JP2018007345A - 絶縁ゲート型半導体素子駆動装置 - Google Patents

絶縁ゲート型半導体素子駆動装置 Download PDF

Info

Publication number
JP2018007345A
JP2018007345A JP2016127977A JP2016127977A JP2018007345A JP 2018007345 A JP2018007345 A JP 2018007345A JP 2016127977 A JP2016127977 A JP 2016127977A JP 2016127977 A JP2016127977 A JP 2016127977A JP 2018007345 A JP2018007345 A JP 2018007345A
Authority
JP
Japan
Prior art keywords
drive
voltage
insulated gate
semiconductor element
gate semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016127977A
Other languages
English (en)
Inventor
行天 敬明
Takaaki Gyoten
敬明 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016127977A priority Critical patent/JP2018007345A/ja
Publication of JP2018007345A publication Critical patent/JP2018007345A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】駆動波形のオン時間比率が比較的大きい場合であっても十分に大きな駆動振幅を提供できる、絶縁ゲート型半導体素子の駆動装置を提供する。
【解決手段】本開示にかかる絶縁ゲート型半導体素子駆動装置は、駆動電圧をトランス駆動回路及び駆動トランスを介して絶縁ゲート型半導体素子に印加する絶縁ゲート型半導体素子駆動装置において、前記駆動トランスの2次側両端子間に接続されたコンデンサ及び第1のダイオードの直列回路であって、前記駆動電圧が負のときに前記駆動トランスの2次側電圧に充電電圧を加算可能な電圧方向で前記コンデンサを充電する一方、前記駆動電圧が正のときに前記駆動トランスの2次側電圧に充電電圧を加算してなる駆動電圧を前記絶縁ゲート型半導体素子の絶縁ゲートに印加するように構成された前記直列回路を備える。
【選択図】図1

Description

本開示は、絶縁ゲート型半導体素子を駆動トランスを介して駆動する絶縁ゲート型半導体素子駆動装置に関する。
特許文献1において、従来技術に係る絶縁ゲート型半導体素子の駆動装置が開示されている。当該絶縁ゲート型半導体素子の駆動装置は、絶縁ゲート型半導体素子のゲートソース間に、放電用PNPトランジスタを挿入した状態で、この放電用PNPトランジスタがオンしない条件を満たすに十分な高周波の矩形波で駆動トランスを駆動する。次いで、矩形波の遷移するタイミングに駆動トランスの2次側に発生するパルスを、整流器で整流して絶縁ゲート型半導体素子に供給し、このパルスによりゲート容量を充電し、絶縁ゲート型半導体素子をオンさせる。
前記絶縁ゲート型半導体素子の駆動装置において、ゲート容量を充電する電圧は、このパルスの波高値まで安定して充電されるため、絶縁ゲート型半導体素子をPWM駆動する場合において、オン時間比率が高い条件でも、高い駆動電圧が得られる。また、この矩形波を停止させることで、放電用PNPトランジスタのベース電位とコレクタ電位を同電位とすることで、放電用PNPトランジスタをオンさせ、絶縁ゲート型半導体素子のゲート−ソース間を短絡することで、絶縁ゲート型半導体素子をオンさせる。
特開平2−039721号公報
しかしながら、駆動トランスを用いた、絶縁ゲート型半導体素子の駆動装置において、駆動トランスが直流を伝送できないため駆動トランスの出力電圧の平均値がゼロになる特性により、オン期間の駆動電圧が、駆動波形のオン/オフの時間比に依存して、オフ時間/(オン時間+オフ時間)倍に減衰し、オン時間比率が比較的大きい場合に、必要な駆動振幅を満たせなくなるという課題があった。
本開示は、駆動波形のオン時間比率が比較的大きい場合であっても十分に大きな駆動振幅を提供できる、絶縁ゲート型半導体素子駆動装置を提供する。
本開示にかかる絶縁ゲート型半導体素子駆動装置は、
駆動電圧をトランス駆動回路及び駆動トランスを介して絶縁ゲート型半導体素子に印加する絶縁ゲート型半導体素子駆動装置において、
前記駆動トランスの2次側両端子間に接続されたコンデンサ及び第1のダイオードの直列回路であって、前記駆動電圧が負のときに前記駆動トランスの2次側電圧に充電電圧を加算可能な電圧方向で前記コンデンサを充電する一方、前記駆動電圧が正のときに前記駆動トランスの2次側電圧に充電電圧を加算してなる駆動電圧を前記絶縁ゲート型半導体素子の絶縁ゲートに印加するように構成された前記直列回路を備える。
本開示にかかる絶縁ゲート型半導体素子駆動装置によれば、駆動波形又は駆動電圧のオン時間比率が比較的大きい場合であっても十分に大きな駆動振幅を提供できる。
実施形態1にかかる絶縁ゲート型半導体素子駆動装置1の構成例を示す回路図 図1の絶縁ゲート型半導体素子駆動装置1において駆動電圧Vgsのデューティ比が比較的大きいときの駆動トランス20の出力電圧Vt、コンデンサ31の充電電圧Vc、及び絶縁ゲート型半導体素子2の駆動波形を示す波形図 図1の絶縁ゲート型半導体素子駆動装置1において駆動電圧Vgsのデューティ比が比較的小さいときの駆動トランス20の出力電圧Vt、コンデンサ31の充電電圧Vc、及び絶縁ゲート型半導体素子2の駆動波形を示す波形図 図1の絶縁ゲート型半導体素子駆動装置1の動作例を示す、駆動トランス20の出力電圧Vt、コンデンサ31の充電電圧Vc、トランジスタ53,54のオン/オフ状態、及び絶縁ゲート型半導体素子2の駆動電圧Vgsを示す波形図
以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
(実施形態1)
以下、図1〜図3を参照して実施形態1について説明する。
[1−1.構成]
図1は実施形態1にかかる絶縁ゲート型半導体素子駆動装置1の構成例を示す回路図である。図1において、絶縁ゲート型半導体素子駆動装置1は、負荷3に接続された絶縁ゲート型半導体素子2を駆動制御するための駆動装置であって、トランス駆動回路10と、コンデンサ13と、駆動トランス20と、コンデンサ31と、ダイオード41,43と、抵抗42と、駆動制御回路50とを備えて構成される。ここで、トランス駆動回路10は、NPNトランジスタ11とPNPトランジスタ12とが並列に接続されて構成される。駆動トランス20は、1次側端子T1,T2と、2次側端子T3,T4とを有する。駆動制御回路50は、抵抗51と、ダイオード52と、NPNトランジスタ53,54と、抵抗55とを備えて構成される。
図1において、トランス駆動回路10は、入力されるPWM信号と電源電圧Vccに基づいて駆動出力を生成し、当該駆動出力をコンデンサ13を介して駆動トランス20の1次側端子T1,T2に出力することで駆動トランス20を駆動する。一方、駆動トランス20の2次側端子T3はコンデンサ31を介してダイオード32のカソードに接続され、ダイオード32のアノードは駆動トランス20の2次側端子T4に接続される。また、駆動トランス20の2次側端子T3は抵抗51を介してダイオード52のカソード及びNPNトランジスタ53のベースに接続され、ダイオード52のアノードは駆動トランス20の2次側端子T4及びNPNトランジスタ53のエミッタに接続される。
コンデンサ31とダイオード32の接続点P1は、抵抗55を介してNPNトランジスタ53のコレクタ及びNPNトランジスタ54のベースに接続される。また、接続点P1はダイオード43のカソード及びダイオード41のアノードに接続され、ダイオード41のアノードは抵抗42を介して、抵抗42とダイオード43の接続点P2に接続される。さらに、接続点P2はNPNトランジスタ54のコレクタ及び絶縁ゲート型半導体素子2のゲートに接続され、NPNトランジスタ54のエミッタは駆動トランス20の2次側端子T4及び絶縁ゲート型半導体素子2のソースに接続される。なお、負荷3は絶縁ゲート型半導体素子2のソース−ドレイン間に接続される。
なお、NPNトランジスタ53,54は駆動トランス20の2次側の駆動電圧がが負又は零であることをを検出するために設けられる。抵抗51,55はそれぞれNPNトランジスタ53,54にベース電流を供給するために設けられる。また、ダイオード52は負電圧をクリップするために設けられる。
図1の絶縁ゲート型半導体素子駆動装置1は、ダウンチョッパ型スイッチング電源又はモータを駆動するHブリッジ回路、などの絶縁ゲート型半導体素子2を、駆動トランス20を用いて駆動する回路に適用される。
[1−2.動作]
以上のように構成された絶縁ゲート型半導体素子駆動装置1の動作について、図1〜図3を参照して説明する。
図1において、トランス駆動回路10は、入力されるPWM信号と電源電圧Vccに基づいて駆動出力を生成し、当該駆動出力をコンデンサ13を介して駆動トランス20の1次側端子T1,T2に出力することで駆動トランス20を駆動する。ここで、コンデンサ13は、駆動トランス20の飽和を防止するために、直流成分を取り去るために挿入される。
図2Aは図1の絶縁ゲート型半導体素子駆動装置1において駆動波形のデューティ比が比較的大きいときの駆動トランス20の出力電圧Vt、コンデンサ31の充電電圧Vc、及び絶縁ゲート型半導体素子2の駆動電圧Vgsを示す波形図である。また、図2Bは図1の絶縁ゲート型半導体素子駆動装置1において駆動電圧Vgsのデューティ比が比較的小さいとき(図2Aのときよりも小さいとき)の駆動トランス20の出力電圧Vt、コンデンサ31の充電電圧Vc、及び絶縁ゲート型半導体素子2の駆動波形を示す波形図である。ここで、駆動電圧Vgsのデューティ比とは、1周期に対するオン時間の比率をいう。
図2A及び図2Bに示すように、駆動トランス20の出力電圧Vtは、直流成分が零の波形、すなわち正の極性の時間期間の振幅(0Vを基準とした電圧値)の積分値と、負の極性の振幅の積分値が等しい波形となる。絶縁ゲート型半導体素子2は、ゲートに印加される電圧が当該半導体素子2の所定のしきい値Vth(オンするときのしきい値をいう)を超えたときにオンする。
(課題A)
図1の絶縁ゲート型半導体素子駆動装置1において、駆動トランス20からの駆動電圧Vgsにより、そのまま絶縁ゲート型半導体素子2を駆動する場合、図2A及び図2Bから明らかなように、PWM信号のデューティ比が所定値よりも高い条件では、正の極性の時間期間の振幅が小さくなり、絶縁ゲート型半導体素子2のしきい値電圧Vthを超えることができずに、絶縁ゲート型半導体素子2をオンさせることができなくなる課題Aがあった。この課題Aを解決するための動作について以下に説明する。
(課題Aを解決するための動作1)
絶縁ゲート型半導体素子駆動装置1において、まず、駆動トランス20の出力電圧が負であるとき(駆動トランス20の2次側端子T3の電位が2次側端子T4よりも低い状態)の場合の動作について以下に説明する。コンデンサ31とダイオード32の直列回路は駆動トランス20の2次側端子T3,T4間に接続されており、駆動トランス20からの出力電圧Vtが負である時間期間において、図2A(b)及び図2B(b)のコンデンサ31の充電電圧Vcに示すようにダイオード32がオンし、コンデンサ31を負極性の時間期間の振幅まで充電する。ダイオード32がオン状態において、ダイオード32の両端電圧は、順方向電圧(PN接合ダイオードで0.7V、ショットキーバリアダイオードで0.3V程度の低い電圧)である。ダイオード43を通して絶縁ゲート型半導体素子2のゲートに蓄積された電荷を引き抜き、絶縁ゲート型半導体素子2のゲート電圧をしきい値電圧Vthよりも小さくすることで絶縁ゲート型半導体素子2をオフ状態にすることができる。
(課題Aを解決するための動作2)
絶縁ゲート型半導体素子駆動装置1において、駆動トランス20からの出力電圧が正のとき、ダイオード32の両端には、駆動トランス20からの出力電圧と、コンデンサ31の出力電圧とを直列接続した電圧が逆バイアスの方向で発生する。この電圧振幅は、コンデンサ31の電圧値(負極性の時間期間の振幅)と駆動トランス20の正の時間期間の振幅の和、すなわち駆動電圧の振幅に等しい値である。この値はPWM信号のデューティ比の影響を受けない。この電圧はダイオード41と抵抗42を通して、絶縁ゲート型半導体素子2のゲートに印加され、絶縁ゲート型半導体素子2をオンさせることができる。
(課題Aのまとめ)
以上説明したように、駆動トランス20の2次側端子T3,T4にコンデンサ31とダイオード32を設け、PWM信号のオフ期間にはコンデンサ31にオフ期間の出力電圧に等しい値の電圧を充電し、オン期間にこのコンデンサ31に充電したオフ期間の電圧と、駆動トランス20のオン期間の出力電圧とを直列に積み上げて加算することで、加算後の電圧を駆動電圧として絶縁ゲート型半導体素子2のゲートに印加する。これにより、前記課題Aを解決して駆動電圧のデューティ比が比較的大きい場合であっても十分に大きな駆動振幅を提供できる。
(課題B)
PWM信号が所定のデューティ比で動作している状態から、デューティ比が零に急変した場合、コンデンサ31に電荷が蓄えられた状態で、駆動トランス20の出力電圧が零Vになり、NPNトランジスタ53及び54等から構成される、絶縁ゲート型半導体素子2をオフにする駆動制御回路50が無い場合は、絶縁ゲート型半導体素子2のゲートに、コンデンサ31の充電電圧Vcが、ダイオード41及び抵抗42を通して印加される。このとき、コンデンサ31に蓄えられた充電電圧Vcが絶縁ゲート型半導体素子2のしきい値電圧Vthよりも高い場合、絶縁ゲート型半導体素子2がオンとなる。駆動電圧Vgsのデューティ比を零に急変させる条件は、絶縁ゲート型半導体素子2に流れる電流が過大となり、破壊を防止するために即時にオフとしたい条件のため、このような動作は大きな課題Bとなる。
図3は図1の絶縁ゲート型半導体素子駆動装置1の動作例を示す、駆動トランス20の出力電圧Vt、コンデンサ31の充電電圧Vc、トランジスタ53,54のオン/オフ状態、及び絶縁ゲート型半導体素子2の駆動波形を示す波形図である。以下、前記課題Bを解決するための駆動制御回路50等の回路動作について、図1及び図3を参照して説明する。
(課題Bを解決するための動作1)
駆動トランス20の出力電圧Vtが正のときは(時間期間Tp)、駆動トランス20の出力電圧Vtを抵抗51を通してNPNトランジスタ53のベースに供給し、(NPNトランジスタは0.7Vでオンするため、0.7V以上の電圧の場合)トランジスタ53をオンさせ、NPNトランジスタ54のベースとエミッタを短絡させて、NPNトランジスタ54をオフさせ、駆動トランス20とコンデンサ31の直列接続回路の電圧が、ダイオード41と抵抗42を通して、絶縁ゲート型半導体素子2のゲートに印加されるようにして、絶縁ゲート型半導体素子2をオンさせることができる。
(課題Bを解決するための動作2)
また、駆動トランス20の出力電圧Vtが負のときは(時間期間Tn)、ダイオード52は順バイアスされ、NPNトランジスタ53のベースは−0.7Vにクランプされオフ状態となる。ダイオード32も順バイアスされ、NPNトランジスタ54のベースは抵抗55を通して−0.7Vにクランプされオフ状態となる、ダイオード43もオンし、絶縁ゲート型半導体素子2のゲートの容量を引き抜いてオフ状態にすることができる。
(課題Bを解決するための動作3)
さらに、駆動トランス20の出力電圧Vtが零のときは(時間期間To)、NPNトランジスタ53がオフし、抵抗55によってコンデンサ31に蓄えられた充電電圧VcがNPNトランジスタ54に印加され、NPNトランジスタ117がオンして絶縁ゲート型半導体素子2のゲートとソースを短絡し、絶縁ゲート型半導体素子2をオフさせる。所定の時間が経過し、コンデンサ31に蓄えられた充電電圧Vcが放電により低下し、NPNトランジスタ117がオフしてコンデンサ31の電圧が、ダイオード41を通して絶縁ゲート型半導体素子2に印加されるが、このタイミングでは、コンデンサ31の電圧はしきい値電圧Vthよりも十分低くなっているため、絶縁ゲート型半導体素子2のオフは継続する。
(課題Bのまとめ)
以上説明したように、NPNトランジスタ53及び54等から構成される、絶縁ゲート型半導体素子2をオフにする駆動制御回路50を設けたので、駆動トランス20の出力電圧Vtが零になったとき、NPNトランジスタ53がオフし、抵抗55によってコンデンサ31に蓄えられた充電電圧VcがNPNトランジスタ54に印加され、NPNトランジスタ54がオンして絶縁ゲート型半導体素子2のゲートとソースを短絡し、絶縁ゲート型半導体素子2をオフさせることができる。これにより課題Bを解決することができる。
[1−3.効果]
以上詳述したように、本実施形態では、駆動トランス20の2次側端子T3,T4にコンデンサ31とダイオード32を設け、PWM信号のオフ期間にはコンデンサ31にオフ期間の出力電圧に等しい値の電圧を充電し、オン期間にこのコンデンサ31に充電したオフ期間の電圧と、駆動トランス20のオン期間の出力電圧とを直列に積み上げて加算することで、加算後の電圧を駆動電圧として絶縁ゲート型半導体素子2のゲートに印加する。従って、オン期間の駆動電圧Vgsは、駆動トランスのオン期間とオフ期間の電圧値の和、すなわち駆動トランスの駆動出力のピーク・ツー・ピーク値となり、駆動電圧のデューティ比によらず駆動電圧を一定の値とすることができる。これにより、駆動電圧のデューティ比が比較的大きい場合であっても十分に大きな駆動振幅を提供できる。
また、NPNトランジスタ53及び54等から構成される、絶縁ゲート型半導体素子2をオフにする駆動制御回路50を設けたので、駆動トランス20の出力電圧Vtが零になったとき、NPNトランジスタ53がオフし、抵抗55によってコンデンサ31に蓄えられた充電電圧VcがNPNトランジスタ54に印加され、NPNトランジスタ54がオンして絶縁ゲート型半導体素子2のゲートとソースを短絡し、絶縁ゲート型半導体素子2をオフさせることができる。これにより、コンデンサ31に蓄えられた充電電圧Vcが絶縁ゲート型半導体素子2のしきい値電圧Vthよりも高い場合に、絶縁ゲート型半導体素子2がオンとなり、駆動電圧Vgsのデューティ比を零に急変させる条件は、絶縁ゲート型半導体素子2に流れる電流が過大となることを防止できる。
(他の実施形態)
以上のように、本出願において開示する技術の例示として、実施形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施形態にも適用可能である。また、前記実施形態1で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。
例えば、実施形態1では、トランス駆動回路10として、PNPトランジスタ12とNPNトランジスタ11のシングルエンドプッシュプル回路を用いているが、本開示はこれに限らず、2個のNPNトランジスタを用いる回路、もしくはPチャネルFETとNチャネルFETのプッシュプル回路など、またそれらの並列回路などを用いることが可能である。
また、実施形態1では絶縁ゲート型半導体素子2として、NチャネルFETを用いているが、IGBTを用いることも可能である。
さらに、ダイオード41及び抵抗42の直列回路と、ダイオード43との並列回路は、上述のように、駆動電圧が正のときに駆動電圧を絶縁ゲート型半導体素子2に印加する一方、駆動電圧が負のときに絶縁ゲート型半導体素子2のゲートに蓄積した電荷を引き抜くための補助回路であり、課題A及びBを解決するために必須の回路ではないが回路条件により必要となる。
(実施形態のまとめ)
第1の態様にかかる絶縁ゲート型半導体素子駆動装置1は、
駆動電圧をトランス駆動回路10及び駆動トランス20を介して絶縁ゲート型半導体素子2に印加する絶縁ゲート型半導体素子駆動装置1において、
前記駆動トランス20の2次側両端子T3,T4間に接続されたコンデンサ31及び第1のダイオード32の直列回路であって、前記駆動電圧が負のときに前記駆動トランス20の2次側電圧に充電電圧を加算可能な電圧方向で前記コンデンサ31を充電する一方、前記駆動電圧が正のときに前記駆動トランス20の2次側電圧に充電電圧を加算してなる駆動電圧を前記絶縁ゲート型半導体素子2の絶縁ゲートに印加するように構成された前記直列回路を備える。
第2の態様にかかる絶縁ゲート型半導体素子駆動装置1は、第1の態様にかかる絶縁ゲート型半導体素子駆動装置1において、
前記駆動電圧が零になったときに、前記コンデンサ31の充電電圧に基づき、前記絶縁ゲート型半導体素子2をオフさせる駆動制御回路50をさらに備える。
第3の態様にかかる絶縁ゲート型半導体素子駆動装置1は、第1又は第2の態様にかかる絶縁ゲート型半導体素子駆動装置1において、
前記駆動制御回路50は、
前記駆動トランス20の2次側両端子に接続され、負電圧をクリップする第2のダイオード52と第1の抵抗51との直列回路と、
前記第2のダイオード52と前記第1の抵抗51との接続点に接続され、前記駆動トランス20の2次側端子から前記第1の抵抗51を介して印加される電圧が負又は零になることを検出してオンする第1のトランジスタ53と、
前記コンデンサ31と前記第1のダイオード32の接続点に第2の抵抗55を介して接続され、かつ前記第1のトランジスタ53の出力端子に接続され、前記駆動電圧が零になったときに、前記コンデンサ31の充電電圧を前記第2の抵抗55を介して入力された電圧に基づきオンすることで前記絶縁ゲート型半導体素子2をオフさせる第2のトランジスタ54とを備える。
第4の態様にかかる絶縁ゲート型半導体素子駆動装置1は、第1〜第3の態様のうちのいずれか1つの態様にかかる絶縁ゲート型半導体素子駆動装置1において、
前記コンデンサ31及び前記第1のダイオード32の接続点P1と、前記絶縁ゲート型半導体素子2の絶縁ゲートとの間に接続され、正の前記駆動電圧を前記絶縁ゲートに印加する第3のダイオード41と第3の抵抗42との直列回路と、前記絶縁ゲートから電荷を引き抜くための第4のダイオード43との並列回路をさらに備える。
本開示は、ダウンチョッパ型スイッチング電源、もしくはモータを駆動するHブリッジ回路などの絶縁ゲート型半導体素子を、駆動トランスを用いて駆動する回路に適用可能である。
1 絶縁ゲート型半導体素子駆動装置
2 絶縁ゲート型半導体素子
3 負荷
10 トランス駆動回路
11 NPNトランジスタ
12 PNPトランジスタ
13 コンデンサ
20 駆動トランス
31 コンデンサ
32 ダイオード
41 ダイオード
42 抵抗
43 ダイオード
50 駆動制御回路、
51 抵抗
52 ダイオード
53 NPNトランジスタ
54 NPNトランジスタ
55 抵抗

Claims (4)

  1. 駆動電圧をトランス駆動回路及び駆動トランスを介して絶縁ゲート型半導体素子に印加する絶縁ゲート型半導体素子駆動装置において、
    前記駆動トランスの2次側両端子間に接続されたコンデンサ及び第1のダイオードの直列回路であって、前記駆動電圧が負のときに前記駆動トランスの2次側電圧に充電電圧を加算可能な電圧方向で前記コンデンサを充電する一方、前記駆動電圧が正のときに前記駆動トランスの2次側電圧に充電電圧を加算してなる駆動電圧を前記絶縁ゲート型半導体素子の絶縁ゲートに印加するように構成された前記直列回路を備える、
    絶縁ゲート型半導体素子駆動装置。
  2. 前記駆動電圧が零になったときに、前記コンデンサの充電電圧に基づき、前記絶縁ゲート型半導体素子をオフさせる駆動制御回路をさらに備える、
    請求項1記載の絶縁ゲート型半導体素子駆動装置。
  3. 前記駆動制御回路は、
    前記駆動トランスの2次側両端子に接続され、負電圧をクリップする第2のダイオードと第1の抵抗との直列回路と、
    前記第2のダイオードと前記第1の抵抗との接続点に接続され、前記駆動トランスの2次側端子から前記第1の抵抗を介して印加される電圧が負又は零になることを検出してオンする第1のトランジスタと、
    前記コンデンサと前記第1のダイオードの接続点に第2の抵抗を介して接続され、かつ前記第1のトランジスタの出力端子に接続され、前記駆動電圧が零になったときに、前記コンデンサの充電電圧を前記第2の抵抗を介して入力された電圧に基づきオンすることで前記絶縁ゲート型半導体素子をオフさせる第2のトランジスタとを備える、
    請求項2記載の絶縁ゲート型半導体素子駆動装置。
  4. 前記コンデンサ及び前記第1のダイオードの接続点と、前記絶縁ゲート型半導体素子の絶縁ゲートとの間に接続され、正の前記駆動電圧を前記絶縁ゲートに印加する第3のダイオードと第3の抵抗との直列回路と、前記絶縁ゲートから電荷を引き抜くための第4のダイオードとの並列回路をさらに備える、
    請求項1〜3のうちのいずれか1つに記載の絶縁ゲート型半導体素子駆動装置。
JP2016127977A 2016-06-28 2016-06-28 絶縁ゲート型半導体素子駆動装置 Pending JP2018007345A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016127977A JP2018007345A (ja) 2016-06-28 2016-06-28 絶縁ゲート型半導体素子駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127977A JP2018007345A (ja) 2016-06-28 2016-06-28 絶縁ゲート型半導体素子駆動装置

Publications (1)

Publication Number Publication Date
JP2018007345A true JP2018007345A (ja) 2018-01-11

Family

ID=60948091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127977A Pending JP2018007345A (ja) 2016-06-28 2016-06-28 絶縁ゲート型半導体素子駆動装置

Country Status (1)

Country Link
JP (1) JP2018007345A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176796A1 (ja) * 2020-03-06 2021-09-10 オムロン株式会社 電源回路
WO2021181795A1 (ja) * 2020-03-11 2021-09-16 オムロン株式会社 電源回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176796A1 (ja) * 2020-03-06 2021-09-10 オムロン株式会社 電源回路
WO2021181795A1 (ja) * 2020-03-11 2021-09-16 オムロン株式会社 電源回路

Similar Documents

Publication Publication Date Title
US11831245B2 (en) Switching control device, driving device, isolated DC-DC converter, AC-DC converter, power adapter, and electric appliance
US9973188B2 (en) Switch driving device and switch driving method
JP5571594B2 (ja) スイッチング電源装置
US7750720B2 (en) Circuit arrangement and a method for galvanically separate triggering of a semiconductor switch
US20130271187A1 (en) Driver for semiconductor switch element
US7321498B2 (en) DC-DC converter having synchronous rectification without cross conduction
KR101758808B1 (ko) 지능형 파워 모듈 및 그의 전원구동모듈
JP6281748B2 (ja) Dc−dcコンバータ
JP5407618B2 (ja) ゲート駆動回路及び電力変換回路
JPWO2007091374A1 (ja) 同期整流型フォワードコンバータ
US20170222573A1 (en) Resonant Decoupled Auxiliary Supply for a Switched-Mode Power Supply Controller
JP2018007345A (ja) 絶縁ゲート型半導体素子駆動装置
JP2007028888A (ja) 整流回路および電圧変換回路
JP2014150654A (ja) ゲート駆動回路
US9564819B2 (en) Switching power supply circuit
KR100985335B1 (ko) 비대칭 펄스폭변조 방식의 하프브리지 직류-직류 컨버터
KR101969117B1 (ko) 액티브 클램프 포워드 컨버터 및 그 구동방법
CN108736748B (zh) 电源转换装置及其同步整流控制器
JP2018046736A (ja) 絶縁ゲート型半導体素子駆動装置及び絶縁ゲート型半導体素子駆動システム
JP3166149B2 (ja) 直流コンバータ装置
WO2006106989A1 (ja) 整流回路および電圧変換回路
JP2009159696A (ja) スイッチング電源装置
JP4182079B2 (ja) 整流回路
CN110572046A (zh) 一种dc/dc变换器
US9276476B1 (en) Forced commutating a current through a diode