JP2017000137A - フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 - Google Patents
フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 Download PDFInfo
- Publication number
- JP2017000137A JP2017000137A JP2016111857A JP2016111857A JP2017000137A JP 2017000137 A JP2017000137 A JP 2017000137A JP 2016111857 A JP2016111857 A JP 2016111857A JP 2016111857 A JP2016111857 A JP 2016111857A JP 2017000137 A JP2017000137 A JP 2017000137A
- Authority
- JP
- Japan
- Prior art keywords
- glucose
- flavin
- activity
- gdh
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
【解決手段】(i)作用:電子受容体存在下でGDH活性を示す、(ii)基質特異性:D-グルコースに対する反応性と比較して、マルトース、D−ガラクトース、D−キシロースに対する反応性が低い、(iii)熱安定性:40℃、15分間の熱処理後に80%以上の残存活性を有する、(iv)フラビン化合物を補酵素とする、(v)温度特性:20〜40℃の範囲で最も活性が高い測定温度におけるD−グルコースに対する反応性を100%とした場合に、20〜40℃における活性値が74%〜100%である、を備えるフラビン結合型GDHをD−グルコースと20〜40℃で接触させてD−グルコースを測定する。
【選択図】なし
Description
一方で、個別事情により、上記のような温度調整を十分に行えないことが見込まれる測定においては、この問題が深刻な誤差発生のリスクを生じることとなる。
しかし、現実には、そのような測定を達成できる測定試薬や測定装置は今日まで知られておらず、現状で確認されている誤差を元に、使用方法を工夫し、温度補正である程度の対処を行うこと以外に、対応方法がなかったことが実情であった。
(1)以下の(i)から(v)の性質:
(i)作用:電子受容体存在下でGDH活性を示す、
(ii)基質特異性:D-グルコースに対する反応性と比較して、マルトース、D−ガラクトース、D−キシロースに対する反応性が低い、
(iii)熱安定性:40℃、15分間の熱処理後に80%以上の残存活性を有する、
(iv)フラビン化合物を補酵素とする、
(v)温度特性:20〜40℃の範囲で最も活性が高い測定温度におけるD−グルコースに対する反応性を100%とした場合に、20〜40℃における活性値が74%〜100%である、かつ20℃における活性値が70%以上である、
を備えるフラビン結合型GDHをD−グルコースと20〜40℃で接触させることを含む、D−グルコースの測定方法。
(2)D−グルコースの濃度が10mM以下である上記(1)記載の測定方法。
(3)フラビン結合型GDHが、ケカビ亜門に分類される微生物に由来する、上記(1)記載の測定方法。
(4)フラビン結合型GDHが、Mucor属またはCircinella属に分類される微生物に由来する、上記(1)に記載の測定方法。
(5)以下の(i)から(v)の性質:
(i)作用:電子受容体存在下でGDH活性を示す、
(ii)基質特異性:D-グルコースに対する反応性と比較して、マルトース、D−ガラクトース、D−キシロースに対する反応性が低い、
(iii)熱安定性:40℃、15分間の熱処理後に80%以上の残存活性を有する、
(iv)フラビン化合物を補酵素とする、
(v)温度特性:20〜40℃の範囲で最も活性が高い測定温度におけるD−グルコースに対する反応性を100%とした場合に、20〜40℃における活性値が74%〜100%である、かつ20℃における活性値が70%以上である、
を備えるフラビン結合型GDHを含む、20〜40℃おける、温度補正を含まないグルコース測定方法のための、グルコース測定剤又はセンサ。
(6)測定試料中のD−グルコースの濃度が、10mM以下である、上記(5)記載のグルコース測定剤又はセンサ。
(7)フラビン結合型GDHが、ケカビ亜門に分類される微生物に由来する、上記(5)に記載のグルコース測定剤又はセンサ。
(8)フラビン結合型GDHが、Mucor属またはCircinella属に分類される微生物に由来する、上記(5)に記載のグルコース測定剤又はセンサ。
Mucor属由来フラビン結合型GDHは、基質濃度が低くなるにつれ、幅広い測定温度領域において活性の変動が小さくなることを特徴とする。具体的には、本発明の測定方法に用いるフラビン結合型GDHは、20〜40℃の範囲で最も活性が高い測定温度における10mM以下の D−グルコースに対する反応性を100%とした場合に、20〜40℃における活性値が74%〜100%である。本発明のフラビン結合型GDHを用いる測定方法は、このような優れた温度特性を有するため、測定する温度環境の影響を受けることなく、正確にD−グルコース量を測定することが可能である。
本発明のフラビン結合型GDHとして好ましい酵素の例としては、以下の酵素化学的特徴を有するものが挙げられる。
