JP2016152679A - スイッチング電源回路および力率改善回路 - Google Patents

スイッチング電源回路および力率改善回路 Download PDF

Info

Publication number
JP2016152679A
JP2016152679A JP2015028520A JP2015028520A JP2016152679A JP 2016152679 A JP2016152679 A JP 2016152679A JP 2015028520 A JP2015028520 A JP 2015028520A JP 2015028520 A JP2015028520 A JP 2015028520A JP 2016152679 A JP2016152679 A JP 2016152679A
Authority
JP
Japan
Prior art keywords
circuit
current
signal
timing
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015028520A
Other languages
English (en)
Other versions
JP6439484B2 (ja
Inventor
丸山 宏志
Hiroshi Maruyama
宏志 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015028520A priority Critical patent/JP6439484B2/ja
Priority to US14/988,247 priority patent/US9660519B2/en
Priority to CN201610011752.7A priority patent/CN105897016B/zh
Publication of JP2016152679A publication Critical patent/JP2016152679A/ja
Application granted granted Critical
Publication of JP6439484B2 publication Critical patent/JP6439484B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4266Arrangements for improving power factor of AC input using passive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

【課題】交流入力波形の高位相角の部分で電流連続制御によりピーク電流が大きくなることによる電流波形の歪みおよび力率の悪化を改善する。【解決手段】電流連続制御設定回路30が出力する、インダクタ電流検出電圧のスイッチング周期ごとのピーク電流値に相当する電圧値をホールドしたピークホールド信号S9とピークホールド時のワンショットパルスS5とに基づいて、位相角検出回路60があらかじめ指定した位相角を検出し、その検出時点で、電流連続制御設定回路30が設定する第2のセットパルスS8の有効・無効を判断した信号S11を出力する。セレクタ回路70は、第2のセットパルスS8の無効を表す信号S11を入力しているときには、インダクタ電流がゼロになったことをZCDコンパレータ16が検出してからスイッチング素子4をターンオンする電流臨界制御方式のみで制御を行うため、ピーク電流が大きくなることがない。【選択図】図1

Description

本発明は、交流入力電圧を所定の直流出力電圧に変換して負荷に供給するスイッチング電源回路および力率改善回路に関し、特に電流臨界制御方式と電流連続制御方式とを切り替えることが可能なスイッチング電源回路および力率改善回路に関する。
商用交流電源(AC100V〜240V)が供給される多くの電子機器では、内部の電子回路を駆動する直流電源を得るためにスイッチング電源回路が用いられている。そのため、スイッチング電源回路では、商用交流電源を直流に変換する整流回路が必要になる。整流回路は、その後段に接続されている平滑コンデンサに、入力電圧が平滑コンデンサの電圧を超えるピーク近傍になる時にだけ電流が流れることから、高周波の電流成分が発生して高周波ノイズ源となるとともに、力率が低下するという問題があった。
力率とは、交流回路における入力電圧と入力電流との積の時間平均である入力有効電力を、入力電圧の実効値と入力電流の実効値との積である皮相電力で割った値であり、有効電力は皮相電力に負荷で決まる係数(力率)をかけたものとなる。交流100ボルト(V)に単なる抵抗負荷を接続した場合、電圧波形と電流波形とは同相になり、力率は1となる。しかし、スイッチング電源では、抵抗以外のコンデンサやチョークコイルなどの負荷要因によって電圧位相に対して電流位相がずれてくる。その場合、そのずれた分だけ力率が減少することを補償するために入力電流を大きくする必要があり、これが整流回路に至るまでの入力ラインの電力ロスを増大させてしまう。そこで、力率改善(PFC:Power Factor Correction)回路を使用し、力率の低下を防止して電力ロスを抑えるとともに、上記高周波ノイズを抑制する必要がある。
力率改善回路の制御方式には、大きく分けて電流連続制御方式と電流臨界制御方式の2つがある。電流臨界制御方式は、インダクタに流れるインダクタ電流がゼロとなるタイミングを検出し、そのタイミングでスイッチング素子をオンさせる制御方式である。電流臨界制御方式は、インダクタ電流がゼロとなることを検出してスイッチング素子をオンさせるためソフトスイッチングを実現でき、ハードスイッチングとなる電流連続制御方式よりもターンオン損失が小さく、効率がよい。この反面、電流臨界制御方式は、インダクタ電流のピーク値が電流連続制御方式の場合のピーク値よりも高くなり、インダクタの電流容量を高くする必要がある。そのため、消費電力が小さな、たとえば250ワット(W)程度以下のスイッチング電源回路の力率改善回路に用いられ、それ以上容量の大きなスイッチング電源回路の力率改善回路には適さないという特性がある。
力率改善回路とは、スイッチング電源回路において、交流入力電流波形を整流回路により整流された交流入力電圧波形と同相にすることにより、力率を1に近づけるように改善する回路である。力率改善回路は、さらに、有害なEMI(Electro-Magnetic Interference)発生や機器の破壊に繋がる高周波の電流や電圧を抑制する。
上記の電流連続制御方式および電流臨界制御方式は、それぞれ特徴を有するが、これらを組み合わせることで上記問題に対処した力率改善回路が知られている(たとえば、特許文献1参照)。この特許文献1に示される力率改善回路は、重負荷時に電流臨界制御方式と電流連続制御方式とを切り替えて動作するようにしている。
図8は電流臨界制御方式と電流連続制御方式とを切り替えることが可能な力率改善回路を用いたスイッチング電源回路を示す回路図である。なお、以下の説明においては、端子名とその端子における電圧、信号などは、同じ符号を用いることがある。
図8のスイッチング電源回路においては、交流入力電圧を全波整流回路1によって全波整流し、全波整流回路1の出力端にはコンデンサ2の一端が接続され、コンデンサ2によって後述のスイッチング素子4のスイッチング動作に起因する高周波成分を除去する。全波整流回路1の出力端には、さらに、インダクタ3、MOSFET(金属酸化物半導体電界効果トランジスタ)からなるスイッチング素子4、ダイオード5、およびコンデンサ6を含む昇圧回路が接続されている。この昇圧回路によって全波整流回路1から出力される整流電圧を昇圧整流することで、電源出力端子7とグランドとの間に接続される負荷(図示せず)に対して、たとえば、約400Vの直流出力電圧を供給することができる。
力率改善回路100は、各種機能を一体にした集積回路によって構成され、昇圧回路におけるインダクタ電流と入力電圧の位相を揃えることで、力率を改善するようにしている。
力率改善回路100は、外部接続端子として、FB端子、IS端子、OUT端子、RT端子、およびCOMP端子を有している。FB端子は、出力電圧を帰還するフィードバック信号入力用の端子であり、IS端子は、グランドとの間に電流検出抵抗R3が接続され、スイッチング素子4に流れる電流を負電圧に変換してインダクタ3に流れる電流を検出するための端子である。OUT端子は、スイッチング素子4を構成するMOSFETのゲート駆動出力用の端子であり、MOSFETのターンオン、ターンオフを制御する。RT端子は、発振波形を決定する抵抗接続用の端子であって、一端がグランドに接続されたタイミング抵抗R1が接続され、そのタイミング抵抗R1の抵抗値に応じた傾きを持つ鋸歯状の発振出力を生成するための端子である。COMP端子は、位相補償素子を接続するための端子であって、コンデンサC1を介してグランドに接続され、このコンデンサC1に対して抵抗R6とコンデンサC2との直列回路が並列に接続されている。コンデンサC1,C2および抵抗R6は、位相補償回路を構成している。なお、力率改善回路100には、その他に、図示しない電源電圧入力用のVCC端子、グランド接続用のGND端子なども備えている。
力率改善回路100の内部には、FB端子に入力される出力電圧の検出値と基準電圧Vrefとの差を増幅して出力するエラーアンプ11、およびPWM(パルス幅変調:Pulse Width Modulation)コンパレータ12が設けられている。力率改善回路100は、また、発振器13、レベル変換回路20、電流連続制御設定回路30、ZCD(Zero Current Detection)コンパレータ16、OR回路14a,14b、およびRSフリップフロップ15を有している。力率改善回路100は、さらに、過電圧保護用のOVP(Over Voltage Protection)コンパレータ18、および過電流を検出するためのOCP(Over Current Protection)コンパレータ19を有している。
スイッチング素子4は、ドレイン端子がインダクタ3とダイオード5との接続点に接続され、ソース端子が力率改善回路100のグランドに接続されている。電源出力端子7は、直列接続された抵抗R4,R5を介してグランドに接続され、抵抗R4,R5の接続点がFB端子に接続されている。
以上の構成のスイッチング電源回路では、力率改善回路100が昇圧回路におけるインダクタ電流と入力電圧との位相を揃えることで、力率を改善している。以下に、このスイッチング電源回路の動作の詳細を説明する。
力率改善回路100において、エラーアンプ11は、トランスコンダクタンスアンプからなり、その非反転入力端子に基準電圧Vrefを受け、反転入力端子にFB端子が接続されている。これにより、力率改善回路100は、FB端子の電圧が基準電圧Vrefに等しくなるように制御する。FB端子は、電源出力端子7を抵抗R4,R5で分圧した電圧が入力される。エラーアンプ11の出力は、COMP端子およびPWMコンパレータ12の反転入力端子に接続されている。
COMP端子には、位相補償回路を構成するためのコンデンサC1、抵抗R6およびコンデンサC2が接続され、交流入力電圧の変化に対応するリップル成分を平滑するようにしている。
PWMコンパレータ12の非反転入力には、発振器13の出力波形が入力されている。発振器13は、一定の電圧が出力されるRT端子を介して外部のタイミング抵抗R1と接続され、タイミング抵抗R1の抵抗値によって流れる電流値を基準に内蔵のコンデンサを充電することで、タイミング抵抗R1に応じた傾きを持つ鋸歯状の発振出力を生成する。発振器13の出力波形がCOMP端子の電圧を超えると、PWMコンパレータ12の出力は、OR回路14aを介してRSフリップフロップ15にリセット信号を出力する。これにより、RSフリップフロップ15は、そのOUT端子がL(Low)レベルとなり、スイッチング素子4をターンオフ状態にする。
さらに、OR回路14aには、過電圧保護用のOVPコンパレータ18、過電流保護用のOCPコンパレータ19の出力が接続されている。
過電圧保護用のOVPコンパレータ18は、反転入力端子側に基準電圧Vovpを受け、非反転入力端子側にFB端子が接続されている。過電圧保護用のOVPコンパレータ18は、電源出力電圧が反映されるFB端子電圧が基準電圧Vovpを超えた場合に、出力がH(High)レベルとなってRSフリップフロップ15をリセットする。
また、過電流保護用のOCPコンパレータ19は、非反転入力端子側に基準電圧Vocpを受け、反転入力端子側には、IS端子に接続されたレベル変換回路20が接続され、第2の電流レベル信号S2を受けるようにしている。過電流保護用のOCPコンパレータ19は、その出力がOR回路14aを介してRSフリップフロップ15のリセット端子に接続され、第2の電流レベル信号S2が基準電圧Vocpより低くなった場合にHレベルを出力してRSフリップフロップ15をリセットする。なお、第2の電流レベル信号S2は、後述するように、抵抗R3に流れる電流が大きいほど低下する信号である。
なお、IS端子に接続されるレベル変換回路20から出力される第1ないし第3の電流レベル信号S1,S2,S3は、基準電圧Vref2とIS端子との間の電圧を抵抗分圧した値の異なる信号をそれぞれ出力している。レベル変換回路20の第1および第2の電流レベル信号S1,S2は、電流連続制御設定回路30に入力され、電流連続制御設定回路30は、OR回路14bを介してRSフリップフロップ15に供給される第2のセットパルスS8(電流連続制御用のターンオン信号)を生成する。
また、第3の電流レベル信号S3が供給されるZCDコンパレータ16の出力信号は、電流臨界制御用のターンオン信号である第1のセットパルスとして、OR回路14bを介してRSフリップフロップ15のセット端子に入力されている。これら第1ないし第3の電流レベル信号S1,S2,S3および第2のセットパルスS8信号の生成については、図9で後述する。
OR回路14bは、ZCDコンパレータ16の出力信号である第1のセットパルスと第2のセットパルスS8とを入力し、どちらか先にHレベルとなった信号のタイミングでRSフリップフロップ15をセットし、OUT端子をターンオン状態のHレベルにする。
図9は力率改善回路を構成するレベル変換回路および電流連続制御設定回路の具体的構成を示す回路図である。
レベル変換回路20は、図9に示したように、4つの直列接続された抵抗R21〜R24から構成され、一端が正の基準電圧Vref2に接続され、他端がIS端子に接続されている。このIS端子には、インダクタ電流検出回路を構成する電流検出抵抗R3が接続されており、この電流検出抵抗R3に電流が流れると、インダクタ電流を検出した負電圧のインダクタ電流検出電圧が供給される。
レベル変換回路20では、IS端子からの入力電圧をインダクタ電流検出電圧とは反対極性の正電圧側にシフトさせている。これにより、レベル変換回路20は、インダクタ3に流れるインダクタ電流をこれに比例する第1ないし第3の電流レベル信号S1,S2,S3に変換し、第1ないし第3の電流レベル信号S1,S2,S3をそれぞれ互いに異なる電圧レベルで出力する。なお、ここで「比例する」とは、出力が入力の一次関数となるという意味で使っている。
第1の電流レベル信号S1は、基準電圧Vref2側の抵抗R21,R22の接続点から出力され、電流連続制御設定回路30に供給される。また、第2の電流レベル信号S2は、中間の抵抗R22,R23の接続点から出力され、力率改善回路100の過電流保護用のOCPコンパレータ19および電流連続制御設定回路30にそれぞれ供給される。さらに、第3の電流レベル信号S3は、IS端子側の抵抗R23,R24の接続点から出力されて力率改善回路100のZCDコンパレータ16に供給されている。
なお、ZCDコンパレータ16は、第3の電流レベル信号S3を基準電圧Vzcdと比較してインダクタ3に流れる電流がゼロとなることを検出するゼロ電流検出回路として機能する。
電流連続制御設定回路30は、図9に示したように、ピークホールド回路40およびセットパルス生成回路50を備え、セットパルス生成回路50で生成した第2のセットパルスS8を図8に示すOR回路14bに出力している。
この第2のセットパルスS8は、重負荷に対してスイッチング素子4のオンタイミングをゼロ電流検出のタイミング以前に変更するように機能するものであり、重負荷時での制御方式を電流臨界制御から電流連続制御に切り替えるものである。
この電流連続制御設定回路30では、ピークホールド回路40に図8に示すRSフリップフロップ15の出力信号S0とレベル変換回路20の第1の電流レベル信号S1とが入力されている。そして、ピークホールド回路40では、第1の電流レベル信号S1からピークレベル信号S6を生成し、セットパルス生成回路50では、スイッチング素子4のオンタイミングを規定する第2のセットパルスS8を生成している。
ピークホールド回路40は、ワンショット回路41、トランスファゲート42およびホールド回路43を備えている。ワンショット回路41は、MOSFET31、定電流源32、コンデンサC4、インバータ33,34、NAND回路35、およびインバータ36を有し、スイッチング素子4のオフタイミングに同期するワンショットパルスS4,S5を生成する。ピークホールド回路40では、MOSFET31のゲート端子にRSフリップフロップ15の出力信号S0が供給されて、MOSFET31がオン・オフされる。これにより、MOSFET31に並列接続されたコンデンサC4は、MOSFET31による放電と定電流源32による充電とを繰り返すように動作する。インバータ33には、RSフリップフロップ15の出力信号S0が入力され、インバータ34の入力端子は、コンデンサC4と定電流源32との接続点に接続されて、コンデンサC4の充電電圧が供給される。2つのインバータ33,34の出力電圧は、いずれもNAND回路35に入力され、ワンショットパルスS4が生成される。NAND回路35で生成されたワンショットパルスS4は、さらにインバータ36で反転され、もうひとつの逆相のワンショットパルスS5が生成される。
これらのワンショットパルスS4,S5は、それぞれトランスファゲート42の反転入力端子および非反転入力端子に供給される。ここで、トランスファゲート42は、ワンショットパルスS4がLレベル、ワンショットパルスS5がHレベルの場合に、オン(導通)状態となる。
ホールド回路43は、抵抗R7とコンデンサC3とを直列接続した回路から構成され、トランスファゲート42がオン状態となったときのレベル変換回路20の第1の電流レベル信号S1をホールドし、ピークレベル信号S6を出力する。
セットパルス生成回路50は、増幅回路(ボルテージフォロワ)51、2つの抵抗R8,R9を直列接続した抵抗回路、および比較回路52を有している。増幅回路51は、ピークホールド回路40で生成されたピークレベル信号S6をインピーダンス変換するものであり、その出力端子が抵抗R8,R9を介してGND接続されている。これにより、増幅回路51は、ピークレベル信号S6に等しい電圧を出力し、その電圧が抵抗R8,R9で分圧されて基準電位信号S7が生成される。比較回路52は、その反転入力端子に基準電位信号S7が供給され、非反転入力端子にレベル変換回路20から第2の電流レベル信号S2が供給されて、第2の電流レベル信号S2を基準電位信号S7の電圧レベルと比較する。比較回路52は、第2の電流レベル信号S2が基準電位信号S7を超える電圧となった場合に第2のセットパルスS8を出力し、これがOR回路14bを介してRSフリップフロップ15のセット端子へ入力される。
図10は電流連続制御設定回路を構成するワンショット回路の要部信号波形を示すタイミング図である。
ワンショット回路41では、RSフリップフロップ15の出力信号S0が供給され、その出力信号S0が時刻t0以前から時刻t1までの間でLレベルとなっていて、MOSFET31は、スイッチング素子4と同様にオフ状態となっている。そのとき、コンデンサC4には、定電流源32からの充電電流が流れているため、時刻t0においては、既にコンデンサC4は、所定の電圧レベル(Hレベル)まで充電されている。そのため、時刻t0からt1の期間では、出力信号S0が入力されたインバータ33からはHレベルがNAND回路35に出力され、インバータ34からはLレベルがNAND回路35に出力される。これにより、NAND回路35は、Hレベルを出力し、インバータ36は、Lレベルを出力することから、トランスファゲート42はオフ(遮断)状態となっている。
次に、時刻t1で出力信号S0がHレベルになると、MOSFET31がオンすることによりコンデンサC4が放電されて直ちにインバータ34への入力がLレベルに反転し、同時に2つのインバータ33,34の出力信号もそれぞれL,Hレベルに反転する。それでも、NAND回路35の出力は、Hレベルに保持されるため、トランスファゲート42のオフ状態には変化が生じない。
次に、出力信号S0がLレベルに復帰する時刻t2では、インバータ33は、直ちにHレベルを出力する。しかし、インバータ34の入力では、定電流源32からの充電電流がコンデンサC4に流れ始めるだけなので、インバータ34の出力は、Hレベル状態を継続する。そのため、NAND回路35の出力がHレベルからLレベルに反転するとともにインバータ36の出力がLレベルからHレベルに反転する。これにより、ワンショット回路41は、それぞれLレベル、HレベルのワンショットパルスS4,S5がトランスファゲート42へ入力される。
こうして、時刻t2から時刻t3の間では、ワンショット回路41で互いに相補的な信号として生成されたワンショットパルスS4,S5によりトランスファゲート42が導通状態となり、第1の電流レベル信号S1がホールド回路43に入力されるようになる。
ホールド回路43では、トランスファゲート42を介して入力される第1の電流レベル信号S1がピークレベル信号S6としてコンデンサC3に保持される。すなわち、インダクタ電流は、スイッチング素子4がオンしている間は増加を続けるためスイッチング素子4がオフする瞬間に最大値となり、ワンショット回路41からのワンショットパルスS4,S5は、スイッチング素子4がオフした直後に発生する。
したがって、ホールド回路43では、インダクタ電流のピーク値に対応する第1の電流レベル信号S1のピーク値をサンプルホールドしたピークレベル信号S6を保持することになる。
なお、ワンショット回路41では、時刻t3になって、定電流源32によりコンデンサC4がインバータ34の閾値電圧Vthを超えて充電されれば、インバータ34の出力状態がLレベルに反転し、NAND回路35の出力がLレベルからHレベルに反転するとともにインバータ36の出力がHレベルからLレベルに反転する。これによりトランスファゲート42がオフ状態になる。すなわち、時刻t2から時刻t3の期間でワンショットパルスS4,S5のパルス幅が規定される。
なお、時刻t2から時刻t3の期間は、図10では理解がし易いように長めに示しているが、実際には、上記のサンプルホールド動作が可能な範囲でできるだけ短い時間に設定されている。
図11は電流連続制御設定回路の要部信号波形を示すタイミング図であって、(A)はピークホールド回路の動作波形を示し、(B)はセットパルス生成回路の動作波形を示している。
図11の(A)は、ピークホールド回路40に入力される出力信号S0、出力信号S0が立ち下がるタイミングで形成されるワンショットパルスS5、第1の電流レベル信号S1、および第1の電流レベル信号S1から生成されるピークレベル信号S6を示している。
上述のように、電流検出抵抗R3にインダクタ電流が流れると、電流検出抵抗R3は、負電圧のインダクタ電流検出電圧を生成してIS端子に供給する。そして、インダクタ電流が大きいほどインダクタ電流検出電圧の絶対値が大きくなるため、第1の電流レベル信号S1は、インダクタ電流が大きいほど図11の(A)の下側に伸びる特性を示す。したがって、図11の(A)に示す第1の電流レベル信号S1のボトムピーク値およびピークレベル信号S6が下にあるほど、インダクタ電流のスイッチング周期ごとのピーク値が大きいことになる。
また、上述のように、力率改善回路100は、スイッチング電源回路における交流入力電流波形を整流後の交流入力電圧波形と同相にするものであるから、ピークレベル信号S6の波形は、整流後の交流入力電圧波形にほぼ相似となる。すなわち、スイッチング素子4およびインダクタ3に多くの電流が流れる重負荷時には、第1の電流レベル信号S1から生成されるピークレベル信号S6がより大きな曲率で変化する。
図11の(B)は、セットパルス生成回路50の動作波形として、比較回路52に入力される基準電位信号S7および第2の電流レベル信号S2と、比較回路52での比較出力としてセットパルス生成回路50から出力される第2のセットパルスS8とを示している。
セットパルス生成回路50では、整流後の交流入力電圧とほぼ同相で変化する基準電位信号S7と第2の電流レベル信号S2との電圧レベルを比較している。基準電位信号S7は、上述のようにピークホールド回路40から出力されたピークレベル信号S6をレベルシフト(分圧)した信号であって、重負荷時にはより大きな曲率で変化する。また、第2の電流レベル信号S2は、第1の電流レベル信号S1と同様、インダクタ3に流れるインダクタ電流に比例して変化するものであり、第1の電流レベル信号S1とは電圧レベルだけが異なっている。
スイッチング素子4がオフしてインダクタ電流が減少し、これに伴い第2の電流レベル信号S2が上昇して基準電位信号S7に等しくなると、比較回路52からスイッチング素子4のオンタイミングを規定する第2のセットパルスS8が出力される。
図12は力率改善回路の動作の信号波形を示す図であって、(A)は軽負荷時の臨界動作における信号波形を示し、(B)は重負荷時の連続動作における信号波形を示している。
ここでは、図12の(A)および(B)のいずれも、交流電源における交流入力電圧波形を基準として、インダクタ電流波形、交流入力電圧波形とほぼ同相で変化する基準電位信号S7、力率改善回路100のIS端子に入力されたインダクタ電流検出電圧の電圧波形、およびOUT端子から出力される信号の電圧波形を示している。なお、図のOUT端子から出力される信号の電圧波形については、パルス幅には意味がなく、パルス間隔に意味をもたせている。インダクタ電流がゼロとなるときの第2の電流レベル信号S2(ゼロ電流検出レベル)、すなわち図12の(A)におけるインダクタ電流検出電圧波形のトップピーク値をレベルシフトした値は、負荷の軽重に関係なく以下に示す一定の大きさとなる。
Vzero=Vref2・(R23+R24)/(R21+R22+R23+R24)
このとき、軽負荷時のインダクタ電流検出電圧波形のボトムピーク値は、絶対値が小さな負電圧となるため、基準電位信号S7の波形のボトムが図12の(B)のものより上側に位置し、基準電位信号S7の最小値がゼロ電流検出レベルより大きくなる。したがって、このような軽負荷時では、第2のセットパルスS8は出力されず、ZCDコンパレータ16がインダクタ電流ゼロを検出して第1のセットパルスを出力するタイミングでスイッチング素子4がオンする。この場合、インダクタ電流がゼロとなったタイミングでスイッチング素子4がオフからオンに変化するので、力率改善回路100は、電流臨界制御方式で動作する。
一方、負荷が重くなると、図12の(B)に示すように基準電位信号S7が大きな曲率で下方に変位し、その一部がゼロ電流検出レベルより低くなった時点で、第2のセットパルスS8がZCDコンパレータ16からの第1のセットパルスに先行して出力されるようになる。そのため、重負荷時には、力率改善回路100は、制御方式が電流臨界制御から電流連続制御に切り替わることになる。
図13はスイッチング電源回路で重負荷時に流れるインダクタ電流の波形を示す図である。
この図13には、インダクタ電流の最大値を接続した包絡線と最小値を接続した包絡線とを示している。図12において説明したように、従来の力率改善回路100では、インダクタ電流検出電圧を用いて負荷の軽重を判断し、電流臨界制御方式と電流連続制御方式を切り替えるようにしている。このため、交流入力電圧波形とほぼ同相で変化するインダクタ電流の最大値を接続した包絡線波形の瞬時値が小さい領域(すなわち、時刻t11と時刻t12の中間領域、時刻t12と時刻t13の中間領域)では電流臨界制御方式となり、最大値を接続した包絡線波形の瞬時値が大きい領域では電流連続制御方式となることがわかる。
前述の力率改善回路100の場合、電源出力電圧が400Vで一定とすると、上下に振動するインダクタ電流の平均値が1スイッチング周期の供給電力に比例する。そのため、従来の電流臨界制御の場合と同じ大きさのインダクタであっても、重負荷では電流臨界制御方式から電流連続制御方式に切り替えることにより、同じ最大ピーク電流値の条件で負荷に供給可能な電力を大きく設定でき、より大きな負荷に所定の直流電圧を供給できる。また、見方を変えれば、同じ電力を負荷に供給する場合は電流連続制御の方が電流臨界制御時のピーク電流より低い状態で同じ電力を供給できることになる。
特表2013―509141号公報
これまでに説明した電流臨界制御から電流連続制御へ切り替える方式の場合、負荷が重くなるにつれて交流入力波形の電圧の高い部分から電流連続制御が始まる。負荷が重くなると、交流入力電圧が大きい部分ほど、電流連続制御の連続電流成分となるオフセット電流の比率が増加してターンオン時の電流が大きくなる。そのため、COMP端子の電圧によって設定される一定のオン幅で動作する場合は、交流入力電圧が高い部分ほど電流連続となった部分のオフセット電流が加算されて、ピーク電流が大きくなってしまう。その結果、交流入力電圧のサイン波形に対し電流波形がサイン波形から山の高い波形に歪んでしまうため、力率が悪化するという問題点がある。
これを、前述の図13のインダクタ電流の波形で見ると、電流連続制御の部分でインダクタ電流のピークが大きくなっており、時刻t11,t12,t13の高位相角90°の部分で電流波形のピークが大きくなり、少し先が尖った形に歪みが発生する。なお、本発明では、「高位相角」という用語を、整流後の交流入力電圧波形が極大となる位相角およびその近傍の位相角という意味で使っている。
本発明はこのような点に鑑みてなされたものであり、交流入力波形の高位相角の部分で電流連続制御によりピーク電流が大きくなることによる電流波形の歪みおよび力率の悪化を改善したスイッチング電源回路および力率改善回路を提供することを目的とする。
本発明では上記の課題を解決するために、交流電源を全波整流して脈流出力を得る整流回路と、該整流回路に接続されたインダクタと、スイッチング素子と、出力コンデンサとを有し、前記交流電源から所定の大きさの直流出力電圧を生成して負荷に供給するスイッチング電源回路が提供される。このスイッチング電源回路は、前記交流電源の位相角を検出する位相角検出回路と、前記インダクタに流れる電流を検出してインダクタ電流検出電圧を出力するインダクタ電流検出回路と、前記インダクタ電流検出電圧を互いに異なる電圧レベルの第1、第2の電流レベル信号に変換するレベル変換回路と、前記第1の電流レベル信号から全波整流された交流入力電圧波形とほぼ同相で変化する基準電位信号を生成して前記第2の電流レベル信号の電圧レベルと比較することにより前記スイッチング素子のオンタイミングを規定するセットパルスを生成する連続制御設定回路と、前記インダクタに流れる電流がゼロとなることを検出するゼロ電流検出回路と、前記連続制御設定回路で規定される前記スイッチング素子のオンタイミングと前記インダクタに流れる電流がゼロとなることを前記ゼロ電流検出回路が検出するタイミングのいずれが早いタイミングの信号であるかを判定し、該判定の結果を用いて前記連続制御設定回路で規定される前記スイッチング素子のオンタイミングと前記インダクタに流れる電流がゼロとなることを前記ゼロ電流検出回路が検出するタイミングのいずれかを選択するオンタイミング選択回路と、を備え、前記位相角検出回路は、あらかじめ指定した位相角の時点で前記オンタイミング選択回路による前記判定の結果に基づいて前記連続制御設定回路が規定するオンタイミングの有効・無効を設定し、前記オンタイミング選択回路は、前記連続制御設定回路が規定するオンタイミングの有効を前記位相角検出回路が設定しているときだけ、前記連続制御設定回路が生成するオンタイミングを規定する前記セットパルスで前記スイッチング素子をオンに切り替えるようにしたことを特徴とする。
本発明では、また、交流電源を全波整流して脈流出力を得る整流回路と、該整流回路に接続されたインダクタと、スイッチング素子と、出力コンデンサと、前記インダクタに流れる電流を検出してインダクタ電流検出電圧を出力するインダクタ電流検出回路とを有し、前記交流電源から所定の大きさの直流出力電圧を生成して負荷に供給するスイッチング電源回路の力率改善回路が提供される。この力率改善回路は、前記交流電源の位相角を検出する位相角検出回路と、前記インダクタ電流検出電圧を互いに異なる電圧レベルの第1、第2の電流レベル信号に変換するレベル変換回路と、前記第1の電流レベル信号から全波整流された交流入力電圧波形とほぼ同相で変化する基準電位信号を生成して前記第2の電流レベル信号の電圧レベルと比較することにより前記スイッチング素子のオンタイミングを規定するセットパルスを生成する連続制御設定回路と、前記インダクタに流れる電流がゼロとなることを検出するゼロ電流検出回路と、前記連続制御設定回路で規定される前記スイッチング素子のオンタイミングと前記インダクタに流れる電流がゼロとなることを前記ゼロ電流検出回路が検出するタイミングのいずれが早いタイミングの信号であるかを判定し、該判定の結果を用いて前記連続制御設定回路で規定される前記スイッチング素子のオンタイミングと前記インダクタに流れる電流がゼロとなることを前記ゼロ電流検出回路が検出するタイミングのいずれかを選択するオンタイミング選択回路と、を備え、前記位相角検出回路は、あらかじめ指定した位相角の時点で前記オンタイミング選択回路による前記判定の結果に基づいて前記連続制御設定回路が規定するオンタイミングの有効・無効を設定し、前記オンタイミング選択回路は、前記連続制御設定回路が規定するオンタイミングの有効を前記位相角検出回路が設定しているときだけ、前記連続制御設定回路が生成するオンタイミングを規定する前記セットパルスで前記スイッチング素子をオンに切り替えるようにしたことを特徴とする。
上記構成のスイッチング電源回路および力率改善回路は、交流入力電圧波形の高位相角の部分での電流連続制御への切り替えをマスキングしたことで、高位相角の部分で電流連続制御によりピーク電流が大きくなることによる電流波形の歪みおよび力率の悪化を改善できるという利点がある。
本発明の実施の形態に係るスイッチング電源回路を示す回路図である。 電流連続制御設定回路の構成例を示す回路図である。 位相角検出回路の構成例を示す回路図である。 ピーク値監視回路の構成例を示す回路図である。 位相角検出回路の動作波形を示す図である。 セレクタ回路の構成例を示す回路図である。 電流ピークとピークホールド信号を分圧した基準電位信号とを従来例と本実施の形態とで比較した図であって、(A)は従来例の臨界制御の最大電流時を示し、(B)は本実施の形態の臨界制御の最大電流時を示し、(C)は従来例の中負荷時を示し、(D)は本実施の形態の中負荷時を示し、(E)は従来例/本実施の形態の重負荷時を示している。 電流臨界制御方式と電流連続制御方式とを切り替えることが可能な力率改善回路を用いたスイッチング電源回路を示す回路図である。 力率改善回路を構成するレベル変換回路および電流連続制御設定回路の具体的構成を示す回路図である。 電流連続制御設定回路を構成するワンショット回路の要部信号波形を示すタイミング図である。 電流連続制御設定回路の要部信号波形を示すタイミング図であって、(A)はピークホールド回路の動作波形を示し、(B)はセットパルス生成回路の動作波形を示している。 力率改善回路の動作の信号波形を示す図であって、(A)は軽負荷時の臨界動作における信号波形を示し、(B)は重負荷時の連続動作における信号波形を示している。 スイッチング電源回路で重負荷時に流れるインダクタ電流の波形を示す図である。
以下、図面を参照して本発明の実施の形態について詳細に説明する。
図1は本発明の実施の形態に係るスイッチング電源回路を示す回路図、図2は電流連続制御設定回路の構成例を示す回路図である。なお、以下では、従来例である図8および図9に示す回路の対応する構成要素、端子名、信号名などは、同一の符号を用いて重複する説明を省略する。
図1に示すスイッチング電源回路は、交流電源を全波整流して脈流出力を得る全波整流回路1、および全波整流回路1に接続されたインダクタ3を有し、交流電源から所定の大きさの直流出力電圧を負荷に供給するものである。このスイッチング電源回路において、力率改善回路10は、図8の従来例のスイッチング電源回路の力率改善回路100と比較して、位相角検出回路60とセレクタ回路(オンタイミング選択回路)70とが追加されている。位相角検出回路60は、交流入力電圧の位相角を検出するためのものであり、セレクタ回路70は、電流臨界制御用のターンオン信号と電流連続制御用のターンオン信号(第2のセットパルスS8)とのどちらが先に入力されてきたかを判定するためのものである。
電流連続制御設定回路30は、図2に示したように、図9に示す従来例の回路と同じ構成であるが、新たに、ワンショットパルスS5およびピークホールド信号S9を出力して、位相角検出回路60に供給するようにしている。
位相角検出回路60は、電流連続制御設定回路30からのワンショットパルスS5およびピークホールド信号S9と、RSフリップフロップ15の出力信号S0と、セレクタ回路70からの信号S10とを入力している。位相角検出回路60は、また、電流連続制御を行うかどうかを決定する信号S11を生成し、セレクタ回路70に供給している。
図3は位相角検出回路の構成例を示す回路図、図4はピーク値監視回路の構成例を示す回路図、図5は位相角検出回路の動作波形を示す図、図6はセレクタ回路の構成例を示す回路図である。図7は電流ピークとピークホールド信号を分圧した基準電位信号とを従来例と本実施の形態とで比較した図であって、(A)は従来例の臨界制御の最大電流時を示し、(B)は本実施の形態の臨界制御の最大電流時を示し、(C)は従来例の中負荷時を示し、(D)は本実施の形態の中負荷時を示し、(E)は従来例/本実施の形態の重負荷時を示している。
位相角検出回路60は、図3に示したように、RSフリップフロップ15の出力信号S0(OUT端子の信号)および電流連続制御設定回路30からのピークホールド信号S9が入力され、信号S100を出力するピーク値監視回路110を備えている。このピーク値監視回路110の出力は、Dフリップフロップ61のデータ入力端子に接続され、Dフリップフロップ61のクロック入力端子には、ワンショットパルスS5が入力するように構成されている。Dフリップフロップ61の出力端子は、Dフリップフロップ62のデータ入力端子に接続され、Dフリップフロップ62のクロック入力端子は、発振器63の出力端子に接続されている。
Dフリップフロップ62の出力端子は、インバータ202,203を介してワンショット回路64の入力端子に接続されるとともに、ラッチ回路66のクロック入力端子に接続されている。発振器63の出力端子は、また、カウンタ65およびダウンカウンタ67のクロック入力端子にそれぞれ接続されている。ワンショット回路64の出力端子は、カウンタ65のリセット端子と、OR回路209の一方の入力端子と、カウンタ204のリセット端子とに接続されている。
カウンタ65は、11ビット構成を有し、11ビットによるカウント数の1/8に対応する上位8ビットの出力が8ビット構成のラッチ回路66の入力に接続されている。ラッチ回路66の出力は、8ビット構成のダウンカウンタ67の入力に接続されている。ダウンカウンタ67のZero端子は、OR回路209の他方の入力端子に接続され、OR回路209の出力端子は、ダウンカウンタ67のLoad端子に接続されている。ダウンカウンタ67の8つの出力端子(Q0−Q7)は、NOR回路68,69の入力端子に接続され、NOR回路68,69の出力端子は、AND回路200の入力端子に接続されている。AND回路200の出力端子は、Dフリップフロップ201のデータ入力端子に接続され、Dフリップフロップ201のクロック入力端子には、発振器63の出力端子に接続されている。
Dフリップフロップ201の出力端子は、カウンタ204のクロック入力端子に接続され、カウンタ204の3ビットの出力端子は、デコーダ205のAND回路210,211の入力端子に接続されている。AND回路210は、カウンタ204の出力(Q2,Q0)を受ける入力端子を反転入力端子にして、カウンタ204の出力(Q2,Q1,Q0)が(0,1,0)、すなわち「2」を検出するようにしている。AND回路211は、カウンタ204の出力(Q0)を受ける入力端子を反転入力端子にして、カウンタ204の出力(Q2,Q1,Q0)が(1,1,0)、すなわち「6」を検出するようにしている。AND回路210の出力端子は、RSフリップフロップ208のセット端子に接続されている。AND回路211の出力端子は、ワンショット回路212を介してAND回路213の一方の入力端子に接続され、AND回路213の他方の反転入力端子には、セレクタ回路70からの信号S10が入力されている。AND回路213の出力端子は、RSフリップフロップ208のリセット端子に接続され、RSフリップフロップ208の出力端子は、電流連続制御を行うかどうかを決定する信号S11を出力し、セレクタ回路70に供給している。
位相角検出回路60のピーク値監視回路110は、図4に示したように、インバータ130と、ピークホールド回路140と、増幅回路(ボルテージフォロワ)151と、比較回路152とを備えている。
ピークホールド回路140は、ワンショット回路141、トランスファゲート142およびホールド回路143を備えている。
ワンショット回路141は、ゲート端子にRSフリップフロップ15の出力信号S0がインバータ130により反転されて供給されるMOSFET131を有している。MOSFET131のドレイン端子は、定電流源132に接続され、MOSFET131のソース端子は、グランドに接続されている。MOSFET131のドレイン端子と定電流源132との接続点は、コンデンサC104の一方の端子とインバータ134の入力端子とに接続されている。コンデンサC104の他方の端子は、グランドに接続されている。MOSFET131のゲート端子は、また、インバータ133の入力端子に接続されている。インバータ133,134の出力端子は、NAND回路135の入力端子に接続され、NAND回路135の出力端子は、インバータ136の入力端子に接続されている。NAND回路135の出力端子は、また、トランスファゲート142の反転入力端子に接続され、インバータ136の出力端子は、トランスファゲート142の非反転入力端子に接続されている。ここで、トランスファゲート142は、NAND回路135の出力信号S104がLレベル、インバータ136の出力信号S105がHレベルの場合に、オン状態となり、電流連続制御設定回路30からのピークホールド信号S9をホールド回路143に供給する。
ホールド回路143は、一方の端子にトランスファゲート142の出力端子が接続される抵抗R107を有し、この抵抗R107の他方の端子は、コンデンサC103を介してグランドに接続されている。抵抗R107とコンデンサC103との接続点は、増幅回路151の非反転入力端子に接続され、コンデンサC103にホールドされたピークレベル信号S106を供給する。
増幅回路151の出力端子は、自身の反転入力端子に接続されるとともに、比較回路152の反転入力端子に接続されてその反転入力端子にピークレベル信号S109を供給する。比較回路152の非反転入力端子には、電流連続制御設定回路30からのピークホールド信号S9が供給される。比較回路152は、ピークホールド信号S9とピークレベル信号S106とを比較し、ピークホールド信号S9の変化を表す信号S100をDフリップフロップ61に供給する。
ここで、以上の構成のピーク値監視回路110について説明する。電流のピークホールド信号S9が入力されるピーク値監視回路110は、電流連続制御設定回路30に内蔵されているピークホールド回路40と同様のピークホールド回路140を有するが、電流連続制御設定回路30のピークホールド回路40とは逆相で動作する。すなわち、RSフリップフロップ15の出力信号S0(OUT端子の信号)の立ち上がりに同期したワンショット回路141がトランスファゲート142を導通させて、ピークホールド信号S9の信号値をホールド回路143のコンデンサC103に充電して保持する。ホールド回路143に保持された信号値は、増幅回路151でインピーダンス変換されて、ピークレベル信号S109として出力される。このピークレベル信号S109の値は、ピークホールド信号S9の電圧値をコピーした値となる。比較回路152は、ピークホールド信号S9と増幅回路151のピークレベル信号S109の値とを比較して出力する。
ピークホールド信号S9の値は、次のRSフリップフロップ15の出力信号S0の立ち下がりで更新される。比較回路152は、その更新のタイミングで、前サイクルの電流ピーク値と更新された次の電流ピーク値とを比較する。ここで、ピークホールド信号S9の値が前回より減少(負電圧で電流値は入力されるので、実際の電流ピーク値は増加)していれば、比較回路152は、Lレベルの信号S100を出力する。逆に、ピークホールド信号S9の値が前回より増加(実際のピーク電流値は減少)していれば、比較回路152は、Hレベルの信号S100を出力する。
図3に戻り、Dフリップフロップ61は、RSフリップフロップ15の出力信号S0のオフ(Lレベル)に同期してサンプリングを開始するワンショットパルスS5がサンプリングを完了したタイミングで信号S100を取り込む。Dフリップフロップ61の出力信号S61は、ピークホールド信号S9が減少(実際の電流ピーク値は増加)中はLレベルを出力し、ピークホールド信号S9が増加(実際の電流ピーク値は減少)中はHレベルを出力する。
実際の電流ピーク値は、交流入力電圧に比例して変化するので、Dフリップフロップ61の出力信号S61は、入力電圧が上昇中はLレベル、位相角90度で最大となり、入力電圧が減少に転ずると、出力信号S61はHレベルに変化する。このことから、出力信号S61がLレベルからHレベルに変化するタイミングが交流入力電圧のピーク電圧部(位相角90度)であると判断できる。
発振器63は、10マイクロ秒(μs)周期のクロック信号を発生させるものであり、ここでは、中の詳細な構成は省略する。このクロック信号でDフリップフロップ62がDフリップフロップ61の出力信号S61をサンプリングし、カウンタ65がクロック信号の発生数をカウントすることで、出力信号S61がLレベルからHレベルに切り替わるタイミングの間隔をカウントする。この間隔が交流入力電圧の最大電圧から最大電圧を示す1周期Tとなる。
商用交流入力電圧は、50ヘルツ(Hz)または60Hzでこれを全波整流回路1で整流しているので、周期Tは、10ミリ秒(ms)または8.33msである。この期間を10μsのクロック信号でカウントするので、カウンタ65は、余裕を持って最大20.48msまでカウントが可能な11ビットで構成している。
出力信号S61がLレベルからHレベルに切り替わるタイミングを示す信号をDフリップフロップ62が出力すると、ラッチ回路66は、カウンタ65の上位側8ビットを記憶する。その後、Dフリップフロップ62の出力がHレベルとなる立ち上がりエッジのタイミングからインバータ202,203を通して少し遅らせた信号からリセットパルスをワンショット回路64が生成する。そのリセットパルスでカウンタ65がリセットされると、その後にカウンタ65が次の周期Tをカウントすることを繰り返す。
ラッチ回路66が記憶した8ビットデータは、周期Tのカウント数を3ビットシフトしたデータとなるため、周期Tの8分の1のカウント数となる(ちなみに8で割った余りは切り捨てとなる)。
ワンショット回路64が生成したリセットパルスは、また、OR回路209を介してダウンカウンタ67のLoad端子に入力されているので、ラッチ回路66にラッチされたデータは、ダウンカウンタ67にもロードされて初期値としてセットされる。
ダウンカウンタ67は、クロック信号が入力されるごとにダウンカウントする。ダウンカウンタ67のカウント値が「1」となったときに、NOR回路68,69およびAND回路からなる回路がDフリップフロップ201のデータ入力端子にHレベル信号を出力し、次のゼロとなるクロック信号で、ロード信号を出力して、また、ラッチ回路66のラッチデータに初期化される。
ダウンカウンタ67が周期Tの8分の1をカウントするごとにDフリップフロップ201の出力が変化する(10μsだけHレベルになる)ので、Dフリップフロップ201からは、カウンタ204に1/8*T周期(位相角の大きさ180/8=22.5度に相当)の第2のクロック信号が入力されることになる。カウンタ204の出力には、デコーダ205が接続されている。
デコーダ205では、AND回路210,211により、カウンタ204の出力(Q2,Q1,Q0)に接続されて、出力(Q2,Q1,Q0)が「2」を表す(0,1,0)または「6」を表す(1,1,0)に切り替わったことを検出する。カウンタ204の「2」は、2/8*Tのタイミング(位相角がピークの90度から22.4度×2=45度経過した135度)を表している。また、「6」は、6/8*Tのタイミング(位相角がピークの90度から22.4度×6=135度経過した225度=次周期の45度)を表している。
交流入力電圧の位相角が135度のとき、AND回路210は、カウンタ204の「2」を検出してHレベルの信号をRSフリップフロップ208のセット端子に供給し、RSフリップフロップ208をセットする。これにより、RSフリップフロップ208は、Hレベルの信号S11を出力する。この信号S11のHレベルは、力率改善回路10が電流連続制御を行うことを表しており、その前の高位相角領域で電流連続制御の動作が無効となっていても、これ以降は電流連続制御の動作が有効となることを意味する。
交流入力電圧の位相角が45度のとき、AND回路211は、カウンタ204の「6」を検出してHレベルの信号をワンショット回路212に出力する。これにより、ワンショット回路212は、ワンショットパルスを出力し、AND回路213の入力端子に供給する。AND回路213の反転入力端子には、セレクタ回路70から信号S10を受けている。この信号S10は、電流臨界制御用のターンオン信号と電流連続制御用のターンオン信号のどちらが先に生成されるかを表す生成順判定信号であり、Hレベルの場合は電流連続制御用、Lレベルの場合は電流臨界制御用のターンオン信号が先に生成されることを表す。
ここで、信号S10がLレベルであれば、負荷が軽いと判定され、カウンタ204の出力が「6」となるタイミングでAND回路213の出力端子がHレベルとなることによってRSフリップフロップ208がリセットされる。これにより、RSフリップフロップ208の出力の信号S11は、Lレベルとなり、力率改善回路10は、電流連続制御の動作が無効に切り替わり、高位相角領域では電流臨界制御の動作となる。また、カウンタ204の出力が「6」となるタイミングで、信号S10がHレベルとなっていれば、重負荷と判定されてAND回路213の出力端子がLレベルとなる。これにより、RSフリップフロップ208の出力の信号S11は、Hレベルのままとなり、電流連続制御の動作が高位相角でも有効となる。
次に、位相角検出回路60の動作について図5に示す動作波形を参照して説明する。
電流ピーク値をホールドしたピークホールド信号S9は、IS端子が負電圧検出であるため交流入力電圧が高い場合に低い電圧値となり、交流入力電圧が低い場合に高い電圧値となっている。図には、ピークホールド信号S9の階段状の推移とインダクタ電流を表す点線とを示しているが、理解し易いようにスイッチング周期を長く拡大して示している。実際はもっと短いスイッチング周期となり、ピークホールド信号S9の電圧変化も細かい変化となる。
Dフリップフロップ61の出力端子の信号S61は、ピークホールド信号S9が下がっている期間でLレベル、上がっている期間でHレベルとなる。この信号S61がLレベルからHレベルに切り替わるタイミングを検出することで交流入力電圧のピークのタイミングを見つけることができる。
位相角検出回路60では、まず、信号S61がLレベルからHレベルへ切り替わる立ち上がりエッジに同期してワンショット回路64がカウンタ65,204をリセットするとともに、以降の期間を発振器63が発振した10μs周期の第1のクロック信号を使ってカウンタ65で数える。そのカウント値の1/8に対応するT/8周期の第2のクロック信号をラッチ回路66、ダウンカウンタ67およびDフリップフロップ201により生成する。このT/8周期の第2のクロック信号によって、入力電圧波形の位相角が22.5度ごとに検出できるようになる。
信号S10は、電流連続制御用のターンオン信号(第2のセットパルスS8)と電流臨界制御用のターンオン信号のどちらが先に生成されるかをモニタする信号で、電流連続制御用のターンオン信号が先に生成される場合にHレベル、電流臨界制御の場合にLレベルとなる。
次に、セレクタ回路70の構成について図6を参照して説明する。
セレクタ回路70は、OR回路14bを有し、その一方の入力端子にZCDコンパレータ16の出力である電流臨界制御用のターンオン信号(第1のセットパルス)を受け、他方の入力端子には、AND回路71の出力端子が接続されている。AND回路71は、その入力端子に第2のセットパルスS8および位相角検出回路60からの信号S11を受けている。OR回路14bの出力端子は、RSフリップフロップ(RSFF)15のセット端子に接続される。
セレクタ回路70は、また、RSフリップフロップ72,76、AND回路73,77、OR回路74,78およびインバータ75,79を有している。RSフリップフロップ72のセット端子には、AND回路73を介して電流臨界制御用のターンオン信号(第1のセットパルス)が入力される。RSフリップフロップ76のセット端子には、AND回路77を介して電流連続制御用のターンオン信号である第2のセットパルスS8が入力される。RSフリップフロップ76の出力端子は、インバータ75を介してAND回路73の入力端子に接続されるとともに、OR回路74の一方の入力端子に接続され、OR回路74の出力端子は、RSフリップフロップ72のリセット端子に接続されている。RSフリップフロップ72の出力端子は、インバータ79を介してAND回路77の入力端子に接続されるとともに、OR回路78の一方の入力端子に接続され、OR回路78の出力端子は、RSフリップフロップ76のリセット端子に接続されている。
セレクタ回路70は、さらに、ワンショット回路80およびDフリップフロップ81を有している。ワンショット回路80の反転トリガ入力端子およびDフリップフロップ81の反転クロック入力端子には、RSフリップフロップ15の出力信号S0が入力される。ワンショット回路80の出力端子は、OR回路74,78の他方の入力端子に接続されている。Dフリップフロップ81は、そのデータ入力端子がRSフリップフロップ76の出力端子に接続され、Dフリップフロップ81の出力端子は、位相角検出回路60へ供給される信号S10を出力する。
このセレクタ回路70によれば、OR回路14bの2つの入力に、電流臨界制御用のターンオン信号(第1のセットパルス)が入力されるとともに、電流連続制御用のターンオン信号(セレクタ回路70)がAND回路71を通して入力される。この2つの入力信号で先にHレベルとなった信号がOR回路14bを通してRSフリップフロップ15のセット端子に入力され、そのタイミングでOUT端子がHレベルとなってスイッチング素子4がターンオンする。
AND回路71は、電流連続制御用のターンオン信号の他に、位相角検出回路60から連続制御を有効にするかどうかの信号S11が入力されている。信号S11がHレベルで入力されている場合に連続制御による動作が可能となり、前述のようにOR回路14bに先に入力された信号のタイミングでスイッチング素子4がターンオンする。信号S11がLレベルの場合は、AND回路71の出力は、Lレベル固定となり、連続制御の第2のセットパルスS8が先に生成されても無効となり、常に臨界制御でスイッチング素子4がターンオンする。
RSフリップフロップ72,76、AND回路73,77、OR回路74,78およびインバータ75,79は、電流臨界制御用のターンオン信号および電流連続制御用のターンオン信号(第2のセットパルスS8)のどちらが先に生成されたかを判定する回路を構成する。AND回路73が電流臨界制御用のターンオン信号、AND回路77が電流連続制御用のターンオン信号の入力となっており、どちらの入力もまだHレベルになっていない期間は、どちらのRSフリップフロップ72,76の出力信号もLレベルである。そして、先にターンオン信号がHレベルとなった側のRSフリップフロップ72,76がセットされ、Hレベルの出力信号を出力する。その場合、その出力信号は、反対側のRSフリップフロップのセット端子をLレベルに固定して無効とし、リセット端子をHレベルに固定して、出力端子をLレベルに固定する。したがって、この判定用の回路では、先にターンオン信号が生成された側のRSフリップフロップの出力端子のみがHレベルとなり、反対側のRSフリップフロップの出力端子は、Lレベルとなる。
また、RSフリップフロップ76の出力信号は、1スイッチング周期ごとに、RSフリップフロップ15の出力信号S0の立ち下がりエッジで、Dフリップフロップ81に読み込まれて更新される。そして、Dフリップフロップ81の出力信号が信号S10として、位相角検出回路60に送られる。
さらに、RSフリップフロップ15の出力信号S0は、ワンショット回路80に入力され、ワンショット回路80はDフリップフロップ81の読み込みタイミングより少し(たとえば、30ナノ秒(ns))遅れたリセットパルスを生成する。生成されたリセットパルスは、OR回路74,78を通してRSフリップフロップ72,76のリセット端子に入力されてRSフリップフロップ72,76をリセットし、それぞれの出力端子をLレベルにする。
この動作を1スイッチング周期ごとに行うことで、Dフリップフロップ81の出力の信号S10は、電流臨界制御用のターンオン信号が先に生成されている期間でLレベル、電流連続制御用のターンオン信号が先に生成されている期間でHレベルとなる。
この信号S10は、図3の位相角検出回路60のAND回路213の反転入力端子に入力される。一方、AND回路213の非反転入力端子には、AND回路211によって検出された位相角が225度=次周期の45度のタイミングを示すワンショット回路212からの出力信号が入力される。これにより、位相角45度のタイミングで電流連続制御用のターンオン信号が先に生成されていれば、AND回路213の出力はHレベルとならず、RSフリップフロップ208がリセットされない。その結果、RSフリップフロップ208は前の周期の位相角135度でセットされたままとなり、信号S11をHレベルに維持し、連続制御信号を有効にする。一方、位相角45度のタイミングで電流臨界制御用のターンオン信号が先に生成されていれば、RSフリップフロップ208がリセットされ、信号S11をLレベルにして連続制御信号を無効にし、位相角135度までは臨界動作するように切り替える。
次に、従来例の臨界連続切り替え方式と、本実施の形態の切り替え方式における、負荷による電流ピーク値(を反転したもの)の推移波形と基準電位信号S7で連続制御用のターンオン信号が出る電流値の変化との例を図7に示す。なお、信号S7に対する縦軸の数値は、上述のVzeroに対する差異を示す値となっている。
ここで、軽負荷の場合は、どちらも臨界制御が行われ、スイッチング電源回路の動作も同じであるので、ここでは従来例と本実施の形態との比較は例示しない。
負荷を重くしていくと、従来例は、図7の(A)に細線で示したように、基準電位信号S7が下がってくるが、まだ0Vより上にあるため、全領域で臨界制御を行う。ターンオンした電流は、図中、太線で示したように、負電圧検出の電流ピークのラインまで流れた時点でターンオフし、0Aまで電流が減少したら、次のターンオンとなる。一方、本実施の形態では、図7の(B)に示すように、基準電位信号S7が低下しても、基準電位信号S7が(Vzeroに対して)マイナスになる領域が位相角45度から135度までの範囲であれば、位相角45度から135度までの高位相角の部分で連続制御がマスキングされている。このため、高位相角の部分で連続制御が臨界制御より先に生成されていても、位相角45度から135度までの部分では、臨界制御のまま制御が継続する。そのため、電流ピークの曲率を従来例より緩やかにすることが可能となる。なお、基準電位信号S7の曲率を緩くするには、レベル変換回路20の基準電圧Vref2を低く設定し、抵抗比(R21+R22)/(R21+R22+R23+R24)を小さく設定すればよい。但し、このようにして基準電位信号S7の曲率を緩くすると、基準電位信号S7が負になりやすくなる(負となる領域が大きくなる)。なお、図7の(B),(D),(E)は、このようにして基準電位信号S7の曲率を緩くすることにより、電流ピークの曲率を緩くして力率を向上させた場合の例を示している。
さらに負荷が増加して、図7の(C)および(D)に示す中負荷になると、従来例では、基準電位信号S7のラインが0V以下となった部分で連続制御となる。また、本実施の形態でも、位相角45度のタイミングで連続制御の信号が臨界制御より先に生成されていれば、その時点で連続信号を有効として、マスキング可能な位相角45度から135度までの期間も連続制御が可能となる。
さらに負荷が重くなると、基準電位信号S7のレベルがさらに下がり、低位相角の部分でも徐々に連続制御が行われるようになる。位相角135度から次周期の位相角45度までの間で連続モードとなる重負荷では、従来例でも本実施の形態でも図7の(E)に示す波形となる。
以上のように、本発明のスイッチング電源回路および力率改善回路によれば、交流入力電圧波形の高位相角(実施の形態では、45度〜135度)の部分で電流連続制御への切り替えをマスキング可能とした。そして、マスキング可能期間の始まる直前(位相角45度)の時点で、電流臨界制御用および電流連続制御用のターンオン信号のいずれの信号が先に生成されているかを判定している。この判定に基づいて、電流連続制御を有効に切り替えることで、ピーク電流の曲率を小さくすることが可能となり、電流連続制御に切り替わったときの電流連続制御で動作する範囲を広げることができるようになる。これによって、高位相角側で大きくなる電流ピークの歪みが低減され、力率を改善することができる。また、連続動作範囲が広がることで、同じ負荷電力を供給する場合は、ピーク電流の最大値も低減できるようになる。
なお、本実施の形態では位相角45度と135度を検出するものとしたが、これに限定されるものではない。たとえば、ラッチ回路66がカウンタ65の上位nビット(n<8)をラッチするようにして位相角をより細かく刻むようにするなど、位相角検出回路60の構成を変更して他の位相角を検出するように変更することも本発明の範疇に入るものである。
1 全波整流回路
2 コンデンサ
3 インダクタ
4 スイッチング素子
5 ダイオード
6 コンデンサ
7 電源出力端子
10 力率改善回路
11 エラーアンプ
12 PWMコンパレータ
13 発振器
14a,14b OR回路
15 RSフリップフロップ
16 ZCDコンパレータ
18 OVPコンパレータ
19 OCPコンパレータ
20 レベル変換回路
30 電流連続制御設定回路
31 MOSFET
32 定電流源
33,34 インバータ
35 NAND回路
36 インバータ
40 ピークホールド回路
41 ワンショット回路
42 トランスファゲート
43 ホールド回路
50 セットパルス生成回路
51 増幅回路
52 比較回路
60 位相角検出回路
61,62 Dフリップフロップ
63 発振器
64 ワンショット回路
65 カウンタ
66 ラッチ回路
67 ダウンカウンタ
68,69 NOR回路
70 セレクタ回路
71 AND回路
72 RSフリップフロップ
73 AND回路
74 OR回路
75 インバータ
76 RSフリップフロップ
77 AND回路
78 OR回路
79 インバータ
80 ワンショット回路
81 Dフリップフロップ
100 力率改善回路
110 ピーク値監視回路
130 インバータ
131 MOSFET
132 定電流源
133,134 インバータ
135 NAND回路
136 インバータ
140 ピークホールド回路
141 ワンショット回路
142 トランスファゲート
143 ホールド回路
151 増幅回路
152 比較回路
200 AND回路
201 Dフリップフロップ
202,203 インバータ
204 カウンタ
205 デコーダ
208 RSフリップフロップ
209 OR回路
210,211 AND回路
212 ワンショット回路
213 AND回路
C1〜C4,C103,C104 コンデンサ
R1 タイミング抵抗
R3 電流検出抵抗
R4〜R9,R21〜R24,R107 抵抗
S0 出力信号(OUT端子の信号)
S1 第1の電流レベル信号
S2 第2の電流レベル信号
S4,S5 ワンショットパルス
S6 ピークレベル信号
S7 基準電位信号
S8 第2のセットパルス(連続制御用のターンオン信号)
S9 ピークホールド信号
S10 信号(生成順判定信号)
S11 信号(連続制御決定信号)
S100 信号(ピークホールド信号S9の変化を表す信号)

Claims (6)

  1. 交流電源を全波整流して脈流出力を得る整流回路と、該整流回路に接続されたインダクタと、スイッチング素子と、出力コンデンサとを有し、前記交流電源から所定の大きさの直流出力電圧を生成して負荷に供給するスイッチング電源回路において、
    前記交流電源の位相角を検出する位相角検出回路と、
    前記インダクタに流れる電流を検出してインダクタ電流検出電圧を出力するインダクタ電流検出回路と、
    前記インダクタ電流検出電圧を互いに異なる電圧レベルの第1、第2の電流レベル信号に変換するレベル変換回路と、
    前記第1の電流レベル信号から全波整流された交流入力電圧波形とほぼ同相で変化する基準電位信号を生成して前記第2の電流レベル信号の電圧レベルと比較することにより前記スイッチング素子のオンタイミングを規定するセットパルスを生成する連続制御設定回路と、
    前記インダクタに流れる電流がゼロとなることを検出するゼロ電流検出回路と、
    前記連続制御設定回路で規定される前記スイッチング素子のオンタイミングと前記インダクタに流れる電流がゼロとなることを前記ゼロ電流検出回路が検出するタイミングのいずれが早いタイミングの信号であるかを判定し、該判定の結果を用いて前記連続制御設定回路で規定される前記スイッチング素子のオンタイミングと前記インダクタに流れる電流がゼロとなることを前記ゼロ電流検出回路が検出するタイミングのいずれかを選択するオンタイミング選択回路と、
    を備え、
    前記位相角検出回路は、あらかじめ指定した位相角の時点で前記オンタイミング選択回路による前記判定の結果に基づいて前記連続制御設定回路が規定するオンタイミングの有効・無効を設定し、
    前記オンタイミング選択回路は、前記連続制御設定回路が規定するオンタイミングの有効を前記位相角検出回路が設定しているときだけ、前記連続制御設定回路が生成するオンタイミングを規定する前記セットパルスで前記スイッチング素子をオンに切り替えるようにしたことを特徴とするスイッチング電源回路。
  2. 前記位相角検出回路は、前記インダクタ電流検出電圧のスイッチング周期ごとのピーク電流値に相当する電圧値をホールドし、そのホールド値の変化から前記位相角を検出することを特徴とする請求項1記載のスイッチング電源回路。
  3. 前記連続制御設定回路は、前記第1の電流レベル信号の電圧レベルを前記スイッチング素子のオフタイミングごとにホールドしてピークレベル信号を生成するピークホールド回路と、前記ピークレベル信号の電圧レベルを変換して前記基準電位信号を生成するとともに、前記基準電位信号と前記第2の電流レベル信号の電圧レベルを比較することにより、前記スイッチング素子のオンタイミングを規定するセットパルスを生成するセットパルス生成回路とを有していることを特徴とする請求項1記載のスイッチング電源回路。
  4. 前記オンタイミング選択回路は、前記ゼロ電流検出回路が検出するタイミングのターンオン信号と前記連続制御設定回路で規定される前記セットパルスおよび前記オンタイミング選択回路による前記判定の結果を示す信号の論理積信号とを入力して前記スイッチング素子をオンに切り替えるOR回路と、前記ターンオン信号を保持する第1のフリップフロップおよび前記セットパルスを保持する第2のフリップフロップと、前記スイッチング素子のオフタイミングにて前記第2のフリップフロップの出力を保持することにより前記ターンオン信号および前記セットパルスのいずれが先に生成されたかを表す信号を前記位相角検出回路に出力する第3のフリップフロップと、を有し、第1のフリップフロップが前記ターンオン信号を保持しているとき前記第2のフリップフロップをリセットし、前記第2のフリップフロップが前記セットパルスを保持しているとき前記第1のフリップフロップをリセットしていることを特徴とする請求項1記載のスイッチング電源回路。
  5. 前記第3のフリップフロップが前記第2のフリップフロップの出力を保持した後に、第1のフリップフロップおよび前記第2のフリップフロップをリセットするパルスを生成するワンショット回路を有していることを特徴とする請求項4記載のスイッチング電源回路。
  6. 交流電源を全波整流して脈流出力を得る整流回路と、該整流回路に接続されたインダクタと、スイッチング素子と、出力コンデンサと、前記インダクタに流れる電流を検出してインダクタ電流検出電圧を出力するインダクタ電流検出回路とを有し、前記交流電源から所定の大きさの直流出力電圧を生成して負荷に供給するスイッチング電源回路の力率改善回路において、
    前記交流電源の位相角を検出する位相角検出回路と、
    前記インダクタ電流検出電圧を互いに異なる電圧レベルの第1、第2の電流レベル信号に変換するレベル変換回路と、
    前記第1の電流レベル信号から全波整流された交流入力電圧波形とほぼ同相で変化する基準電位信号を生成して前記第2の電流レベル信号の電圧レベルと比較することにより前記スイッチング素子のオンタイミングを規定するセットパルスを生成する連続制御設定回路と、
    前記インダクタに流れる電流がゼロとなることを検出するゼロ電流検出回路と、
    前記連続制御設定回路で規定される前記スイッチング素子のオンタイミングと前記インダクタに流れる電流がゼロとなることを前記ゼロ電流検出回路が検出するタイミングのいずれが早いタイミングの信号であるかを判定し、該判定の結果を用いて前記連続制御設定回路で規定される前記スイッチング素子のオンタイミングと前記インダクタに流れる電流がゼロとなることを前記ゼロ電流検出回路が検出するタイミングのいずれかを選択するオンタイミング選択回路と、
    を備え、
    前記位相角検出回路は、あらかじめ指定した位相角の時点で前記オンタイミング選択回路による前記判定の結果に基づいて前記連続制御設定回路が規定するオンタイミングの有効・無効を設定し、
    前記オンタイミング選択回路は、前記連続制御設定回路が規定するオンタイミングの有効を前記位相角検出回路が設定しているときだけ、前記連続制御設定回路が生成するオンタイミングを規定する前記セットパルスで前記スイッチング素子をオンに切り替えるようにしたことを特徴とする力率改善回路。
JP2015028520A 2015-02-17 2015-02-17 スイッチング電源回路および力率改善回路 Expired - Fee Related JP6439484B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015028520A JP6439484B2 (ja) 2015-02-17 2015-02-17 スイッチング電源回路および力率改善回路
US14/988,247 US9660519B2 (en) 2015-02-17 2016-01-05 Switching power supply circuit and power factor correction circuit
CN201610011752.7A CN105897016B (zh) 2015-02-17 2016-01-08 开关电源电路及功率因数校正电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028520A JP6439484B2 (ja) 2015-02-17 2015-02-17 スイッチング電源回路および力率改善回路

Publications (2)

Publication Number Publication Date
JP2016152679A true JP2016152679A (ja) 2016-08-22
JP6439484B2 JP6439484B2 (ja) 2018-12-19

Family

ID=56622593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028520A Expired - Fee Related JP6439484B2 (ja) 2015-02-17 2015-02-17 スイッチング電源回路および力率改善回路

Country Status (3)

Country Link
US (1) US9660519B2 (ja)
JP (1) JP6439484B2 (ja)
CN (1) CN105897016B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255702A1 (ja) * 2019-06-21 2020-12-24 富士電機株式会社 集積回路、電源回路
CN115360910A (zh) * 2022-07-06 2022-11-18 电子科技大学 一种无需外部供电的脉冲型能源电源管理及传感的电路

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300944B (zh) * 2016-08-06 2018-12-14 杰华特微电子(张家港)有限公司 过流控制电路、过流控制方法及应用其的电源系统
CN106851905B (zh) * 2017-01-23 2018-09-28 福建省云潮智能科技有限公司 波峰检测电路及波峰检测器
JP6814437B2 (ja) * 2017-02-13 2021-01-20 NExT−e Solutions株式会社 制御装置、バランス補正装置、蓄電システム、及び、装置
JP2018136707A (ja) * 2017-02-21 2018-08-30 富士通株式会社 電源ユニット
CN108105808B (zh) * 2017-11-14 2019-06-18 西安理工大学 电磁炉工作状态检测电路与开关频率控制方法
CN110082673A (zh) * 2018-01-26 2019-08-02 煤科集团沈阳研究院有限公司 低压交流开关通断检验功率因数测试系统及测试方法
JP7054358B2 (ja) * 2018-03-30 2022-04-13 株式会社Soken 電力変換装置の制御装置
WO2019198360A1 (ja) * 2018-04-11 2019-10-17 富士電機株式会社 力率改善回路及びこれを使用したスイッチング電源装置
US10554200B2 (en) * 2018-06-28 2020-02-04 Texas Instruments Incorporated Peak detection methods, apparatus, and circuits
TWI685183B (zh) * 2018-07-04 2020-02-11 群光電能科技股份有限公司 混模式升壓型功因校正轉換器
US10886728B2 (en) 2018-07-12 2021-01-05 Ovh Circuit implementing an AC smart fuse for a power distribution unit
JP7119681B2 (ja) * 2018-07-16 2022-08-17 株式会社デンソー 信号伝達装置及び駆動装置
CN109115060B (zh) * 2018-10-15 2023-09-19 中国工程物理研究院电子工程研究所 一种冲击片雷管可调通用型脉冲电流发生装置及其控制方法
JP7157640B2 (ja) * 2018-11-28 2022-10-20 株式会社Soken 電力変換装置の制御装置
TWI734337B (zh) * 2019-01-03 2021-07-21 矽創電子股份有限公司 電源電路及其偵測電路
JP7356908B2 (ja) * 2019-02-19 2023-10-05 東芝三菱電機産業システム株式会社 インパルス電圧発生装置および電力用半導体スイッチの保護方法
TWI728704B (zh) * 2020-02-17 2021-05-21 亞源科技股份有限公司 具有突發設定之功率因數校正電路及其操作方法
CN115694161B (zh) * 2022-12-30 2023-04-07 杭州得明电子有限公司 降低单相电表无感式电源电路视在功率的控制方法及电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509141A (ja) * 2009-10-29 2013-03-07 富士電機株式会社 スイッチング電源回路および力率改善回路
JP2013240274A (ja) * 2013-07-10 2013-11-28 Mitsubishi Electric Corp 交流直流変換装置、電動機駆動装置、圧縮機駆動装置、空気調和機、ヒートポンプ式給湯機
JP2014018012A (ja) * 2012-07-11 2014-01-30 Toyota Industries Corp 車載用スイッチング電源装置
JP2014191261A (ja) * 2013-03-28 2014-10-06 Sharp Corp プロジェクター及び駆動制御方法
JP2014200174A (ja) * 2012-11-08 2014-10-23 ダイキン工業株式会社 スイッチング電源回路制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267138A (en) * 1992-03-23 1993-11-30 Creos International Ltd. Driving and clamping power regulation technique for continuous, in-phase, full-duration, switch-mode resonant converter power supply
KR0152252B1 (ko) * 1995-11-16 1999-05-01 김광호 5핀을 갖는 능동역률보정집적회로
KR0154776B1 (ko) * 1995-12-28 1998-12-15 김광호 역률 보상 회로
JP5277952B2 (ja) * 2008-12-25 2013-08-28 富士電機株式会社 スイッチング電源回路
KR101745704B1 (ko) * 2009-10-26 2017-06-12 페어차일드코리아반도체 주식회사 역률 보상 회로 및 역률 보상 회로의 구동 방법
KR101643762B1 (ko) * 2009-10-29 2016-08-11 페어차일드코리아반도체 주식회사 역률 보상 회로 및 역률보상 회로의 구동 방법
JP5842366B2 (ja) * 2011-04-04 2016-01-13 富士電機株式会社 スイッチング電源制御回路
ITMI20120088A1 (it) * 2012-01-26 2013-07-27 Dora Spa Dispositivo di controllo per un alimentatore a commutazione.
CN103683918B (zh) * 2012-09-25 2017-09-01 富士电机株式会社 开关电源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509141A (ja) * 2009-10-29 2013-03-07 富士電機株式会社 スイッチング電源回路および力率改善回路
JP2014018012A (ja) * 2012-07-11 2014-01-30 Toyota Industries Corp 車載用スイッチング電源装置
JP2014200174A (ja) * 2012-11-08 2014-10-23 ダイキン工業株式会社 スイッチング電源回路制御方法
JP2014191261A (ja) * 2013-03-28 2014-10-06 Sharp Corp プロジェクター及び駆動制御方法
JP2013240274A (ja) * 2013-07-10 2013-11-28 Mitsubishi Electric Corp 交流直流変換装置、電動機駆動装置、圧縮機駆動装置、空気調和機、ヒートポンプ式給湯機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255702A1 (ja) * 2019-06-21 2020-12-24 富士電機株式会社 集積回路、電源回路
JPWO2020255702A1 (ja) * 2019-06-21 2021-10-14 富士電機株式会社 集積回路、電源回路
JP7056803B2 (ja) 2019-06-21 2022-04-19 富士電機株式会社 集積回路、電源回路
US11764663B2 (en) 2019-06-21 2023-09-19 Fuji Electric Co., Ltd. Integrated circuit and power supply circuit
CN115360910A (zh) * 2022-07-06 2022-11-18 电子科技大学 一种无需外部供电的脉冲型能源电源管理及传感的电路

Also Published As

Publication number Publication date
CN105897016B (zh) 2019-06-18
JP6439484B2 (ja) 2018-12-19
CN105897016A (zh) 2016-08-24
US9660519B2 (en) 2017-05-23
US20160241134A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6439484B2 (ja) スイッチング電源回路および力率改善回路
CN107769537B (zh) 功率因数校正电路
JP5382216B2 (ja) スイッチング電源回路および力率改善回路
KR101739549B1 (ko) 역률 보상 회로 및 역률 보상 회로의 구동 방법
KR101179327B1 (ko) 역률 개선 회로
JP5343816B2 (ja) 力率改善型スイッチング電源装置
JP6272691B2 (ja) 振幅正規化回路、電源装置および電子機器
TWI503642B (zh) 包含增強斜坡脈衝調變的電源控制電路
JP2009261042A (ja) 電源装置および半導体集積回路装置
JP4850279B2 (ja) 電力変換装置
JP5195849B2 (ja) Dc−dcコンバータ
JP2021153390A (ja) スイッチング電源装置
CN108303579B (zh) 一种电压检测电路和方法
US20200395843A1 (en) Integrated circuit and power supply circuit
JP2005522177A (ja) ライン周波数スイッチング・レギュレータ
JP5486222B2 (ja) 半導体集積回路および電源装置
JP6640036B2 (ja) 電源制御装置、半導体集積回路、および共振型コンバータ
JP2021027788A (ja) 電力変換装置の制御回路及び電力変換装置
TWI633744B (zh) Control device and control method of Boost PFC converter for quasi-resonant working mode
JP6940010B2 (ja) 集積回路、電源回路
TWI539729B (zh) 交流-直流轉換器及其功因校正電路
CN113169547A (zh) 集成电路、电源电路
WO2020129414A1 (ja) 集積回路、電源回路
US20230144791A1 (en) Power factor correction converter, controller and digital peak-hold circuit thereof
JP7338139B2 (ja) スイッチング制御回路、電源回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6439484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees