板状のサセプター74は基台リング71に設けられた4個の連結部72によって支持される。サセプター74は石英にて形成された略円形の平板状部材である。サセプター74の直径は半導体ウェハーWの直径よりも大きい。すなわち、サセプター74は、半導体ウェハーWよりも大きな平面サイズを有する。サセプター74の上面には複数個(本実施形態では5個)のガイドピン76が立設されている。5個のガイドピン76はサセプター74の外周円と同心円の周上に沿って設けられている。5個のガイドピン76を配置した円の径は半導体ウェハーWの径よりも若干大きい。各ガイドピン76も石英にて形成されている。なお、ガイドピン76は、サセプター74と一体に石英のインゴットから加工するようにしても良いし、別途に加工したものをサセプター74に溶接等によって取り付けるようにしても良い。
基台リング71に立設された4個の連結部72とサセプター74の周縁部の下面とが溶接によって固着される。すなわち、サセプター74と基台リング71とは連結部72によって固定的に連結されており、保持部7は石英の一体成形部材となる。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、略円板形状のサセプター74は水平姿勢(法線が鉛直方向と一致する姿勢)となる。チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプター74の上に水平姿勢にて載置されて保持される。半導体ウェハーWは、5個のガイドピン76によって形成される円の内側に載置されることにより、水平方向の位置ずれが防止される。なお、ガイドピン76の個数は5個に限定されるものではなく、半導体ウェハーWの位置ずれを防止できる数であれば良い。
また、図2および図3に示すように、サセプター74には、上下に貫通して開口部78および切り欠き部77が形成されている。切り欠き部77は、熱電対を使用した接触式温度計130のプローブ先端部を通すために設けられている。一方、開口部78は、放射温度計120がサセプター74に保持された半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。さらに、サセプター74には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。
図5は、移載機構10の平面図である。また、図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプター74に穿設された貫通孔79(図2,3参照)を通過し、リフトピン12の上端がサセプター74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。
図1に戻り、チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
図8は、フラッシュランプFLの駆動回路を示す図である。同図に示すように、コンデンサ93と、コイル94と、フラッシュランプFLと、IGBT(絶縁ゲートバイポーラトランジスタ)96とが直列に接続されている。また、図8に示すように、制御部3は、パルス発生器31および波形設定部32を備えるとともに、入力部33に接続されている。入力部33としては、キーボード、マウス、タッチパネル等の種々の公知の入力機器を採用することができる。入力部33からの入力内容に基づいて波形設定部32がパルス信号の波形を設定し、その波形に従ってパルス発生器31がパルス信号を発生する。
フラッシュランプFLは、その内部にキセノンガスが封入されその両端部に陽極および陰極が配設された棒状のガラス管(放電管)92と、該ガラス管92の外周面上に付設されたトリガー電極91とを備える。コンデンサ93には、電源ユニット95によって所定の電圧が印加され、その印加電圧(充電電圧)に応じた電荷が充電される。また、トリガー電極91にはトリガー回路97から高電圧を印加することができる。トリガー回路97がトリガー電極91に電圧を印加するタイミングは制御部3によって制御される。
IGBT96は、ゲート部にMOSFET(Metal Oxide Semiconductor Field effect transistor)を組み込んだバイポーラトランジスタであり、大電力を取り扱うのに適したスイッチング素子である。IGBT96のゲートには制御部3のパルス発生器31からパルス信号が印加される。IGBT96のゲートに所定値以上の電圧(Highの電圧)が印加されるとIGBT96がオン状態となり、所定値未満の電圧(Lowの電圧)が印加されるとIGBT96がオフ状態となる。このようにして、フラッシュランプFLを含む駆動回路はIGBT96によってオンオフされる。IGBT96がオンオフすることによってフラッシュランプFLと対応するコンデンサ93との接続が断続され、フラッシュランプFLに流れる電流がオンオフ制御される。IGBT96のオン、オフは、0.1ミリセカンド以下(例えば、50マイクロセカンド)で行われるため、熱処理時間の制御精度は0.1ミリセカンド以下と高精度である。
コンデンサ93が充電された状態でIGBT96がオン状態となってガラス管92の両端電極に高電圧が印加されたとしても、キセノンガスは電気的には絶縁体であることから、通常の状態ではガラス管92内に電気は流れない。しかしながら、トリガー回路97がトリガー電極91に高電圧を印加して絶縁を破壊した場合には両端電極間の放電によってガラス管92内に電流が瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。
図8に示すような駆動回路は、フラッシュ加熱部5に設けられた複数のフラッシュランプFLのそれぞれに個別に設けられている。本実施形態では、30本のフラッシュランプFLが平面状に配列されているため、それらに対応して図8に示す如き駆動回路が30個設けられている。よって、30本のフラッシュランプFLのそれぞれに流れる電流が対応するIGBT96によって個別にオンオフ制御されることとなる。
また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行って半導体ウェハーWを加熱する光照射部である。
図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
また、図7に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。
また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。
ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。
また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えて構成される。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。また、図8に示したように、制御部3は、パルス発生器31および波形設定部32を備える。上述のように、入力部33からの入力内容に基づいて、波形設定部32がパルス信号の波形を設定し、それに従ってパルス発生器31がIGBT96のゲートにパルス信号を出力する。
上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。
次に、熱処理装置1における半導体ウェハーWの処理手順について説明する。ここで処理対象となる半導体ウェハーWはイオン注入法により不純物(イオン)が添加された半導体基板である。図9は、熱処理装置1での処理対象となる半導体ウェハーWに形成されたデバイス構造を示す図である。半導体ウェハーWのシリコン(Si)の基材101上にゲート絶縁膜102が形成されている。典型的には、ゲート絶縁膜102はシリコン酸化膜(SiO)である。そのゲート絶縁膜102の上にゲート電極103が形成されている。ゲート電極103には、金属またはポリシリコンが用いられる。ゲート電極103の両側方にはSiNのサイドウォール104が形成されている。なお、ゲート絶縁膜102として、HfO等の高誘電率膜(high-k膜)を用いるようにしても良い。
シリコンの基材101の上面のうちゲート電極103の両側方がソース・ドレイン領域105となる。このソース・ドレイン領域105には、イオン注入装置によってイオンが打ち込まれている。不純物が注入されたソース・ドレイン領域105の表面にはSiNのキャップ膜106が形成されている。このキャップ膜106は、例えばALD(Atomic Layer Deposition)によって膜厚約5nmに堆積されている。
また、シリコンの基材101の上面には、ソース・ドレイン領域105からさらにゲート電極103の下方に向けて突き出たエクステンション領域108と称される部位が形成されている。このエクステンション領域108においては、後述のアニール処理を行うときに図9に矢印AR9にて示すように、ソース・ドレイン領域105に導入された不純物がゲート電極103の下方に向けて拡散してくるのであるが、その不純物が拡散した部分とゲート電極103の下方とのオーバーラップ長が半導体デバイスの性能を決める重要なパラメータとなる。
図9に示すような構造を有する半導体ウェハーWに対する熱処理が熱処理装置1によって行われる。以下、熱処理装置1における動作手順について説明する。熱処理装置1での動作手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
まず、給気のためのバルブ84が開放されるとともに、排気用のバルブ89,192が開放されてチャンバー6内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。
また、バルブ192が開放されることによって、搬送開口部66からもチャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。なお、熱処理装置1における半導体ウェハーWの熱処理時には窒素ガスが熱処理空間65に継続的に供給されており、その供給量は処理工程に応じて適宜変更される。
続いて、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介して図9に示す構造を有する半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される。搬送ロボットによって搬入された半導体ウェハーWは保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプター74の上面から突き出て半導体ウェハーWを受け取る。
半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプター74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、ゲート電極103等が形成された表面を上面として保持部7に保持される。また、半導体ウェハーWは、サセプター74の上面にて5個のガイドピン76の内側に保持される。サセプター74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
半導体ウェハーWが石英にて形成された保持部7によって水平姿勢にて下方より保持された後、ハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプター74を透過して半導体ウェハーWの裏面(表面とは反対側の主面)から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が接触式温度計130によって測定されている。すなわち、熱電対を内蔵する接触式温度計130が保持部7に保持された半導体ウェハーWの下面にサセプター74の切り欠き部77を介して接触して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度Tpに到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、接触式温度計130による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度TpとなるようにハロゲンランプHLの出力をフィードバック制御する。予備加熱温度Tpは、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、200℃ないし800℃程度、好ましくは350℃ないし600℃程度とされる(本実施の形態では600℃)。なお、ハロゲンランプHLからの光照射によって半導体ウェハーWを昇温するときには、放射温度計120による温度測定は行わない。これは、ハロゲンランプHLから照射されるハロゲン光が放射温度計120に外乱光として入射し、正確な温度測定ができないためである。
半導体ウェハーWの温度が予備加熱温度Tpに到達した後、制御部3は半導体ウェハーWをその予備加熱温度Tpに暫時維持する。具体的には、接触式温度計130によって測定される半導体ウェハーWの温度が予備加熱温度Tpに到達した時点にて制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度Tpに維持している。
このようなハロゲンランプHLによる予備加熱を行うことによって、半導体ウェハーWの全体を予備加熱温度Tpに均一に昇温している。ハロゲンランプHLによる予備加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部の温度が中央部よりも低下する傾向にあるが、ハロゲン加熱部4におけるハロゲンランプHLの配設密度は、半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。このため、放熱が生じやすい半導体ウェハーWの周縁部に照射される光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布を均一なものとすることができる。さらに、チャンバー側部61に装着された反射リング69の内周面は鏡面とされているため、この反射リング69の内周面によって半導体ウェハーWの周縁部に向けて反射する光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布をより均一なものとすることができる。
半導体ウェハーWの温度が予備加熱温度Tpに到達して所定時間が経過した時点にてフラッシュ加熱部5のフラッシュランプFLから半導体ウェハーWの表面にフラッシュ光照射を行う。フラッシュランプFLがフラッシュ光照射を行うに際しては、予め電源ユニット95によってコンデンサ93に電荷を蓄積しておく。そして、コンデンサ93に電荷が蓄積された状態にて、制御部3のパルス発生器31からIGBT96にパルス信号を出力してIGBT96をオンオフ駆動する。
パルス信号の波形は、パルス幅の時間(オン時間)とパルス間隔の時間(オフ時間)とをパラメータとして順次設定したレシピを入力部33から入力することによって規定することができる。このようなレシピをオペレータが入力部33から制御部3に入力すると、それに従って制御部3の波形設定部32はオンオフを繰り返すパルス波形を設定する。そして、波形設定部32によって設定されたパルス波形に従ってパルス発生器31がパルス信号を出力する。その結果、IGBT96のゲートには設定された波形のパルス信号が印加され、IGBT96のオンオフ駆動が制御されることとなる。具体的には、IGBT96のゲートに入力されるパルス信号がオンのときにはIGBT96がオン状態となり、パルス信号がオフのときにはIGBT96がオフ状態となる。
また、パルス発生器31から出力するパルス信号がオンになるタイミングと同期して制御部3がトリガー回路97を制御してトリガー電極91に高電圧(トリガー電圧)を印加する。コンデンサ93に電荷が蓄積された状態にてIGBT96のゲートにパルス信号が入力され、かつ、そのパルス信号がオンになるタイミングと同期してトリガー電極91に高電圧が印加されることにより、パルス信号がオンのときにはガラス管92内の両端電極間で必ず電流が流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。
このようにしてフラッシュ加熱部5の30本のフラッシュランプFLが発光し、保持部7に保持された半導体ウェハーWの表面にフラッシュ光が照射される。ここで、IGBT96を使用することなくフラッシュランプFLを発光させた場合には、コンデンサ93に蓄積されていた電荷が1回の発光で消費され、フラッシュランプFLからの出力波形は幅が0.1ミリセカンドないし10ミリセカンド程度の単純なシングルパルスとなる。これに対して、本実施の形態では、回路中にスイッチング素子たるIGBT96を接続してそのゲートにパルス信号を出力することにより、コンデンサ93からフラッシュランプFLへの電荷の供給をIGBT96によって断続してフラッシュランプFLに流れる電流をオンオフ制御している。その結果、いわばフラッシュランプFLの発光がチョッパ制御されることとなり、コンデンサ93に蓄積された電荷が分割して消費され、極めて短い時間の間にフラッシュランプFLが点滅を繰り返す。なお、回路を流れる電流値が完全に”0”になる前に次のパルスがIGBT96のゲートに印加されて電流値が再度増加するため、フラッシュランプFLが点滅を繰り返している間も発光出力が完全に”0”になるものではない。
IGBT96によってフラッシュランプFLに流れる電流をオンオフ制御することにより、フラッシュランプFLの発光パターン(発光出力の時間波形)を自在に規定することができ、発光時間および発光強度を自由に調整することができる。IGBT96のオンオフ駆動のパターンは、入力部33から入力するパルス幅の時間とパルス間隔の時間とによって規定される。すなわち、フラッシュランプFLの駆動回路にIGBT96を組み込むことによって、入力部33から入力するパルス幅の時間とパルス間隔の時間とを適宜に設定するだけで、フラッシュランプFLの発光パターンを自在に規定することができるのである。
具体的には、例えば、入力部33から入力するパルス間隔の時間に対するパルス幅の時間の比率を大きくすると、フラッシュランプFLに流れる電流が増大して発光強度が強くなる。逆に、入力部33から入力するパルス間隔の時間に対するパルス幅の時間の比率を小さくすると、フラッシュランプFLに流れる電流が減少して発光強度が弱くなる。また、入力部33から入力するパルス間隔の時間とパルス幅の時間の比率を適切に調整すれば、フラッシュランプFLの発光強度が一定に維持される。さらに、入力部33から入力するパルス幅の時間とパルス間隔の時間との組み合わせの総時間を長くすることによって、フラッシュランプFLに比較的長時間にわたって電流が流れ続けることとなり、フラッシュランプFLの発光時間が長くなる。なお、フラッシュランプFLの発光時間は長くても1秒以下である。
このようにしてフラッシュランプFLの発光パターンを自在に規定することによって、当該フラッシュランプFLからフラッシュ光照射を受ける半導体ウェハーWの表面の温度変化パターン(表面温度の時間波形)をも調整することが可能となる。図10は、第1実施形態における半導体ウェハーWの表面温度の変化を示す図である。半導体ウェハーWの温度が予備加熱温度Tpに到達して所定時間が経過した時刻t1にフラッシュランプFLからのフラッシュ光照射を開始する。フラッシュ光照射の開始直後は、パルス間隔の時間に対するパルス幅の時間の比率が大きく、フラッシュランプFLの発光強度も強くなって半導体ウェハーWの表面温度も予備加熱温度Tpから急速に昇温する。
時刻t2に半導体ウェハーWの表面温度が拡散温度Tdに到達した時点でパルス間隔の時間に対するパルス幅の時間の比率が小さくなり、フラッシュランプFLの発光強度も低下して半導体ウェハーWの表面温度が拡散温度Tdに維持される。拡散温度Tdは、ソース・ドレイン領域105に導入された不純物の拡散が生じる温度である。半導体ウェハーWの少なくとも表面の材質がシリコンであれば、拡散温度Tdは1100℃以上1250℃以下である。拡散温度Tdが1100℃未満であると不純物がほとんど拡散せず、1250℃を超えると拡散速度は速くなりすぎる。
半導体ウェハーWの表面温度は時刻t2から時刻t3まで拡散温度Tdに維持される。半導体ウェハーWの表面の拡散温度Tdでの維持時間、つまり時刻t2から時刻t3までの間隔は1ミリ秒以上10ミリ秒以下である。半導体ウェハーWの表面温度が拡散温度Tdに1ミリ秒以上10ミリ秒以下維持されることによって、ソース・ドレイン領域105に導入された不純物がシリコンの基材101中を拡散する。不純物の一部は、図9の矢印AR9に示すように、ゲート電極103の下方に向けて拡散する。
時刻t3にはパルス間隔の時間に対するパルス幅の時間の比率が再び大きくなり、フラッシュランプFLの発光強度も強くなって半導体ウェハーWの表面温度が拡散温度Tdから活性化温度Taにまで急速に昇温する。活性化温度Taは、ソース・ドレイン領域105に導入された不純物の活性化が生じる温度である。活性化温度Taは拡散温度Tdよりも約100℃高温である(つまり、活性化温度Taは1200℃以上1350℃以下)。
半導体ウェハーWの表面温度が活性化温度Taにまで昇温されることによって、ソース・ドレイン領域105に導入された不純物が活性化される。時刻t4に半導体ウェハーWの表面温度が活性化温度Taに到達した時点でIGBT96がオフ状態となってフラッシュランプFLの発光が停止する。フラッシュランプFLの発光が停止した後もハロゲンランプHLによる光照射は継続されているため、半導体ウェハーWの表面温度は活性化温度Taから予備加熱温度Tpの近傍まで降温する。
フラッシュランプFLの発光が停止した後、所定時間経過後にハロゲンランプHLも消灯する。これにより、半導体ウェハーWが予備加熱温度Tpから急速に降温する。降温中の半導体ウェハーWの温度は接触式温度計130または放射温度計120によって測定され、その測定結果は制御部3に伝達される。制御部3は、測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプター74の上面から突き出て熱処理後の半導体ウェハーWをサセプター74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットにより搬出され、熱処理装置1における半導体ウェハーWの加熱処理が完了する。
第1実施形態においては、フラッシュランプFLの駆動回路にIGBT96を組み込み、フラッシュランプFLの発光パターンを自在に規定することによって、半導体ウェハーWの表面の温度変化パターンを調整している。そして、半導体ウェハーWの表面温度を予備加熱温度Tpから一旦拡散温度Tdにまで昇温し、1ミリ秒以上10ミリ秒以下拡散温度Tdに維持することによって、ソース・ドレイン領域105に導入された不純物がゲート電極103の下方に向けて僅かに拡散する。
上述した通り、不純物が拡散した部分とゲート電極103の下方とのオーバーラップ長が半導体デバイスの性能を決める重要なパラメータとなる。本実施形態のように、フラッシュランプFLの発光パターンを規定して半導体ウェハーWの表面の温度変化パターンを自在に調整することができれば、拡散温度Tdおよび半導体ウェハーWの表面温度をその拡散温度Tdに維持する時間を自由に調整することができ、ソース・ドレイン領域105に導入された不純物がゲート電極103の下方に向けて拡散する拡散長さを制御することが可能となる。
続いて、半導体ウェハーWの表面温度を拡散温度Tdから活性化温度Taにまで昇温することによって、ソース・ドレイン領域105に導入された不純物が活性化される。すなわち、第1実施形態のようにすれば、ソース・ドレイン領域105に導入された不純物の活性化および不純物の拡散制御の双方を行うことができるのである。その結果、半導体デバイスを高性能化することが可能となる。
また、不純物が導入されたソース・ドレイン領域105の表面にキャップ膜106を形成しているため、熱処理装置1における半導体ウェハーWの加熱処理中にソース・ドレイン領域105の表面から不純物が脱離して不純物濃度が低下するのを防止することができる。
<第2実施形態>
次に、本発明の第2実施形態について説明する。第2実施形態の熱処理装置1の構成は第1実施形態と全く同じである。また、第2実施形態の熱処理装置1における半導体ウェハーWの処理手順も第1実施形態と概ね同様である。第2実施形態が第1実施形態と相違するのは、半導体ウェハーWの表面の材質である。
第2実施形態においては、シリコンの基材上にゲルマニウム(Ge)をエピタキシャル成長させ、そのゲルマニウム層に図9に示すようなデバイス構造を形成している。すなわち、第2実施形態の半導体ウェハーWの表面の材質はゲルマニウムであり、ゲルマニウムのソース・ドレイン領域105に不純物が導入されることとなる。そして、不純物が導入されたソース・ドレイン領域105の表面にはキャップ膜106が形成される。
表面がゲルマニウムの半導体ウェハーWであっても、熱処理装置1における半導体ウェハーWの処理手順は第1実施形態と概ね同様である。すなわち、ハロゲンランプHLによる予備加熱を行った後、フラッシュランプFLから半導体ウェハーWの表面にフラッシュ光を照射して半導体ウェハーWの表面温度を予備加熱温度Tpから一旦拡散温度Tdにまで昇温し、1ミリ秒以上10ミリ秒以下拡散温度Tdに維持する。続いて、フラッシュ光照射によって半導体ウェハーWの表面温度を拡散温度Tdから活性化温度Taにまで昇温する。
但し、半導体ウェハーWの表面の材質がゲルマニウムの場合、拡散温度Tdは600℃以上750℃以下である。これは、そもそもゲルマニウムの融点が約940℃であることに加えて、シリコンに比較してゲルマニウム中における不純物の拡散速度が速いためである。すなわち、拡散温度Tdが750℃を超えると半導体ウェハーWの表面温度を拡散温度Tdに維持したときに不純物が過度に拡散することとなる。また、拡散温度Tdが600℃未満であると不純物がほとんど拡散しない。
また、半導体ウェハーWの表面の材質がゲルマニウムの場合、活性化温度Taは拡散温度Tdよりも約100℃高温の700℃以上850℃以下である。なお、半導体ウェハーWの表面の温度変化パターン自体は第1実施形態と同様である(図10)。
第2実施形態においては、フラッシュランプFLの発光パターンを自在に規定することによって、半導体ウェハーWの表面の温度変化パターンを調整している。そして、半導体ウェハーWの表面温度を予備加熱温度Tpから一旦拡散温度Tdにまで昇温し、1ミリ秒以上10ミリ秒以下拡散温度Tdに維持することによって、ソース・ドレイン領域105に導入された不純物がゲート電極103の下方に向けて僅かに拡散する。フラッシュランプFLの発光パターンを規定して半導体ウェハーWの表面の温度変化パターンを自在に調整することができれば、拡散温度Tdおよび半導体ウェハーWの表面温度をその拡散温度Tdに維持する時間を自由に調整することができ、ソース・ドレイン領域105に導入された不純物がゲート電極103の下方に向けて拡散する拡散長さを制御することが可能となる。
続いて、半導体ウェハーWの表面温度を拡散温度Tdから活性化温度Taにまで昇温することによって、ソース・ドレイン領域105に導入された不純物が活性化される。すなわち、第2実施形態においても、ソース・ドレイン領域105に導入された不純物の活性化および不純物の拡散制御の双方を行うことができる。
特に、ゲルマニウム中にヒ素(As)、リン(P)等のN型ドーパントを不純物として導入した場合には、不純物の拡散速度が速い一方で活性化率が低い。このため、特許文献1に開示されるように、単に半導体ウェハーWの表面温度を目標温度に10ミリ秒程度維持すると、導入された不純物が過度に拡散することとなる。その一方、半導体ウェハーWの表面温度を拡散に適した温度に維持した場合には不純物が活性化されないこととなる。そこで、本発明に係る技術により、半導体ウェハーWの表面温度を一旦拡散温度Tdにまで昇温し、1ミリ秒以上10ミリ秒以下拡散温度Tdに維持した後に、表面温度を活性化温度Taにまで昇温するようにすれば、ゲルマニウムにN型ドーパントを不純物として導入した場合であっても不純物の活性化および不純物の拡散制御の双方を行うことができる。すなわち、本発明に係る技術は、表面がゲルマニウムの半導体ウェハーWにN型ドーパントを不純物として導入した場合に特に好適である。
また、ゲルマニウム中のN型ドーパントは蒸気圧も高いため、加熱処理中にゲルマニウム層の表面から脱離しやすいのであるが、不純物が導入されたソース・ドレイン領域105の表面にキャップ膜106を形成することによって、不純物の脱離による不純物濃度の低下を防止することができる。
<第3実施形態>
次に、本発明の第3実施形態について説明する。第3実施形態の熱処理装置1の構成は第1実施形態と全く同じである。また、第3実施形態の熱処理装置1における半導体ウェハーWの処理手順も第1実施形態と概ね同様である。第3実施形態が第1実施形態と相違するのは、フラッシュ光照射による半導体ウェハーWの表面の温度変化パターンである。
図11は、第3実施形態における半導体ウェハーWの表面温度の変化を示す図である。第3実施形態においても、フラッシュランプFLの駆動回路にIGBT96を組み込み、フラッシュランプFLの発光パターンを自在に規定することによって、半導体ウェハーWの表面の温度変化パターンを調整している。
第1実施形態と同様に、半導体ウェハーWの温度が予備加熱温度Tpに到達して所定時間が経過した時刻t1にフラッシュランプFLからのフラッシュ光照射を開始する。時刻t2に半導体ウェハーWの表面温度が拡散温度Tdに到達した時点でフラッシュランプFLの発光強度を低下させて半導体ウェハーWの表面温度を時刻t3まで拡散温度Tdに維持する。
第3実施形態においては、時刻t3にパルス間隔の時間に対するパルス幅の時間の比率をさらに小さくしてフラッシュランプFLの発光強度を低下させて半導体ウェハーWの表面温度を拡散温度Tdよりも低下させている。そして、時刻t5にパルス間隔の時間に対するパルス幅の時間の比率が再び大きくなり、フラッシュランプFLの発光強度も強くなって半導体ウェハーWの表面温度が活性化温度Taにまで急速に昇温する。時刻t4に半導体ウェハーWの表面温度が活性化温度Taに到達した時点でIGBT96がオフ状態となってフラッシュランプFLの発光が停止する。フラッシュ光照射による半導体ウェハーWの表面の温度変化パターンを除く第3実施形態の残余の事項は第1実施形態と同じである。
第3実施形態においても、半導体ウェハーWの表面温度を予備加熱温度Tpから拡散温度Tdにまで昇温し、1ミリ秒以上10ミリ秒以下拡散温度Tdに維持した後に、表面温度を活性化温度Taにまで昇温しているため、第1実施形態と同様に、ソース・ドレイン領域105に導入された不純物の活性化および不純物の拡散制御の双方を行うことができる。
また、第3実施形態においては、半導体ウェハーWの表面温度を拡散温度Tdに維持した後に、一旦降温することによって、時刻t2から時刻t3の間に表面温度を拡散温度Tdに維持することによって半導体ウェハーWに蓄積された熱を放熱している。そして、その後、半導体ウェハーWの表面温度を活性化温度Taにまで昇温しているため、活性化処理後に半導体ウェハーWの表面温度を迅速に降温させることができ、不純物の過度の拡散を抑制することができる。
<第4実施形態>
次に、本発明の第4実施形態について説明する。第4実施形態の熱処理装置1の構成は第1実施形態と全く同じである。また、第4実施形態の熱処理装置1における半導体ウェハーWの処理手順も第1実施形態と概ね同様である。第4実施形態が第1実施形態と相違するのは、フラッシュ光照射による半導体ウェハーWの表面の温度変化パターンである。
図12は、第4実施形態における半導体ウェハーWの表面温度の変化を示す図である。第4実施形態においても、フラッシュランプFLの駆動回路にIGBT96を組み込み、フラッシュランプFLの発光パターンを自在に規定することによって、半導体ウェハーWの表面の温度変化パターンを調整している。
図12に示すように、第4実施形態においては、第1実施形態と同様の温度変化パターンを2回繰り返している。すなわち、半導体ウェハーWの表面温度を予備加熱温度Tpから一旦拡散温度Tdにまで昇温し、1ミリ秒以上10ミリ秒以下拡散温度Tdに維持した後に、表面温度を活性化温度Taにまで昇温するという温度変化パターンを2回繰り返している。
第4実施形態のようにしても、半導体ウェハーWの表面温度を拡散温度Tdに維持した後に、表面温度を活性化温度Taにまで昇温しているため、第1実施形態と同様に、ソース・ドレイン領域105に導入された不純物の活性化および不純物の拡散制御の双方を行うことができる。
<変形例>
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、第2実施形態では、シリコンの基材上にゲルマニウムをエピタキシャル成長させた半導体ウェハーWを用いていたが、基材自体がゲルマニウムの半導体ウェハーWであっても良い。すなわち、半導体ウェハーWの少なくとも表面の材質がゲルマニウムであれば良い。上述したように、表面がゲルマニウムの半導体ウェハーWにヒ素、リン等のN型ドーパントを不純物として導入した場合に本発明に係る技術は特に好適である。
また、第3実施形態および第4実施形態において処理対象となる半導体ウェハーWは、表面がシリコンであってもゲルマニウムであっても良い。
また、少なくとも表面の材質がゲルマニウムの半導体ウェハーWの場合には、半導体ウェハーWの表面温度の変化パターンが図13に示すようなものであっても良い。図13に示す温度変化パターンでは、半導体ウェハーWの表面温度を予備加熱温度Tpから処理温度Txにまで昇温し、その処理温度Txに所定時間維持している。この処理温度Txは、第2実施形態の表面がゲルマニウムの半導体ウェハーWの場合における拡散温度Td(600℃以上750℃以下)よりも高温である(例えば、800℃)。表面のゲルマニウムにN型ドーパントが不純物として導入されている場合に、半導体ウェハーWの表面温度を800℃に加熱すると不純物の拡散速度が相当に速くなる。そこで、図13に示す温度変化パターンにおいては、半導体ウェハーWの表面温度を処理温度Txに維持する時間を0.1ミリ秒単位で微細に制御している。IGBT96を用いてフラッシュランプFLの発光を制御すれば、このような0.1ミリ秒単位の微細な制御であっても容易に実現することができる。
半導体ウェハーWの表面温度を処理温度Txに維持する時間を0.1ミリ秒単位で微細に制御すれば、不純物の拡散速度が速くても、ソース・ドレイン領域105に導入された不純物がゲート電極103の下方に向けて拡散する拡散長さを制御することが可能となる。また、半導体ウェハーWの表面温度を第2実施形態の拡散温度Tdよりも高温の処理温度Txにまで昇温すれば、不純物の活性化をも行うことができる。すなわち、図13に示すような温度変化パターンであっても、ソース・ドレイン領域105に導入された不純物の活性化および不純物の拡散制御の双方を行うことができるのである。
また、上記各実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。
また、上記各実施形態においては、ハロゲンランプHLからのハロゲン光照射によって半導体ウェハーWを予備加熱するようにしていたが、予備加熱の手法はこれに限定されるものではなく、ホットプレートに載置することによって半導体ウェハーWを予備加熱するようにしても良い。
1 熱処理装置
3 制御部
4 ハロゲン加熱部
5 フラッシュ加熱部
6 チャンバー
7 保持部
10 移載機構
33 入力部
65 熱処理空間
93 コンデンサ
95 電源ユニット
96 IGBT
102 ゲート絶縁膜
103 ゲート電極
105 ソース・ドレイン領域
106 キャップ膜
108 エクステンション領域
FL フラッシュランプ
HL ハロゲンランプ
W 半導体ウェハー

Claims (8)

  1. 不純物が導入された基板に対して光を照射することによって該基板を加熱する熱処理方法であって、
    前記基板に光を照射することによって前記基板の表面温度を不純物の拡散が生じる拡散温度に所定時間維持する拡散工程と、
    前記拡散工程の後、前記基板に光を照射することによって前記基板の表面温度を不純物の活性化が生じる活性化温度にまで昇温する活性化工程と、
    を備えることを特徴とする熱処理方法。
  2. 請求項1記載の熱処理方法において、
    前記活性化温度は前記拡散温度よりも高温であることを特徴とする熱処理方法。
  3. 請求項1または請求項2記載の熱処理方法において、
    前記拡散工程と前記活性化工程との間に、前記基板の表面温度を前記活性化温度よりも低下させる冷却工程をさらに備えることを特徴とする熱処理方法。
  4. 請求項1または請求項2記載の熱処理方法において、
    前記拡散工程と前記活性化工程とを複数回繰り返すことを特徴とする熱処理方法。
  5. 請求項1から請求項4のいずれかに記載の熱処理方法において、
    前記基板の表面の不純物が導入された領域にキャップ膜を成膜することを特徴とする熱処理方法。
  6. 請求項1から請求項5のいずれかに記載の熱処理方法において、
    前記拡散工程では、前記基板の表面温度を拡散温度に1ミリ秒以上10ミリ秒以下維持することを特徴とする熱処理方法。
  7. 請求項1から請求項6のいずれかに記載の熱処理方法において、
    前記基板の少なくとも表面の材質はゲルマニウムであり、
    前記拡散温度は600℃以上750℃以下であることを特徴とする熱処理方法。
  8. 請求項1から請求項6のいずれかに記載の熱処理方法において、
    前記基板の少なくとも表面の材質はシリコンであり、
    前記拡散温度は1100℃以上1250℃以下であることを特徴とする熱処理方法。
JP2015207661A 2015-10-22 2015-10-22 熱処理方法 Active JP6598630B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015207661A JP6598630B2 (ja) 2015-10-22 2015-10-22 熱処理方法
TW105133108A TWI668763B (zh) 2015-10-22 2016-10-13 熱處理方法
US15/297,213 US10446397B2 (en) 2015-10-22 2016-10-19 Thermal processing method through light irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207661A JP6598630B2 (ja) 2015-10-22 2015-10-22 熱処理方法

Publications (2)

Publication Number Publication Date
JP2017079296A true JP2017079296A (ja) 2017-04-27
JP6598630B2 JP6598630B2 (ja) 2019-10-30

Family

ID=58558904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207661A Active JP6598630B2 (ja) 2015-10-22 2015-10-22 熱処理方法

Country Status (3)

Country Link
US (1) US10446397B2 (ja)
JP (1) JP6598630B2 (ja)
TW (1) TWI668763B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181048A1 (ja) * 2018-03-20 2019-09-26 株式会社Screenホールディングス 熱処理方法および熱処理装置
KR20200024081A (ko) * 2018-08-27 2020-03-06 가부시키가이샤 스크린 홀딩스 p형 질화갈륨계 반도체의 제조 방법 및 열처리 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6847610B2 (ja) * 2016-09-14 2021-03-24 株式会社Screenホールディングス 熱処理装置
JP6837911B2 (ja) * 2017-05-17 2021-03-03 株式会社Screenホールディングス 熱処理装置
US11205578B2 (en) * 2017-10-18 2021-12-21 Texas Instruments Incorporated Dopant anneal with stabilization step for IC with matched devices
JP6960344B2 (ja) * 2018-01-26 2021-11-05 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP7032947B2 (ja) * 2018-02-13 2022-03-09 株式会社Screenホールディングス 熱処理方法
JP7032955B2 (ja) * 2018-02-28 2022-03-09 株式会社Screenホールディングス 熱処理方法
JP7041594B2 (ja) * 2018-06-20 2022-03-24 株式会社Screenホールディングス 熱処理装置
JP7294858B2 (ja) * 2019-04-09 2023-06-20 株式会社Screenホールディングス 熱処理方法および熱処理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146229A (en) * 1980-04-16 1981-11-13 Fujitsu Ltd Manufacture of germanium semiconductor device
JPH1131665A (ja) * 1997-07-11 1999-02-02 Hitachi Ltd 半導体集積回路装置の製造方法
JP2005142344A (ja) * 2003-11-06 2005-06-02 Toshiba Corp 半導体装置の製造方法および半導体製造装置
JP2009188209A (ja) * 2008-02-06 2009-08-20 Panasonic Corp 不純物活性化熱処理方法及び熱処理装置
JP2011082439A (ja) * 2009-10-09 2011-04-21 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置
JP2011159713A (ja) * 2010-01-29 2011-08-18 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置
JP2014522576A (ja) * 2011-06-10 2014-09-04 マサチューセッツ インスティテュート オブ テクノロジー 半導体への高濃度活性ドーピングおよびこのようなドーピングにより生成される半導体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699946B2 (ja) * 2002-07-25 2005-09-28 株式会社東芝 半導体装置の製造方法
US8460983B1 (en) * 2008-01-21 2013-06-11 Kovio, Inc. Method for modifying and controlling the threshold voltage of thin film transistors
JP5346484B2 (ja) * 2008-04-16 2013-11-20 大日本スクリーン製造株式会社 熱処理方法および熱処理装置
JP5356725B2 (ja) 2008-05-13 2013-12-04 大日本スクリーン製造株式会社 熱処理装置
JP5507195B2 (ja) * 2009-10-13 2014-05-28 大日本スクリーン製造株式会社 熱処理方法および熱処理装置
JP5507227B2 (ja) 2009-12-07 2014-05-28 大日本スクリーン製造株式会社 熱処理方法および熱処理装置
JP5698040B2 (ja) 2011-03-14 2015-04-08 株式会社Screenホールディングス 熱処理方法および熱処理装置
TWI467660B (zh) * 2011-03-14 2015-01-01 Screen Holdings Co Ltd Heat treatment method and heat treatment device
JP5627736B2 (ja) * 2013-06-03 2014-11-19 大日本スクリーン製造株式会社 熱処理方法および熱処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146229A (en) * 1980-04-16 1981-11-13 Fujitsu Ltd Manufacture of germanium semiconductor device
JPH1131665A (ja) * 1997-07-11 1999-02-02 Hitachi Ltd 半導体集積回路装置の製造方法
JP2005142344A (ja) * 2003-11-06 2005-06-02 Toshiba Corp 半導体装置の製造方法および半導体製造装置
JP2009188209A (ja) * 2008-02-06 2009-08-20 Panasonic Corp 不純物活性化熱処理方法及び熱処理装置
JP2011082439A (ja) * 2009-10-09 2011-04-21 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置
JP2011159713A (ja) * 2010-01-29 2011-08-18 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置
JP2014522576A (ja) * 2011-06-10 2014-09-04 マサチューセッツ インスティテュート オブ テクノロジー 半導体への高濃度活性ドーピングおよびこのようなドーピングにより生成される半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181048A1 (ja) * 2018-03-20 2019-09-26 株式会社Screenホールディングス 熱処理方法および熱処理装置
KR20200024081A (ko) * 2018-08-27 2020-03-06 가부시키가이샤 스크린 홀딩스 p형 질화갈륨계 반도체의 제조 방법 및 열처리 방법
KR102303332B1 (ko) 2018-08-27 2021-09-16 가부시키가이샤 스크린 홀딩스 p형 질화갈륨계 반도체의 제조 방법 및 열처리 방법

Also Published As

Publication number Publication date
US20170117152A1 (en) 2017-04-27
TW201715613A (zh) 2017-05-01
TWI668763B (zh) 2019-08-11
JP6598630B2 (ja) 2019-10-30
US10446397B2 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
JP6598630B2 (ja) 熱処理方法
JP6539568B2 (ja) 熱処理方法および熱処理装置
JP6560550B2 (ja) 熱処理方法および熱処理装置
JP5955658B2 (ja) 熱処理方法および熱処理装置
JP5507274B2 (ja) 熱処理方法および熱処理装置
JP5951241B2 (ja) 熱処理方法および熱処理装置
JP6184697B2 (ja) 熱処理装置および熱処理方法
JP6473659B2 (ja) 熱処理方法および熱処理装置
JP2017017277A (ja) 熱処理装置および熱処理方法
JP2016058668A (ja) 半導体製造方法および半導体製造装置
JP2013073946A (ja) 熱処理方法
JP2018006637A (ja) 半導体装置の製造方法
US20180358234A1 (en) Heat treatment method by light irradiation
TW201822260A (zh) 摻雜物導入方法及熱處理方法
JP5955670B2 (ja) 熱処理方法
JP6810578B2 (ja) ドーパント導入方法および熱処理方法
JP2011119562A (ja) 熱処理方法および熱処理装置
JP2017092099A (ja) 熱処理方法および熱処理装置
US20170221715A1 (en) Method for forming junction in semiconductor
JP5797916B2 (ja) 熱処理方法および熱処理装置
JP2012199470A (ja) 熱処理方法および熱処理装置
JP2018018873A (ja) 熱処理方法
JP5944152B2 (ja) 熱処理方法および熱処理装置
JP6945703B2 (ja) ドーパント導入方法および熱処理方法
JP2018029128A (ja) ドーパント導入方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R150 Certificate of patent or registration of utility model

Ref document number: 6598630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250