(1)作用:電子受容体存在下でGDH活性を示す
(2)基質特異性:D-グルコースに対する反応性と比較して、マルトース、D−ガラクトース、D−キシロースに対する反応性が低い
(3)熱安定性:40℃、15分間の熱処理後に80%以上の残存活性を有する
(4)フラビン化合物を補酵素とする
(5)温度特性:20〜40℃の範囲で最も活性が高い測定温度における10mM以下の D−グルコースに対する反応性を100%とした場合に、20〜40℃における活性値が74%〜100%である。
上記のような酵素化学的特徴を有するGDHであれば、測定試料に含まれるマルトース、D−ガラクトース、D−キシロース等の糖化合物の影響を受けることなく、さらに、測定温度が20〜40℃において温度補正機能を有することなく、正確にD−グルコース量を測定することが可能となる。また、血糖値の測定等の臨床診断に応用するために好適なpH範囲、温度範囲で良好に作用するので、診断用測定試薬(測定剤)等の用途に好適に使用することができる。
Km値は一般的には小さくなるほど基質特異性が良いとされるが、本発明の酵素としては、所定の測定条件において実質的に十分な基質の選択が実現される範囲の値を有していればよい。
分子量は、例えば、GENETYX Ver.11(ゼネティックス社製)やExPASy(http://web.expasy.org/compute_pi/)等のプログラムを用いて、一次配列情報から算出する、あるいはSDS−ポリアクリルアミド電気泳動で測定することができる。例えば、GENETYX Ver.11を用いて算出する場合、配列番号1で示されるアミノ酸配列を有するフラビン結合型GDHの分子量は、70kDaであり、配列番号5で示されるアミノ酸配列を有するフラビン結合型GDHの分子量は、69kDaである。また、例えば、SDS−ポリアクリルアミド電気泳動で測定する場合、配列番号1で示されるアミノ酸配列を有するフラビン結合型GDHの分子量は、約80kDaであり、配列番号5で示されるアミノ酸配列を有するフラビン結合型GDHの分子量は、約88kDaである。
本発明に用いることができるフラビン結合型GDHは、基質特異性に優れ、D−グルコースに対する選択性が極めて高いことを特徴とする。具体的には、本発明に用いることができるフラビン結合型GDHは、マルトース、D−ガラクトース、D−キシロースに対する反応性が極めて低い。具体的には、D−グルコースに対する反応性を100%とした場合に、マルトース、D−ガラクトースおよびD−キシロースに対する反応性がいずれも5%以下、好ましくは4%以下、さらに好ましくは3%以下、さらに好ましくは2%以下であることを特徴とする。本発明に用いることができるフラビン結合型GDHは、このような高い基質特異性を有するため、マルトースを含む輸液の投与を受けている患者や、ガラクトース負荷試験およびキシロース吸収試験を実施中の患者の試料についても、測定試料に含まれるマルトース、D−ガラクトース、D−キシロース等の糖化合物の影響を受けることなく、正確にD−グルコース量を測定することが可能となる。
精製酵素とは、当該酵素以外の成分、特に当該酵素以外のタンパク質(夾雑タンパク質)を実質的に含まない状態に分離された酵素をいう。具体的には、例えば、夾雑タンパク質の含有量が重量換算で全体の約20%未満、好ましくは約10%未満、更に好ましくは約5%未満、より一層好ましくは約1%未満である。なお、本明細書中に後述する「MpGDH」は、特に断りの無い限り、精製酵素をいう。
本発明のフラビン結合型GDHは、電子受容体存在下でグルコースの水酸基を酸化してグルコノ−δ−ラクトンを生成する反応を触媒する。
したがって、この原理を利用して、例えば、電子受容体としてフェナジンメトサルフェート(PMS)および2,6−ジクロロインドフェノール(DCIP)を用いた以下の測定系により、本発明のフラビン結合型GDHの活性を測定することができる。
(反応1) D−グルコ−ス + PMS(酸化型)
→ D−グルコノ−δ−ラクトン + PMS(還元型)
(反応2) PMS(還元型) + DCIP(酸化型)
→ PMS + DCIP(還元型)
具体的には、本発明において、フラビン結合型GDHの活性は、以下の手順に従って測定する。100mM リン酸緩衝液(pH7.0) 1.79mL、5.0M D−グルコース溶液 0.08mLおよび20mM DCIP溶液 0.01mLを混合し、37℃で5分間保温する。次いで、20mM PMS溶液 0.02mLおよび酵素サンプル溶液0.1mLを添加し、反応を開始する。反応開始時、および、経時的な吸光度を測定し、酵素反応の進行に伴う600nmにおける吸光度の1分間あたりの減少量(ΔA600)を求め、次式に従いフラビン結合型GDH活性を算出する。この際、フラビン結合型GDH活性は、37℃において濃度50mMのD−グルコース存在下で1分間に1μmolのDCIPを還元する酵素量を1Uと定義する。
上記の特徴を有する本発明のフラビン結合型GDHは、ケカビ亜門に分類される微生物から得ることができる。ケカビ亜門に分類される微生物としては、例えば、Mucor属、Absidia属、Actinomucor (Circinella)属等が挙げられる。Mucor属に分類される微生物であって、本発明のフラビン結合型GDHを生産する具体的な好ましい微生物の例としては、Mucor prainii、Mucor javanicus、Mucor circinelloides f. circinelloides、Mucor subtilissimus、Mucor guilliermondiiもしくはMucor hiemalisが挙げられる。より具体的には、Mucor prainii NISL0103、Mucor javanicus NISL0111もしくはMucor circinelloides f. circinelloides NISL0117が挙げられる。Absidia属に分類される微生物であって、本発明のフラビン結合型GDHを生産する具体的な好ましい微生物の例としては、Absidia cylindrospora、Absidia hyalosporaを挙げることができる。より具体的には、Absidia cylindrospora NISL0211、Absidia hyalospora NISL0218を挙げることができる。Actinomucor (Circinella)属に分類される微生物であって、本発明のフラビン結合型GDHを生産する具体的な好ましい微生物の例としては、Actinomucor elegans もしくはCircinella simplexを挙げることができる。より具体的には、Actinomucor elegans NISL9082を挙げることができる。
本発明のフラビン結合型GDHは、配列番号1又は配列番号5で示されるアミノ酸配列、又は該アミノ酸配列と70%以上相同なアミノ酸配列を有することを特徴とする。配列番号1又は配列番号5で示されるアミノ酸配列を有するフラビン結合型GDHは、上述の各種の性質を有する。また、配列番号1又は配列番号3で示されるアミノ酸配列と70%以上の同一性、好ましくは75%、より好ましくは80%、より好ましくは85%、より好ましくは90%、最も好ましくは95%以上の同一性を有するアミノ酸配列を有し、配列番号1又は配列番号5で示されるアミノ酸配列を有するフラビン結合型GDHと同様な諸性質を有するGDHも、本発明の測定方法に用いるフラビン結合型GDHに含まれる。
本発明のフラビン結合型GDHをコードする遺伝子とは、配列番号1又は配列番号5で示されるアミノ酸配列、あるいは該アミノ酸配列と70%以上相同なアミノ酸配列を有するフラビン結合型GDHをコードするDNAをいう。または、本発明のフラビン結合型GDHをコードする遺伝子とは、配列番号2又は配列番号6で示される塩基配列からなるDNAをいう。あるいは、本発明のフラビン結合型GDHをコードする遺伝子とは、配列番号2又は配列番号6で示される塩基配列と70%以上の同一性、好ましくは、75%以上の同一性、より好ましくは、80%以上の同一性、より好ましくは85%、より好ましくは90%、最も好ましくは95%以上の同一性を有する塩基配列を有し、且つフラビン結合型GDH酵素活性をもつタンパク質をコードするDNAをいう。
本発明のフラビン結合型GDHをコードする遺伝子は、適当な公知の各種ベクター中に挿入することができる。さらに、このベクターを適当な公知の各宿主に導入して、フラビン結合型GDH遺伝子を含む組換え体DNAが導入されている形質転換体を作製することができる。これらの遺伝子の取得方法や、遺伝子配列、アミノ酸配列情報の取得方法、各種ベクターの製造方法や形質転換体の作製方法は、当業者にとって公知であり、一例を後述する。
上述のように得られたフラビン結合型GDH遺伝子を、常法により、バクテリオファージ、コスミド、または原核細胞若しくは真核細胞の形質転換に用いられるプラスミド等のベクターに組み込み、各々のベクターに対応する宿主を常法により形質転換または形質導入することができる。宿主としては、例えば、Escherichia属に属する微生物、例えば、大腸菌K−12、好ましくは大腸菌JM109、DH5α(ともにタカラバイオ社製)等が挙げられ、これらの宿主を形質転換して、またはそれらに形質導入してそれぞれの菌株を得る。こうして得られた上記形質転換体を培養することによって、フラビン結合型GDHを大量に生産することができる。
MpGDH遺伝子(配列番号2)を含むカセットを用いて形質転換したAspergillus sojae株(特許第4648993号公報参照)を培養し、粗酵素液のGDH活性を確認した。得られた粗酵素を用いて、緩衝液A(10mM 酢酸緩衝液、2M 硫酸アンモニウム、pH5.0)にて予め平衡化したブチルトヨパール650C(東ソー社製)カラム(26φ×28.5cm)にかけ、緩衝液Aから緩衝液B(10mM 酢酸緩衝液、pH5.0)のリニアグラジエントによって溶出させた。溶出された活性画分をセントリコンプラス−70(ミリポア社製)で濃縮後、緩衝液C(10mM 酢酸緩衝液、pH4.5)で透析し、予め緩衝液Cで平衡化したSPセファロースFastFlow(GEヘルスケア社製)カラム(26φ×28.5cm)にかけ、緩衝液Cから緩衝液D(10mM 酢酸緩衝液、200mM 塩化カリウム、pH4.5)のリニアグラジエントで溶出させた。溶出された活性画分を濃縮し、精製酵素を得た。
実施例1により得られたMpGDH精製標品の温度特性を調べた。
上記に示したGDH活性測定法において、加温温度および測定温度を20℃、25℃、30℃、35℃もしくは40℃で活性測定を行った。また、添加する基質は5Mグルコース、0.25M、0.1Mもしくは0.075Mで行った。
アスペルギルスオリゼ由来グルコース脱水素酵素(以下、AoGDHと表記)(特開2008−228740参照)を用いて、実施例2と同様の温度特性評価を試みた。
AoGDHのアミノ酸配列であり、配列番号3で示される593アミノ酸をコードし、且つ、特開2008−228740で示される塩基配列と全く同様である、配列番号4で示す1782bpの遺伝子(終止コドンTAAを含む)を、定法である遺伝子断片のPCRにより、cDNAを取得した。このとき、配列番号4の5´末端、3´末端にはそれぞれNdeIサイトとBamHIサイトを付加した。
アスペルギルステレウス由来グルコース脱水素酵素(以下、AtGDHと表記)(
特許第5020070号参照)を用いて、実施例2と同様の温度特性評価を試みた。
特許第5020070号で示されるAtGDHのアミノ酸配列である配列番号5で示される592アミノ酸をコードする、配列番号6で示す1779bpの遺伝子(終止コドンTAAを含む)を、定法である遺伝子断片のPCRにより、cDNAを取得した。
得られた粗酵素液を用いて、実施例2と同様に温度特性評価を行った。ただし、加温温度および測定温度を20℃、25℃、30℃、35℃もしくは40℃で活性測定を行った。また、添加する基質は5Mグルコースもしくは0.25Mで行った。
アスペルギルスニガー由来グルコース酸化酵素(以下、AnGODと表記)(BBI社製、GO3B2)を用いて、実施例2と同様に温度特性評価を行った。ただし、加温温度および測定温度を20℃、25℃、30℃、35℃もしくは40℃で活性測定を行った。また、添加する基質は5Mグルコースもしくは0.05Mで行った。
Mucor guilliermondii由来グルコース脱水素酵素(以下、MgGDHと表記)を用いて、実施例2と同様の温度特性評価を試みた。まず、Mucor guilliermondii NBRC9403株をDPY培地(2%グルコース、1%ポリペプトン、0.5%酵母エキス、0.5%リン酸2水素1カリウム、0.05%硫酸マグネシウム7水和物)で、30℃で24時間培養した。培養後、菌体を回収し、菌体の水分を除いた後、液体窒素中で菌体を破砕し、DNeasy Plant Mini Kit(QIAGEN社)を用いて添付のプロトコールに従って、ゲノムDNAを取得した。次に、取得したゲノムDNAを鋳型にし、配列番号7、8の縮重プライマーを用いて、DNAポリメラーゼPrimeSTAR Max(タカラバイオ社製)によりPCRを行い、アガロースゲル電気泳動により約1.9kbのDNAが増幅されていることを確認した。この増幅されたDNA断片を精製し、マルチキャピラリーDNA解析システムCEQ2000(ベックマン・コールター社製)を用いて塩基配列を解析した。その配列情報を基に下記で用いるインバースPCR用のプライマー(配列番号9、10)を設計した。
次に、上記で回収したゲノムDNAを制限酵素NcoIで処理し、フェノール・クロロホルム処理とエタノール沈殿を行った後に、Ligation High ver.2(東洋紡社製)を用いてライゲーション反応を16℃で8時間行った。エタノール沈殿を行った該反応液を鋳型にし、上記で設計した配列番号9、10のプライマーを用いて、DNAポリメラーゼPrimeSTAR Max(タカラバイオ社製)により、インバースPCRを行った。増幅したDNA断片の配列解析を上記と同様に行い、上流と下流の塩基配列を解析し、MgGDHの塩基配列全長(配列番号11)が明らかとなった。さらに、MpGDHの配列情報を基に、イントロン配列を除いたエキソン配列(配列番号12)を予測し、MgGDHのアミノ酸配列(配列番号13)を決定した。なお、MgGDHとMpGDHのアミノ酸配列の同一性は78%であった。
Claims (8)
- 以下の(i)から(v)の性質:
(i)作用:電子受容体存在下でGDH活性を示す、
(ii)基質特異性:D-グルコースに対する反応性と比較して、マルトース、D−ガラクトース、D−キシロースに対する反応性が低い、
(iii)熱安定性:40℃、15分間の熱処理後に80%以上の残存活性を有する、
(iv)フラビン化合物を補酵素とする、
(v)温度特性:20〜40℃の範囲で最も活性が高い測定温度におけるD−グルコースに対する反応性を100%とした場合に、20〜40℃における活性値が74%〜100%である、かつ20℃における活性値が70%以上である、
を備えるフラビン結合型GDHをD−グルコースと20〜40℃で接触させることを含む、D−グルコースの測定方法。 - D−グルコースの濃度が、10mM以下である、請求項1記載の測定方法。
- フラビン結合型GDHが、ケカビ亜門に分類される微生物に由来する、請求項1に記載の測定方法。
- フラビン結合型GDHが、Mucor属またはCircinella属に分類される微生物に由来する、請求項1に記載の測定方法。
- 以下の(i)から(v)の性質:
(i)作用:電子受容体存在下でGDH活性を示す、
(ii)基質特異性:D-グルコースに対する反応性と比較して、マルトース、D−ガラクトース、D−キシロースに対する反応性が低い、
(iii)熱安定性:40℃、15分間の熱処理後に80%以上の残存活性を有する、
(iv)フラビン化合物を補酵素とする、
(v)温度特性:20〜40℃の範囲で最も活性が高い測定温度におけるD−グルコースに対する反応性を100%とした場合に、20〜40℃における活性値が74%〜100%である、かつ20℃における活性値が70%以上である、
を備えるフラビン結合型GDHを含む、20〜40℃おける、温度補正を含まないグルコース測定方法のための、グルコース測定剤又はセンサ。 - 測定試料中のD−グルコースの濃度が、10mM以下である、請求項5に記載のグルコース測定剤又はセンサ。
- フラビン結合型GDHが、ケカビ亜門に分類される微生物に由来する、請求項5に記載のグルコース測定剤又はセンサ。
- フラビン結合型GDHが、Mucor属またはCircinella属に分類される微生物に由来する、請求項5に記載のグルコース測定剤又はセンサ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021096691A JP2021126124A (ja) | 2015-06-04 | 2021-06-09 | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 |
JP2023144354A JP2023164516A (ja) | 2015-06-04 | 2023-09-06 | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015113732 | 2015-06-04 | ||
JP2015113732 | 2015-06-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021096691A Division JP2021126124A (ja) | 2015-06-04 | 2021-06-09 | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017000137A true JP2017000137A (ja) | 2017-01-05 |
JP2017000137A5 JP2017000137A5 (ja) | 2019-07-04 |
JP7109155B2 JP7109155B2 (ja) | 2022-07-29 |
Family
ID=57752911
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016111857A Active JP7109155B2 (ja) | 2015-06-04 | 2016-06-03 | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 |
JP2021096691A Pending JP2021126124A (ja) | 2015-06-04 | 2021-06-09 | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 |
JP2023144354A Pending JP2023164516A (ja) | 2015-06-04 | 2023-09-06 | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021096691A Pending JP2021126124A (ja) | 2015-06-04 | 2021-06-09 | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 |
JP2023144354A Pending JP2023164516A (ja) | 2015-06-04 | 2023-09-06 | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP7109155B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017195765A1 (ja) * | 2016-05-09 | 2017-11-16 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ改変体 |
WO2018181980A1 (en) * | 2017-03-31 | 2018-10-04 | Kikkoman Corporation | Continuous glucose monitoring using an fad-dependent glucose dehydrogenase |
JP2018201486A (ja) * | 2017-06-05 | 2018-12-27 | キッコーマン株式会社 | 保存安定性に優れたグルコースデヒドロゲナーゼ及び持続血糖測定 |
WO2019017148A1 (ja) * | 2017-07-19 | 2019-01-24 | 東洋紡株式会社 | グルコース測定方法およびグルコースセンサ |
WO2019172400A1 (ja) | 2018-03-08 | 2019-09-12 | 有限会社アルティザイム・インターナショナル | フラビンアデニンジヌクレオチドグルコース脱水素酵素とシトクロム分子との融合タンパク質 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4648993B2 (ja) * | 2009-06-04 | 2011-03-09 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ |
JP2013176363A (ja) * | 2012-02-09 | 2013-09-09 | Toyobo Co Ltd | 新規なグルコース脱水素酵素 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013065623A1 (ja) | 2011-10-31 | 2013-05-10 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
-
2016
- 2016-06-03 JP JP2016111857A patent/JP7109155B2/ja active Active
-
2021
- 2021-06-09 JP JP2021096691A patent/JP2021126124A/ja active Pending
-
2023
- 2023-09-06 JP JP2023144354A patent/JP2023164516A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4648993B2 (ja) * | 2009-06-04 | 2011-03-09 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ |
JP2013176363A (ja) * | 2012-02-09 | 2013-09-09 | Toyobo Co Ltd | 新規なグルコース脱水素酵素 |
Non-Patent Citations (1)
Title |
---|
糖尿病, vol. 45, JPN6020017139, 2002, pages 821 - 824, ISSN: 0004579160 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017195765A1 (ja) * | 2016-05-09 | 2017-11-16 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ改変体 |
US11066690B2 (en) | 2016-05-09 | 2021-07-20 | Kikkoman Corporation | Flavin-binding glucose dehydrogenase variant |
WO2018181980A1 (en) * | 2017-03-31 | 2018-10-04 | Kikkoman Corporation | Continuous glucose monitoring using an fad-dependent glucose dehydrogenase |
CN110494568B (zh) * | 2017-03-31 | 2024-03-19 | 龟甲万株式会社 | 使用fad依赖性葡糖脱氢酶的连续葡萄糖监测 |
US11781167B2 (en) | 2017-03-31 | 2023-10-10 | Kikkoman Corporation | Continuous glucose monitoring using an FAD-dependent glucose dehydrogenase |
CN110494568A (zh) * | 2017-03-31 | 2019-11-22 | 龟甲万株式会社 | 使用fad依赖性葡糖脱氢酶的连续葡萄糖监测 |
JP7165493B2 (ja) | 2017-06-05 | 2022-11-04 | キッコーマン株式会社 | 保存安定性に優れたグルコースデヒドロゲナーゼ及び持続血糖測定 |
JP2018201486A (ja) * | 2017-06-05 | 2018-12-27 | キッコーマン株式会社 | 保存安定性に優れたグルコースデヒドロゲナーゼ及び持続血糖測定 |
JPWO2019017148A1 (ja) * | 2017-07-19 | 2020-05-28 | 東洋紡株式会社 | グルコース測定方法およびグルコースセンサ |
JP7196607B2 (ja) | 2017-07-19 | 2022-12-27 | 東洋紡株式会社 | グルコース測定方法およびグルコースセンサ |
JP2023015399A (ja) * | 2017-07-19 | 2023-01-31 | 東洋紡株式会社 | グルコース測定方法およびグルコースセンサ |
US11591631B2 (en) | 2017-07-19 | 2023-02-28 | Toyobo Co., Ltd. | Glucose monitoring method and glucose sensor |
WO2019017148A1 (ja) * | 2017-07-19 | 2019-01-24 | 東洋紡株式会社 | グルコース測定方法およびグルコースセンサ |
WO2019172400A1 (ja) | 2018-03-08 | 2019-09-12 | 有限会社アルティザイム・インターナショナル | フラビンアデニンジヌクレオチドグルコース脱水素酵素とシトクロム分子との融合タンパク質 |
Also Published As
Publication number | Publication date |
---|---|
JP2023164516A (ja) | 2023-11-10 |
JP7109155B2 (ja) | 2022-07-29 |
JP2021126124A (ja) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4648993B2 (ja) | フラビン結合型グルコースデヒドロゲナーゼ | |
JP2021126124A (ja) | フラビン結合型グルコースデヒドロゲナーゼを用いたグルコースの測定方法 | |
JP5969392B2 (ja) | フラビン結合型グルコースデヒドロゲナーゼ、フラビン結合型グルコースデヒドロゲナーゼの製造方法およびそれに用いる酵母形質転換体 | |
US9238802B2 (en) | E. coli transformant, method for producing flavin-bound glucose dehydrogenase using the same, and mutant flavin-bound glucose dehydrogenases | |
US9493814B2 (en) | Flavin-binding glucose dehydrogenase having improved substrate specificity | |
JP6526572B2 (ja) | 熱安定性が向上したフラビン結合型グルコースデヒドロゲナーゼ | |
JP2017060520A (ja) | フラビン結合型グルコースデヒドロゲナーゼ、フラビン結合型グルコースデヒドロゲナーゼの製造方法、およびそれを用いたグルコース測定方法 | |
JP2022133274A (ja) | フラビン結合型グルコースデヒドロゲナーゼ改変体 | |
JP6635913B2 (ja) | 比活性が向上したフラビン結合型グルコースデヒドロゲナーゼ | |
Satake et al. | Novel glucose dehydrogenase from Mucor prainii: Purification, characterization, molecular cloning and gene expression in Aspergillus sojae | |
JPWO2016076364A1 (ja) | 基質特異性が向上したフラビン結合型グルコースデヒドロゲナーゼ | |
Hamamatsu et al. | Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution | |
JP7165493B2 (ja) | 保存安定性に優れたグルコースデヒドロゲナーゼ及び持続血糖測定 | |
JP5899616B2 (ja) | フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法 | |
JP2011217731A (ja) | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ | |
Aiba et al. | Characterization of a thermostable glucose dehydrogenase with strict substrate specificity from a hyperthermophilic archaeon Thermoproteus sp. GDH-1 | |
JP2022173549A (ja) | グルコースデヒドロゲナーゼを用いた持続血糖測定 | |
JP2005270082A (ja) | グルコース脱水素酵素 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170411 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190531 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200728 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201001 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210609 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210609 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20210622 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210719 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210720 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20210827 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20210831 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220301 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20220405 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220603 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220614 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220712 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220719 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7109155 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |