WO2006106989A1 - 整流回路および電圧変換回路 - Google Patents

整流回路および電圧変換回路 Download PDF

Info

Publication number
WO2006106989A1
WO2006106989A1 PCT/JP2006/306972 JP2006306972W WO2006106989A1 WO 2006106989 A1 WO2006106989 A1 WO 2006106989A1 JP 2006306972 W JP2006306972 W JP 2006306972W WO 2006106989 A1 WO2006106989 A1 WO 2006106989A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
current path
voltage
transistor
current
Prior art date
Application number
PCT/JP2006/306972
Other languages
English (en)
French (fr)
Inventor
Masaji Haneda
Hidehiro Takakusa
Minoru Okada
Haruki Wada
Original Assignee
Ntt Data Ex Techno Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005105484A external-priority patent/JP4182079B2/ja
Application filed by Ntt Data Ex Techno Corporation filed Critical Ntt Data Ex Techno Corporation
Publication of WO2006106989A1 publication Critical patent/WO2006106989A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/30Modifications for providing a predetermined threshold before switching
    • H03K17/302Modifications for providing a predetermined threshold before switching in field-effect transistor switches

Definitions

  • the present invention relates to a rectifier circuit having a control function for facilitating PFC (Power Factor Correction) control for improving power factor in a rectifier circuit for converting alternating current into direct current, and a voltage for converting direct current voltage
  • the present invention relates to a rectifier circuit suitably used in a power supply device including a conversion circuit (DC-DC converter) and the like and having a control function for facilitating control, and a voltage conversion circuit including the rectification circuit.
  • a diode module that realizes a rectification function by turning on a Z-off current path for a bipolar transistor, FET (Field Effect Transistor), or isJGBT (Insulated Gate Bipolar Transistor) is being used.
  • Fig. 7 is a typical example of a conventional AC / DC converter circuit.
  • a bridge having diodes Dll, D12, D13 and D14 and a smoothing capacitor C11 inserted in parallel at both ends of the DC output are shown. It has.
  • the input voltage V is higher than the charging voltage V of the capacitor C11.
  • capacitor C11 discharges and outputs DC voltage. At this time, the diode
  • the input voltage V becomes equal to the charging voltage V of the capacitor C11 in the positive half cycle of the input voltage. If exceeded, the capacitor C11 is charged by the current flowing through the path to the diode Dll, the capacitor CI1, and the diode D14. When the input voltage V becomes lower than the charging voltage V of the capacitor C11, this charging current stops flowing. Input voltage V is charged by capacitor C11.
  • the diodes D12 and D13 instead of the diodes Dl and D14 that form the bridge output the same DC voltage as when the input voltage has a positive half cycle. To do.
  • the conversion circuit 10 is configured so that the AC input power is also supplied to the load through the diode.
  • the capacitor C11 discharges to the load, and at the peak when the input voltage V exceeds the charging voltage V of the capacitor ci i, the AC input to the load through the diode
  • Non-Patent Document 1 Mitsubishi Electric Corporation, "New type power factor correction converter DIP-PFC", [online], [March 15, 2005 search], Internet URL: http: ⁇ www.mitsubishichips .co m / Japan / new—pro / no.110 / p08— 1.html>
  • the PFC conversion circuit described in the non-patent literature is different from the conversion circuit 10 shown in FIG. A coil is inserted on the AC input side in the same manner as shown in FIG. 6 and the diodes D13 and D14 in the conversion circuit 10 are connected to the collector of the IGBT in parallel with the diode as shown in FIG. Equivalent to connecting a base.
  • the reverse current to be cut off by the diode is bypassed by the IGBT, and the AC
  • the power factor is improved by short-circuiting the input and returning it to the AC input, turning off the IGBT the next moment, and utilizing the self-induction of the coil inserted on the AC input side.
  • a voltage for example, a pulse width modulation voltage
  • a voltage conversion circuit for converting a DC voltage is widely used in switching power supply circuits and the like.
  • a conventional voltage conversion circuit of this type includes a rectifier circuit using a solid-state semiconductor diode element.
  • VF forward voltage drop
  • switching elements with low forward voltage drop such as MOS-FET (Metal-Oxide-Semiconductor Field Effect Transistor) are used instead of the conventional diodes, and these switching elements are connected to the input side.
  • MOS-FET Metal-Oxide-Semiconductor Field Effect Transistor
  • a voltage conversion circuit 400 shown in FIG. 13 is a circuit diagram showing a typical example of a forward voltage conversion circuit using a synchronous rectification circuit.
  • the DC voltage supply from the DC power source 1 to the primary coil P of the transformer T is turned on and off by the FET 21.
  • a flywheel FET 22, a smoothing capacitor C21, and a load L are connected in parallel to the coil S on the secondary side of the transformer T.
  • One end of the secondary coil S is connected to the anode of the diode D21.
  • the power sword of the diode D21 is connected to the drain of the flywheel FET 22, and the other end of the secondary coil S is connected to the source of the flywheel FET 22.
  • the drain of the diode D21 and the drain of the flywheel FET 22 are connected to one end of the choke coil L21, and the other end of the choke coil L21 is connected to the smoothing capacitor. Connected to sensor C21.
  • the gate G1 of the FET 21 and the gate G2 of the FET 22 for the flywheel are the control terminals for driving the FET 21 and FET 22, respectively.
  • the FET 21 is on, the FET 22 is off and when the FET 21 is off.
  • a predetermined voltage is applied so that the FET 22 is turned on.
  • FIG. Fig. 14 is a schematic diagram showing the voltage and current waveforms of each part of the voltage conversion circuit 400.
  • (a) is the voltage waveform applied to the gate G1 of the FET 21, and (b) is the gate of the FET 22 for the flywheel. Voltage waveform applied to G2,
  • (c) Current waveform that flows through diode D21 when load L is heavy load,
  • (d) Current waveform that flows through flywheel FE T22 when load L is heavy load Respectively.
  • (e) shows the current waveform that flows through the diode D21 when the load L is light
  • (f) shows the current waveform that flows through the flywheel FET 22 when the load L is light. Speak.
  • the flywheel FET 22 is turned on in synchronization with the FET 21 being turned off. This FET22 ON state is maintained until the time (t3) when the FET21 is turned ON again (period T2).
  • the voltage conversion circuit 400 shown in FIG. 13 outputs a DC voltage by the electromotive force generated in the coil S on the secondary side of the transformer ⁇ ⁇ when the FET 21 is on, and the FET 21 is switched off. DC voltage is output by energy stored in choke coil L21.
  • a diode is used for the rectifying element connected to the secondary coil S, and an FET 22 is used for the flywheel part. Therefore, an example in which an FET is used instead of the diode connected to the secondary coil S has been proposed (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 11 69804
  • the current flowing through choke coil L 21 of voltage conversion circuit 400 varies according to load L connected between output terminals 5 and 6.
  • load L connected between output terminals 5 and 6.
  • the load L is heavy
  • the secondary coil S Since the current flowing through diode D21 and choke coil L21 is large, the magnetic energy stored in choke coil L21 is also large. Therefore, as shown in the current waveform in Fig. 14 (d), even after FET21 is switched off (flywheel FET22 is turned on), the choke coil L21 loads L, flywheel FET22.
  • the current that passes through flows for a long time.
  • the flywheel time ⁇ 32 is shorter than the on time ⁇ 2 of the flywheel FET22 at light loads, the drain potential is grounded when the flywheel FET22 is on after the flywheel time ⁇ 32. Since it is at potential, smoothing capacitor C21 Current flows through choke coil L21 and FET22 in the on state. In other words, the load current flows backward, resulting in a large power loss and poor efficiency.
  • the voltage applied to the gate G2 of the flywheel FET 22 is switched from high to low early, and the flywheel FET 22 is turned off early to reduce the on-time T2.
  • the flywheel time is equal to or slightly shorter than T32. In this way, it is considered that the above backflow can be prevented. However, this time control was difficult.
  • the FET 22 for the flywheel is in the OFF state immediately after time t3 when the applied voltage to the gate G2 becomes zero volt (Low). It is desirable that the drain current does not flow. However, it takes a relatively long time for the FET 22 to turn off after the voltage applied to the gate G2 of the FET 22 for the flywheel is zero volts. For this reason, if FET22 remains on even before the gate G2 of FET22 is turned off (before it is turned off), when FET21 is turned on, the secondary coil S and the diode D21, FET22 This causes a through current to flow through, resulting in a large power loss and a reduction in efficiency. FET22 is destroyed by a large current. This was another factor that made it difficult to determine the on-time T2 of the flywheel FET22.
  • the rectifier circuit according to the first aspect of the present invention is provided by the first constant current source.
  • a first current path for driving a first semiconductor element having a control end of 1 a second current path for driving a PN junction element by a second constant current source, and a second current path
  • a rectifying current path that is intermittently controlled by a second semiconductor element having a control end, and a positive potential is applied to one end of the second semiconductor element and one end of the PN junction element, and the second semiconductor element
  • the second current path is interrupted, whereby the first current path is made conductive and drives the second control terminal of the second semiconductor element.
  • a rectifier circuit according to a second aspect of the present invention includes a first current path in which a first semiconductor element having a first control terminal is driven by a first constant current source, and a second constant current source.
  • a second current path for driving a fourth semiconductor element having a fourth control end by a current source and a rectification current path that is intermittently controlled by the second semiconductor element having a second control end;
  • the second current When a positive potential is applied to one end of the second semiconductor element and one end of the fourth semiconductor element, and a negative potential is applied to the other end of the second semiconductor element, the second current
  • the first current path becomes conductive, drives the second control end of the second semiconductor element, interrupts the second semiconductor element, and connects the rectified current path.
  • a negative potential is applied to one end of the second semiconductor element and one end of the fourth semiconductor element, and the second semiconductor element
  • a positive potential is applied to the other end of the first current path, the second current path is turned on, whereby the first current path is cut off and the second control end of the second semiconductor element is driven.
  • the second semiconductor element is made conductive and the rectified current path is made conductive.
  • the third semiconductor having a third control terminal that bypasses the fourth semiconductor element of the second current path.
  • An element and when the second current path is interrupted, applying a voltage to a third control terminal of the third semiconductor element causes the third semiconductor element to conduct,
  • the flow path can be configured to conduct.
  • the potential of one end of the first semiconductor element included in the first current path is detected.
  • the second control element of the second semiconductor element is driven, the second semiconductor element is shut off, and the current flows through the first current path.
  • a configuration provided with an emitter follower circuit for driving the second control terminal of the second semiconductor element and controlling the voltage applied to the second control terminal for conducting the second semiconductor element when not present It can be.
  • a rectifier circuit according to still another aspect of the present invention generally includes an off-control terminal in a rectifier circuit in which a rectifier current path is intermittently controlled according to the polarity of an applied potential. Also It is. More specifically, the rectifier circuit according to the present invention, which works on the third or fourth aspect, has the following features.
  • a rectifier circuit includes a first current path in which a first semiconductor element having a first control terminal is driven by a first constant current source, and a second constant current source.
  • the second current path is interrupted, whereby the first current path is conducted and the second control of the second semiconductor element is performed.
  • the rectifier circuit according to the fourth aspect of the present invention includes a first current path in which a first semiconductor element having a first control terminal is driven by a first constant current source; A second current path in which a fourth semiconductor element having a fourth control end is driven by a constant current source; a rectification current path that is intermittently controlled by a second semiconductor element having a second control end; A third semiconductor element having a third control end that bypasses the first semiconductor element included in the first current path; and one end of the second semiconductor element and one end of the fourth semiconductor element When a positive potential is applied to the second semiconductor element and a negative potential is applied to the other end of the second semiconductor element, the second current path is interrupted, whereby the first current path is conducted and the first current path is turned on.
  • the second control terminal of the child is driven, the second semiconductor element is interrupted to interrupt the rectification current path, and a negative potential is applied to one end of the second semiconductor element and one end of the fourth semiconductor element.
  • the positive potential is applied to the other end of the second semiconductor element, the second current path is turned on, whereby the first current path is cut off, and the second semiconductor Driving the second control end of the element to turn on the second semiconductor element to turn on the rectified current path; and when the second current path is turned on, the third of the third semiconductor element And driving the third semiconductor element to conduct the first current path, driving the second control terminal of the second semiconductor element, and the second semiconductor element.
  • the semiconductor element is turned off, and a positive potential is applied to one end of the second semiconductor element and one end of the PN junction element. When a negative potential is applied to the other end of the second semiconductor element, characterized that you block the rectified current path.
  • the potential of one end of the first semiconductor element included in the first current path is detected. Then, when a current flows in the first current path, the second control terminal of the second semiconductor element is driven, the second semiconductor element is shut off, and a current flows in the first current path.
  • an emitter follower circuit for driving a second control terminal of the second semiconductor element when it does not flow and controlling a voltage applied to the second control terminal for conducting the second semiconductor element It can be configured.
  • the first coil is disposed on the primary side, and the second coil magnetically coupled to the first coil is disposed on the secondary side.
  • a third coil a first switching means for switching on / off of the DC voltage supply to the primary side of the transformer, and a state in which the voltage supply to the transformer is turned on by the first switching means.
  • a first load current path for outputting a DC voltage based on an electromotive force generated in the second coil, and a second switching means, and the first switching means supplies voltage to the transformer.
  • the second switching means is turned on, and the voltage conversion is provided with a second load current path that outputs a DC voltage based on the electromotive force generated in the third coil.
  • the second switching means includes the rectifier circuit according to any one of the above, and the first switching means.
  • the second control element of the second semiconductor element included in the second switching means is driven by driving the third control terminal of the third semiconductor element included in the rectifier circuit.
  • the second semiconductor element is turned off, a positive potential is applied to one end of the second semiconductor element and one end of the PN junction element, and a negative potential is applied to the other end of the second semiconductor element. When is applied, the rectified current path is cut off.
  • the rectifier circuit according to the first aspect of the present invention has a first control terminal (for example, the base of the transistor Q 1 in FIG. 1) by a first constant current source (for example, the constant current element CS 1 in FIG. 1).
  • PN junction element by a first current path in which a first semiconductor element (for example, transistor Q1 in FIG. 1) is driven and a second constant current source (for example, constant current element CS2 in FIG. 1).
  • a second semiconductor element e.g., a transistor Q2 in which the emitter base in FIG. 1 is short-circuited
  • a second semiconductor element for example, a gate of FET1 in FIG. 1 is driven.
  • a positive potential is applied to one end of the second semiconductor element (for example, the drain of FET1 in FIG. 1) and one end of the PN junction element (for example, the collector of the transistor Q2 in FIG. 1), and the other end (
  • the second semiconductor element for example, the drain of FET1 in FIG. 1
  • the PN junction element for example, the collector of the transistor Q2 in FIG. 1
  • the other end For example, when a negative potential is applied to the source of FET1 in Fig. 1, the second current path is cut off, so that the first current path becomes conductive and the second control terminal of the second semiconductor element (For example, the gate of FET1 in Fig. 1) is driven to shut off the second semiconductor element and cut off the rectification current path.
  • a negative potential is applied to one end of the second semiconductor element (for example, the drain of the FET1 in FIG. 1) and one end of the PN junction element (for example, the collector of the transistor Q2 in FIG. 1).
  • a positive potential is applied to the other end (for example, the source of FET1 in FIG. 1), the first current path is interrupted by the conduction of the second current path, and the second semiconductor element
  • the second control terminal for example, the gate of FET1 in FIG. 1 is driven to turn on the second semiconductor element and to turn on the rectifying current path.
  • the rectifier circuit has a third control terminal (for example, transistor Q5 in FIG. 1) that bypasses the PN junction element (for example, transistor Q2 in which the emitter base is short-circuited in FIG. 1) included in the second current path. And a third semiconductor element (for example, the transistor Q5 in FIG. 1).
  • the second current path is interrupted, by applying a voltage to the third control terminal of the third semiconductor element, the third semiconductor element is made conductive, and the second current path is made conductive.
  • the first current path is interrupted, and the second control terminal of the second semiconductor element (for example, the gate of FET1 in FIG. 1) is driven, the second semiconductor element is made conductive and the rectified current path is made conductive. .
  • the rectified current path when the rectified current path is in the cut-off state, the rectified current path can be conducted only during the period when the voltage is applied to the third control terminal.
  • the rectifier circuit according to the second aspect of the present invention has a first control terminal (for example, the transistor Q 1 in FIG. 1) by a first constant current source (for example, the constant current element CS 1 in FIG. 1).
  • a first current path in which a first semiconductor element (eg, transistor Q1 in FIG. 1) is driven and a second constant current source (eg, constant current element CS2 in FIG. 1).
  • a second current path for driving a fourth semiconductor element (for example, the transistor Q2 in FIG. 1) having a fourth control terminal (for example, the base of the transistor Q2 in FIG. 1), and a second control terminal For example, a rectification current path that is intermittently controlled by a second semiconductor element (for example, FET1 in FIG. 1) having a gate of FET1 in FIG.
  • a positive potential is applied to one end of the second semiconductor element (for example, the drain of FET1 in FIG. 1) and one end of the fourth semiconductor element (for example, the collector of transistor Q2 in FIG. 1).
  • a negative potential is applied to the end (for example, the source of FET1 in FIG. 1), the second current path is interrupted, whereby the first current path becomes conductive, and the second current of the second semiconductor element
  • a control terminal for example, the gate of the FET 1 in FIG. 1 is driven to cut off the second semiconductor element and cut off the rectified current path.
  • a negative potential is applied to one end of the second semiconductor element (for example, the drain of FET1 in FIG. 1) and one end of the fourth semiconductor element (for example, the collector of transistor Q2 in FIG. 1).
  • a positive potential is applied to the other end (for example, the source of FET1 in FIG. 1), the second current path is turned on, whereby the first current path is interrupted and the second semiconductor element
  • the second control terminal eg, the gate of FET1 in FIG. 1 is driven, the second semiconductor element is turned on, and the rectified current path is turned on.
  • the rectifier circuit has a third control terminal (for example, the base of the transistor Q5 in FIG. 1) that bypasses the fourth semiconductor element (for example, the transistor Q2 in FIG. 1) included in the second current path. It is possible to further include a third semiconductor element (for example, the transistor Q5 in FIG. 1).
  • a voltage is applied to the third control terminal of the third semiconductor element, thereby conducting the third semiconductor element (this corresponds to the second current path).
  • the current passing through the constant current element CS2 is collectively referred to as the current passing through the second current path.)
  • the first current path is interrupted by conducting the second current path.
  • the second control terminal of the second semiconductor element (for example, the gate of the FET 1 in FIG. 1) is driven, the second semiconductor element is made conductive, and the rectification current path is made conductive.
  • the rectified current path when the rectified current path is in the cut-off state, the rectified current path can be conducted only during the period when the voltage is applied to the third control terminal.
  • the rectifier circuit according to the present invention which contributes to the first or second aspect described above, includes one end of the first semiconductor element included in the first current path (for example, the collector of the transistor Q1 in FIG. 1). ), And when the current flows through the first current path, the second control terminal of the second semiconductor element (for example, the gate of FET1 in FIG. 1) is driven to shut off the second semiconductor element. When the current does not flow through the first current path, the second control terminal of the second semiconductor element is driven, and the voltage applied to the second control terminal for conducting the second semiconductor element is controlled.
  • a configuration including an emitter follower circuit for example, the transistors Q3 and Q4 in FIG. 1.
  • a rectifier circuit in which a rectifier current path is intermittently controlled in accordance with the polarity of an applied potential, using a semiconductor element, Or it can be realized simply by using a semiconductor element and a PN junction element.
  • the conventional circuit with improved power factor is a power that adds an element such as a large capacity IGBT for power factor improvement in parallel with a large capacity diode.
  • the rectifier circuit allows the rectifier current path to be conducted only during the period when the voltage is applied to the predetermined control terminal when the rectifier current path is in the cut-off state, and has a large capacity by a single rectifier circuit. Characteristics can be realized. Therefore, by mounting the rectifier circuit of the present invention on a power supply device, a power supply device with improved power factor can be realized at low cost.
  • the rectifier circuit according to the third aspect of the present invention includes a first control terminal (for example, the transistor in FIG. 9) by a first constant current source (for example, the constant current element CS 1 in FIG. 9).
  • a first current path that drives a first semiconductor element (eg, transistor Q1 in FIG. 9) having a base of Q 1 and a second constant current source (eg, constant current element CS2 in FIG. 9).
  • a second current path for driving a PN junction element for example, transistor Q2 having a short circuit between the emitter bases in FIG. 9) and a second control terminal (for example, the gate of FET1 in FIG. 9) has a second current path.
  • a rectification current path that is intermittently controlled by a semiconductor element (for example, FET1 in FIG. 9) and a third control terminal that bypasses the first semiconductor element (for example, transistor Q1 in FIG. 9) included in the first current path.
  • a semiconductor element for example, FET1 in FIG. 9
  • a third control terminal that bypasses the first semiconductor element (for example, transistor Q1 in FIG. 9) included in the first current path.
  • the base of the transistor Q5 in FIG. 9 A third semiconductor element (for example, the transistor in FIG. 9) It is equipped with a data Q5) and.
  • One end of the second semiconductor element (for example, the drain of FET1 in Fig. 9) and one end of the PN junction element
  • the second current path is turned on, whereby the first current path is cut off and the second semiconductor element is connected to the first current path.
  • the second control terminal for example, the gate of FET1 in Fig. 9) is driven, the second semiconductor element is conducted, and the rectified current path is conducted.
  • a rectifier circuit is realized in which the rectifier current path is intermittently controlled according to the polarity of the potential applied to one end and the other end of the second semiconductor element. Like a switching element, the voltage is not applied to the control terminal of the gate, etc. The power loss that current does not flow through the diode can be greatly reduced.
  • the third control terminal (for example, the ninth circuit) of the third semiconductor element.
  • the first current path is conducted, and the second control terminal of the second semiconductor element (for example, FET1 in FIG. 9) Gate) to turn off the second semiconductor element. Therefore, even when the rectified current path is in a conductive state, it can be switched to a reverse current cutoff state when a voltage is applied to the third control terminal.
  • this is used in a circuit as shown in FIG.
  • the rectifier circuit according to the fourth aspect of the present invention includes a first constant current source (for example, the constant current element CS1 in FIG. 9) and a first control terminal (for example, the transistor Q1 in FIG. 9).
  • the first semiconductor element having a base (for example, the transistor Q1 in FIG. 9) is driven by the first current path and the second constant current source (for example, the constant current element CS2 in FIG. 9).
  • a positive potential is applied to one end of the second semiconductor element (for example, the drain of FET1 in FIG. 9) and one end of the fourth semiconductor element (for example, the collector of transistor Q2 in FIG. 9).
  • the second current path is interrupted, and the first current path becomes conductive, and the second semiconductor element
  • a second control terminal for example, the gate of FET1 in FIG. 9) is driven to cut off the second semiconductor element and cut off the rectified current path.
  • a negative potential is applied to one end of the second semiconductor element (for example, the drain of FET1 in FIG. 9) and one end of the fourth semiconductor element (for example, the collector of transistor Q2 in FIG. 9).
  • the second current path is turned on to cut off the first current path, and the second semiconductor
  • the second control terminal of the element (for example, the gate of FET1 in FIG. 9) is driven to turn on the second semiconductor element and to turn on the rectified current path.
  • the third control terminal of the third semiconductor element for example, the base of the transistor Q5 in FIG. 9) is driven to make the third semiconductor element conductive.
  • the first current path is conducted, and the second control terminal of the second semiconductor element (for example, the gate of FET1 in FIG. 9) is driven to turn off the second semiconductor element.
  • a rectifier circuit in which the rectification current path is intermittently controlled according to the polarity of the potential applied to one end and the other end of the second semiconductor element, and even when the rectification current path is in a conductive state.
  • a voltage is applied to the third control terminal, it can be switched to and maintained in the reverse current cut-off state, so that the same effect as that of the rectifier circuit according to the present invention that works on the third aspect can be obtained.
  • the rectifier circuit of the present invention has one end of the first semiconductor element included in the first current path (for example, the emitter of the transistor Q1 in FIG. 9).
  • the second semiconductor element is driven by driving the second control terminal (for example, the gate of FET1 in FIG. 9) of the second semiconductor element when the current flows in the first current path.
  • the second control terminal of the second semiconductor element is driven and applied to the second control terminal for conducting the second semiconductor element.
  • a configuration including an emitter follower circuit for example, transistors Q3 and Q4 in FIG. 9) for controlling the voltage can be used.
  • the rectification current path is intermittently controlled according to the polarity of the applied potential, and the rectification current path is in a conductive state. Even when a voltage is applied to the third control terminal, a rectifier circuit having a control terminal that can be switched and maintained in the reverse current cut-off state is formed by using a semiconductor element or a PN It can be realized simply by using a junction element.
  • the rectifier circuit according to the present invention which works on the third or fourth aspect described above, is particularly advantageous when used as switching means for flywheels in the voltage conversion circuit shown in FIG. That is, a first coil (for example, coil P in FIG. 11) is disposed on the primary side, and a second coil (for example, coil S in FIG. 11) magnetically coupled to the first coil is disposed on the secondary side.
  • the first transformer that switches on / off the DC voltage supply to the primary side of the transformer (for example, the transformer T in FIG. 11), the third coil (for example, the coil L2 1 in FIG. 11), and the primary side of the transformer.
  • the DC voltage is output based on the electromotive force generated in the second coil when the voltage supply to the transformer is turned on by the switching means (for example, FET 21 in FIG. 11) and the first switching means.
  • the first load current path and the second switching means are included, and after the voltage supply to the transformer is switched off by the first switching means, the second switching means is turned on to turn on the third coil.
  • the second switching means includes the rectifier circuit described above (for example, switching means D10 in FIG.
  • a Schottky barrier diode DS is connected in parallel to switching means D10.
  • the ON time of the switching means can be easily controlled so as to achieve the best efficiency based on the voltage applied to the third control terminal. Therefore, it is possible to easily realize a voltage conversion circuit that solves the problems of backflow of load current and through current.
  • FIG. 1 is a circuit diagram showing a configuration of a rectifier circuit according to a first embodiment to which the present invention is applied.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of a circuit portion including transistors Ql, Q2, Q5, constant current elements CS1 and CS2 in the rectifier circuit shown in FIG.
  • FIG. 3 is a measurement circuit diagram for measuring the current and voltage waveforms of the rectifier circuit in the first embodiment.
  • FIG. 4 Current and voltage waveforms of the rectifier circuit observed by the measurement circuit shown in FIG.
  • FIG. 5 Current and voltage waveforms of the rectifier circuit observed by the measurement circuit shown in FIG.
  • FIG. 6 is a basic circuit diagram when an AC / DC converter circuit 20 is configured by applying the rectifier circuit according to the first embodiment.
  • FIG. 7 is a circuit diagram showing an example of a conventional AC / DC conversion circuit.
  • FIG. 8 This is a circuit diagram when IGBT is connected in parallel with a conventional diode and the reverse current to be cut off by the diode is bypassed by the IGBT and intermittent control is performed.
  • FIG. 9 is a circuit diagram showing a configuration of a rectifier circuit according to a second embodiment to which the present invention is applied.
  • FIG. 10 is a circuit diagram showing an equivalent circuit of a circuit portion including transistors Ql, Q2, Q5, constant current elements CS1 and CS2 in the rectifier circuit shown in FIG.
  • FIG. 11 is a circuit diagram of a voltage conversion circuit in which the rectifier circuit shown in FIG. 9 is applied as a flywheel switching means.
  • FIG. 12 is a schematic diagram showing current and voltage waveforms at various parts in a light load and a heavy load in the voltage conversion circuit shown in FIG. 11.
  • FIG. 13 is a circuit diagram showing an example of a forward voltage conversion circuit using a conventional synchronous rectifier circuit.
  • FIG.14 The conventional voltage conversion circuit shown in Fig. 13 under heavy load and light load. It is a schematic diagram which shows the voltage and current waveform of a part.
  • FIG. 1 is a circuit diagram showing a basic configuration of a rectifier circuit 100 according to a first embodiment to which the present invention is applied.
  • an FET 1 having a large collector withstand voltage and a large current capacity such as an N-channel 'power MOS-FET', is provided in a current path having an anode end 1 and a force sword end 2.
  • the source of FET1 is connected to the anode end 1
  • the drain of FET1 is connected to the force sword end 2
  • FET1 is turned on to make the current path conductive
  • FET1 When the gate input falls from High to Low, FET1 turns off and the current path is interrupted. That is, the FET 1 intermittently controls the rectification current path between the anode end 1 and the force sword end 2 by the switching operation.
  • Transistors Ql and Q2 are NPN bipolar transistors with substantially the same characteristics, and the bases of transistors Q1 and Q2 are connected in common, and transistor Q1 has its collector connected to the source of FET1, that is, anode 1 The collector of the other transistor Q2 is connected to the cathode terminal 2, and the emitter is connected to the base so that the emitter base is short-circuited.
  • a constant voltage diode Dl, a diode D2, a junction transistor J—FET (Junction Field Effect Transistor), a resistor Rl, and a capacitor CI drive the transistors Ql and Q2 and transistors Q3, Q4, and Q5 described later.
  • a drive voltage source is configured. As will be described later, such a driving voltage source has a capacitor C through a diode D2 whose junction is connected to the force sword end 2 and a junction transistor J-FET in a half cycle in which a positive potential is applied to the force sword end 2. 1 is charged, and a voltage is generated with one side connected to the anode end 1 of both ends of the capacitor C 1 being negative and the other side being positive.
  • the collector of transistor Q1, the source of FET1, the collector of transistor Q4, which will be described later, and the emitter of transistor Q5 are connected to one side of capacitor C1 connected to anode 1 (the negative side as the drive source). Yes.
  • the collector of a transistor Q3, which will be described later, is connected, and the emitter power of the transistor Q1 and the emitter power of the transistor Q2 are connected via a constant current element CS1 and a constant current element CS2, respectively.
  • the connection relationship between the capacitor C1 as the driving voltage source and the transistor Q1 is as follows. From the constant current element CS1, the emitter and collector of the transistor Q1 pass through one side of the capacitor C1 (as the driving source). Connected to the negative side). Transistor Q2 is connected from constant current element CS2 to one side of capacitor C1 through the emitter and collector of transistor Q2. Further, the transistor Q5 is connected from the constant current element CS1 to the one side of the capacitor C1 through the collector and emitter of the transistor Q5.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of a circuit portion (broken line portion in FIG. 1) including transistors Ql, Q2, Q5, constant current elements CS1 and CS2 in the rectifier circuit 100 shown in FIG. It is.
  • the emitter of transistor Q2 is connected to the base, and the base-emitter is short-circuited.
  • transistor Q2 which is an NPN bipolar transistor, provides a PN junction diode between the base and collector.
  • Fig. 1 from constant current element CS2 through the emitter and collector of transistor Q2 to the drain of FE T1, ie, force sword end 2
  • this current path is shown in Fig. 2.
  • the anode is connected from the constant current element CS2 and is equivalent to a current path in which a PN junction diode is inserted so that the force sword is connected to the drain of the FET 1, that is, the force sword end 2. Therefore, in the current path including the constant current element CS2 and the transistor Q2, the potential of the force sword end 2 is applied to the collector of the transistor Q2, that is, the force sword of the PN junction diode equivalent to the transistor Q2.
  • transistor Q2 When transistor Q2 is off, the base-emitter potential (approximately 0.6 volts) of transistor Q2 is applied to the base of transistor Q1, so force sword end 2 (the collector of transistor Q2 is the same as As long as the power sword of the PN junction diode does not become a negative potential, the continuity between the anode end 1 and the force sword end 2 is interrupted.
  • an equivalent circuit using the PN junction element shown in Fig. 2 shows the operating principle of the rectifier circuit of the present invention.
  • the reason why the transistor Q2 is used in this embodiment is that the transistor Q1 needs to be a bipolar transistor, and the transistor Q1 characteristics (temperature characteristics, base-emitter voltage, etc.) are substantially identical. It is because it is more preferable to use as. Needless to say, the power of using a bipolar transistor as the transistors Ql and Q2 may be replaced by an FET.
  • the transistor Q3 and the transistor Q4 constitute an emitter-type follower amplifier.
  • bipolar transistors can be used for the transistors Q3 and Q4.
  • an NPN bipolar transistor is used for transistor Q3
  • a PNP bipolar transistor is used for transistor Q4.
  • the emitters of both transistors Q3 and Q4 are connected in common, and the common emitter is the gate of FET1. It is connected to the.
  • the bases of both transistors Q3 and Q4 are also connected in common, and the emitter of transistor Q1 is connected to the base.
  • a predetermined constant current is supplied to the emitter of the transistor Q1 and the emitter of the transistor Q2 through the constant current elements CS1 and CS2, respectively, using the capacitor C1 as a driving voltage source. It is configured as follows.
  • a resistor R2 is connected between the common base of the transistors Q3 and Q4 and the collector of the transistor Q4. As will be described later, when the transistor Q1 is turned off, the current flows through the resistor R2 through the constant current element CS1, thereby raising the potential of the common base of the transistors Q3 and Q4.
  • Transistors Q3 and Q4 constitute an emitter-follower type buffer amplifier.
  • the common emitter of transistors Q3 and Q4 is also connected to the gate of FET1, and the collector of transistor Q4 is connected to the source of FET1. Therefore, the emitter potential of the transistor Q 1, that is, the same voltage force as the voltage between the emitter and collector of the transistor Q 1 is directly input to the gate of the FET 1.
  • transistor Q1 when transistor Q1 is turned on and current flows through the constant current element CS2 to the emitter collector of transistor Q1, the common base potential of transistors Q3 and Q4 is substantially zero volts (in this case, NPN Transistor Q3, which is a bipolar transistor, is off, and transistor Q4, which is a PNP bipolar transistor, is on.)
  • the gate input of FET1 is also zero volts (Low).
  • transistor Q1 when transistor Q1 is turned off and current flows through resistor R2 through constant current element CS1, the common base potential of transistors Q3 and Q4 rises by a voltage equal to the voltage drop due to resistor R2 (at this time, transistor Q3 is on and transistor Q4 is off.) As will be described later, the gate input of FET1 is also High.
  • the rectifier circuit 100 further includes a transistor Q5 as shown in FIG.
  • the collector of transistor Q5 is connected to the common base of transistors Q1 and Q2, and the emitter is connected to the source of FET1 (thus the collector and anode end 1 of transistor Q1).
  • the base of the transistor Q5 is connected to one input terminal 3 of the voltage input terminals 3 and 4 via the resistor R3, and the emitter of the transistor Q5 is connected to the other input terminal 4.
  • a resistor R4 is connected between the base emitters of transistor Q5.
  • a desired pulse width modulated voltage generated by the PWM control means is applied between the voltage input terminals 3 and 4, for example, not shown.
  • the transistor Q1 When the transistor Q1 is turned on, the emitter potential of the transistor Q1 (collector-emitter voltage) is substantially zero volts (Low), so that the PNP bipolar transistor Q4 is turned off, and NPN Transistor Q3, which is a bipolar transistor, also switches on power off.
  • transistor Q3 When transistor Q3 is off and transistor Q4 is on, the common emitter potential of transistors Q3 and Q4 is zero volts (low), so the gate input of FET1 is zero volts (low) and FET1 is turned off.
  • transistor Q1 When transistor Q1 is turned off, the current through constant current element CS1 no longer flows between its emitter and collector but flows through resistor R2. For this reason, the emitter potential of transistor Q1 rises by an amount corresponding to the voltage drop of resistor R2. Thus, when the emitter potential of transistor Q1 rises (inverts to High), Q4, which is a PNP-type bipolar transistor, is switched on and off, and transistor Q3, which is an NPN-type bipolar transistor, is switched from off to on. When transistor Q3 is on and transistor Q4 is off, the potential of the common emitter of transistors Q3 and Q4 rises (inverts to High). Therefore, the gate input of FET1 is inverted to High and FET1 is turned on.
  • a positive potential is applied to the force sword end 2 of the rectifier circuit 100 for the purpose of improving the power factor of the power supply device when mounted on the power supply device, for example. That is, a voltage is applied between the voltage input terminals 3 and 4 when the rectification current path of the rectifier circuit 100 is in a cut-off state.
  • the basic operation of the powerful rectifier circuit 100 is described below.
  • the rectifier circuit 100 when no voltage is applied between the voltage input terminals 3 and 4, no voltage is applied to the base of the transistor Q5. No current flows and transistor Q5 is off. In other words, the current path that passes between the collector emitter of the transistor Q5 through the constant current element CS2 is interrupted. Therefore, when no voltage is applied between the voltage input terminals 3 and 4, even if the transistor Q5 is connected between the base and collector of the transistor Q1, the base potential of the transistor Q1 is not affected at all.
  • the voltage input terminal 3 between the voltage input terminals 3 and 4 is positive.
  • Pressure (eg control pulse signal) force When applied to the base of transistor Q5 through resistor R3, base current flows between the base and emitter of transistor Q5, turning on transistor Q5.
  • the collector-emitter voltage of the transistor Q5 is substantially zero volts, the inversion of the transistor Q5 to the off-force on lowers the base potential of the transistor Q1 in the on state to substantially zero volts.
  • transistor Q1 is turned off when the base potential drops to zero volts.
  • the emitter potential of transistor Q1 rises (inverted to high), and the common base of transistors Q3 and Q4 also rises (inverted to high).
  • the advantageous operation of the rectifier circuit 100 including the voltage input terminals 3 and 4 is, for example, that the current and voltage of the rectifier circuit 100 when a sinusoidal AC input voltage is applied between the anode terminal 1 and the force sword terminal 2. It can be easily understood by observing the waveform.
  • Fig. 3 shows a measurement circuit that inputs a sinusoidal AC input voltage between the anode end 1 and the force sword end 2 and measures the current and voltage waveform of the rectifier circuit 100.
  • Fig. 4 and Fig. 5 show The current and voltage waveforms observed by the measurement circuit in Fig. 3 are shown.
  • a positive potential is applied to the anode end of rectifier circuit 100, and a negative potential is applied to the sword end, transistor Q1 is turned off, and thus FET1 is turned on.
  • the end force also flows in the direction of the force sword end.
  • the anode-power sword voltage of the rectifier circuit 100 is zero volts (from time Z1 to time Z2).
  • the polarity of the AC input voltage is inverted, and a negative potential is applied to the anode end of the rectifier circuit 100, and a positive potential is applied to the force sword end.
  • transistor Q1 is on and transistor Q2 is off, so FET1 Is off, and the force sword end force is also interrupted in the direction of the anode end.
  • a voltage for example, a control pulse signal
  • the transistor Q1 is turned off only during the period when the control pulse signal is High. With FET1 turned on, current can flow in the direction of the force sword end force anode end.
  • the current is cut off during the period when the voltage is generated, and the conduction current flows during the period when the voltage is not generated.
  • the envelope connecting the peaks of the individual voltage waveforms and current waveforms thus intermittent is sinusoidal because the AC input voltage is sinusoidal (from time Z2 to time Z3).
  • FIG. 6 is a basic circuit diagram when the AC / DC converter circuit 20 is configured by applying the rectifier circuit 100 of the present embodiment.
  • the rectifier circuit 100 of this embodiment is used for the diodes D33 and D34.
  • the diodes D31 and D32 a rectifier circuit in which the transistor Q5, the resistors R3 and R4, and the voltage input terminals 3 and 4 in the rectifier circuit 100 are omitted, or a normal diode is used.
  • the voltage of the diode D33 (rectifier circuit 100) is applied with a positive potential applied to one end of the AC input terminal to which the coil L31 is connected and a negative potential applied to the other end.
  • a voltage is applied to the input terminal (corresponding to voltage input terminal 3 in the rectifier circuit 100 in FIG. 1; the same applies hereinafter), a negative potential is applied to one end to which the coil L31 is connected, and a positive potential is applied to the other end.
  • the power factor can be improved by applying a voltage to the voltage input terminal of D34 while a potential is applied.
  • the capacitor C31 is charged by the current flowing through the path from the sensor C31 to the diode D34, and the input voltage V is supplied to the load.
  • the input voltage V becomes lower than the charging voltage V of the capacitor C11, current flows to the capacitor C31 through the diode D31.
  • the self-induced voltage V of the coil L31 is generated by intermittently passing current through the coil L31, the diode D33 (rectifier circuit 100), and the diode D34 (rectifier circuit 100) from the AC input force.
  • Energy based on 31 can be supplied to the load.
  • Voltage—V is greater than the charging voltage V of capacitor C31, so diode D32
  • a directional current can flow through the capacitor L31 and through the coil L31.
  • the magnitude of the input voltage V is equal to the charging voltage V of the capacitor C11.
  • the charging voltage of the capacitor C31 is reduced during a period in which the magnitude of the input voltage V is smaller than the charging voltage V of the capacitor C11.
  • a sinusoidal AC input voltage is applied between the anode end 1 and the force sword end 2
  • the voltage applied between the anode end 1 and the force sword end 2 is Of course, an AC voltage having an arbitrary waveform (for example, a sawtooth AC voltage) may be used.
  • an AC voltage having an arbitrary waveform for example, a sawtooth AC voltage
  • a pulse-width-modulated voltage is applied between the voltage input terminals 3 and 4 and the rectification current path is conducted while the FET 1 is OFF is described.
  • the present invention is not limited to this, and an arbitrary current may be allowed to flow by appropriately changing the voltage waveform to be applied.
  • bipolar transistors are used as the transistors Q1 to Q5 of the rectifier circuit 100.
  • FETs MOS-FETs
  • the same effect as the above embodiment can be obtained.
  • the NPN bipolar transistor is changed to the PNP bipolar transistor, and the PNP bipolar transistor is changed to the NPN bipolar transistor.
  • the N-channel power MOS-FET is changed to the P-channel power MOS-FET. You can change it to! / ⁇ . In this case, the polarity of the voltage is reversed.
  • any element such as a resistor or an active semiconductor element can be used as the constant current elements CS1 and CS2.
  • the specific configuration of the rectifier circuit 100 is not particularly limited, and it is of course possible to replace part or all of the rectifier circuit 100 with an equivalent circuit.
  • the constant current element included in the rectifier circuit 100 can be replaced with a current mirror circuit, and other detailed configurations can be changed as appropriate without departing from the scope of the claims. Don't be! ⁇ .
  • FIG. 9 is a circuit diagram showing a basic configuration of a rectifier circuit 200 in the second embodiment to which the present invention is applied.
  • the FET 1 having a large collector withstand voltage and a large current capacity such as an N-channel 'power MOS-FET', is provided in the current path having the anode end 1 and the force sword end 2. Is provided.
  • the source of FET1 is connected to the anode end 1, the drain of FET1 is connected to the force sword end 2, and when High is input to the gate of FET1, FET1 is turned on and the current path is made conductive.
  • FET1 turns off and the directional current path from force sword terminal 2 to anode terminal 1 is interrupted.
  • the FET 1 intermittently controls the rectifying current flow path between the anode end 1 and the force sword end 2 by the switching operation (only a current flowing from the anode end 1 to the force sword end 2 flows).
  • Transistor Ql and transistor Q2 are NPN bipolar transistors with substantially the same characteristics, and the bases of transistors Q1 and Q2 are connected in common, and transistor Q1 is connected to the source of collector force SFET1, that is, to anode terminal 1.
  • the collector of the other transistor Q2 is connected to the force sword end 2, the emitter is connected to the base, and the emitter base is short-circuited.
  • a constant voltage diode Dl, a diode D2, a junction transistor J—FET (Junction Field Effect Transistor), a resistor Rl, and a capacitor CI drive the transistors Ql and Q2 and transistors Q3, Q4, and Q5 described later.
  • a drive voltage source is configured. As will be described later, such a driving voltage source has a capacitor C through a diode D2 whose junction is connected to the force sword end 2 and a junction transistor J-FET in a half cycle in which a positive potential is applied to the force sword end 2. 1 is charged, and a voltage is generated with one side connected to the anode end 1 of both ends of the capacitor C 1 being negative and the other side being positive.
  • the collector of transistor Q1, the source of FET1, the collector of transistor Q4, which will be described later, and the emitter of transistor Q5 are connected to one side of capacitor C1 connected to anode 1 (the negative side as the drive source). Yes.
  • the collector of the transistor Q3 described later is connected to the other side of the capacitor C1 connected to the force sword end 1 via the diode D2 and the junction transistor J-FET (positive side as a drive source)
  • Transistor Q1 emitter, transistor Emitter force of transistor Q2 is connected via constant current element CS1 and constant current element CS2, respectively.
  • the connection relationship between the capacitor C1 as the driving voltage source and the transistor Q1 is as follows. From the constant current element CS1, the emitter Q and the collector of the transistor Q1, one side of the capacitor C1 ( It is connected to the negative side as a drive source. Transistor Q2 is connected from constant current element CS2 to one side of capacitor C1 through the emitter and collector of transistor Q2. Further, the transistor Q5 is connected from the constant current element CS1 to the one side of the capacitor C1 through the collector and emitter of the transistor Q5.
  • FIG. 10 is a circuit diagram showing an equivalent circuit of a circuit part (broken line part in FIG. 9) including transistors Ql, Q2, Q5, constant current elements CS1 and CS2 in the rectifier circuit 200 shown in FIG. It is.
  • the emitter of transistor Q2 is connected to the base, and the base-emitter is short-circuited.
  • transistor Q2 which is an NPN bipolar transistor, provides a PN junction diode between the base and collector.
  • this current path is shown in FIG.
  • the PN junction diode anode is connected from the constant current element CS2, and the PN junction diode force sword is connected to the drain of FET1, that is, the force sword end 2. is there. Therefore, in the current path including the constant current element CS2 and the transistor Q2, the potential of the force sword end 2 is applied to the collector of the transistor Q2, that is, the force sword of the PN junction diode equivalent to the transistor Q2. .
  • transistor Q2 When transistor Q2 is off, the base-emitter potential of transistor Q2 (approximately 0.6 volts) is applied to the base of transistor Q1, so transistor Q1 is on and force sword end 2 (transistor Q2 Similarly, the conduction between the anode end 1 and the force sword end 2 is cut off unless the force sword of the PN junction diode becomes negative potential.
  • an equivalent circuit using the PN junction element shown in Fig. 10 shows the operating principle of the rectifier circuit 200 of the present invention.
  • the reason for using the transistor Q2 in this embodiment is that the transistor Q1 needs to be a bipolar transistor, and a transistor having substantially the same characteristics (temperature characteristics, base-emitter voltage, etc.) of the transistor Q1 is used as a PN junction element. It is because it is more preferable to use it.
  • bipolar transistors are used as the transistors Ql and Q2, and FETs may be used instead.
  • the transistor Q3 and the transistor Q4 constitute an emitter-type follower amplifier.
  • bipolar transistors can be used for the transistors Q3 and Q4.
  • an NPN bipolar transistor is used for transistor Q3, and a PNP bipolar transistor is used for transistor Q4.
  • the emitters of both transistors Q3 and Q4 are connected in common, and the common emitter is the gate of FET1. It is connected to the.
  • the bases of both transistors Q3 and Q4 are also connected in common, and the emitter of transistor Q1 is connected to the base.
  • the emitter of transistor Ql and the emitter of transistor Q2 are configured such that a predetermined constant current is supplied via constant current elements CS1 and CS2, respectively, using capacitor C1 as a driving voltage source. .
  • a resistor R2 is connected between the common base of the transistors Q3 and Q4 and the collector of the transistor Q4. As will be described later, when the transistor Q1 is turned off, the current flows through the resistor R2 through the constant current element CS1, thereby raising the potential of the common base of the transistors Q3 and Q4.
  • Transistors Q3 and Q4 constitute an emitter-follower type buffer amplifier.
  • the common emitter of transistors Q3 and Q4 is also connected to the gate of FET1, and the collector of transistor Q4 is connected to the source of FET1. Therefore, the emitter potential of the transistor Q 1, that is, the same voltage force as the voltage between the emitter and collector of the transistor Q 1 is directly input to the gate of the FET 1.
  • transistor Q1 when transistor Q1 is turned on and current flows through the constant current element CS2 to the emitter collector of transistor Q1, the common base potential of transistors Q3 and Q4 is substantially zero volts (in this case, NPN Transistor Q3, which is a bipolar transistor, is off, and transistor Q4, which is a PNP bipolar transistor, is on.)
  • the gate input of FET1 is also zero volts (Low).
  • transistor Q1 when transistor Q1 is turned off and current flows through resistor R2 through constant current element CS1, the common base potential of transistors Q3 and Q4 rises by a voltage equal to the voltage drop due to resistor R2 (at this time, transistor Q3 is on and transistor Q4 is off.) As will be described later, the gate input of FET1 is also High.
  • the rectifier circuit 200 further includes a transistor Q5 as shown in FIG.
  • the collector of transistor Q5 is connected to the common base of transistors Q3 and Q4, and the emitter is connected to the source of FET1 (and hence to the collector and anode end 1 of transistor Q1).
  • the base of the transistor Q5 is connected to one input terminal 3 of the voltage input terminals 3 and 4 via the resistor R3, and the emitter of the transistor Q5 is connected to the other input terminal 4.
  • a resistor R4 is connected between the base emitters of transistor Q5.
  • a desired pulse voltage generated by voltage generating means (not shown) is applied between the voltage input terminals 3 and 4.
  • the transistor Q1 When the transistor Q1 is turned on, the emitter potential of the transistor Q1 (collector-emitter voltage) is substantially zero volts (Low), so the PNP bipolar transistor Q4 is turned off, and NPN Transistor Q3, which is a bipolar transistor, also switches on power off.
  • transistor Q3 When transistor Q3 is off and transistor Q4 is on, the common emitter potential of transistors Q3 and Q4 is zero volts (low), so the gate input of FET1 is zero volts (low) and FET1 is turned off.
  • transistor Q1 When transistor Q1 is turned off, the current through constant current element CS1 no longer flows between the emitter collectors of transistor Q1, but flows through resistor R2. As a result, the emitter potential of transistor Q1 rises by an amount corresponding to the voltage drop across resistor R2. Thus, when the emitter potential of transistor Q1 rises (inverts to High), Q4, which is a PNP bipolar transistor, is turned on and off, and transistor Q3, which is an NPN bipolar transistor, is also turned on. When transistor Q3 is on and transistor Q4 is off, the common emitter potential of transistors Q3 and Q4 rises (inverts to High). Therefore, the gate input of FET1 is inverted to High and FET1 is turned on.
  • the rectifier circuit 200 of the present embodiment is used as, for example, a flywheel switching means in a synchronous rectifier circuit of a power supply device, the efficiency of the power supply device can be improved.
  • the voltage between the voltage input terminals 3 and 4 is To turn FET1 off. The basic operation of the rectifier circuit 200 will be described below.
  • the rectifier circuit 200 if the voltage input terminal 3 side is positive between the voltage input terminals 3 and 4 (for example, a control pulse signal) and applied to the base of the transistor Q5 through the resistance R3, A base current flows between the base and emitter of transistor Q5, turning on transistor Q5. Then, since the collector-emitter voltage of the transistor Q5 is substantially zero volts, the inversion of the transistor Q5 to the off-force on lowers the emitter potential of the transistor Q1 in the off state to substantially zero volts. This causes the emitter potential of transistor Q1 to drop (reverse to low), and the common base for transistors Q3 and Q4 also drop (reverse to low).
  • the rectifier circuit 200 is connected to the anode end 1 and the force sword end 2 in a state where a positive voltage is applied to the voltage input ends 3 and 4 at the input end 3 side. Since the rectification current path is intermittently controlled according to the polarity of the applied voltage, the same rectification function as that of the conventional semiconductor diode element is realized.
  • FIG. 11 is a basic circuit diagram when the voltage conversion circuit 300 is configured by applying the rectifier circuit 200 of the present embodiment.
  • the rectifier circuit 200 of this embodiment is used as the flywheel switching means D10.
  • the same parts as those of the conventional voltage conversion circuit 400 shown in FIG. 13 are denoted by the same reference numerals.
  • FIG. 12 is a schematic diagram showing voltage and current waveforms of each part of the voltage conversion circuit 300.
  • Fig. 12 (a) is the voltage waveform applied to the gate G1 of the FET 21, (b) is the voltage waveform of the voltage (VOFF) applied to the voltage application terminal of the flywheel switching means D10, ( c) Current waveform flowing through diode D21 when load L is light load, (d) Current waveform flowing through flywheel switching means D10 when load is light load, (e) Load L is heavy The current waveform that flows through the diode D21 when a load is applied, and (f) shows the current waveform that flows through the flywheel switching means D10 when the load L is a heavy load.
  • the load current tends to flow backward from the smoothing capacitor C21 connected in parallel to the load L to the switching means D10 through the choke coil L21.
  • the switching means D10 functions as a diode having the choke coil L21 side as the cathode end, so when a voltage with the choke coil L21 side as positive is applied, this voltage is the reverse voltage. Therefore, the switching means D10 is cut off. For this reason, no current flows in the direction from the coil L21 to the switching means D10 until the time t3 when the FET 21 is turned on again after time t2.
  • a PWM (Pulse Width Modulation) control circuit that detects the voltage applied to the load L and feedback-controls the ON width of the primary FET may be provided separately in the voltage conversion circuit. Even in such a case, if the switching means D10 is cut off by applying a voltage (VOFF) to the voltage application terminal of the switching means D10 for flywheel, the backflow of the load current and the through current are prevented. It is clear that it is effective.
  • VOFF voltage
  • the timing for turning off the flywheel FET is controlled, in other words, the off control cycle. Adjustment is required. In other words, separately from the PWM control of the temporary FET, it is also necessary to control the turn-off timing earlier at light loads while delaying it at heavy loads. This is because when the off-timing is not controlled, the load current flows backward at a light load and energy loss at the choke coil occurs at a heavy load. However, at what time the FET should be turned off when the load actually fluctuates! It is also a component! Therefore, it is more suitable for the flywheel than the conventional synchronous rectification type voltage conversion circuit.
  • the conventional synchronous rectification type voltage converter circuit also requires on-timing control to turn on the flywheel FET at an appropriate timing when the DC voltage supply to the primary coil is turned off. Met.
  • the voltage conversion circuit of the present invention is an off control that applies a voltage to the voltage application terminal of the switching means D10 for the flywheel before the supply of the DC voltage to the primary coil is turned on.
  • the rectifier circuit 200 used as the flywheel switching means D10 has exactly the same rectification function as a conventional semiconductor diode element, so that the connected load is light or heavy.
  • the rectifier circuit 200 When the back electromotive force is generated in the choke coil L21 after the DC voltage supply to the primary coil is turned off, the rectifier circuit 200 itself This is because it is in the on state (conduction state) and energy can be supplied to the choke coil force load. As described above, when used in the circuit as shown in FIG.
  • the second embodiment described above it is of course possible to use force FETs (MOS-FETs) using bipolar transistors as the transistors Q1 to Q5 of the rectifier circuit 200. Even in this case, the same effect as the above-described embodiment can be obtained. Furthermore, in the rectifier circuit 200, the NPN bipolar transistor is changed to the PNP bipolar transistor, the PNP transistor is changed to the NPN transistor, and the N channel power MOS- FET may be changed to P-channel power MOS-FET. In this case, the polarity of the voltage is reversed.
  • any element such as a resistor or an active semiconductor element can be used as the constant current elements CS1 and CS2.
  • the specific configuration of the rectifier circuit 200 is not particularly limited, and it is of course possible to replace part or all of the rectifier circuit 200 with an equivalent circuit.
  • the constant current element included in the rectifier circuit 200 can be replaced with a current mirror circuit, and other detailed configurations can be changed as appropriate without departing from the scope of the claims. Don't be! ⁇ .
  • the rectifier circuit according to the first or second aspect of the present invention can be widely applied to devices that convert alternating current into direct current.
  • the present invention can be applied to the input side of a voltage conversion circuit (DC-DC converter).
  • DC-DC converter can be used as a power supply circuit (for example, switching power supply circuit) that outputs a desired DC voltage from the AC voltage.
  • the rectifier circuit of the present invention is used instead of the diode included in the voltage conversion circuit, a circuit with low power consumption and high power factor can be realized.
  • the rectifier circuit of the present invention can be applied to all circuits that require a rectification operation and devices equipped with the circuits.
  • the rectifier circuit according to the third or fourth aspect of the present invention is widely applicable to devices that convert alternating current (high frequency voltage) into direct current, and performs, for example, energy conversion by a transformer or a coil.
  • alternating current high frequency voltage
  • DC-DC converter voltage conversion circuit
  • synchronous rectification switching power supply circuit that outputs a desired DC voltage
  • the present invention This rectifier circuit can be used.
  • the rectifying operation force of the rectifier circuit of the present invention can be applied to various circuits that require rectifying operation and the equipment on which the circuit is mounted as long as the operation purpose of these circuits and equipment is met. Of course.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

【課題】 印加される電位の正負に応じて整流電流路が断続制御される整流回路を提供すること 【解決手段】 定電流素子CS1によってトランジスタQ1が駆動される第1の電流路と、定電流素子CS2によってエミッタ-ベース間を短絡したトランジスタQ2が駆動される第2の電流路と、FET1により断続制御される整流電流路とを備えている。FET1のドレインとトランジスタQ2のコレクタに正電位が印加され、FET1のソースに負電位が印加されるとき、第2の電流路が遮断されることにより、第1の電流路は導通され、FET1のゲートを駆動し、FET1を遮断させ整流電流路を遮断する。FET1のドレインとトランジスタQ2のコレクタに負電位が印加され、FET1のソースに正電位が印加されるとき、第2の電流路が導通されることにより、第1の電流路は遮断され、FET1のゲートを駆動し、FET1を導通させ整流電流路を導通する。  

Description

明 細 書
整流回路および電圧変換回路
技術分野
[0001] 本発明は、交流電流を直流電流に変換する整流回路において力率を改善する PF C (Power Factor Correction)制御を容易にする制御機能を有する整流回路、また、 直流電圧を変換する電圧変換回路 (DC— DCコンバータ)等を含んでなる電源装置 に好適に用いられ制御を容易にする制御機能を有する整流回路、およびこの整流 回路を含む電圧変換回路に関する。
背景技術
[0002] 例えば商用電源用の電源装置において交流を整流して直流を得るにあたり、整流 素子による電力消費を抑制したり、また、より高電圧の整流を実現したりするために、 従来の固体半導体ダイオード素子に代わり、パイポーラトランジスタ、 FET (Field Effe ct Transistorノ、又 isJGBT (Insulated Gate Bipolar Transistor) 用 ヽた電流路のォ ン Zオフにより整流機能を実現するダイオード 'モジュールが用いられつつある。
[0003] 第 7図は、従来の交流直流変換回路の典型例であり、ダイオード Dl l、 D12、 D13 及び D14力もなるブリッジと、直流出力の両端に並列に挿入される平滑用のコンデン サ C11を備えている。
[0004] 変換回路 10の入力端に交流入力、例えば商用電源力 の交流入力電圧 ( )が与 えられると、入力電圧の正の半周期において、まず、ダイオード D 11及びダイオード D14が順方向バイアスされ、ダイオード Dl l、コンデンサ Cl l、ダイオード D14にい たる経路に電流が流れることによりコンデンサ C11を充電電圧 V まで充電する。入
C11
力電圧の正の半周期において、入力電圧 Vがコンデンサ C11の充電電圧 V よりも
i C11 低いときは、コンデンサ C11が放電して直流電圧を出力する。このとき、ダイオード
11の力ソードの電位はアノードの電位よりも高 、ので、ダイオード Dl 1を通して電流 は流ない。また、ダイオード D13には力ソード側を正とする電圧が印加されるので、ダ ィオード D13を通しても電流は流れない。
[0005] 入力電圧の正の半周期において入力電圧 Vがコンデンサ C11の充電電圧 V を 超えると、ダイオード Dl l、コンデンサ CI 1、ダイオード D 14にいたる経路に電流が 流れることによりコンデンサ C11を充電し、入力電圧 Vがコンデンサ C11の充電電圧 V より低くなるとこの充電電流は流れなくなる。入力電圧 Vがコンデンサ C11の充
Cll i
電電圧 V よりも低くなると、再びコンデンサ C11の放電により直流電圧を出力する。
C11
[0006] つまり、入力電圧 Vがコンデンサ C11の充電電圧 V よりも低いときはコンデンサ C
i C31
11から負荷へ放電し、入力電圧 Vがコンデンサ Cl lの充電電圧 V を超えるピーク
i Cll
付近では、コンデンサ C 11を充電する。
[0007] 入力電圧が負の半周期のときは、ブリッジを構成するダイオード Dl l、 D14に代わ りダイオード D12、 D13の作用により、入力電圧が正の半周期のときと同様の直流電 圧を出力する。このようにして、変換回路 10は、入力電圧 Vの大きさがコンデンサ C1 1の充電電圧 V よりも小さいとき〖こは、交流入力力もダイオードを通して負荷へ電
C11
流が流れな 、代わりにコンデンサ C11から負荷へ放電し、入力電圧 Vがコンデンサ ci iの充電電圧 V を超えたピークでは、交流入力からダイオードを通して負荷に
C11
電流が流れると共にコンデンサ C11を充電するという動作を繰り返し、出力端から直 流電圧を出力する。
[0008] 第 7図の変換回路 10では、上記のとおり、入力電圧 V.がコンデンサ C11の充電電 圧 V を超えたピークでは交流入力力 ダイオードを通して負荷に電流が流れる力
C11
入力電圧 Vの大きさがコンデンサ C11の充電電圧 V よりも小さい期間では交流入
i Cll
力力もダイオードを通して負荷に電流が流れず、コンデンサ Cl lから負荷に向力つて 放電されるに過ぎない。したがって、入力電圧の半周期中の大部分において、交流 入力端から出力端に接続される負荷に十分な電流を供給できないため、力率が悪い という問題がある。そこで、例えばダイオードに並列に IGBTを接続し、ダイオードで 遮断されるべき逆電流を IGBTによりバイパスして断続制御する変換回路が提案され ている (例えば、非特許文献 1参照。 ) o
[0009] 非特許文献 1:三菱電機株式会社、 "新方式力率改善コンバータ DIP-PFC"、 [online] 、 [平成 17年 3月 15日検索]、インターネットく URL :http:〃 www.mitsubishichips.co m/ Japan/ new— pro/ no.110/ p08— 1.html >
[0010] 非特許文献に記載された PFC変換回路は、第 7図に示す変換回路 10に対し、後 述する第 6図に示すのと同様にして交流入力側にコイルを挿入し、かつ、変換回路 1 0におけるダイオード D13、 D14について、第 8図に示すようにダイオードに並列に I GBTのコレクタとベースを接続したものに相当する。そして、 IGBTのベースに所望 のタイミングに所望の期間だけ電圧(例えばパルス幅変調(Pulse Width Modulation) された電圧)を印加することにより、ダイオードで遮断されるべき逆電流を IGBTにより バイパスし、交流入力を短絡して交流入力に戻し、次の瞬間 IGBTをオフして、交流 入力側に挿入したコイルの自己誘導を利用することで、力率改善を行うものである。 しかしながら、電源装置の用途においては、ダイオードに比較的大きな電流が流れる ため、ダイオードのみならずこれと並列に挿入される IGBTにも大容量のものが要求 される。このため、変換回路自体ひいては電源装置が比較的高価なものとなってい た。
[0011] 次に、直流電圧を変換する電圧変換回路 (DC— DCコンバータ)は、スイッチング 電源回路等に広く利用されている。従来のこの種の電圧変換回路は、固体半導体ダ ィオード素子を使用した整流回路を備えている。し力しながら、ダイオードによる比較 的大きな順方向電圧降下 (VF)による電力損失が生じる問題があった。そこで、電圧 変換回路において、従来のダイオードに代えて、 MOS -FET (Metal-Oxide-Semico nductor Field Effect Transistor)等の順方向電圧降下の低いスイッチング素子を使 用し、これらスイッチング素子を入力側のスイッチング素子と同期してオン Zオフ制御 する、同期整流回路を備えた構成が提案され、実用化されている。
[0012] 第 13図に示す電圧変換回路 400は、同期整流回路を使用したフォワード型の電 圧変換回路の典型例を示す回路図である。変換回路 400において、直流電源 1から トランス Tの一次側のコイル Pに対する直流電圧の供給を、 FET21によりオン Zオフ する。トランス Tの二次側のコイル Sには、フライホイール用の FET22と、平滑コンデ ンサ C21と、負荷 Lとが並列に接続される。二次側のコイル Sの一端はダイオード D2 1のアノードに接続される。ダイオード D21の力ソードはフライホイール用の FET22の ドレインに接続され、二次側のコイル Sの他端はフライホイール用の FET22のソース に接続される。また、ダイオード D21の力ソードとフライホイール用の FET22のドレイ ンは、チョークコイル L21の一端に接続され、チョークコイル L21の他端は平滑コンデ ンサ C21に接続される。
[0013] FET21のゲート G1と、フライホイール用の FET22のゲート G2は、それぞれ FET2 1、 FET22を駆動するための制御端であり、 FET21がオンのときに FET22がオフし 、 FET21がオフのときに FET22がオンするように、所定の電圧が印加される。
[0014] 電圧変換回路 400の概略動作について、図 14に示す各部の電圧'電流波形を参 照して説明する。第 14図は、電圧変換回路 400の各部の電圧 ·電流波形を示す模 式図であり、(a)は FET21のゲート G1に印加される電圧波形、(b)はフライホイール 用の FET22のゲート G2に印加される電圧波形、(c)は負荷 Lが重負荷のときにダイ オード D21を流れる電流波形、(d)は負荷 Lが重負荷のときにフライホイール用の FE T22を流れる電流波形をそれぞれ示している。また、第 14図において、(e)は負荷 L が軽負荷のときにダイオード D21を流れる電流波形、(f)は負荷 Lが軽負荷のときに フライホイール用の FET22を流れる電流波形をそれぞれ示して ヽる。
[0015] 時刻 tOにおいて FET21がオンされて、コイル Pに直流電圧が供給されると、コイル Sに生じる起電力により、コイル S力もダイオード D21及びチョークコイル L21を経由 する電流路において電流が流れ、出力端子 5, 6から負荷 Lに直流電圧が出力される 。このとき、フライホイール用の FET22はオフされている(T1の期間)。
時刻 tlにおいて FET21がオフされるのと同期してフライホイール用の FET22がォ ンされる。この FET22のオン状態は、 FET21が再びオンされる時刻(t3)まで維持さ れる (T2の期間)。
FET21がオフされてチョークコイル L21に対する電圧供給が停止すると、チョーク コイル L21に逆起電力が生じる。このときフライホイール用の FET22はオンされてい るため、チョークコイル L21の逆起電力により、チョークコイル L21から負荷 L、フライ ホイール用 FET22を経由する電流路において電流が流れ、出力端子 5, 6から直流 電圧が出力される (T31、または Τ32の期間)。
[0016] つまり、第 13図に示す電圧変換回路 400は、 FET21がオンの状態ではトランス Τ の二次側のコイル Sに生じる起電力により直流電圧を出力し、 FET21がオフに切り 換えられると、チョークコイル L21に蓄積されたエネルギーにより直流電圧を出力する [0017] なお、第 13図に示す電圧変換回路 400において、二次側のコイル Sに接続される 整流素子にダイオードを使用し、フライホイール部に FET22を使用している力 さら なる損失改善のために、二次側のコイル Sに接続されるダイオードに代えて FETを使 用する例も提案されて!ヽる(例えば特許文献 1)。
[0018] 特許文献 1 :特開平 11 69804号公報
[0019] 第 13図を再び参照して、電圧変換回路 400のチョークコイル L21を流れる電流は、 出力端子 5, 6間に接続される負荷 Lに応じて変化する。例えば、負荷 Lが重負荷の ときには、第 14図の(c)の電流波形に示すように、 FET21がオン (フライホイール用 の FET22がオフ)の期間 T1に、二次側のコイル Sから、ダイオード D21およびチョー クコイル L21を経由して流れる電流が大きいため、チョークコイル L21に蓄積される 磁気エネルギーも大きい。このため、第 14図の(d)の電流波形に示すように、 FET2 1がオフ(フライホイール用の FET22がオン)に切り換えられた後も、チョークコイル L 21から負荷 L、フライホイール用 FET22を経由する電流が長時間流れる。
[0020] これに対し、負荷 Lが軽負荷のときには、第 14図の(e)の電流波形に示すように、 期間 T1に、二次側のコイル Sから、ダイオード D21およびチョークコイル L21を経由 して流れる電流が小さいため、チョークコイル L21に蓄積される磁気エネルギーも小 さくなる。すると、第 14図の(f)の電流波形に示すように、 FET21がオフに切り換えら れた後再びオンに切り換えられるまでの期間 T2内のある時刻 t2に、チョークコイル L 21からのエネルギー供給が停止し、それ以降、チョークコイル L21から負荷 L、フライ ホイール用の FET22を経由する電流が流れなくなる。
[0021] つまり、フライホイール用の FET22がオンの期間 T2 (以下単に「オン時間 T2」とも いう)内において、チョークコイル L21に蓄積されたエネルギーに基づきフライホイ一 ル用の FET22に電流が流れる期間(第 14図の(d)、 (f)に示す期間 T31, T32。以 下「フライホイール時間」ともいう。 )は、負荷 Lに応じて様々に変化する。このため、以 下のような問題があった。
[0022] 軽負荷時には、フライホイール用の FET22のオン時間 Τ2よりもフライホイール時間 Τ32が短いため、フライホイール時間 Τ32の後も、フライホイール用の FET22がオン している場合、ドレイン電位が接地電位となっているため、平滑コンデンサ C21から チョークコイル L21、オン状態の FET22を経由して電流が流れる。つまり、負荷電流 が逆流して大きな電力損失となり、効率が悪い。
[0023] ここで、軽負荷時に、フライホイール用の FET22のゲート G2に印加される電圧を早 期に Highから Lowに切り換え、フライホイール用の FET22を早期にオフさせて、ォ ン時間 T2を、フライホイール時間 T32と同等もしくはそれより若干短くすることを仮定 する。このようにすれば、一応上記の逆流を防ぐことができると考えられる。し力しなが ら、この時刻制御は困難なものであった。
[0024] さらに、従来の同期整流回路を使用した電圧変換回路において考慮されねばなら ない他の問題として、フライホイール用の FETの動作遅延時間がある。
[0025] 第 13図および第 14図を再び参照して、電圧変換回路 400においてフライホイール 用の FET22は、ゲート G2の印加電圧がゼロボルト(Low)となる時刻 t3の後に速や かにオフ状態(ドレイン電流が流れない状態)となることが望ましい。し力しながら、フ ライホイール用の FET22のゲート G2の印加電圧がゼロボルトとされてから FET22が オフ状態となるまでに比較的長い時間を要する。このため、 FET22のゲート G2をォ フ制御しても FET22がオン状態を維持すると (オフ状態となる前に) FET21がオンと されると、二次側のコイル Sカゝらダイオード D21、 FET22を経由する貫通電流が流れ てしまい、大きな電力損失となり、効率が低下する。また、 FET22は大電流で破壊さ れる。このことも、フライホイール用の FET22のオン時間 T2の決定を困難とさせる一 つの要因となっていた。
[0026] 上記のとおり、従来の同期整流回路を使用した電圧変換回路においては、効率が 最もよくなるようにそのスイッチング手段のオン時間を決定することが極めて困難であ つた。よって、こうした問題点を解消し、従来の FET等に代わる新たな能動型の整流 手段の登場が望まれている。
発明の開示
発明が解決しょうとする課題
[0027] そこで、本発明の一つの目的は、印加される電位の正負に応じて整流電流路が断 続制御される整流回路を提供することにある。本発明のもう一つの目的は、整流電流 路が遮断状態にあるときに、所定の制御端に電圧が印加された期間だけ整流電流 路を導通させることが可能な制御機能付き整流回路を提供することにある。
[0028] 本発明のさらにもう一つの目的は、低損失で、かつスイッチング電源に使用した場 合、負荷に並列接続されるコンデンサ力 電圧変換回路への電流逆流防止、フライ ホール FET、ダイオードの貫通電流防止のためのデッドタイム制御を必要としな!/、制 御機能付き整流回路を提供することにある。また、本発明のさらにもう一つの目的は、 そのような整流回路をスイッチング手段として使用した、低損失、高効率な電圧変換 回路を提供することにある。
課題を解決するための手段
[0029] 印加される電位の正負に応じて整流電流路が断続制御される整流回路を提供する ために、本発明の第 1の局面に力かる整流回路は、第 1の定電流源によって第 1の制 御端を有する第 1の半導体素子が駆動される第 1の電流路と、第 2の定電流源によつ て PN接合素子が駆動される第 2の電流路と、第 2の制御端を有する第 2の半導体素 子により断続制御される整流電流路とを備え、前記第 2の半導体素子の一端と前記 P N接合素子の一端に正電位が印加され、前記第 2の半導体素子の他端に負電位が 印加されるとき、前記第 2の電流路が遮断されることにより、前記第 1の電流路は導通 され、前記第 2の半導体素子の第 2の制御端を駆動し、前記第 2の半導体素子を遮 断させ前記整流電流路を遮断し、前記第 2の半導体素子の一端と前記 PN接合素子 の一端に負電位が印加され、前記第 2の半導体素子の他端に正電位が印加されると き、前記第 2の電流路が導通されることにより、前記第 1の電流路は遮断され、前記第 2の半導体素子の第 2の制御端を駆動し、前記第 2の半導体素子を導通させ前記整 流電流路を導通することを特徴とする。
[0030] 上記した本発明の第 1の局面に力かる整流回路にあっては、前記第 2の電流路が 有する前記 PN接合素子をバイパスする第 3の制御端を有する第 3の半導体素子をさ らに備え、前記第 2の電流路が遮断されているとき、前記第 3の半導体素子の第 3の 制御端に電圧を印加することにより、前記第 3の半導体素子を導通させ、前記第 2の 電流路を導通させることにより、前記第 1の電流路は遮断され、前記第 2の半導体素 子の第 2の制御端を駆動し、前記第 2の半導体素子を導通させ前記整流電流路を導 通するように構成することができる。 [0031] 本発明の第 2の局面にかかる整流回路は、第 1の定電流源によって第 1の制御端を 有する第 1の半導体素子が駆動される第 1の電流路と、第 2の定電流源によって第 4 の制御端を有する第 4の半導体素子が駆動される第 2の電流路と、第 2の制御端を 有する第 2の半導体素子により断続制御される整流電流路とを備え、前記第 2の半導 体素子の一端と前記第 4の半導体素子の一端に正電位が印加され、前記第 2の半 導体素子の他端に負電位が印加されるとき、前記第 2の電流路が遮断されることによ り、前記第 1の電流路は導通され、前記第 2の半導体素子の第 2の制御端を駆動し、 前記第 2の半導体素子を遮断させ前記整流電流路を遮断し、前記第 2の半導体素 子の一端と前記第 4の半導体素子の一端に負電位が印加され、前記第 2の半導体 素子の他端に正電位が印加されるとき、前記第 2の電流路が導通されることにより、 前記第 1の電流路は遮断され、前記第 2の半導体素子の第 2の制御端を駆動し、前 記第 2の半導体素子を導通させ前記整流電流路を導通することを特徴とする。
[0032] 上記した本発明の第 2の局面に力かる整流回路にあっては、前記第 2の電流路が 有する前記第 4の半導体素子をバイパスする第 3の制御端を有する第 3の半導体素 子をさらに備え、前記第 2の電流路が遮断されているとき、前記第 3の半導体素子の 第 3の制御端に電圧を印加することにより、前記第 3の半導体素子を導通させ、前記 第 2の電流路を導通させることにより、前記第 1の電流路は遮断され、前記第 2の半 導体素子の第 2の制御端を駆動し、前記第 2の半導体素子を導通させ前記整流電 流路を導通するよう構成することができる。
[0033] また、上記した第 1または第 2いずれかの局面に力かる本発明の整流回路にあって は、前記第 1の電流路が有する前記第 1の半導体素子の一端の電位を検知し、前記 第 1の電流路に電流が流れるとき前記第 2の半導体素子が有する第 2の制御端を駆 動し、前記第 2の半導体素子を遮断し、前記第 1の電流路に電流が流れないとき前 記第 2の半導体素子が有する第 2の制御端を駆動し、前記第 2の半導体素子を導通 するための前記第 2の制御端に印加する電圧を制御するェミッタフォロア回路を備え た構成とすることができる。
[0034] 本発明のさらに別の局面に力かる整流回路は、概括的には、印加される電位の正 負に応じて整流電流路が断続制御される整流回路において、オフ制御端を備えたも のである。より具体的には、第 3または第 4の局面に力かる本発明の整流回路は以下 に述べる特徴を備えて 、る。
[0035] 第 3の局面にかかる本発明の整流回路は、第 1の定電流源によって第 1の制御端を 有する第 1の半導体素子が駆動される第 1の電流路と、第 2の定電流源によって PN 接合素子が駆動される第 2の電流路と、第 2の制御端を有する第 2の半導体素子によ り断続制御される整流電流路と、前記第 1の電流路が有する前記第 1の半導体素子 をバイパスする第 3の制御端を有する第 3の半導体素子とを備え、前記第 2の半導体 素子の一端と前記 PN接合素子の一端に正電位が印加され、前記第 2の半導体素 子の他端に負電位が印加されるとき、前記第 2の電流路が遮断されることにより、前 記第 1の電流路は導通され、前記第 2の半導体素子の第 2の制御端を駆動し、前記 第 2の半導体素子を遮断させ前記整流電流路を遮断し、前記第 2の半導体素子の 一端と前記 PN接合素子の一端に負電位が印加され、前記第 2の半導体素子の他 端に正電位が印加されるとき、前記第 2の電流路が導通されることにより、前記第 1の 電流路は遮断され、前記第 2の半導体素子の第 2の制御端を駆動し、前記第 2の半 導体素子を導通させ前記整流電流路を導通し、前記第 2の電流路が導通されて 、る とき、前記第 3の半導体素子の第 3の制御端を駆動し、前記第 3の半導体素子を導 通させることにより、前記第 1の電流路は導通され、前記第 2の半導体素子の第 2の 制御端を駆動し、前記第 2の半導体素子をオフさせ、前記第 2の半導体素子の一端 と前記 PN接合素子の一端に正電位が印加され前記第 2の半導体素子の他端に負 電位が印加されるとき、前記整流電流路を遮断することを特徴とする。
[0036] 第 4の局面に力かる本発明の整流回路は、第 1の定電流源によって第 1の制御端を 有する第 1の半導体素子が駆動される第 1の電流路と、第 2の定電流源によって第 4 の制御端を有する第 4の半導体素子が駆動される第 2の電流路と、第 2の制御端を 有する第 2の半導体素子により断続制御される整流電流路と、前記第 1の電流路が 有する前記第 1の半導体素子をバイパスする第 3の制御端を有する第 3の半導体素 子とを備え、前記第 2の半導体素子の一端と前記第 4の半導体素子の一端に正電位 が印加され、前記第 2の半導体素子の他端に負電位が印加されるとき、前記第 2の 電流路が遮断されることにより、前記第 1の電流路は導通され、前記第 2の半導体素 子の第 2の制御端を駆動し、前記第 2の半導体素子を遮断させ前記整流電流路を遮 断し、前記第 2の半導体素子の一端と前記第 4の半導体素子の一端に負電位が印 加され、前記第 2の半導体素子の他端に正電位が印加されるとき、前記第 2の電流 路が導通されることにより、前記第 1の電流路は遮断され、前記第 2の半導体素子の 第 2の制御端を駆動し、前記第 2の半導体素子を導通させ前記整流電流路を導通し 、前記第 2の電流路が導通されているとき、前記第 3の半導体素子の第 3の制御端を 駆動し、前記第 3の半導体素子を導通させることにより、前記第 1の電流路は導通さ れ、前記第 2の半導体素子の第 2の制御端を駆動し、前記第 2の半導体素子をオフ させ、前記第 2の半導体素子の一端と前記 PN接合素子の一端に正電位が印加され 前記第 2の半導体素子の他端に負電位が印加されるとき、前記整流電流路を遮断す ることを特徴とする。
[0037] また、上記した第 3または第 4のいずれかの局面に力かる本発明の整流回路にあつ ては、前記第 1の電流路が有する前記第 1の半導体素子の一端の電位を検知し、前 記第 1の電流路に電流が流れるとき前記第 2の半導体素子が有する第 2の制御端を 駆動し、前記第 2の半導体素子を遮断し、前記第 1の電流路に電流が流れないとき 前記第 2の半導体素子が有する第 2の制御端を駆動し、前記第 2の半導体素子を導 通するための前記第 2の制御端に印加する電圧を制御するェミッタフォロア回路を備 えた構成とすることができる。
[0038] さらに、本発明の電圧変換回路は、一次側に第 1のコイルが配設され、二次側に前 記第 1のコイルと磁気結合された第 2のコイルが配設されたトランスと、第 3のコイルと 、前記トランスの一次側に対する直流電圧供給のオン Zオフを切り換える第 1のスィ ツチング手段と、前記第 1のスイッチング手段により前記トランスに対する電圧供給が オンにされた状態で、前記第 2のコイルに生じる起電力に基づ 、て直流電圧を出力 する第 1の負荷電流路と、第 2のスイッチング手段を含み、前記第 1のスイッチング手 段により前記トランスに対する電圧供給がオン力 オフに切り換えられた後、前記第 2 のスイッチング手段をオンして前記第 3のコイルに生じる起電力に基づ 、て直流電圧 を出力する第 2の負荷電流路とを備えた電圧変換回路において、前記第 2のスィッチ ング手段が、上記のいずれかに記載の整流回路を含み、前記第 1のスイッチング手 段がオフからオンに切り換えられる前に前記整流回路が備える第 3の半導体素子の 第 3の制御端を駆動し、前記第 2のスイッチング手段に含まれる前記第 2の半導体素 子が有する第 2の制御端を駆動し前記第 2の半導体素子をオフさせ、前記第 2の半 導体素子の一端と前記 PN接合素子の一端に正電位が印加され前記第 2の半導体 素子の他端に負電位が印加されるとき、前記整流電流路を遮断することを特徴とす る。
発明の効果
本発明の第 1の局面にかかる整流回路は、第 1の定電流源 (例えば第 1図の定電 流素子 CS 1 )によって第 1の制御端 (例えば第 1図のトランジスタ Q 1のベース)を有す る第 1の半導体素子 (例えば第 1図のトランジスタ Q1)が駆動される第 1の電流路と、 第 2の定電流源 (例えば第 1図の定電流素子 CS2)によって PN接合素子 (例えば第 1図のェミッタ ベース間を短絡したトランジスタ Q2)が駆動される第 2の電流路と、 第 2の制御端 (例えば第 1図の FET1のゲート)を有する第 2の半導体素子 (例えば第 1図の FET1)により断続制御される整流電流路とを備えている。
第 2の半導体素子の一端 (例えば第 1図の FET1のドレイン)と PN接合素子の一端 (例えば第 1図のトランジスタ Q2のコレクタ)に正電位が印加され、第 2の半導体素子 の他端 (例えば第 1図の FET1のソース)に負電位が印加されるとき、第 2の電流路が 遮断されることにより、第 1の電流路は導通され、第 2の半導体素子の第 2の制御端( 例えば第 1図の FET1のゲート)を駆動し、第 2の半導体素子を遮断させ整流電流路 を遮断する。
一方、第 2の半導体素子の一端 (例えば第 1図の FET1のドレイン)と PN接合素子 の一端 (例えば第 1図のトランジスタ Q2のコレクタ)に負電位が印加され、第 2の半導 体素子の他端 (例えば第 1図の FET1のソース)に正電位が印加されるとき、第 2の電 流路が導通されることにより、第 1の電流路は遮断され、第 2の半導体素子の第 2の 制御端 (例えば第 1図の FET1のゲート)を駆動し、第 2の半導体素子を導通させ整 流電流路を導通する。
これにより、印加される電位の正負に応じて整流電流路が断続制御される整流回 路を実現することができる。 [0040] 上記の整流回路は、第 2の電流路が有する PN接合素子 (例えば第 1図のェミッタ ベース間を短絡したトランジスタ Q2)をバイパスする第 3の制御端 (例えば第 1図の トランジスタ Q5のベース)を有する第 3の半導体素子 (例えば第 1図のトランジスタ Q5 )をさらに備えることができる。第 2の電流路が遮断されているとき、第 3の半導体素子 の第 3の制御端に電圧を印加することにより、第 3の半導体素子を導通させ、第 2の 電流路を導通させることにより、第 1の電流路は遮断され、第 2の半導体素子の第 2の 制御端 (例えば第 1図の FET1のゲート)を駆動し、第 2の半導体素子を導通させ整 流電流路を導通する。
これにより、整流電流路が遮断状態にあるときに、第 3の制御端に電圧が印加され た期間だけ整流電流路を導通させることができる。
[0041] 本発明の第 2の局面にかかる整流回路は、第 1の定電流源 (例えば第 1図の定電 流素子 CS 1 )によって第 1の制御端 (例えば第 1図のトランジスタ Q 1のベース)を有す る第 1の半導体素子 (例えば第 1図のトランジスタ Q1)が駆動される第 1の電流路と、 第 2の定電流源 (例えば第 1図の定電流素子 CS2)によって第 4の制御端 (例えば第 1図のトランジスタ Q2のベース)を有する第 4の半導体素子 (例えば第 1図のトランジ スタ Q2)が駆動される第 2の電流路と、第 2の制御端 (例えば第 1図の FET1のゲート )を有する第 2の半導体素子 (例えば第 1図の FET1)により断続制御される整流電流 路とを備える。
第 2の半導体素子の一端 (例えば第 1図の FET1のドレイン)と第 4の半導体素子の 一端 (例えば第 1図のトランジスタ Q2のコレクタ)に正電位が印加され、第 2の半導体 素子の他端 (例えば第 1図の FET1のソース)に負電位が印加されるとき、第 2の電流 路が遮断されることにより、第 1の電流路は導通され、第 2の半導体素子の第 2の制 御端 (例えば第 1図の FET1のゲート)を駆動し、前記第 2の半導体素子を遮断させ 前記整流電流路を遮断する。
一方、第 2の半導体素子の一端 (例えば第 1図の FET1のドレイン)と第 4の半導体 素子の一端 (例えば第 1図のトランジスタ Q2のコレクタ)に負電位が印加され、第 2の 半導体素子の他端 (例えば第 1図の FET1のソース)に正電位が印加されるとき、第 2 の電流路が導通されることにより、第 1の電流路は遮断され、第 2の半導体素子の第 2の制御端 (例えば第 1図の FET1のゲート)を駆動し、第 2の半導体素子を導通させ 整流電流路を導通する。
これにより、印加される電位の正負に応じて整流電流路が断続制御される整流回 路を実現することができる。
[0042] 上記の整流回路は、第 2の電流路が有する第 4の半導体素子 (例えば第 1図のトラ ンジスタ Q2)をバイパスする第 3の制御端 (例えば第 1図のトランジスタ Q5のベース) を有する第 3の半導体素子 (例えば第 1図のトランジスタ Q5)をさらに備えることがで きる。第 2の電流路が遮断されているとき、第 3の半導体素子の第 3の制御端に電圧 を印加することにより、第 3の半導体素子を導通 (これが第 2の電流路に相当する。す なわち、定電流素子 CS2を通過する電流を総称して、第 2の電流路を通過する電流 としている。)させ、第 2の電流路を導通させることにより、第 1の電流路は遮断され、 第 2の半導体素子の第 2の制御端 (例えば第 1図の FET1のゲート)を駆動し、第 2の 半導体素子を導通させ整流電流路を導通する。
これにより、整流電流路が遮断状態にあるときに、第 3の制御端に電圧が印加され た期間だけ整流電流路を導通させることができる。
[0043] また、上記の第 1または第 2いずれかの局面に力かる本発明の整流回路は、第 1の 電流路が有する第 1の半導体素子の一端 (例えば第 1図のトランジスタ Q1のコレクタ )の電位を検知し、第 1の電流路に電流が流れるとき第 2の半導体素子が有する第 2 の制御端 (例えば第 1図の FET1のゲート)を駆動し、第 2の半導体素子を遮断し、第 1の電流路に電流が流れないとき第 2の半導体素子が有する第 2の制御端を駆動し 、第 2の半導体素子を導通するための第 2の制御端に印加する電圧を制御するェミツ タフォロア回路 (例えば第 1図のトランジスタ Q3及び Q4)を備えた構成とすることがで きる。
[0044] 以上のとおり、第 1または第 2の局面に力かる本発明によれば、印加される電位の 正負に応じて整流電流路が断続制御される整流回路を、半導体素子を用いて、ある いは半導体素子と PN接合素子を用いて、シンプルに実現することができる。
[0045] また、従来の力率改善された回路は、力率改善のための大容量の IGBT等の素子 を、大容量のダイオードと並列に付加するものであった力 本発明によれば、単一の 整流回路によって、整流電流路が遮断状態にあるときに所定の制御端に電圧が印 カロされた期間だけ整流電流路を導通させることができ、かつ、単一の整流回路によつ て大容量特性を実現することができる。従って、本発明の整流回路を電源装置に搭 載することにより、力率改善された電源装置を安価に実現できる。
[0046] 次に、本発明の第 3の局面にかかる整流回路は、第 1の定電流源 (例えば第 9図の 定電流素子 CS 1 )によって第 1の制御端 (例えば第 9図のトランジスタ Q 1のベース)を 有する第 1の半導体素子 (例えば第 9図のトランジスタ Q1)が駆動される第 1の電流 路と、第 2の定電流源 (例えば第 9図の定電流素子 CS2)によって PN接合素子 (例え ば第 9図のェミッタ ベース間を短絡したトランジスタ Q2)が駆動される第 2の電流路 と、第 2の制御端 (例えば第 9図の FET1のゲート)を有する第 2の半導体素子 (例え ば第 9図の FET1)により断続制御される整流電流路と、第 1の電流路が有する第 1 の半導体素子 (例えば第 9図のトランジスタ Q1)をバイパスする第 3の制御端 (例えば 第 9図のトランジスタ Q5のベース)を有する第 3の半導体素子 (例えば第 9図のトラン ジスタ Q5)とを備えている。
[0047] 第 2の半導体素子の一端 (例えば第 9図の FET1のドレイン)と PN接合素子の一端
(例えば第 9図のトランジスタ Q2のコレクタ)に正電位が印加され、第 2の半導体素子 の他端 (例えば第 9図の FET1のソース)に負電位が印加されるとき、第 2の電流路が 遮断されることにより、第 1の電流路は導通され、第 2の半導体素子の第 2の制御端( 例えば第 9図の FET1のゲート)を駆動し、第 2の半導体素子を遮断させ整流電流路 を遮断する。一方、第 2の半導体素子の一端 (例えば第 9図の FET1のドレイン)と P N接合素子の一端 (例えば第 9図のトランジスタ Q2のコレクタ)に負電位が印加され、 第 2の半導体素子の他端 (例えば第 9図の FET1のソース)に正電位が印加されると き、第 2の電流路が導通されることにより、第 1の電流路は遮断され、第 2の半導体素 子の第 2の制御端 (例えば第 9図の FET1のゲート)を駆動し、第 2の半導体素子を導 通させ整流電流路を導通する。
[0048] このようにして、第 2の半導体素子の一端および他端に印加される電位の正負に応 じて整流電流路が断続制御される整流回路が実現されるので、従来の FET等のスィ ツチング素子のようにそのゲート等の制御端に電圧が印加されな 、状態でボディー ダイオードを通して電流が流れることがなぐ電力損失を大幅に低減することができる
[0049] また、第 3の局面に力かる本発明の整流回路においては、特に、第 2の電流路が導 通されているとき、第 3の半導体素子の第 3の制御端 (例えば第 9図のトランジスタ Q5 のベース)を駆動し、第 3の半導体素子を導通させることにより、第 1の電流路は導通 され、第 2の半導体素子の第 2の制御端 (例えば第 9図の FET1のゲート)を駆動し、 第 2の半導体素子をオフさせる。従って、整流電流路が導通状態にあるときでも、第 3 の制御端に電圧が印加された場合、逆方向電流遮断状態に転換維持することがで きる。これは後述する図 11に示すような回路に使用すると、スイッチング手段 D10に 例えばショットキーダイオードのような順方向電圧降下の小さいダイオードを並列接 続すると、スイッチング手段 D10の内部に存在する FET1がオフ時、 FET1の寄生ダ ィオードを流れる電流が無いためスイッチング手段 D10の Voff印加端子に制御電圧 を印加して、 FET1をオフすることで、 FET1のドレインに正極性電位が印加される前 に十分余裕をもってスイッチング手段 D10の逆方向電圧を阻止できる。これは、 FET の寄生ダイオード電流による少数キャリア消滅時間を考慮しなくてもよいという効果が ある。図 11の FET21のスイッチング速度が非常に速いため、通常は、 FET21と FE T1のデッドタイム制御が必ず必要なところ、この整流回路では、これを考慮しないで 済む。
[0050] 第 4の局面にかかる本発明の整流回路は、第 1の定電流源 (例えば第 9図の定電 流素子 CS1)によって第 1の制御端 (例えば第 9図のトランジスタ Q 1のベース)を有す る第 1の半導体素子 (例えば第 9図のトランジスタ Q1)が駆動される第 1の電流路と、 第 2の定電流源 (例えば第 9図の定電流素子 CS2)によって第 4の制御端 (例えば第 9図のトランジスタ Q2のベース)を有する第 4の半導体素子 (例えば第 9図のトランジ スタ Q2)が駆動される第 2の電流路と、第 2の制御端 (例えば第 9図の FET1のゲート )を有する第 2の半導体素子 (例えば第 9図の FET1)により断続制御される整流電流 路と、第 1の電流路が有する第 1の半導体素子 (例えば第 9図のトランジスタ Q1)をバ ィパスする第 3の制御端 (例えば第 9図のトランジスタ Q5のベース)を有する第 3の半 導体素子 (例えば第 9図のトランジスタ Q5)とを備える。 [0051] 第 2の半導体素子の一端 (例えば第 9図の FET1のドレイン)と第 4の半導体素子の 一端 (例えば第 9図のトランジスタ Q2のコレクタ)に正電位が印加され、第 2の半導体 素子の他端 (例えば第 9図の FET1のソース)に負電位が印加されるとき、第 2の電流 路が遮断されることにより、第 1の電流路は導通され、第 2の半導体素子の第 2の制 御端 (例えば第 9図の FET1のゲート)を駆動し、前記第 2の半導体素子を遮断させ 前記整流電流路を遮断する。
[0052] 一方、第 2の半導体素子の一端 (例えば第 9図の FET1のドレイン)と第 4の半導体 素子の一端 (例えば第 9図のトランジスタ Q2のコレクタ)に負電位が印加され、第 2の 半導体素子の他端 (例えば第 9図の FET1のソース)に正電位が印加されるとき、第 2 の電流路が導通されることにより、第 1の電流路は遮断され、第 2の半導体素子の第 2の制御端 (例えば第 9図の FET1のゲート)を駆動し、第 2の半導体素子を導通させ 整流電流路を導通する。更に、第 2の電流路が導通されているとき、第 3の半導体素 子の第 3の制御端 (例えば第 9図のトランジスタ Q5のベース)を駆動し、第 3の半導体 素子を導通させることにより、第 1の電流路は導通され、第 2の半導体素子の第 2の制 御端 (例えば第 9図の FET1のゲート)を駆動し、第 2の半導体素子をオフさせる。
[0053] 従って第 2の半導体素子の一端および他端に印加される電位の正負に応じて整流 電流路が断続制御される整流回路が実現されるとともに、整流電流路が導通状態に あるときでも、第 3の制御端に電圧が印加された場合、逆方向電流遮断状態に転換 維持することができるため、第 3の局面に力かる本発明の整流回路と同様の効果が 得られる。
[0054] また、上記した第 3または第 4の局面のいずれかにかかる本発明の整流回路は、第 1の電流路が有する第 1の半導体素子の一端 (例えば第 9図のトランジスタ Q1のエミ ッタ)の電位を検知し、第 1の電流路に電流が流れるとき第 2の半導体素子が有する 第 2の制御端 (例えば第 9図の FET1のゲート)を駆動し、第 2の半導体素子を遮断し 、第 1の電流路に電流が流れないとき第 2の半導体素子が有する第 2の制御端を駆 動し、第 2の半導体素子を導通するための第 2の制御端に印加する電圧を制御する ェミッタフォロア回路 (例えば第 9図のトランジスタ Q3及び Q4)を備えた構成とするこ とがでさる。 [0055] 以上のとおり、第 3または第 4の局面に力かる本発明によれば、印加される電位の 正負に応じて整流電流路が断続制御されるとともに、整流電流路が導通状態にある ときでも、第 3の制御端に電圧が印加された場合、逆方向電流遮断状態に転換維持 することができるための制御端を備えた整流回路を、半導体素子を用いて、あるいは 半導体素子と PN接合素子を用いて、シンプルに実現することができる。
[0056] 上記した第 3または第 4の局面に力かる本発明の整流回路は、第 11図に示す電圧 変換回路におけるフライホイール用のスイッチング手段として使用すると特に有利で ある。すなわち、一次側に第 1のコイル (例えば第 11図のコイル P)が配設され、二次 側に第 1のコイルと磁気結合された第 2のコイル (例えば第 11図のコイル S)が配設さ れたトランス (例えば第 11図のトランス T)と、第 3のコイル (例えば第 11図のコイル L2 1)と、トランスの一次側に対する直流電圧供給のオン Zオフを切り換える第 1のスイツ チング手段 (例えば第 11図の FET21)と、第 1のスイッチング手段により前記トランス に対する電圧供給がオンにされた状態で、第 2のコイルに生じる起電力に基づ 、て 直流電圧を出力する第 1の負荷電流路と、第 2のスイッチング手段を含み、第 1のスィ ツチング手段によりトランスに対する電圧供給がオン力 オフに切り換えられた後、第 2のスイッチング手段をオンして第 3のコイルに生じる起電力に基づ 、て直流電圧を 出力する第 2の負荷電流路と、を備えた電圧変換回路において、第 2のスイッチング 手段が、上記に記載の整流回路を含むものとする(例えば第 11図のスイッチング手 段 D10。(この例では、スイッチング手段 D10にショットキーバリアダイオード DSが並 列接続されている。 ) oそして、第 2のスイッチング手段がオンされているときに、第 1の スイッチング手段がオフからオンに切り換えられる前に整流回路が備える第 3の半導 体素子の第 3の制御端 (例えば第 11図のスイッチング手段 D10の電圧 VOFF印加 端)を駆動し、整流電流路が導通状態にあるときでも、第 3の制御端に電圧が印加さ れた場合、逆方向電流遮断状態に転換維持することができる。
[0057] このように構成した電圧変換回路によれば、第 3の制御端に印加される電圧に基づ V、て、効率が最もよくなるようにそのスイッチング手段のオン時刻を容易に制御するこ とができるので、負荷電流の逆流や貫通電流の問題を解消した電圧変換回路を簡 易に実現することができる。 [0058] 上記した本発明の目的および利点並び他の目的および利点は、以下の実施の形 態の説明を通じてより明確に理解される。もっとも、以下に記述する実施の形態は例 示であって、本発明はこれらに限定されるものではない。
図面の簡単な説明
[0059] [図 1]本発明を適用した第 1の実施の形態における整流回路の構成を示す回路図で ある。
[図 2]第 1図に示す整流回路におけるトランジスタ Ql, Q2, Q5、定電流素子 CS1及 び CS2を含む回路部分の等価回路を示す回路図である。
[図 3]第 1の実施の形態における整流回路の電流、電圧波形を測定するための測定 回路図である。
[図 4]第 3図に示す測定回路により観測された整流回路の電流、電圧波形である。
[図 5]第 3図に示す測定回路により観測された整流回路の電流、電圧波形である。
[図 6]第 1の実施の態様の整流回路を適用して交流直流変換回路 20を構成したとき の基本回路図である。
[図 7]従来の交流直流変換回路の例を示す回路図である。
[図 8]従来のダイオードに並列に IGBTを接続し、ダイオードで遮断されるべき逆電流 を IGBTによりバイパスして断続制御する場合の回路図である。
[図 9]本発明を適用した第 2の実施の形態における整流回路の構成を示す回路図で ある。
[図 10]第 9図に示す整流回路におけるトランジスタ Ql, Q2, Q5、定電流素子 CS1 及び CS2を含む回路部分の等価回路を示す回路図である。
[図 11]第 9図に示す整流回路をフライホイール用のスイッチング手段として適用した 電圧変換回路の回路図である。
[図 12]第 11図に示す電圧変換回路における軽負荷時および重負荷時の各部の電 流、電圧波形を示す模式図である。
[図 13]従来の同期整流回路を使用したフォワード型の電圧変換回路の例を示す回 路図である。
[図 14]第 13図に示す従来の電圧変換回路における重負荷時および軽負荷時の各 部の電圧、電流波形を示す模式図である。
発明を実施するための最良の形態
[0060] [第 1の実施の形態]
第 1図は、本発明を適用した第 1の実施の形態における整流回路 100の基本的な 構成を示す回路図である。
[0061] 第 1図に示す整流回路 100において、アノード端 1と力ソード端 2を備えた電流路に 、 Nチャネル 'パワー MOS— FET等のコレクタ耐電圧が大きくかつ電流容量の大き い FET1が設けられている。 FET1のソースはアノード端 1に接続され、 FET1のドレ インは力ソード端 2に接続されており、 FET1のゲートに Highが入力されると FET1が オンして電流路を導通状態とし、 FET1のゲート入力が Highから Lowに下がると、 F ET1がオフして電流路を遮断する。つまり、 FET1は、そのスイッチング動作により、 アノード端 1と力ソード端 2との間の整流電流路を断続制御する。トランジスタ Ql、及 びトランジスタ Q2は、実質同一特性の NPN型バイポーラトランジスタであり、トランジ スタ Q1及び Q2のベースは共通接続されており、トランジスタ Q1はコレクタが FET1 のソース、すなわちアノード端 1に接続され、他方のトランジスタ Q2のコレクタはカソ ード端 2に接続され、ェミッタはベースに接続されてェミッタ ベース間が短絡されて いる。
[0062] 定電圧ダイオード Dl、ダイオード D2、ジャンクショントランジスタ J— FET (Junction Field Effect Transistor)、抵抗 Rl、及びコンデンサ CIは、前記トランジスタ Ql及び Q 2、並びに後述するトランジスタ Q3、 Q4及び Q5を駆動する駆動電圧源を構成する。 このような駆動電圧源は、後述するように力ソード端 2に正電位が印加される半周期 に、アノードが力ソード端 2に接続されているダイオード D2及びジャンクショントランジ スタ J - FETを通してコンデンサ C 1を充電し、コンデンサ C 1の両端のうちアノード端 1 に接続された一方側を負、他方側を正とする電圧を発生させる。アノード端 1に接続 されているコンデンサ C1の一方側(駆動源として負側)には、トランジスタ Q1のコレク タ、 FET1のソース、後述するトランジスタ Q4のコレクタ、及びトランジスタ Q5のェミツ タが接続されている。一方、ダイオード D2及びジャンクショントランジスタ J—FETを介 して力ソード端 1に接続されているコンデンサ C1の他方側(駆動源として正側)には、 後述するトランジスタ Q3のコレクタが接続されると共に、トランジスタ Q1のェミッタ、ト ランジスタ Q2のェミッタ力 それぞれ定電流素子 CS1、及び定電流素子 CS2を介し て接続されている。
従って、整流回路 100において、駆動電圧源としてのコンデンサ C1と、トランジスタ Q1との接続関係をみると、定電流素子 CS1から、トランジスタ Q1のェミッタ、コレクタ を通ってコンデンサ C1の一方側(駆動源として負側)に接続されている。また、トラン ジスタ Q2については、定電流素子 CS2から、トランジスタ Q2のェミッタ、コレクタを通 つてコンデンサ C1の一方側に接続されている。さらに、トランジスタ Q5については、 定電流素子 CS1からトランジスタ Q5のコレクタ、ェミッタを通ってコンデンサ C1の一 方側に接続されている。
[0063] 第 2図は、第 1図に示す整流回路 100おけるトランジスタ Ql, Q2, Q5、定電流素 子 CS1及び CS2を含む回路部分 (第 1図の破線部分)の等価回路を示す回路図で ある。既に第 1図を参照して説明したように、トランジスタ Q2のェミッタはベースに接 続されており、ベースーェミッタ間が短絡されている。このため、 NPN型バイポーラト ランジスタであるトランジスタ Q2は、ベース一コレクタ間の PN接合ダイオードを提供 する。ここで、定電流素子 CS2から、トランジスタ Q2のェミッタ、コレクタを通って、 FE T1のドレインすなわち力ソード端 2に至る電流路 (第 1図)を考えると、この電流路は、 第 2図に示すとおり、定電流素子 CS2からアノードが接続され、 FET1のドレインすな わち力ソード端 2に力ソードが接続されるように、 PN接合ダイオードを挿入した電流 路と等価である。従って、定電流素子 CS2及びトランジスタ Q2を含む電流路におい て、トランジスタ Q2のコレクタ、すなわちトランジスタ Q2と等価な PN接合ダイオードの 力ソードに、力ソード端 2の電位が印加されるよう構成されて 、る。
[0064] トランジスタ Q2がオフのとき、トランジスタ Q1のベースに、トランジスタ Q2のベース ーェミッタ間電位 (約 0. 6ボルト)を与えているため、力ソード端 2 (トランジスタ Q2のコ レクタであり、同様に PN接合ダイオードの力ソード)が負電位にならない限り、ァノー ド端 1、力ソード端 2の間の導通は遮断される。
[0065] 定電流素子 CS2及びトランジスタ Q2を含む電流路においては、上述のとおりトラン ジスタ Q2のコレクタに力ソード端 2の電位が印加される。ここで、力ソード端 2に正電 位が印加されるときは、トランジスタ Q2と等価な PN接合ダイオードに逆方向電圧が 印加されることと等価である。このとき、トランジスタ Q1のベースには定電流素子 CS2 を通してベース電流が供給されるため、トランジスタ Q1はオン状態にあり、コンデンサ C1を駆動電圧源として、定電流素子 CS1を通してトランジスタ Q1のェミッタに向かう 電流路に電流が流れる。
これに対し、力ソード端 2に負電位が印加されるときは、トランジスタ Q2と等価な PN 接合ダイオードに順方向電圧が印加されることと等価である。このため、力ソード端 2 に負電位が印加されると、トランジスタ Q2のコレクタ電位が下がり、同時にコレクタ一 ベース間電位 (PN接合ダイオードに生ずる約 0. 6V)を維持しょうとして、トランジスタ Q2のベース電位も低下する。トランジスタ Q2のベース電位が低下することで、トラン ジスタ Q1のベース電位も低下し、トランジスタ Q1がオフして定電流素子 CS1を通し てトランジスタ Q1のェミッタに向力う電流路が遮断される。
[0066] 基本的には、第 2図に示す PN接合素子を使用した等価回路が本発明の整流回路 の動作原理を示している。本実施形態においてトランジスタ Q2を使用した理由は、ト ランジスタ Q 1がパイポーラトランジスタである必要があり、そのトランジスタ Q 1の特性 ( 温度特性、ベースーェミッタ間電圧等)が略同一のトランジスタを PN接合素子として 使用するほうが、をより好ましいからである。なお、トランジスタ Ql, Q2としてノイポー ラトランジスタを使用している力 それに代えて FETを使用してもよいことは勿論であ る。
[0067] 第 1図を再び参照して、トランジスタ Q3及びトランジスタ Q4は、ェミッタフォロワ型の ノ ッファー増幅器を構成する。トランジスタ Q3、 Q4には、例えばバイポーラトランジス タを用いることができる。本実施態様では、トランジスタ Q3には NPN型バイポーラトラ ンジスタが、トランジスタ Q4には PNP型バイポーラトランジスタが用いられ、両トランジ スタ Q3、 Q4のェミッタは共通接続されると共に、その共通ェミッタは FET1のゲート に接続されている。また、両トランジスタ Q3、 Q4のベースも共通接続され、そのべ一 スにはトランジスタ Q1のェミッタが接続されている。
[0068] トランジスタ Q1のェミッタ、トランジスタ Q2のェミッタには、コンデンサ C1を駆動電 圧源として、それぞれ定電流素子 CS1、 CS2を介して、所定の定電流が供給される ように構成されている。
[0069] トランジスタ Q3及び Q4の共通ベースと、トランジスタ Q4のコレクタ間には抵抗 R2が 接続されている。後述するようにトランジスタ Q1がオフとされたときに、定電流素子 C S1を通して電流が抵抗 R2を流れることにより、トランジスタ Q3及び Q4の共通ベース の電位を上昇させる。
[0070] トランジスタ Q3及び Q4は、ェミッタフォロワ型のバッファー増幅器を構成し、し力もト ランジスタ Q3及び Q4の共通ェミッタは FET1のゲートに接続されており、また、トラン ジスタ Q4のコレクタは FET1のソースに接続されて!、るため、トランジスタ Q 1のェミツ タ電位、すなわちトランジスタ Q1のェミッタ一コレクタ間電圧と同じ電圧力 直接 FET 1のゲートに入力されるよう構成されている。従って、例えばトランジスタ Q1がオンし、 定電流素子 CS2を通してトランジスタ Q1のェミッタ力 コレクタに電流が流れるときに は、トランジスタ Q3及び Q4の共通ベースの電位は実質的にゼロボルトであり(このと き、 NPN型バイポーラトランジスタであるトランジスタ Q3はオフ、 PNP型バイポーラト ランジスタであるトランジスタ Q4はオンの状態にある)、後述するように FET1のゲート 入力もゼロボルト(Low)となる。逆に、トランジスタ Q1がオフし、定電流素子 CS1を通 して抵抗 R2に電流が流れるときには、トランジスタ Q3及び Q4の共通ベースの電位 が抵抗 R2による電圧降下に等しい電圧だけ上昇し (このときトランジスタ Q3はオン、 トランジスタ Q4はオフの状態にある)、後述するように FET1のゲート入力も Highとな る。
[0071] 整流回路 100は、第 1図に示すようにトランジスタ Q5を更に備える。トランジスタ Q5 のコレクタは、トランジスタ Q1及び Q2の共通ベースに接続され、ェミッタは FET1の ソースに(従って、トランジスタ Q1のコレクタ及びアノード端 1)接続されている。また、 トランジスタ Q5のベースは抵抗 R3を介して、電圧入力端 3、 4の一方の入力端 3に接 続され、トランジスタ Q5のェミッタは他方の入力端 4に接続されている。なお、トランジ スタ Q5のベース一ェミッタ間には抵抗 R4が接続されている。そして、電圧入力端 3、 4間には、例えば図示しな 、PWM制御手段が発生する所望のパルス幅変調された 電圧が印加される。
[0072] 次に、整流回路 100の動作について説明する。 まず、電圧入力端 3, 4に電圧が印加されていない状態で、整流回路 100のカソー ド端 2に正電位が印加された場合の整流回路 100の基本整流動作を考える。上述の とおり、力ソード端 2に正電位が印加されることは、トランジスタ Q2と等価な PN接合ダ ィオードに逆方向電圧が印加されることと等価である。このとき、トランジスタ Q1のべ ースには定電流素子 CS 2を通してベース電流が供給されるため、トランジスタ Q1は オン状態にあり、コンデンサ C1を駆動電圧源として、定電流素子 CS1を通してトラン ジスタ Q1のェミッタに向力う電流路に電流が流れる。
[0073] トランジスタ Q1がオンされると、トランジスタ Q1のェミッタ電位(コレクタ一ェミッタ間 電圧)は実質的にゼロボルト(Low)となるため、 PNP型バイポーラトランジスタである Q4はオフ力 オンに切り替わり、 NPN型バイポーラトランジスタであるトランジスタ Q3 はオン力もオフに切り替わる。トランジスタ Q3がオフ、トランジスタ Q4がオンのとき、ト ランジスタ Q3及び Q4の共通ェミッタの電位はゼロボルト(Low)であるので、 FET1 のゲート入力はゼロボルト(Low)であり、 FET1はオフとされる。この結果、電圧入力 端 3, 4の電圧入力がない状態で力ソード端 2に正電位が与えられたとき、アノード端 1と力ソード端 2を結ぶ電流路が FET1によって遮断され、力ソード端 2から FET1のド レイン、ソース、そしてアノード端 1に向かう方向の電流は流れない。
[0074] なお、力ソード端 2に正電位が印加されて!、るとき、ダイオード D2及びジャンクショ ントランジスタ J FETを通してコンデンサ C1は充電され、その充電電圧は定電圧ダ ィオード D1によってジャンクショントランジスタ J— FETのゲートを制御して一定値(例 えば約 10ボルト)に制限される。
[0075] 次に、電圧入力端 3、 4に電圧が印加されていない状態で、整流回路 100のカソー ド端 2に正電位が印加された状態力 力ソード端 2の電位が低下してゼロとなり、その 後アノード端 1、力ソード端 2間の極性が反転して力ソード端 2に負電位が印加された 状態に変化する場合の、整流回路 100の基本整流動作を考える。
[0076] 力ソード端 2の電位がゼロとなり、その後負電位が印加されると、トランジスタ Q2と等 価な PN接合ダイオードに順方向電圧が印加されることと等価である。このため、カソ ード端 2に負電位が印加されると、トランジスタ Q2のコレクタ電位が下がり、同時にコ レクタ一ベース間電位 (PN接合ダイオードに生ずる約 0. 6V)を維持しょうとして、トラ ンジスタ Q2のベース電位も低下する。トランジスタ Q2のベース電位が低下することで 、トランジスタ Q1のベース電位も低下し、トランジスタ Q1がオフに反転して定電流素 子 CS1を通してトランジスタ Q1のェミッタに向力う電流路が遮断される。トランジスタ Q1がオフすると、定電流素子 CS1を通る電流は、そのェミッタ コレクタ間をもはや 流れないが、抵抗 R2を通して流れる。このため、トランジスタ Q1のェミッタ電位は抵 抗 R2の電圧降下に相当する分だけ上昇する。このようにしてトランジスタ Q1のェミツ タ電位が上昇 (Highに反転)すると、 PNP型ノイポーラトランジスタである Q4はオン 力 オフに切り替わり、 NPN型バイポーラトランジスタであるトランジスタ Q3はオフか らオンに切り替わる。トランジスタ Q3がオン、トランジスタ Q4がオフのとき、トランジスタ Q3及び Q4の共通ェミッタの電位は上昇(Highに反転)する。従って、 FET1のゲー ト入力は Highに反転し、 FET1はオンとされる。この結果、力ソード端 2の電位が低下 してゼロとなり、その後アノード端 1、力ソード端 2間の極性が反転して力ソード端 2に 負電位が与えられると、アノード端 1と力ソード端 2を結ぶ電流路が FET1によって導 通状態とされ、アノード端 1から FET1のソース、ドレイン、そして力ソード端 2に向かう 方向に電流が流れる。
[0077] 本実施形態の整流回路 100では、例えば電源装置に搭載した場合の当該電源装 置の力率改善を目的として、整流回路 100の力ソード端 2に正電位が与えられている 状態、すなわち、整流回路 100の整流電流路が遮断状態にあるときに、電圧入力端 3、 4間に電圧が印加される。以下に、力かる整流回路 100の基本的動作を説明する
[0078] 第 1図を参照して、整流回路 100において、電圧入力端 3、 4間に電圧が印加され ていないとき、トランジスタ Q5のベースに電圧が印加されないため、トランジスタ Q5の ベースーェミッタ間にベース電流は流れず、トランジスタ Q5はオフである。つまり、定 電流素子 CS2を通して更にトランジスタ Q5のコレクターェミッタ間を通る電流路は遮 断されている。従って、電圧入力端 3、 4間に電圧が印加されていないときには、トラ ンジスタ Q1のベース一コレクタ間にトランジスタ Q5が接続されていても、トランジスタ Q1のベース電位は何ら影響を受けな 、。
[0079] 次に、整流回路 100において、電圧入力端 3、 4間に電圧入力端 3側を正とする電 圧 (例えば制御パルス信号)力 抵抗 R3を通してトランジスタ Q5のベースに印加され ると、トランジスタ Q5のベースーェミッタ間にベース電流が流れ、トランジスタ Q5をォ ンさせる。すると、トランジスタ Q5のコレクターェミッタ間電圧は実質的にゼロボルトと なるため、トランジスタ Q5のオフ力 オンへの反転は、オン状態にあるトランジスタ Q1 のベース電位を実質的にゼロボルトまで低下させる。このため、トランジスタ Q1は、ベ ース電位がゼロボルトに低下することによってオフに反転させられる。これにより、トラ ンジスタ Q1のェミッタ電位が上昇(Highに反転)し、トランジスタ Q3及び Q4の共通 ベースもまた上昇 (Highに反転)する。ェミッタフォロワ型のバッファー増幅器を構成 するトランジスタ Q3及び Q4のェミッタ電位が上昇(Highに反転)するので、 FET1の ゲート入力は Highに反転し、 FET1はオンとされる。この結果、力ソード端 2に正電位 が与えられている状態で、電圧入力端 3、 4に入力端 3側を正とする電圧を印加する ことで、電圧が印加されている期間(Highの期間)、アノード端 1と力ソード端 2を結ぶ 電流路が FET1によって導通状態とされ、力ソード端 2から FET1のドレイン、ソース、 そしてアノード端 1に向力う方向、すなわち整流回路 100の整流電流路に通常とは逆 方向に電流を流すことができる。
[0080] 電圧入力端 3、 4を備える整流回路 100の有利な動作は、例えば、アノード端 1、力 ソード端 2間に正弦波の交流入力電圧を与えた場合の整流回路 100の電流、電圧 波形を観察すれば容易に理解可能である。第 3図は、アノード端 1、力ソード端 2間に 正弦波の交流入力電圧を入力し、整流回路 100の電流、電圧波形を測定する測定 回路を示し、第 4図、第 5図は、第 3図の測定回路によって観察された電流、電圧波 形を示す。
[0081] 第 4図を参照して、時刻 Z1において、整流回路 100のアノード端には正電位力 力 ソード端には負電位が与えられ、トランジスタ Q1はオフ、従って FET1はオンとされ、 アノード端力も力ソード端の方向に電流が流れる。このときの整流回路 100のアノード —力ソード間電圧はゼロボルトである(時刻 Z1から時刻 Z2)。
[0082] 時刻 Z2において、交流入力電圧の極性が反転し、整流回路 100のアノード端には 負電位が、力ソード端には正電位が与えられる。電圧入力端 3、 4に電圧が印加され ない通常の動作では、トランジスタ Q1はオン、トランジスタ Q2はオフし、従って FET1 はオフであり、力ソード端力もアノード端の方向の電流は遮断される。ところが、電圧 入力端 3、 4間に電圧入力端 3を正電位とする電圧 (例えば制御パルス信号)を印加 することで、その制御パルス信号が Highの期間に限りトランジスタ Q1をオフさせ、従 つて FET1をオンさせて、力ソード端力 アノード端の方向に電流を流すことができる 。すなわち、第 5図に別個に示す電圧波形、電流波形力も明らかなように、電圧が発 生している期間では電流が遮断され、電圧が発生していない期間は、導通電流が流 れる。このように断続する個々の電圧波形及び電流波形のピークを結んだ包絡線は 、交流入力電圧が正弦波状であることから、正弦波状となっている(時刻 Z2から時刻 Z3)。
[0083] 第 6図は、本実施態様の整流回路 100を適用して交流直流変換回路 20を構成し たときの基本回路図である。第 6図に示す変換回路 20において、ダイオード D33、 D 34には本実施態様の整流回路 100が用いられている。また、ダイオード D31、 D32 には、整流回路 100においてトランジスタ Q5、抵抗 R3、 R4、及び電圧入力端 3、 4を 省略した整流回路、又は通常のダイオードが用いられている。変換回路 20によれば 、交流入力端のうちコイル L31が接続されている一端に正電位が与えられ、他端に 負電位が与えられて ヽる状態で、ダイオード D33 (整流回路 100)の電圧入力端 (第 1図の整流回路 100における電圧入力端 3に相当する。以下同様である。)に電圧を 印加し、コイル L31が接続されている一端に負電位が与えられ、他端に正電位が与 えられている状態で、 D34の電圧入力端に電圧を印加することで、力率改善を図るこ とがでさる。
[0084] 第 6図に示す変換回路 20の動作を以下に説明する。まず、交流入力端のうちコィ ル L31が接続されている一端に正電位が印加されている状態を考える。ダイオード D 31のアノード側に正電位が印加されるとして、ダイオード D31のアノード側の電位 V 力 Sコンデンサ C31の充電電圧 V よりも低い場合、ダイオード D31を通してコンデン
C31
サ C31に向かって電流は流れない。この状態でダイオード D33 (整流回路 100)の電 圧入力端に電圧を印加すると、ダイオード D33 (整流回路 100)が導通状態とされる ので、交流入力端のうちコイル L31が接続されている一端から、コイル L31、ダイォー ド D33 (整流回路 100)、ダイオード D34 (整流回路 100)を通って交流入力端の他 端に電流が流れる。ここでコイル L31に電流が流れるので、ダイオード D33 (整流回 路 100)が遮断した時に、コイル L31の自己誘導により電圧 V を発生させ、コイル L
し 31
31の自己誘導電圧 V 力コンデンサ C31の充電電圧 V よりも大きいことで、ダイ
L31 C31
オード D31からコンデンサ C31に向かって電流を流すことができる。
[0085] 入力電圧 Vがコンデンサ C11の充電電圧 V を超えると、ダイオード D31、コンデ
i C31
ンサ C31、ダイオード D34にいたる経路に電流が流れることによりコンデンサ C31を 充電し、入力電圧 Vを負荷に供給する。入力電圧 Vが、コンデンサ C11の充電電圧 V より低くなると、ダイオード D31を通してコンデンサ C31に向力つて電流は流れ
C31
ない。この状態でダイオード D33 (整流回路 100)の電圧入力端に電圧を印加すると 、ダイオード D33 (整流回路 100)が導通状態とされるので、交流入力端のうちコイル L31が接続されている一端から、コイル L31、ダイオード D33 (整流回路 100)、ダイ オード D34 (整流回路 100)を通って交流入力端の他端に電流が流れる。このように して、入力電圧 Vの大きさがコンデンサ C11の充電電圧 V よりも小さい期間におい
i C31
て、交流入力力らコイル L31、ダイオード D33 (整流回路 100)、ダイオード D34 (整 流回路 100)を通して断続的に電流を流すことにより、コイル L31の自己誘導電圧 V
31に基づくエネルギーを負荷に供給することができる。
[0086] 交流入力端の他端に正電位が印加されている状態においては、入力電圧 Vの大 きさ力 コンデンサ C 11の充電電圧 V の大きさよりも小さいときに、ダイオード D32
C31
を通してコンデンサ C31に向かって電流は流れない。この状態でダイオード D34 (整 流回路 100)の電圧入力端に電圧を印加すると、ダイオード D34 (整流回路 100)が 導通状態とされるので、交流入力端の他端から、ダイオード D34 (整流回路 100)、ダ ィオード D33 (整流回路 100)、コイル L31を通って交流入力端の一端に電流が流れ る。ここでコイル L31に電流が流れるので、ダイオード D34 (整流回路 100)が遮断し た時に、コイル L31の自己誘導により電圧— V を発生させ、コイル L31の自己誘導
し 31
電圧—V がコンデンサ C31の充電電圧 V よりも大きいことで、ダイオード D32か
L31 C31
らコンデンサ C31を通りコイル L31に向力 電流を流すことができる。
[0087] 従来の変換回路 10では、入力電圧 Vの大きさがコンデンサ C11の充電電圧 V よ
i C11 りも小さい期間では交流入力からダイオードを通して負荷に電流が流れず、コンデン サ CI 1から負荷に向かって放電されるに過ぎないものであった。これに対し、本実施 態様の整流回路 100を適用した変換回路 10によれば、入力電圧 Vの大きさがコン デンサ C11の充電電圧 V よりも小さい期間において、コンデンサ C31の充電電圧
C31
V に加え、コイル L31の自己誘導電圧 V 基づくエネルギーを負荷に供給するこ
C31 L31
とができる。これにより、入力電圧の半周期中の大部分において、交流入力端から出 力端に接続される負荷に十分な電流を供給できるので、力率を大幅に改善すること ができる。
[0088] 上記の実施の形態において、アノード端 1、力ソード端 2間に正弦波の交流入力電 圧を印加する例を説明したが、アノード端 1、力ソード端 2間に印加する電圧は、任意 の波形の交流電圧 (例えば、鋸歯状の交流電圧等)であってもよいことは勿論である 。また、上記の実施の形態において、一例として、 FET1がオフしている期間中に、 電圧入力端 3、 4間にパルス幅変調された電圧を印加して、整流電流路を導通させる 例を説明したが、本発明はこれに限定されるものではなぐ印加する電圧波形を適宜 変更することにより、任意の電流を流せるようにしてもょ 、。
[0089] 上記の実施の形態において、整流回路 100のトランジスタ Q1から Q5として、バイポ ーラトランジスタを使用して ヽるが、 FET (MOS- FET)を使用することも勿論可能で あり、この場合でも上記の実施の形態と同様の効果が得られる。さらに、整流回路 10 0において、 NPN型バイポーラトランジスタを PNP型バイポーラトランジスタに、 PNP 型バイポーラトランジスタを NPN型バイポーラトランジスタにそれぞれ変更し、同様に Nチャネル ·パワー MOS - FETを Pチャネル ·パワー MOS - FETに変更してもよ!/ヽ 。この場合、電圧の極性は逆となる。
[0090] また、上記の実施の形態において、定電流素子 CS1, CS2としては、抵抗、能動半 導体素子等の任意の素子を使用することができる。
[0091] また、整流回路 100の具体的構成についても特に限定はなぐ整流回路 100の一 部または全部を等価回路により置換することも勿論可能である。例えば、整流回路 1 00に含まれる定電流素子をカレントミラー回路に置き換えることも可能であり、その他 の細部構成にっ 、ても、特許請求の範囲を逸脱しない限度にぉ 、て適宜変更可能 であることは勿!^である。 [0092] [第 2の実施の形態]
第 9図は、本発明を適用した第 2の実施の形態における整流回路 200の基本的な 構成を示す回路図である。
[0093] 第 9図に示す整流回路 200において、アノード端 1と力ソード端 2を備えた電流路に 、 Nチャネル 'パワー MOS— FET等のコレクタ耐電圧が大きくかつ電流容量の大き い FET1が設けられている。 FET1のソースはアノード端 1に接続され、 FET1のドレ インは力ソード端 2に接続されており、 FET1のゲートに Highが入力されると FET1が オンして電流路を導通状態とし、 FET1のゲート入力が Highから Lowに下がると、 F ET1がオフして力ソード端子 2からアノード端子 1へ向力 電流路を遮断する。つまり 、 FET1は、そのスイッチング動作により、アノード端 1と力ソード端 2との間の整流電 流路を断続制御する(アノード端 1から力ソード端 2へ向力う電流のみ流す)。トランジ スタ Ql、及びトランジスタ Q2は、実質同一特性の NPN型バイポーラトランジスタであ り、トランジスタ Q1及び Q2のベースは共通接続されており、トランジスタ Q1はコレクタ 力 SFET1のソース、すなわちアノード端 1に接続され、他方のトランジスタ Q2のコレク タは力ソード端 2に接続され、ェミッタはベースに接続されてェミッタ ベース間が短 絡されている。
[0094] 定電圧ダイオード Dl、ダイオード D2、ジャンクショントランジスタ J— FET (Junction Field Effect Transistor)、抵抗 Rl、及びコンデンサ CIは、前記トランジスタ Ql及び Q 2、並びに後述するトランジスタ Q3、 Q4及び Q5を駆動する駆動電圧源を構成する。 このような駆動電圧源は、後述するように力ソード端 2に正電位が印加される半周期 に、アノードが力ソード端 2に接続されているダイオード D2及びジャンクショントランジ スタ J - FETを通してコンデンサ C 1を充電し、コンデンサ C 1の両端のうちアノード端 1 に接続された一方側を負、他方側を正とする電圧を発生させる。アノード端 1に接続 されているコンデンサ C1の一方側(駆動源として負側)には、トランジスタ Q1のコレク タ、 FET1のソース、後述するトランジスタ Q4のコレクタ、及びトランジスタ Q5のェミツ タが接続されている。一方、ダイオード D2及びジャンクショントランジスタ J—FETを介 して力ソード端 1に接続されているコンデンサ C1の他方側(駆動源として正側)には、 後述するトランジスタ Q3のコレクタが接続されると共に、トランジスタ Q1のェミッタ、ト ランジスタ Q2のェミッタ力 それぞれ定電流素子 CS1、及び定電流素子 CS2を介し て接続されている。
[0095] 従って、整流回路 200において、駆動電圧源としてのコンデンサ C1と、トランジスタ Q1との接続関係をみると、定電流素子 CS1から、トランジスタ Q1のェミッタ、コレクタ を通ってコンデンサ C1の一方側(駆動源として負側)に接続されている。また、トラン ジスタ Q2については、定電流素子 CS2から、トランジスタ Q2のェミッタ、コレクタを通 つてコンデンサ C1の一方側に接続されている。さらに、トランジスタ Q5については、 定電流素子 CS1からトランジスタ Q5のコレクタ、ェミッタを通ってコンデンサ C1の一 方側に接続されている。
[0096] 第 10図は、第 9図に示す整流回路 200おけるトランジスタ Ql, Q2, Q5、定電流素 子 CS1及び CS2を含む回路部分 (第 9図の破線部分)の等価回路を示す回路図で ある。既に第 9図を参照して説明したように、トランジスタ Q2のェミッタはベースに接 続されており、ベースーェミッタ間が短絡されている。このため、 NPN型バイポーラト ランジスタであるトランジスタ Q2は、ベース一コレクタ間の PN接合ダイオードを提供 する。ここで、定電流素子 CS2から、トランジスタ Q2のェミッタ、コレクタを通って、 FE T1のドレインすなわち力ソード端 2に至る電流路 (第 9図)を考えると、この電流路は、 第 10図に示すとおり、定電流素子 CS2から PN接合ダイオードのアノードが接続され 、 FET1のドレインすなわち力ソード端 2に PN接合ダイオードの力ソードが接続される ように、 PN接合ダイオードを挿入した電流路と等価である。従って、定電流素子 CS2 及びトランジスタ Q2を含む電流路において、トランジスタ Q2のコレクタ、すなわちトラ ンジスタ Q2と等価な PN接合ダイオードの力ソードに、力ソード端 2の電位が印加され るよう構成されている。
[0097] トランジスタ Q2がオフのとき、トランジスタ Q1のベースに、トランジスタ Q2のベース ーェミッタ間電位 (約 0. 6ボルト)を与えているため、トランジスタ Q1はオンであり、力 ソード端 2 (トランジスタ Q2のコレクタであり、同様に PN接合ダイオードの力ソード)が 負電位にならない限り、アノード端 1、力ソード端 2の間の導通は遮断される。
[0098] 定電流素子 CS2及びトランジスタ Q2を含む電流路においては、上述のとおりトラン ジスタ Q2のコレクタに力ソード端 2の電位が印加される。ここで、力ソード端 2に正電 位が印加されるときは、トランジスタ Q2と等価な PN接合ダイオードに逆方向電圧が 印加されることと等価である。このとき、トランジスタ Q1のベースには定電流素子 CS2 を通してベース電流が供給されるため、トランジスタ Q1はオン状態にあり、コンデンサ C1を駆動電圧源として、定電流素子 CS1を通してトランジスタ Q1のェミッタに向かう 電流路に電流が流れる。トランジスタ Q1のェミッタ、コレクタ電流が流れトランジスタ Q 3は才フ、 Q4はオン。
[0099] これに対し、力ソード端 2に負電位が印加されるときは、トランジスタ Q2と等価な PN 接合ダイオードに順方向電圧が印加されることと等価である。このため、力ソード端 2 に負電位が印加されると、トランジスタ Q2のコレクタ電位が下がり、同時にコレクタ一 ベース間電位 (PN接合ダイオードに生ずる約 0. 6V)を維持しょうとして、トランジスタ Q2のベース電位も低下する。トランジスタ Q2のベース電位が低下することで、トラン ジスタ Q1のベース電位も低下し、トランジスタ Q1がオフして定電流素子 CS1を通し てトランジスタ Q1のェミッタに向力う電流路が遮断される。このときトランジスタ Q3は オン、 Q4はオフ。
[0100] 基本的には、第 10図に示す PN接合素子を使用した等価回路が本発明の整流回 路 200の動作原理を示している。本実施形態においてトランジスタ Q2を使用した理 由は、トランジスタ Q1がパイポーラトランジスタである必要があり、そのトランジスタ Q1 の特性 (温度特性、ベースーェミッタ間電圧等)が略同一のトランジスタを PN接合素 子として使用するほうがより好ましいからである。なお、トランジスタ Ql, Q2としてバイ ポーラトランジスタを使用している力 それに代えて FETを使用してもよいことは勿論 である。
[0101] 第 9図を再び参照して、トランジスタ Q3及びトランジスタ Q4は、ェミッタフォロワ型の ノ ッファー増幅器を構成する。トランジスタ Q3、 Q4には、例えばバイポーラトランジス タを用いることができる。本実施態様では、トランジスタ Q3には NPN型バイポーラトラ ンジスタが、トランジスタ Q4には PNP型バイポーラトランジスタが用いられ、両トランジ スタ Q3、 Q4のェミッタは共通接続されると共に、その共通ェミッタは FET1のゲート に接続されている。また、両トランジスタ Q3、 Q4のベースも共通接続され、そのべ一 スにはトランジスタ Q1のェミッタが接続されている。 [0102] トランジスタ Qlのェミッタ、トランジスタ Q2のェミッタには、コンデンサ C1を,駆動電 圧源として、それぞれ定電流素子 CS1、 CS2を介して、所定の定電流が供給される ように構成されている。
[0103] トランジスタ Q3及び Q4の共通ベースと、トランジスタ Q4のコレクタ間には抵抗 R2が 接続されている。後述するようにトランジスタ Q1がオフとされたときに、定電流素子 C S1を通して電流が抵抗 R2を流れることにより、トランジスタ Q3及び Q4の共通ベース の電位を上昇させる。
[0104] トランジスタ Q3及び Q4は、ェミッタフォロワ型のバッファー増幅器を構成し、し力もト ランジスタ Q3及び Q4の共通ェミッタは FET1のゲートに接続されており、また、トラン ジスタ Q4のコレクタは FET1のソースに接続されて!、るため、トランジスタ Q 1のェミツ タ電位、すなわちトランジスタ Q1のェミッタ一コレクタ間電圧と同じ電圧力 直接 FET 1のゲートに入力されるよう構成されている。従って、例えばトランジスタ Q1がオンし、 定電流素子 CS2を通してトランジスタ Q1のェミッタ力 コレクタに電流が流れるときに は、トランジスタ Q3及び Q4の共通ベースの電位は実質的にゼロボルトであり(このと き、 NPN型バイポーラトランジスタであるトランジスタ Q3はオフ、 PNP型バイポーラト ランジスタであるトランジスタ Q4はオンの状態にある)、後述するように FET1のゲート 入力もゼロボルト(Low)となる。逆に、トランジスタ Q1がオフし、定電流素子 CS1を通 して抵抗 R2に電流が流れるときには、トランジスタ Q3及び Q4の共通ベースの電位 が抵抗 R2による電圧降下に等しい電圧だけ上昇し (このときトランジスタ Q3はオン、 トランジスタ Q4はオフの状態にある)、後述するように FET1のゲート入力も Highとな る。
[0105] 整流回路 200は、第 9図に示すようにトランジスタ Q5を更に備える。トランジスタ Q5 のコレクタは、トランジスタ Q3及び Q4の共通ベースに接続され、ェミッタは FET1の ソースに(従って、トランジスタ Q1のコレクタ及びアノード端 1に)接続されている。また 、トランジスタ Q5のベースは抵抗 R3を介して、電圧入力端 3、 4の一方の入力端 3に 接続され、トランジスタ Q5のェミッタは他方の入力端 4に接続されている。なお、トラン ジスタ Q5のベース一ェミッタ間には抵抗 R4が接続されている。そして、電圧入力端 3 、 4間には、図示しない電圧発生手段が発生する所望のパルス電圧が印加される。 [0106] 次に、整流回路 200の動作について説明する。
まず、整流回路 200の力ソード端 2に正電位が印加された場合の整流回路 200の 基本整流動作を考える。上述のとおり、力ソード端 2に正電位が印加されることは、ト ランジスタ Q2と等価な PN接合ダイオードに逆方向電圧が印加されることと等価であ る。このとき、トランジスタ Q1のベースには定電流素子 CS2を通してベース電流が供 給されるため、トランジスタ Q1はオン状態にあり、コンデンサ C1を駆動電圧源として、 定電流素子 CS1を通してトランジスタ Q1のェミッタに向力う電流路に電流が流れる。
[0107] トランジスタ Q1がオンされると、トランジスタ Q1のェミッタ電位(コレクタ一ェミッタ間 電圧)は実質的にゼロボルト(Low)となるため、 PNP型バイポーラトランジスタである Q4はオフ力 オンに切り替わり、 NPN型バイポーラトランジスタであるトランジスタ Q3 はオン力もオフに切り替わる。トランジスタ Q3がオフ、トランジスタ Q4がオンのとき、ト ランジスタ Q3及び Q4の共通ェミッタの電位はゼロボルト(Low)であるので、 FET1 のゲート入力はゼロボルト(Low)であり、 FET1はオフとされる。この結果、電圧入力 端 3, 4の電圧入力がない状態で力ソード端 2に正電位が与えられたとき、アノード端 1と力ソード端 2を結ぶ電流路が FET1によって遮断され、力ソード端 2から FET1のド レイン、ソース、そしてアノード端 1に向かう方向の電流は流れない。
[0108] なお、力ソード端 2に正電位が印加されているとき、ダイオード D2及びジャンクショ ントランジスタ J FETを通してコンデンサ C1は充電され、その充電電圧は定電圧ダ ィオード D1によってジャンクショントランジスタ J— FETのゲートを制御して一定値(例 えば約 10ボルト)に制限される。
[0109] 次に、電圧入力端 3、 4に電圧が印加されていない状態で、整流回路 200のカソー ド端 2に正電位が印加された状態力 力ソード端 2の電位が低下してゼロとなり、その 後アノード端 1、力ソード端 2間の極性が反転して力ソード端 2に負電位が印加された 状態に変化する場合の、整流回路 200の基本整流動作を考える。
[0110] 力ソード端 2の電位がゼロとなり、その後負電位が印加されると、トランジスタ Q2と等 価な PN接合ダイオードに順方向電圧が印加されることと等価である。このため、カソ ード端 2に負電位が印加されると、トランジスタ Q2のコレクタ電位が下がり、同時にコ レクタ一ベース間電位 (PN接合ダイオードに生ずる約 0. 6V)を維持しょうとして、トラ ンジスタ Q2のベース電位も低下する。トランジスタ Q2のベース電位が低下することで 、トランジスタ Q1のベース電位も低下し、トランジスタ Q1がオフに反転して定電流素 子 CS1を通してトランジスタ Q1のェミッタに向力う電流路が遮断される。トランジスタ Q1がオフすると、定電流素子 CS1を通る電流は、トランジスタ Q1のェミッタ コレク タ間をもはや流れないが、抵抗 R2を通して流れる。このため、トランジスタ Q1のェミツ タ電位は抵抗 R2の電圧降下に相当する分だけ上昇する。このようにしてトランジスタ Q1のェミッタ電位が上昇 (Highに反転)すると、 PNP型バイポーラトランジスタである Q4はオン力 オフに切り替わり、 NPN型バイポーラトランジスタであるトランジスタ Q3 はオフ力もオンに切り替わる。トランジスタ Q3がオン、トランジスタ Q4がオフのとき、ト ランジスタ Q3及び Q4の共通ェミッタの電位は上昇(Highに反転)する。従って、 FE T1のゲート入力は Highに反転し、 FET1はオンとされる。この結果、力ソード端 2の 電位が低下してゼロとなり、その後アノード端 1、力ソード端 2間の極性が反転してカソ ード端 2に負電位が与えられると、アノード端 1と力ソード端 2を結ぶ電流路が FET1 によって導通状態とされ、アノード端 1から FET1のソース、ドレイン、そして力ソード端 2に向力う方向に電流が流れる。
[0111] 本実施形態の整流回路 200は、例えば電源装置の同期整流回路におけるフライホ ィール用のスイッチング手段として使用すると、当該電源装置の効率を改善すること ができる。この場合、好ましくは、整流回路 200のアノード端 1に正電位が与えられて いる状態、すなわち、整流回路 200の整流電流路が導通状態にあるときに、電圧入 力端 3, 4間に電圧を印加することで、 FET1をオフ状態とする。以下に、かかる整流 回路 200の基本的動作を説明する。
[0112] 第 9図を参照して、整流回路 200において、電圧入力端 3、 4間に電圧が印加され ていないとき、トランジスタ Q5のベースに電圧が印加されないため、トランジスタ Q5の ベースーェミッタ間にベース電流は流れず、トランジスタ Q5はオフである。つまり、定 電流素子 CS1を通して更にトランジスタ Q5のコレクターェミッタ間を通る電流路は遮 断されている。従って、電圧入力端 3、 4間に電圧が印加されていないときには、トラ ンジスタ Q1 (このときトランジスタ Q1はオフ状態にある)のェミッタ、並びにトランジスタ Q3, Q4の共通ベースにトランジスタ Q5のコレクタが接続されていても、トランジスタ Qlのェミッタ、並びにトランジスタ Q3, Q4の共通ベースの電位は何ら影響を受けな い。
[0113] 次に、整流回路 200において、電圧入力端 3、 4間に電圧入力端 3側を正とする電 圧 (例えば制御パルス信号)力 抵抗 R3を通してトランジスタ Q5のベースに印加され ると、トランジスタ Q5のベースーェミッタ間にベース電流が流れ、トランジスタ Q5をォ ンさせる。すると、トランジスタ Q5のコレクターェミッタ間電圧は実質的にゼロボルトと なるため、トランジスタ Q5のオフ力 オンへの反転は、オフ状態にあるトランジスタ Q1 のェミッタ電位を実質的にゼロボルトまで低下させる。これにより、トランジスタ Q1のェ ミッタ電位が低下 (Lowに反転)し、トランジスタ Q3及び Q4の共通ベースもまた低下( Lowに反転)する。すると,ェミッタフォロワ型のバッファー増幅器を構成するトランジ スタ Q3及び Q4のェミッタ電位が低下(Lowに反転)するので、 FET1のゲート入力 は Lowに反転し、 FET1はオフとされる。この結果、アノード端 1に正電位が与えられ ている状態で、電圧入力端 3、 4に入力端 3側を正とする電圧を印加することで、電圧 (VOFF)が印加されたとき FET1をオフとする。
[0114] 以上のとおり、整流回路 200は、電圧入力端 3、 4に入力端 3側を正とする電圧が印 加されて!ヽな ヽ状態で、アノード端 1と力ソード端 2とに印加される電圧の正負に応じ て整流電流路が断続制御されるので、従来の半導体ダイオード素子と全く同様の整 流機能が実現される。
[0115] 第 11図は、本実施態様の整流回路 200を適用して電圧変換回路 300を構成した ときの基本回路図である。第 11図に示す変換回路 300においては、フライホイール 用のスイッチング手段 D10には本実施態様の整流回路 200が用いられている。なお 、第 13図に示した従来の電圧変換回路 400と同一部分には同一符号を付している。
[0116] 電圧変換回路 300においては、 FET21がオンからオフになったときに、コイル L21 に生じる逆起電力により、コイル L21から負荷 L、フライホイール用のスイッチング手 段 D 10 (整流回路 200)を経由する電流路にお 、て電流が流れるが、この FET21の オフ期間中に、フライホイール用のスイッチング手段 D10の電圧入力端 (第 9図の整 流回路 200における電圧入力端 3に相当する。以下同様である。)に電圧を印加する ことで、スイッチング手段 D10に含まれる第 2半導体素子をオフに切り換えることがで きる。
[0117] 第 12図は、電圧変換回路 300の各部の電圧、電流波形を示す模式図である。第 1 2図において、(a)は FET21のゲート G1に印加される電圧波形、(b)はフライホイ一 ル用のスイッチング手段 D10の電圧印加端に印加される電圧 (VOFF)の電圧波形 、(c)は負荷 Lが軽負荷のときにダイオード D21を流れる電流波形、(d)は負荷しが 軽負荷のときにフライホイール用のスイッチング手段 D10を流れる電流波形、(e)は 負荷 Lが重負荷のときにダイオード D21を流れる電流波形、(f)は負荷 Lが重負荷の ときにフライホイール用のスイッチング手段 D10を流れる電流波形をそれぞれ示して いる。
[0118] 時刻 tlに FET21がオフに切り換えられた後、チョークコイル L21に逆起電力が生 じると、この起電力の向きは、フライホイール用のスイッチング手段 D10の順方向電 圧に相当する。このため、チョークコイル L21の逆起電力により、チョークコイル L21 から負荷 L、フライホイール用のスイッチング手段 D10を経由する電流路において電 流が流れる(第 12図の(d)、(f)参照。 T31、または Τ32の期間)。よって、電圧変換 回路 300では、フライホイール用のスイッチング手段 D10をオフ力もオンに切り換える ための電圧を制御端に印加する必要はな!/、。
接続される負荷 Lが軽負荷のときを考察する。既に背景技術に関連して述べたよう に、時刻 tlに FET21がオフに切り換えられた後、時刻 t3に再びオンに切り換えられ るまでの期間 T2内のある時刻 t2に、チョークコイル L21からのエネルギー供給が停 止し、それ以降、チョークコイル L21から負荷 L、フライホイール用のスイッチング手段 D10を経由する電流が流れなくなる(第 12図の(d) )。
[0119] このとき、負荷 Lに並列に接続された平滑コンデンサ C21から、チョークコイル L21 を通してスイッチング手段 D10に向力つて、負荷電流が逆流しょうとする。ところが、 電圧変換回路 300においてスイッチング手段 D10は、チョークコイル L21側をカソー ド端とするダイオードとして機能するので、チョークコイル L21側を正とする電圧が印 カロされるとき、この電圧は逆方向電圧であり、スイッチング手段 D10は遮断状態となる 。このため、時刻 t2以降再び FET21がオフ力もオンに切り換えられる時刻 t3まで、コ ィル L21からスイッチング手段 D10に向力う方向の電流は流れない。 FETをフライホ ィール用のスイッチング手段として用いた従来の電圧変換回路では、負荷の変動に 応じて、フライホイール用の FETをオン力もオフに切り換えるタイミングを制御し、負 荷電流の逆流を防止することが不可欠であつたが、電圧変換回路 300によれば、そ のようなタイミング制御無しに、スイッチング手段 D10の有する整流機能によって、負 荷電流の逆流防止効果が得られる利点がある。
[0120] 次に、接続される負荷 Lが重負荷のときを考察する。時刻 tlに FET21がオフに切り 換えられた後、時刻 t3に再びオンに切り換えられる期間 T2内の、ある時刻 t2に、フラ ィホイール用のスイッチング手段 D10の電圧印加端に比較的幅の短い電圧 (VOFF )を印加することにより、スイッチング手段 D10を遮断状態にする (第 12図の (e)、 (f) 参照)。ここで、上記電圧 (VOFF)の印加時間(t4— 2)は、スイッチング手段 D10 ( 整流回路 200の FET1)のオフ動作遅延時間 toffよりも長くなるように、かつ、 FET2 1のゲート G1に次の周期の電圧 (VG1)が印加される時刻 t3と重なるように選定する のが好ましい。
[0121] 重負荷時に、フライホイール用のスイッチング手段 D10の電圧印加端にこのような 電圧 (VOFF)を印加すると、時刻 t3において FET21がオンとされたときに、フライホ ィール用のスイッチング手段 D10は既に遮断状態とされている。従って、フライホイ一 ル用のスイッチング手段 D10が導通状態のままで二次側のコイル S力もダイオード D 21、フライホイール用のスイッチング手段 D10を経由する貫通電流が流れることがな い。
[0122] 従来の電圧変換回路では、一次側の FETと二次側のフライホイール用の FETとが 同時にオンしてしまい貫通電流が流れて大きな電力損失となることと FET22の破壊 を防止するために、二次側のフライホイール用の FETのゲートに印加する電圧の印 加時刻を調整する必要があった。すなわち、いわゆるデッドタイム制御によって、一 次側の FETと二次側のフライホイール用の FETとが同時にオフする期間を強制的に 作り出すことが不可欠であった。第 11図に示す本実施態様の電圧変換回路 300に よれば、フライホイール用のスイッチング手段 D10の電圧印加端に第 12図の (b)に 示すような電圧 (VOFF)を印加することで、デッドタイム制御と同様の効果を達成す ることができるという更なる利点がある。また、デッドタイムロスによる効率の低下がな い。
[0123] なお、電圧変換回路に、負荷 Lに力かる電圧を検出して一次側の FETのオン幅を フィードバック制御する PWM (Pulse Width Modulation)制御回路を別途設ける場合 がある。このような場合においても、フライホイール用のスイッチング手段 D10の電圧 印加端に電圧 (VOFF)を印加することによりスイッチング手段 D10を遮断状態にす ると、負荷電流の逆流防止、及び貫通電流の防止に有効であることは明らかである。
[0124] 上記した本発明の電圧変換回路によれば、以下のとおり、従来の同期整流方式の 電圧変換回路が抱える実用上の問題点を、悉く解決することができる。
[0125] 同期整流方式の電圧変換回路においては、負荷が変動したときの負荷電流の逆 流を防止するために、フライホイール用の FETをオフするタイミングを制御すること、 換言すればオフ制御周期の調整が必要となる。つまり、一時側 FETの PWM制御と は別に、軽負荷時にはオフ'タイミングを早くする一方、重負荷時にはこれを遅くする 制御も必要。これは、オフ'タイミングを制御せずに一定周期に保った場合、軽負荷 では負荷電流が逆流し、重負荷ではチョークコイルでのエネルギー損が発生するか らである。し力しながら、現実に負荷が変動したときにどの時刻で FETをオフすれば よ!、かは分力もな!、ため、従来の同期整流方式の電圧変換回路にぉ 、てフライホイ ール用の FETのオフ'タイミングを制御することは極めて困難であった。また、従来の 同期整流方式の電圧変換回路では、一次側のコイルに対する直流電圧の供給がォ フされたときに、適切なタイミングにフライホイール用の FETをオンする、オン'タイミン グ制御も必要であった。
[0126] これに対し、本願発明の電圧変換回路は、一次側のコイルに対する直流電圧の供 給がオンされる前に、フライホイール用のスイッチング手段 D10の電圧印加端に電圧 を印加するオフ制御のみによって、上記した問題点を解決することができる。すわな ち、フライホイール用のスイッチング手段 D10として用いる整流回路 200は、従来の 半導体ダイオード素子と全く同様の整流機能を有しているため、接続される負荷が軽 負荷か重負荷かにかかわらず、チョークコイル L21からのエネルギー供給が停止し、 負荷 Lに並列に接続された平滑コンデンサ C21から、チョークコイル L21を通してス イッチング手段 D10に向力つて、負荷電流が逆流しょうとすると、整流回路 200自体 がオフ状態 (遮断状態)となり、この逆流が阻止されるからであり、一次側のコイルに 対する直流電圧の供給がオフされた後にチョークコイル L21に逆起電力が生じると、 整流回路 200自体がオン状態 (導通状態)となり、チョークコイル力 負荷にエネルギ 一を供給することができるからである。以上のように、図 11に示すような回路に使用 すると、スイッチング手段 D10に例えばショットキーダイオードのような順方向電圧降 下の小さいダイオードを並列接続すると、スイッチング手段 D10の内部に存在する F ET1がオフ時、 FET1の寄生ダイオードを流れる電流が無いためスイッチング手段 D 10の Voff印加端子に制御電圧を印加して、 FET1をオフすることで、 FET1のドレイ ンに正極性電位が印加される前に十分余裕をもってスイッチング手段 D 10の逆方向 電圧を阻止できる。これは、 FETの寄生ダイオード電流による少数キャリア消滅時間 を考慮しなくてもよいという効果がある。図 11の FET21のスイッチング速度が非常に 速いため、通常は、 FET21と FET1のデッドタイム制御が必ず必要なところ、この整 流回路では、これを考慮しないで済む。
[0127] なお、上記した第 2の実施の形態において、整流回路 200のトランジスタ Q1から Q 5として、バイポーラトランジスタを使用している力 FET(MOS— FET)を使用するこ とも勿論可能であり、この場合でも上記の実施の形態と同様の効果が得られる。さら に、整流回路 200において、 NPN型バイポーラトランジスタを PNP型バイポーラトラ ンジスタに、 PNP型ノ《イポーラトランジスタを NPN型ノ《イポーラトランジスタにそれぞ れ変更し、同様に Nチャネル ·パワー MOS - FETを Pチャネル ·パワー MOS - FET に変更してもよい。この場合、電圧の極性を逆にする。
[0128] また、上記した第 2の実施の形態において、定電流素子 CS1, CS2としては、抵抗 、能動半導体素子等の任意の素子を使用することができる。
[0129] また、整流回路 200の具体的構成についても特に限定はなぐ整流回路 200の一 部または全部を等価回路により置換することも勿論可能である。例えば、整流回路 2 00に含まれる定電流素子をカレントミラー回路に置き換えることも可能であり、その他 の細部構成にっ 、ても、特許請求の範囲を逸脱しない限度にぉ 、て適宜変更可能 であることは勿!^である。
産業上の利用可能性 [0130] 第 1または第 2の局面にかかる本発明の整流回路は、交流を直流に変換する機器 に広く適用可能であり、例えば、電圧変換回路 (DC— DCコンバータ)の入力側に本 発明の整流回路を接続し、当該整流回路に交流電圧を入力すれば、交流電圧から 所望の直流電圧を出力する電源回路 (例えば、スイッチング電源回路)として利用で きる。また、電圧変換回路に含まれるダイオードに代えて、本発明の整流回路を用い れば、低消費電力、かつ高力率の回路を実現することができる。本発明の整流回路 は、整流動作を必要とする全ての回路及び当該回路を搭載する機器に適用可能で ある。
[0131] また、第 3または第 4の局面にかかる本発明の整流回路は、交流 (高周波電圧)を 直流に変換する機器に広く適用可能であり、例えば、トランスまたはコイルによってェ ネルギー変換を行う電圧変換回路(DC— DCコンバータ)の同期整流回路、あるい は、交流電圧力 所望の直流電圧を出力する同期整流スイッチング電源回路にそれ ぞれ含まれているスイッチング手段の代替手段として、本発明の整流回路を利用す ることができる。また、整流動作を必要とする各種回路及び当該回路を搭載する機器 に対して、本発明の整流回路の整流動作力これら回路及び機器の動作目的に合致 する限りにお 、て適用可能であることは勿論である。

Claims

請求の範囲
[1] 第 1の定電流源によって第 1の制御端を有する第 1の半導体素子が駆動される第 1 の電流路と、第 2の定電流源によって PN接合素子が駆動される第 2の電流路と、第 2 の制御端を有する第 2の半導体素子により断続制御される整流電流路とを備え、 前記第 2の半導体素子の一端と前記 PN接合素子の一端に正電位が印加され、前 記第 2の半導体素子の他端に負電位が印加されるとき、前記第 2の電流路が遮断さ れることにより、前記第 1の電流路は導通され、前記第 2の半導体素子の第 2の制御 端を駆動し、前記第 2の半導体素子を遮断させ前記整流電流路を遮断し、
前記第 2の半導体素子の一端と前記 PN接合素子の一端に負電位が印加され、前 記第 2の半導体素子の他端に正電位が印加されるとき、前記第 2の電流路が導通さ れることにより、前記第 1の電流路は遮断され、前記第 2の半導体素子の第 2の制御 端を駆動し、前記第 2の半導体素子を導通させ前記整流電流路を導通すること を特徴とする整流回路。
[2] 前記第 2の電流路が有する前記 PN接合素子をバイパスする第 3の制御端を有する 第 3の半導体素子をさらに備え、
前記第 2の電流路が遮断されているとき、前記第 3の半導体素子の第 3の制御端に 電圧を印加することにより、前記第 3の半導体素子を導通させ、前記第 2の電流路を 導通させることにより、前記第 1の電流路は遮断され、前記第 2の半導体素子の第 2 の制御端を駆動し、前記第 2の半導体素子を導通させ前記整流電流路を導通するこ とを特徴とする請求の範囲第 1項に記載の整流回路。
[3] 第 1の定電流源によって第 1の制御端を有する第 1の半導体素子が駆動される第 1 の電流路と、第 2の定電流源によって第 4の制御端を有する第 4の半導体素子が駆 動される第 2の電流路と、第 2の制御端を有する第 2の半導体素子により断続制御さ れる整流電流路とを備え、
前記第 2の半導体素子の一端と前記第 4の半導体素子の一端に正電位が印加さ れ、前記第 2の半導体素子の他端に負電位が印加されるとき、前記第 2の電流路が 遮断されることにより、前記第 1の電流路は導通され、前記第 2の半導体素子の第 2 の制御端を駆動し、前記第 2の半導体素子を遮断させ前記整流電流路を遮断し、 前記第 2の半導体素子の一端と前記第 4の半導体素子の一端に負電位が印加さ れ、前記第 2の半導体素子の他端に正電位が印加されるとき、前記第 2の電流路が 導通されることにより、前記第 1の電流路は遮断され、前記第 2の半導体素子の第 2 の制御端を駆動し、前記第 2の半導体素子を導通させ前記整流電流路を導通するこ と
を特徴とする整流回路。
[4] 前記第 2の電流路が有する前記第 4の半導体素子をバイパスする第 3の制御端を 有する第 3の半導体素子をさらに備え、
前記第 2の電流路が遮断されているとき、前記第 3の半導体素子の第 3の制御端に 電圧を印加することにより、前記第 3の半導体素子を導通させ、前記第 2の電流路を 導通させることにより、前記第 1の電流路は遮断され、前記第 2の半導体素子の第 2 の制御端を駆動し、前記第 2の半導体素子を導通させ前記整流電流路を導通するこ とを特徴とする請求の範囲第 3項に記載の整流回路。
[5] 前記第 1の電流路が有する前記第 1の半導体素子の一端の電位を検知し、前記第 1の電流路に電流が流れるとき前記第 2の半導体素子が有する第 2の制御端を駆動 し、前記第 2の半導体素子を遮断し、前記第 1の電流路に電流が流れないとき前記 第 2の半導体素子が有する第 2の制御端を駆動し、前記第 2の半導体素子を導通す るための前記第 2の制御端に印加する電圧を制御するェミッタフォロア回路を備える ことを特徴とする請求の範囲第 1項、第 2項、第 3項または第 4項のいずれかに記載 の整流回路。
[6] 第 1の定電流源によって第 1の制御端を有する第 1の半導体素子が駆動される第 1 の電流路と、第 2の定電流源によって PN接合素子が駆動される第 2の電流路と、第 2 の制御端を有する第 2の半導体素子により断続制御される整流電流路と、前記第 1 の電流路が有する前記第 1の半導体素子をバイパスする第 3の制御端を有する第 3 の半導体素子と、を備え、
前記第 2の半導体素子の一端と前記 PN接合素子の一端に正電位が印加され、前 記第 2の半導体素子の他端に負電位が印加されるとき、前記第 2の電流路が遮断さ れることにより、前記第 1の電流路は導通され、前記第 2の半導体素子の第 2の制御 端を駆動し、前記第 2の半導体素子を遮断させ前記整流電流路を遮断し、 前記第 2の半導体素子の一端と前記 PN接合素子の一端に負電位が印加され、前 記第 2の半導体素子の他端に正電位が印加されるとき、前記第 2の電流路が導通さ れることにより、前記第 1の電流路は遮断され、前記第 2の半導体素子の第 2の制御 端を駆動し、前記第 2の半導体素子を導通させ前記整流電流路を導通し、
前記第 2の電流路が導通されているとき、前記第 3の半導体素子の第 3の制御端を 駆動し、前記第 3の半導体素子を導通させることにより、前記第 1の電流路は導通さ れ、前記第 2の半導体素子の第 2の制御端を駆動し、前記第 2の半導体素子をオフ させ、前記第 2の半導体素子の一端と前記 PN接合素子の一端に正電位が印加され 前記第 2の半導体素子の他端に負電位が印加されるとき、前記整流電流路を遮断す ること
を特徴とする整流回路。
[7] 第 1の定電流源によって第 1の制御端を有する第 1の半導体素子が駆動される第 1 の電流路と、第 2の定電流源によって第 4の制御端を有する第 4の半導体素子が駆 動される第 2の電流路と、第 2の制御端を有する第 2の半導体素子により断続制御さ れる整流電流路と、前記第 1の電流路が有する前記第 1の半導体素子をバイパスす る第 3の制御端を有する第 3の半導体素子と、を備え、
前記第 2の半導体素子の一端と前記第 4の半導体素子の一端に正電位が印加さ れ、前記第 2の半導体素子の他端に負電位が印加されるとき、前記第 2の電流路が 遮断されることにより、前記第 1の電流路は導通され、前記第 2の半導体素子の第 2 の制御端を駆動し、前記第 2の半導体素子を遮断させ前記整流電流路を遮断し、 前記第 2の半導体素子の一端と前記第 4の半導体素子の一端に負電位が印加さ れ、前記第 2の半導体素子の他端に正電位が印加されるとき、前記第 2の電流路が 導通されることにより、前記第 1の電流路は遮断され、前記第 2の半導体素子の第 2 の制御端を駆動し、前記第 2の半導体素子を導通させ前記整流電流路を導通し、 前記第 2の電流路が導通されているとき、前記第 3の半導体素子の第 3の制御端を 駆動し、前記第 3の半導体素子を導通させることにより、前記第 1の電流路は導通さ れ、前記第 2の半導体素子の第 2の制御端を駆動し、前記第 2の半導体素子をオフ させ、前記第 2の半導体素子の一端と前記 PN接合素子の一端に正電位が印加され 前記第 2の半導体素子の他端に負電位が印加されるとき、前記整流電流路を遮断す ること
を特徴とする整流回路。
[8] 前記第 1の電流路が有する前記第 1の半導体素子の一端の電位を検知し、前記第 1の電流路に電流が流れるとき前記第 2の半導体素子が有する第 2の制御端を駆動 し、前記第 2の半導体素子を遮断し、前記第 1の電流路に電流が流れないとき前記 第 2の半導体素子が有する第 2の制御端を駆動し、前記第 2の半導体素子を導通す るための前記第 2の制御端に印加する電圧を制御するェミッタフォロア回路を備える ことを特徴とする請求項 1または 2に記載の整流回路。
[9] 一次側に第 1のコイルが配設され、二次側に前記第 1のコイルと磁気結合された第 2のコイルが配設されたトランスと、第 3のコイルと、前記トランスの一次側に対する直 流電圧供給のオン Zオフを切り換える第 1のスイッチング手段と、前記第 1のスィッチ ング手段により前記トランスに対する電圧供給がオンにされた状態で、前記第 2のコ ィルに生じる起電力に基づ!/、て直流電圧を出力する第 1の負荷電流路と、第 2のスィ ツチング手段を含み、前記第 1のスイッチング手段により前記トランスに対する電圧供 給がオン力 オフに切り換えられた後、前記第 2のスイッチング手段をオンして前記 第 3のコイルに生じる起電力に基づ 、て直流電圧を出力する第 2の負荷電流路と、を 備えた電圧変換回路において、
前記第 2のスイッチング手段が、請求の範囲第 6項または第 7項のいずれかに記載 の整流回路を含み、
前記第 1のスイッチング手段がオフからオンに切り換えられる前に前記整流回路が 備える第 3の半導体素子の第 3の制御端を駆動し、前記第 2のスイッチング手段に含 まれる前記第 2の半導体素子の第 2の制御端を駆動し該第 2の半導体素子をオフさ せ、前記第 2の半導体素子の一端と前記 PN接合素子の一端に正電位が印加され 前記第 2の半導体素子の他端に負電位が印加されるとき、前記整流電流路を遮断す ること
を特徴とする電圧変換回路。 一次側に第 1のコイルが配設され、二次側に前記第 1のコイルと磁気結合された第 2のコイルが配設されたトランスと、第 3のコイルと、前記トランスの一次側に対する直 流電圧供給のオン Zオフを切り換える第 1のスイッチング手段と、前記第 1のスィッチ ング手段により前記トランスに対する電圧供給がオンにされた状態で、前記第 2のコ ィルに生じる起電力に基づ!/、て直流電圧を出力する第 1の負荷電流路と、第 2のスィ ツチング手段を含み、前記第 1のスイッチング手段により前記トランスに対する電圧供 給がオン力 オフに切り換えられた後、前記第 2のスイッチング手段をオンして前記 第 3のコイルに生じる起電力に基づ 、て直流電圧を出力する第 2の負荷電流路と、を 備えた電圧変換回路において、
前記第 2のスイッチング手段が、請求の範囲第 8項に記載の整流回路を含み、 前記第 1のスイッチング手段がオフからオンに切り換えられる前に前記整流回路が 備える第 3の半導体素子の第 3の制御端を駆動し、前記第 2のスイッチング手段に含 まれる前記第 2の半導体素子の第 2の制御端を駆動し該第 2の半導体素子をオフさ せ、前記第 2の半導体素子の一端と前記 PN接合素子の一端に正電位が印加され 前記第 2の半導体素子の他端に負電位が印加されるとき、前記整流電流路を遮断す ること
を特徴とする電圧変換回路。
PCT/JP2006/306972 2005-03-31 2006-03-31 整流回路および電圧変換回路 WO2006106989A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005105484A JP4182079B2 (ja) 2005-03-31 2005-03-31 整流回路
JP2005-105484 2005-03-31
JP2005174027 2005-06-14
JP2005-174027 2005-06-14

Publications (1)

Publication Number Publication Date
WO2006106989A1 true WO2006106989A1 (ja) 2006-10-12

Family

ID=37073539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306972 WO2006106989A1 (ja) 2005-03-31 2006-03-31 整流回路および電圧変換回路

Country Status (1)

Country Link
WO (1) WO2006106989A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318893A (ja) * 2006-05-25 2007-12-06 Ntt Data Ex Techno Corp 無停電電源装置、双方向電力転送回路および電源供給装置
JP2011211838A (ja) * 2010-03-30 2011-10-20 Ntt Data Intellilink Corp 整流回路、該整流回路の制御回路及びこれらそれぞれの回路を内蔵した集積回路素子
CN106464152A (zh) * 2014-05-09 2017-02-22 松下知识产权经营株式会社 整流电路以及具备该整流电路的整流器及非接触供电装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698540A (ja) * 1992-09-11 1994-04-08 Hitachi Ltd 同期整流回路
JP2001224173A (ja) * 1999-11-30 2001-08-17 Fuji Xerox Co Ltd 同期整流回路及び電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698540A (ja) * 1992-09-11 1994-04-08 Hitachi Ltd 同期整流回路
JP2001224173A (ja) * 1999-11-30 2001-08-17 Fuji Xerox Co Ltd 同期整流回路及び電源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318893A (ja) * 2006-05-25 2007-12-06 Ntt Data Ex Techno Corp 無停電電源装置、双方向電力転送回路および電源供給装置
JP2011211838A (ja) * 2010-03-30 2011-10-20 Ntt Data Intellilink Corp 整流回路、該整流回路の制御回路及びこれらそれぞれの回路を内蔵した集積回路素子
CN106464152A (zh) * 2014-05-09 2017-02-22 松下知识产权经营株式会社 整流电路以及具备该整流电路的整流器及非接触供电装置
CN106464152B (zh) * 2014-05-09 2019-07-26 松下知识产权经营株式会社 整流电路以及非接触供电装置

Similar Documents

Publication Publication Date Title
US8085083B2 (en) Current-source gate driver
US7663898B2 (en) Switching power supply with direct conversion off AC power source
US20100123486A1 (en) Driver for a Synchronous Rectifier and Power Converter Employing the Same
WO2012176403A1 (ja) 昇降圧型ac/dcコンバータ
CN102342008A (zh) 用于功率转换器的控制器
WO2012120788A1 (ja) 昇圧型pfc制御装置
US5818704A (en) Synchronizing/driving circuit for a forward synchronous rectifier
US20160285386A1 (en) Rectifier
IE903015A1 (en) Improved switching circuit employing electronic devices in¹series with an inductor to avoid commutation breakdown and¹extending the current range of switching by using igbt¹devices in place of mosfets
JP5040268B2 (ja) スイッチング電源装置
WO2001052395A1 (fr) Procede et appareil permettant d'exciter des elements de commutation d'un dispositif de conversion de puissance commande par le courant
US11075582B2 (en) Switching converter
JP4385090B2 (ja) 整流回路および電圧変換回路
JP4548484B2 (ja) 同期整流型フォワードコンバータ
JPH11146640A (ja) スイッチング電源用整流回路およびこの整流回路を用いたスイッチング電源
US7400519B2 (en) Switching power supply
JPH0688194U (ja) 同期整流回路
WO2006106989A1 (ja) 整流回路および電圧変換回路
JP2638625B2 (ja) Mos−fetゲート駆動回路
JP4182079B2 (ja) 整流回路
JP2018007345A (ja) 絶縁ゲート型半導体素子駆動装置
JP2882472B2 (ja) パワー絶縁ゲート形fetを用いた電源回路
JP4107826B2 (ja) 電源回路
JP2001037214A (ja) 電源回路
JP2767782B2 (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730920

Country of ref document: EP

Kind code of ref document: A1