JP2017038513A - 半導体光源駆動装置 - Google Patents

半導体光源駆動装置 Download PDF

Info

Publication number
JP2017038513A
JP2017038513A JP2016151644A JP2016151644A JP2017038513A JP 2017038513 A JP2017038513 A JP 2017038513A JP 2016151644 A JP2016151644 A JP 2016151644A JP 2016151644 A JP2016151644 A JP 2016151644A JP 2017038513 A JP2017038513 A JP 2017038513A
Authority
JP
Japan
Prior art keywords
light source
semiconductor light
switching element
driving device
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016151644A
Other languages
English (en)
Other versions
JP6775106B2 (ja
Inventor
行天 敬明
Takaaki Gyoten
敬明 行天
信次 三好
Shinji Miyoshi
信次 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2017038513A publication Critical patent/JP2017038513A/ja
Application granted granted Critical
Publication of JP6775106B2 publication Critical patent/JP6775106B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】電力の効率が高く、パルス幅変調時に、正確な矩形波の電流波形で半導体光源素子を駆動可能な、半導体光源駆動装置を提供する。
【解決手段】本開示の半導体光源駆動装置100は、直流電圧を供給するスイッチング電源110と、電源スイッチング用FET120と、コイル140と、反転FETドライバ230と、半導体光源素子180と、フリーホイルダイオード190を備える。電源スイッチング用FET120は、スイッチング電源110の陽極側出力を、入力された信号に従ってスイッチングする。コイル140は、電源スイッチング用FET120の出力側に一端が接続される。反転FETドライバ230は、コイル140の他端とスイッチング電源110の陰極側との間に接続され、入力された信号に従ってスイッチングされる。フリーホイルダイオード190は、コイル140の一端とスイッチング電源110の陰極側とが接続される。
【選択図】図1

Description

本開示は、半導体光源に高速パルス幅変調された駆動電流を供給する半導体光源駆動装置に関する。
特許文献1は、温度や電源電圧の変動、素子のばらつきの影響を抑えて一定レベルのパルス電流を出力する、LED(Light Emitting Diode)等の発光素子の駆動回路を開示する。
このLED等を駆動する発光素子駆動回路は、スイッチング電源から駆動対象へ供給される電力を断続させるスイッチと、誤差信号生成手段と、信号保持手段と、スイッチング電源制御手段を備える。誤差信号生成手段は、駆動対象に流れた電流を検出し、当該検出結果に応じた検出信号を出力する検出手段から出力される検出信号と目標信号との誤差に応じた誤差信号を生成する。信号保持手段は、上記スイッチがオンのとき、誤差信号生成手段で生成された誤差信号を平均化し、スイッチがオンからオフへ変化するとき、平均化した誤差信号を保持する。上記スイッチがオフからオンへ変化するとき、信号保持手段は、保持した誤差信号の信号レベルを初期レベルとして誤差信号の平均化を開始する。スイッチング電源制御手段は、上記スイッチがオフの時、スイッチング電源による駆動対象への電力の供給を停止させる。スイッチング電源制御手段は、上記スイッチがオンの時、スイッチング電源が駆動対象へ供給する電力を信号保持手段で平均化された誤差信号に応じて制御する。
これにより、温度や電源電圧の変動、素子のばらつきの影響を抑えて、一定レベルのパルス電流を出力する駆動回路を提供する。
特開2004−147435号公報
本開示は、電力の効率が高く、パルス幅変調時に、正確な矩形波の電流波形で半導体光源を駆動可能な、半導体光源駆動装置を提供する。
本開示の半導体光源駆動装置は、直流電圧を供給するスイッチング電源と、第1スイッチング素子と、インダクタと、第2スイッチング素子と、半導体光源素子と、フリーホイルダイオードを備える。第1スイッチング素子は、スイッチング電源の陽極側出力を、入力された信号に従ってスイッチングする。インダクタは、第1スイッチング素子の出力側に一端が接続される。第2スイッチング素子は、インダクタの他端とスイッチング電源の陰極側との間に接続され、入力された信号に従ってスイッチングされる。半導体光源素子は、インダクタの他端側とスイッチング電源の陰極側との間に接続される。フリーホイルダイオードには、インダクタの一端とスイッチング電源の陰極側とが接続される。
本開示は、電力の効率が高く、パルス幅変調時に、正確な矩形波の電流波形で駆動が可能な、半導体光源駆動装置を得るのに有効である。
実施の形態における半導体光源駆動装置の構成を示すブロック図 サージ防止ダイオードおよびスナバ回路を有しない半導体光源駆動装置の各部の波形を示す図 実施の形態における半導体光源駆動装置の各部の波形を示す図 実施の形態における半導体光源駆動装置に駆動される半導体光源に流れる電流の波形を示す図 矩形の電圧波形で駆動される半導体光源に流れる電流の波形を示す図 実施の形態に係る半導体光源駆動装置の模式図 実施の形態に係る半導体光源駆動装置の模式図
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
(実施の形態)
以下、図1〜図3Bを用いて、実施の形態を説明する。
[1.構成]
図1は、本実施の形態にかかる半導体光源駆動装置の構成を示すブロック図である。
半導体光源駆動装置100は、PWM(Pulse Width Modulation)信号を入力とし、PWM信号に従ってパルス幅変調した駆動電流を半導体光源180に供給する装置である。
スイッチング電源110は直流電圧を供給する。スイッチング電源110の陽極(+)側出力は、電源スイッチング用FET(電界効果型トランジスタ)120のソース(またはドレイン)に接続される。半導体光源駆動装置100に入力されたPWM信号は、FETドライバ130の入力と、後述の反転FETドライバ220の入力とに供給される。FETドライバ130の出力は、電源スイッチング用FET120のゲートに接続される。これにより、電源スイッチング用FET120は、PWM信号に基づいてオン/オフ制御される。電源スイッチング用FET120のドレイン(またはソース)には、スイッチング電源から供給される直流電圧が間欠的に出力される。電源スイッチング用FET120は、第1スイッチング素子の一例である。
反転FETドライバ220は、入力されたPWM信号を反転し、駆動出力として出力する。反転FETドライバ220は、バイパス用FET230のゲートを駆動し、バイパス用FET230をオフ/オン制御する。
電源スイッチング用FET120のドレイン側(出力側)にはコイル140の一端が接続される。電源スイッチング用FET120のドレインと、スイッチング電源110の陰極(−)の間には、フリーホイルダイオード190が設けられている。フリーホイルダイオード190のカソードKは、電源スイッチング用FET120のドレインに接続されている。フリーホイルダイオード190のアノードAがスイッチング電源110の陰極に接続されている。このフリーホイルダイオード190は、電源スイッチング用FET120がオフの時、スイッチング電源110の陰極から、電源スイッチング用FET120の出力に向かう方向の電流を、バイパスする経路を生成する。
半導体光源180は、複数の半導体光源素子(半導体レーザダイオード)181の直列接続により構成されている。半導体光源素子181のアノード側は、コイル140の他端に接続されている。半導体光源素子181のカソード側は、電流検出抵抗200を介してスイッチング電源110の陰極に接続されている。
電源スイッチング用FET120がオンの時、バイパス用FET230はオフであり、電源スイッチング用FET120の出力電流は、コイル140を通過した後、半導体光源180から電流検出抵抗200を通って、スイッチング電源110の陰極で形成される経路で流れる。
コイル140の他端とバイパス用FET230のドレインとの間には、サージ防止ダイオード150が設けられている。サージ防止ダイオード150のアノードは、コイル140の他端と接続されている。サージ防止ダイオード150のカソードは、バイパス用FET230のドレインに接続されている。
電源スイッチング用FET120がオフの時、バイパス用FET230はオンである。この状態においては、コイル140に蓄積されたエネルギーによる電流が、コイル140の他端から、サージ防止ダイオード150、バイパス用FET230、電流検出抵抗200、フリーホイルダイオード190を経由してコイル140の一端へ流れる経路が形成されている。
バイパス用FET230のドレインとソースとの間には、スナバ回路がバイパス用FET230と並列に接続されている。スナバ回路は、スナバ抵抗160とコンデンサ170が直列に接続されたものである。
このように、バイパス用FET230と半導体光源180とを流れる電流経路に対して直列にサージ防止ダイオード150を挿入するとともに、バイパス用FET230に対して並列にスナバ抵抗160とコンデンサ170とを直列に接続したスナバ回路を挿入する。これにより、バイパス用FET230のスイッチングにより生じるノイズが、半導体光源180に与える影響を抑制できる。特に、バイパス用FET230がオフになった直後に発生するサージ電圧が吸収されることにより、サージ電圧が半導体光源180に流れる電流に影響を与えることを抑制できる。さらに、バイパス用FET230がオフになった直後に発生するサージ電圧は、バイパス用FET230の内部配線を含む配線により形成されるインダクタンス成分と、バイパス用FET230のドレイン・ソース間容量との共振によるリンギングを生じうる。サージ防止ダイオード150およびスナバ回路により、上記のリンギングが抑制される。
バイパス用FET230がオフのときに半導体光源180に流れる電流は、概ね電流検出抵抗200に流れる電流と等しい。電流検出抵抗200に流れる電流は、電流検出抵抗200の両端の間の電圧を電流検出回路210にて増幅することにより検出する。この検出結果に基づいてスイッチング電源110を制御することで、半導体光源180に流れる電流を安定化することができる。
[2.動作]
以上のように構成された半導体光源駆動装置100の動作を以下説明する。
図2Aは、サージ防止ダイオードおよびスナバ回路を有しない半導体光源駆動装置における各部の時間波形を示す図である。図2Aに係る半導体光源駆動装置は、図1に示す回路から、サージ防止ダイオード150と、スナバ抵抗160と、コンデンサ170を取り除いたものである。図2Bは本実施の形態の半導体光源駆動装置100における、各部の時間波形を示す図である。図2Aおよび図2Bの横軸は時間、縦軸は電流量を示している。なお、図2Aおよび図2Bにおいて、半導体光源駆動装置に入力されるPWM信号のデューティ(オン時間比)は50%である。
スイッチング電源110は、半導体光源駆動装置100の電源電圧として直流電圧を供給する。電源スイッチング用FET120のゲートには、PWM信号が供給されるFETドライバ130の出力が供給され、PWM信号によって電源スイッチング用FET120がオン・オフ制御される。これによって、スイッチング電源110の陽極出力が、電源スイッチング用FET120のオン/オフ駆動によって出力される。
半導体光源駆動装置100に入力されたPWM信号は、反転FETドライバ220にも供給される。反転FETドライバ220はPWM信号に基づき、バイパス用FET230をオフ/オン駆動する。具体的には、反転FETドライバ220は入力されたPWM信号を反転増幅して出力する。すなわち、電源スイッチング用FET120がオンのとき、バイパス用FET230はオフとなり、電源スイッチング用FET120がオフのとき、バイパス用FET230はオンとなる。
電源スイッチング用FET120がオンで、バイパス用FET230がオフの時、スイッチング電源110の電圧は、コイル140と、半導体光源180と、電流検出抵抗200の直列回路に印加される。電流検出抵抗200に小さい抵抗を用いると、スイッチング電源110の電圧は、殆どコイル140と、半導体光源180の直列回路に印加される。
スイッチング電源110の電圧は、電流検出抵抗200と電流検出回路210とによって検出される電流値によって制御される。スイッチング電源110の電圧変化の速度は、PWM信号の周期に比べ非常に遅いため、電流検出抵抗200と電流検出回路210とによって検出される電流の平均値と、目標の電流値との差の平均値が0となる状態に、スイッチング電源110の電圧が収束する。
電流検出抵抗200と電流検出回路210とによって検出される電流の平均値と、目標の電流値との差が零となる状態を定常状態と呼ぶ。定常状態において、電源スイッチング用FET120がオンの時、電源スイッチング用FET120の出力端の電圧が、半導体光源180の順方向電圧より高い電圧となる。このとき、コイル140には、スイッチング電源110の出力電圧と半導体光源180の順方向電圧の差だけ、コイル140に流れる電流が増える方向に電圧が加わる。図2Aおよび図2Bの電源スイッチング用FETの電流に示すように、コイル140に加わる電圧をコイル140のインダクタンスで割り算した勾配でコイル140に流れる電流(コイル電流)は増加する。電源スイッチング用FET120がオンの時、バイパス用FET230はオフであるため、コイル140に流れる電流と半導体光源に流れる電流はほぼ等しい。このように、定常状態において、電源スイッチング用FET120がオンの時、半導体光源に流れる電流は増大する。コイル140のインダクタンスを大きくすると、インダクタンス値に逆比例してこの勾配は小さくなる。
電源スイッチング用FET120がオンからオフ、バイパス用FET230がオフからオンに変化する時、コイル140に流れる電流は急激には変化しない。このため、電源スイッチング用FET120に流れる電流が減少した分だけ、フリーホイルダイオード190に流れる電流が増大する。
バイパス用FET230がオフのとき、コイル140に流れる電流は、半導体光源180を通って、電流検出抵抗200に流れる。バイパス用FET230がオンのとき、コイル140に流れる電流は、サージ防止ダイオード150とバイパス用FET230を通して、電流検出抵抗200に流れる。コイル140に流れる電流の経路の切り替わりに要する時間は、バイパス用FET230がオンに切り替わる時間に制約される。バイパス用FET230のスイッチング速度は高速であるため、半導体光源180を通る電流経路から、半導体光源180を通らない電流経路に、高速に切り替えることができる。
電源スイッチング用FET120がオフで、バイパス用FET230がオンの時、コイル140に蓄えられたエネルギーは、コイル140の抵抗、バイパス用FET230のオン抵抗、電流検出抵抗200、フリーホイルダイオード190の順方向電圧、サージ防止ダイオード150の順方向電圧、配線抵抗により徐々に失われる。このため、図2Aおよび図2Bにおいて示されるように、コイル140に流れる電流(コイル電流)は、電源スイッチング用FET120がオフの期間に徐々に減少する。
電源スイッチング用FET120がオフからオン、バイパス用FET230がオンからオフに変化する時、バイパス用FET230のソースに流入する電流は、勾配を持って減少するが、その電流は零を通り越して負の値となることがある。バイパス用FET230のスイッチング動作に伴い、配線のインダクタンス成分や、バイパス用FET230内のインダクタンス成分と、バイパス用FET230のドレイン・ソース間の容量との共振が起こりうる。さらに、バイパス用FET230のゲートの電位が急速に変化することにより、バイパス用FET230のゲートからソースへチャージインジェクションが生じることがある。このように、サージ防止ダイオード150とスナバ抵抗160とコンデンサ170が無い場合、バイパス用FET230のスイッチングに伴うノイズ電流が半導体光源180に流れこみ、半導体光源180に流れる電流量の制御が困難になる。図2Aの半導体光源電流に示すように、バイパス用FET230の切り替わりのタイミングで、半導体光源180には、過渡的に約2倍の電流が流れうる。
図2Bに示すように、サージ防止ダイオード150と、スナバ抵抗160と、コンデンサ170とを備えることにより、バイパス用FET230のスイッチングに伴うノイズ電流が半導体光源180に流れることを抑制することができる。サージ防止ダイオード150は、バイパス用FET230のソースから半導体光源180へ流れる電流を阻止する。コンデンサ170とスナバ抵抗160とからなるスナバ回路は、バイパス用FET230のスイッチングに伴うノイズ電流を吸収し、ノイズ電流のリンギングを減衰させる。
図3Aに、実施の形態における半導体光源駆動装置により半導体光源を駆動したとき、半導体光源に流れる電流の波形を示す。図3Bに、矩形の電圧を出力する駆動回路により図3Aと同じ半導体光源を駆動したとき、半導体光源に流れる電流の波形を示す。図3A、図3Bにおいて、横軸は時間、縦軸は電流量を示す。なお、図3Aにおいて、半導体光源駆動装置に入力されるPWMのデューティ(オン時間比)は50%である。図3Bにおいて、駆動回路の出力電圧の波形は、デューティが50%の矩形波である。
半導体光源180の順方向電圧は、一般的に半導体光源素子181のジャンクション温度に依存する。半導体光源素子181としてレーザダイオードを用いた場合、半導体光源素子181のジャンクション温度が低いほど、半導体光源素子181それぞれの順方向電圧は高くなり、半導体光源180の順方向電圧も高くなる。半導体光源素子181に電流が流れているとき、半導体光源素子181のジャンクション温度は上昇する。半導体光源素子181に電流が流れていないとき、半導体光源素子181の熱は放熱され、ジャンクション温度は低下する。半導体光源180に流れる電流をPWM信号に基づいて駆動するとき、半導体光源180に電流を流し始めるときが最もジャンクション温度が低く、半導体光源180の順方向電圧が最も高い。半導体光源180に電流を流した状態で時間が経過すると半導体光源素子181のジャンクション温度が上昇し、半導体光源180の順方向電圧が低下していく。
このため、本実施の形態のような構造を採らず、単にスイッチング電源の電圧をPWM信号でスイッチングして矩形波電圧を出力するような半導体光源駆動装置の場合、図3Bに示すように、半導体光源に流れる電流の波形の立ち上がりが遅くなる。これは、半導体光源にかかる電圧が一定であるために、電流が流れ始めるタイミングにおける電流は小さく、ジャンクション温度の上昇とともに電流が増加することによる。
これに対して、本実施の形態における半導体光源駆動装置によれば、上記のジャンクション温度の低下に起因する電流波形の鈍りを防止することができる。すなわち、半導体光源に流れる電流の波形の立ち上がりが早くなる。
すなわち、本実施の形態では、バイパス用FET230がオフになったとき、コイル140に生じる逆起電力が半導体光源180の両端に加わる。コイル140に生じる逆起電力は、コイル140に流れる電流が微小時間内で一定となるように生じる。そのため、半導体光源180の順方向電圧にかかわらず、コイル140に流れる電流はバイパス用FET230がオフになる前と後でほぼ同じである。バイパス用FET230がオフのとき、コイル140に流れる電流の大部分は、半導体光源180に流れる。これにより、半導体光源180の順方向電圧にかかわらず、所望の電流を半導体光源180に流すことができる。このとき半導体光源180に流れる出力電流の値は、バイパス用FET230がオンからオフに切り替わるときにコイル140に流れていた電流とほぼ等しい。
さらに、電源スイッチング用FET120のオン期間においては、コイル140の両端に、コイル140に流れる電流を増やす方向に電圧がかかるため、コイル140に流れる電流が増大するが、その傾きは小さい。
図3Aに示すように、本実施の形態の半導体光源駆動装置に駆動される半導体光源180に流れる電流の波形は、立ち上りが急峻である。また、本実施の形態の半導体光源駆動装置によれば、半導体光源180に流れる電流はほぼ一定となるため、半導体光源180を駆動する電流の波形を歪みが極めて少ない矩形波とすることができる。
図4は、本実施の形態に係る半導体光源駆動装置の模式図である。図4の電源部1100は、図1におけるスイッチング電源110に相当する。図4の第1スイッチング素子1200は、図1における電源スイッチング用FET120に相当する。図4の還流部1300は、インダクタ1310と、フリーホイルダイオード1320とを有する。インダクタ1310は、図1におけるコイル140に相当する。フリーホイルダイオード1320は、図1におけるフリーホイルダイオード190に相当する。図4のバイパス部1400は、第2スイッチング素子1410と、サージ防止ダイオード1420と、サージ抑制回路1430と、第1端部1440と、第2端部1450とを有する。第2スイッチング素子1410は、図1におけるバイパス用FET230に相当する。サージ防止ダイオード1420は、図1におけるサージ防止ダイオード150に相当する。サージ抑制回路1430は、抵抗1431とコンデンサ1432とからなるスナバ回路である。抵抗1431は、図1におけるスナバ抵抗160に相当する。コンデンサ1432は、図1におけるコンデンサ170に相当する。第1端部1440は、図1におけるサージ防止ダイオード150のアノードに相当する。第2端部1450は、図1におけるバイパス用FET230のドレインとコンデンサ170とが接続される点に相当する。図4の一対の出力端1500は、陽極側の出力端1510と陰極側の出力端1520からなる。陽極側の出力端1510は、電源部1100の陽極側に対応する。陰極側の出力端1520は、電源部1100の陰極側に対応する。陽極側の出力端1510は、図1における半導体光源180のアノード側の端部に相当する。陰極側の出力端1520は、図1における半導体光源180のカソード側の端部に相当する。バイパス部1400の第1端部1440は、陽極側の出力端1510に接続されている。バイパス部1400の第2端部1450は、陰極側の出力端1520に接続されている。図4の制御部1600は、第1スイッチング素子1200および第2スイッチング素子1410を制御する。図4の半導体光源1900は、図1における半導体光源180に相当する。半導体光源1900は、図1の半導体光源素子181に相当する半導体光源素子を有し、半導体光源駆動装置1000の一対の出力端1500に接続されている。
図5は、本実施の形態に係る半導体光源駆動装置の模式図である。図5に示す半導体光源駆動装置2000は、図4の半導体光源駆動装置1000の構成要素に加え、さらに電流検出部1700を備える。電流検出部1700は、図1における電流検出抵抗200および電流検出回路210に相当する。なお、電流検出部1700は、図1の電流検出抵抗200に相当し、電流検出回路210は制御部1600の一部としてもよい。制御部1600は、電流検出部1700を流れる電流を検出し、電源部1100の出力電圧を制御する。なお、電流検出部1700の出力信号が電源部1100を直接制御できるものである場合、制御部1600は電流検出部1700の出力と電源部1100の制御端子とを接続する接続部を有してもよい。制御部1600が接続部を有している構成が、図1の構成に相当する。
半導体光源駆動装置1000および半導体光源駆動装置2000においては、制御部1600は、第1スイッチング素子1200と第2スイッチング素子1410とをPWM信号に基づいて制御する。このとき、第2スイッチング素子1410がオフ、すなわち、半導体光源1900に電流を流しているとき、第1スイッチング素子1200がオンとなるように制御している。
[3.効果等]
本実施の形態における半導体光源駆動装置は、電力効率の高いスイッチング電源の出力を、FETのスイッチングによりPWM変調する方式である。この方式では、各デバイスが仮に理想であれば電力損失を発生する要素が無い方式であり、現実のデバイスに損失が発生しても、その値は小さいため、高い電力効率を実現できる。
また、PWM信号のオン期間が100%、つまり、最も出力を大きくする状態では、電源スイッチング用FET120は常にオンとなる。このとき、電源スイッチング用FET120はスイッチングしないため、スイッチング損失が零になり、オン抵抗による損失のみとなる。これにより、非常に高効率となる、つまり、最も効率が重視される、高出力の状態で、最も効率が高くなる優れた特徴を持っている。
本実施の形態における半導体光源駆動装置によると、コイルに流れる電流は急激に変化しないように逆起電力が発生する物理現象を用い、上記のジャンクション温度の低下に起因する電流波形の鈍りを防止できる。これにより、正確な矩形波の電流波形で半導体光源を駆動可能な半導体光源駆動装置を得る。
さらに、図4および図5を用いて、図1に示す半導体光源駆動装置の効果を説明する。
本実施の形態において、制御部1600は、第1スイッチング素子1200と第2スイッチング素子1410を、同一のPWM信号に基づいて制御している。これにより、第2スイッチング素子1410がオフのとき、第1スイッチング素子1200はオンとなるように、第1スイッチング素子1200と第2スイッチング素子1410とが同時に切り替わる。第2スイッチング素子1410がオフのとき、インダクタ1310から半導体光源1900に電流が流れるため、消費電力が大きい。第2スイッチング素子1410がオンのとき、インダクタ1310からバイパス部1400に電流が流れるが、バイパス部1400の抵抗は小さいため、第1端部と第2端部の間にかかる電圧は小さい。すなわち、バイパス部1400で消費される電力は小さい。このように、消費電力が多い期間には第1スイッチング素子1200を経由して電源部1100から電力が供給され、消費電力が少ない期間には電源部1100からの電力の供給が遮断される。これによって、インダクタ1310を流れる電流を安定させることができる。
本実施の形態において、PWM信号は、半導体光源1900のオン時間の割合を決めるものである。本実施の形態における半導体光源駆動装置を用いた表示装置においては、例えば、PWM信号の1周期が1画素に対応し、デューティ(オン時間の割合)がその画素の輝度に対応してもよい。このとき、画素ごとに輝度が異なることにより、PWM信号のデューティが1周期ごとに変動しうる。本実施の形態の半導体光源駆動装置によれば、PWM信号のデューティが変動したときの、インダクタ1310に流れる電流の変動を、簡単な構成により抑えられる。
本実施の形態において、電流検出部1700は、電流検出部1700に流れる電流の値と、インダクタ1310に流れる電流の値とが、ほぼ一致するように設けられている。図5の構成においては、第2スイッチング素子1410がオンであってもオフであっても、インダクタ1310に流れる電流は、すべて電流検出部1700にも流れる。インダクタ1310に流れる電流値は安定しているため、電流検出部1700が検出する電流の値が、PWM信号のデューティなどの外乱により左右されることを抑制できる。これにより、電流検出部1700は比較的簡単な構成でも良好な検出精度が得られる。
本実施の形態において、第1スイッチング素子1200および第2スイッチング素子1410がPch−MOSFETである場合について説明した。しかしながら、第1スイッチング素子1200および第2スイッチング素子1410は、オンとオフを切り替えられればよく、Pch−MOSFETに限られない。例えば、Nch−MOSFETであってもよいし、複数の素子からなってもよい。なお、例えば、第1スイッチング素子1200がPch−MOSFETであり、第2スイッチング素子1410がNch−MOSFETであるとき、制御部1600は、図1のように反転した信号で第2スイッチング素子1410を駆動する必要はないことは言うまでもない。
本実施の形態において、サージ防止ダイオード1420は、バイパス部1400の第1端部1440から陽極側の出力端1510へ電流が逆流することを防ぐ。これにより、第2スイッチング素子1410のスイッチングに伴う共振やチャージインジェクションによる影響が、半導体光源1900に流れる電流に及ぶことを抑制できる。これにより、第2スイッチング素子1410にチャージインジェクションの生じやすいMOSFETを用いても、その影響を抑制できる。
本実施の形態における半導体光源駆動装置は、半導体光源1900を電流モードで駆動するものである。すなわち、一対の出力端1500に出力される電圧波形ではなく、電流波形を所望の波形に近づけるものである。本実施の形態において、半導体光源1900には、半導体光源素子のジャンクション温度の時間変化にかかわらず、矩形波に近い波形の電流を流すことができる。
(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
そこで、以下、他の実施の形態を例示する。
実施の形態では、電流検出手段の一例として電流検出抵抗を用いる方法を説明した。電流検出手段は、電流を検出できればよい。したがって、電流検出手段は、電流検出抵抗を用いる方法に限定されない。ただし、電流検出手段として電流検出抵抗を用いる方法を用いれば、低価格で実現可能である。また、ホールセンサを電流検出手段として用いてもよい。電流検出手段としてホールセンサを用いれば、低消費電力となる。
実施の形態では、還流部1300を構成するインダクタ1310の一例としてコイル140について説明したが、コイル140は、適切なインダクタンスを持つ素子であればよい。例えば、積層インダクタであってもよいし、半導体上に形成されたインダクタであってもよい。
実施の形態では、制御部1600は、電流検出部1700が検出した電流の値に基づき電源部1100の出力電圧を制御するとしたが、他の制御方法でもよい。例えば、制御部1600は、第1スイッチング素子1200と第2スイッチング素子1410を個別に制御してもよい。より具体的には、制御部1600は、電流検出部1700が検出した電流の値に基づき、第1スイッチング素子1200を制御してもよい。これにより、電流検出部1700で検出された電流、すなわち、インダクタ1310に流れる電流を安定させることができる。
なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
本開示は、半導体光源に電流を供給する半導体光源駆動装置に適用可能である。具体的には、ビデオプロジェクタ、テレビなどに、本開示は適用可能である。
100,1000,2000 半導体光源駆動装置
110 スイッチング電源
120 電源スイッチング用FET
130 FETドライバ
140 コイル
150 サージ防止ダイオード
160 スナバ抵抗
170 コンデンサ
180 半導体光源
190 フリーホイルダイオード
200 電流検出抵抗
210 電流検出回路
220 反転FETドライバ
230 バイパス用FET
1100 電源部
1200 第1スイッチング素子
1300 還流部
1310 インダクタ
1320 フリーホイルダイオード
1400 バイパス部
1410 第2スイッチング素子
1420 サージ防止ダイオード
1430 サージ抑制回路
1431 抵抗
1432 コンデンサ
1440 第1端部
1450 第2端部
1500 一対の出力端
1510,1520 出力端
1600 制御部
1700 電流検出部
1900 半導体光源

Claims (11)

  1. 直流電圧を供給するスイッチング電源と、
    前記スイッチング電源の陽極側出力を、入力されたPWM信号に従ってスイッチングする第1スイッチング素子と、
    前記第1スイッチング素子の出力側に一端が接続されたインダクタと、
    前記インダクタの他端と前記スイッチング電源の陰極側との間に接続され、前記PWM信号を反転した信号に従ってスイッチングされる第2スイッチング素子と、
    前記インダクタの前記他端側と前記スイッチング電源の陰極側との間に接続された半導体光源素子と、
    前記インダクタの前記一端と前記スイッチング電源の陰極側とが接続されたフリーホイルダイオードと、を備えた半導体光源駆動装置。
  2. 前記第1スイッチング素子と、前記第2スイッチング素子は、電界効果型トランジスタからなる、請求項1に記載の半導体光源駆動装置。
  3. 前記インダクタの前記他端と前記第2スイッチング素子との間にサージ防止ダイオードが接続されるとともに、前記第2スイッチング素子の両端間に抵抗とコンデンサの直列接続からなるスナバ回路が設けられた、請求項2に記載の半導体光源駆動装置。
  4. 一対の出力端に接続された半導体光源素子を駆動する半導体光源駆動装置であって、
    前記半導体光源駆動装置は、直流電圧を出力する電源部と、前記電源部の出力側に接続された第1スイッチング素子と、前記第1スイッチング素子の出力側に接続された還流部と、前記還流部の出力側に接続されたバイパス部と、前記第1スイッチング素子および前記バイパス部を制御する制御部と、を備え、
    前記還流部は、前記電源部の一端と前記一対の出力端のうち対応する出力端とを結ぶ経路上に設けられたインダクタと、一端が前記インダクタの入力側の一端に接続されたフリーホイルダイオードと、を有し、
    前記バイパス部は、
    前記バイパス部の一端であり前記一対の出力端の陽極側に接続された第1端部と、前記バイパス部の他端であり前記一対の出力端の陰極側に接続された第2端部と、前記制御部に制御された第2スイッチング素子とを有し、
    前記第2スイッチング素子は、前記バイパス部において、前記第1端部と前記第2端部とを結ぶ経路上に設けられる、半導体光源駆動装置。
  5. 前記バイパス部は、さらに、前記第1端部と前記第2端部との間に流れる電流を、前記第1端部から前記第2端部に流れる方向に整流するサージ防止ダイオードを有する、請求項4に記載の半導体光源駆動装置。
  6. 前記バイパス部は、さらに、サージ抑制回路を有し、
    前記サージ抑制回路は、前記第2スイッチング素子と並列に設けられている、請求項4または5に記載の半導体光源駆動装置。
  7. 前記サージ抑制回路は、直列に接続された抵抗とコンデンサとからなるスナバ回路である、請求項6に記載の半導体光源駆動装置。
  8. 前記バイパス部は、さらに、サージ抑制回路を有し、
    前記サージ抑制回路は、前記第1端部と前記第2端部とを結ぶ経路において、前記第2スイッチング素子とは並列であり、かつ、前記サージ防止ダイオードとは直列となるように設けられる、請求項5に記載の半導体光源駆動装置。
  9. 前記第2スイッチング素子は、電界効果型トランジスタである、請求項4または5に記載の半導体光源駆動装置。
  10. 前記半導体光源駆動装置は、さらに、電流検出部を備え、
    前記電流検出部は、前記フリーホイルダイオードの一端と前記一対の出力端の一方との間に設けられ、前記電流検出部に流れる電流を測定し、
    前記制御部は、前記電流検出部で測定された電流の大きさに基づいて前記電源部を制御する、請求項4に記載の半導体光源駆動装置。
  11. 前記制御部は、前記第2スイッチング素子がオフ状態となるように制御するとき、前記第1スイッチング素子がオン状態となるように制御する、請求項4に記載の半導体光源駆動装置。
JP2016151644A 2015-08-06 2016-08-02 半導体光源駆動装置 Active JP6775106B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015155733 2015-08-06
JP2015155733 2015-08-06

Publications (2)

Publication Number Publication Date
JP2017038513A true JP2017038513A (ja) 2017-02-16
JP6775106B2 JP6775106B2 (ja) 2020-10-28

Family

ID=58048169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151644A Active JP6775106B2 (ja) 2015-08-06 2016-08-02 半導体光源駆動装置

Country Status (2)

Country Link
US (1) US9705281B2 (ja)
JP (1) JP6775106B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574026B2 (en) 2017-03-23 2020-02-25 Infineon Technologies Ag Circuit and method for driving a laser diode
CN107732654B (zh) * 2017-11-13 2024-03-22 中国电子科技集团公司第十一研究所 一种半导体激光器电源电路及其控制方法
US10910940B2 (en) * 2019-06-13 2021-02-02 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Voltage regulator having a switchable attenuation circuit
US11545811B2 (en) * 2019-10-02 2023-01-03 Analog Devices International Unlimited Company Laser driver designs to reduce or eliminate fault laser firing
US11206721B1 (en) * 2020-07-02 2021-12-21 Veoneer Us, Inc. Light emitting diode persistence effect minimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369508A (ja) * 2001-06-06 2002-12-20 Denso Corp Dc−dcコンバータ
JP2007005450A (ja) * 2005-06-22 2007-01-11 Fdk Corp 発光ダイオード調光回路および照明装置
JP2013021117A (ja) * 2011-07-11 2013-01-31 Rohm Co Ltd Led駆動装置、照明装置、液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362393B1 (ko) * 2001-02-24 2002-11-23 삼성전자 주식회사 표시장치용 편향 전원 공급장치 및 그 제어방법
JP4017960B2 (ja) 2002-10-24 2007-12-05 日本テキサス・インスツルメンツ株式会社 駆動回路
JP2007135252A (ja) * 2005-11-08 2007-05-31 Hitachi Ltd 電力変換装置
EP1858301A1 (de) * 2006-05-16 2007-11-21 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH LED-Beleuchtungssystem und -verfahren zur Erzeugung einer vorgebbaren Farbsequenz
US8564155B2 (en) * 2009-05-06 2013-10-22 Polar Semiconductor, Inc. Multiple output power supply
EP2564668A1 (en) * 2010-04-30 2013-03-06 Koninklijke Philips Electronics N.V. Dimming regulator including programmable hysteretic down-converter for increasing dimming resolution of solid state lighting loads
PL2745624T3 (pl) 2011-09-19 2015-08-31 Philips Lighting Holding Bv Sterownik diod led
US9618162B2 (en) * 2014-04-25 2017-04-11 Cree, Inc. LED lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369508A (ja) * 2001-06-06 2002-12-20 Denso Corp Dc−dcコンバータ
JP2007005450A (ja) * 2005-06-22 2007-01-11 Fdk Corp 発光ダイオード調光回路および照明装置
JP2013021117A (ja) * 2011-07-11 2013-01-31 Rohm Co Ltd Led駆動装置、照明装置、液晶表示装置

Also Published As

Publication number Publication date
US20170040770A1 (en) 2017-02-09
JP6775106B2 (ja) 2020-10-28
US9705281B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
JP6775106B2 (ja) 半導体光源駆動装置
JP6170119B2 (ja) 電源スイッチを駆動するためのシステムおよび方法
JP4060840B2 (ja) 発光ダイオード駆動用半導体回路、及びそれを有する発光ダイオード駆動装置
JP6194485B2 (ja) 半導体光源駆動装置
US10091846B2 (en) LED driving system and associated control method
US20160353533A1 (en) Semiconductor light source drive device
KR101803539B1 (ko) 스위치 제어 회로, 이를 포함하는 커플드 인덕터 부스트 컨버터, 및 그 구동 방법
EP3098955B1 (en) Step-up device and converter device
JP5229495B2 (ja) スイッチング装置及びその制御方法
WO2015072098A1 (ja) ゲート駆動回路およびそれを用いた電力変換装置
JP2010206699A (ja) ソレノイド電流制御回路
JP2015089051A (ja) 半導体装置
US20140159691A1 (en) Switching power source device
JP5579804B2 (ja) 負荷駆動装置およびその制御方法
JP5303262B2 (ja) 電力供給装置
JP6180576B1 (ja) Dc−dc電圧変換装置
JP2013093669A (ja) 誘導性負荷駆動装置
JP2015061084A (ja) 負荷制御装置
JP5825393B2 (ja) スイッチング素子の駆動方法
CN116345867A (zh) 用于功率器件栅极驱动器的负负载电流的过电流保护
JP2012204301A (ja) 点灯制御回路、及び、表示装置
CN110299823B (zh) 用于控制电源的装置和方法
JP2018007345A (ja) 絶縁ゲート型半導体素子駆動装置
JP6557860B2 (ja) 半導体光源駆動装置
JP2009005492A (ja) 半導体装置及びdcdcコンバータ

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6775106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151