JP2016127163A - 半導体装置の製造方法及び製造装置、並びに半導体装置 - Google Patents

半導体装置の製造方法及び製造装置、並びに半導体装置 Download PDF

Info

Publication number
JP2016127163A
JP2016127163A JP2015000353A JP2015000353A JP2016127163A JP 2016127163 A JP2016127163 A JP 2016127163A JP 2015000353 A JP2015000353 A JP 2015000353A JP 2015000353 A JP2015000353 A JP 2015000353A JP 2016127163 A JP2016127163 A JP 2016127163A
Authority
JP
Japan
Prior art keywords
solder
electrode
solid
semiconductor element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015000353A
Other languages
English (en)
Inventor
濱口 恒夫
Tsuneo Hamaguchi
恒夫 濱口
晋助 浅田
Shinsuke Asada
晋助 浅田
祐介 石山
Yusuke Ishiyama
祐介 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015000353A priority Critical patent/JP2016127163A/ja
Publication of JP2016127163A publication Critical patent/JP2016127163A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

【課題】従来に比べて良好な生産性で、かつ低コストにて半導体装置を製造可能な、半導体装置の製造方法及び装置、並びに半導体装置を提供する。【解決手段】半導体素子1の表面電極2に配置した固体の第1はんだ5aに超音波振動202を印加することにより、第1はんだ、半導体素子1、固体の第2はんだ7a及び基板電極81の各界面で金属接合を形成する工程と、第1はんだに外部電極4を配置する工程と、半導体素子を第1はんだ及び第2はんだの融点以上に加熱して、半導体素子、基板及び外部電極4をはんだ接合する工程と、を有する。【選択図】図2

Description

本発明は、半導体素子などの電子部品の電極と配線材の外部電極とを接合して構成される半導体装置の製造方法及び製造装置、並びに半導体装置に関する。
近年、高い出力電力が得られる電力用の半導体装置の需要が高まってきている。電力用の半導体装置では、大電流をスイッチング制御することが必要なため、電気抵抗の小さい銅を導体に用いた配線が結線に用いられ、半導体素子の電極と外部電極(銅板)とは、はんだで接合する構成が採られる。半導体素子の電極と外部電極とをはんだにて接合する方法として、以下の幾つかの方法がある。
第1の方法は、特許文献1の図4に示される方法である。即ち、半導体素子の裏面を放熱板電極にはんだ箔を用いてはんだ接合する。接合後、外部電極と半導体素子の電極との隙間を平行に保持し、外部電極の中央部に設けた穴からはんだを供給し、加熱装置にて加熱する。外部電極の穴から供給されたはんだは、毛細管現象により、半導体素子と外部電極との間の隙間に広がり、外部電極と半導体素子の電極とを接合する。
第2の方法として、特許文献2の図4に示される方法がある。即ち、基部上にはんだ箔を介して半導体素子を載せ、加熱装置にて所定の温度にてはんだ箔を溶融して、半導体素子と基部とのはんだ接合を行う。次に、外部電極を治具にて半導体素子の電極上に、ある距離を介して平行に保持した状態で、これらを加熱装置に投入する。次に、はんだ供給装置から溶融したはんだを外部電極(上部電極)上に供給する。供給されたはんだは、外部電極上を濡れ広がり、外部電極の端面を経由して、外部電極と半導体素子の電極との隙間を充填し、外部電極と半導体素子の電極とを接合する。
あるいはまた、特許文献2の図8に示される方法もある。即ち、外部電極と半導体素子の電極とを、隙間を保った状態で対向させた後、溶融したはんだを半導体素子の電極上に直接滴下する。外部電極と半導体素子の電極との間に、滴下したはんだを浸透させて、半導体素子の電極と上部電極とをはんだで接合する。
第3の方法として、特許文献3の図3に示される方法がある。即ち、予め半導体素子の裏面がはんだで接合された金属板を加熱プレートなどの上に配置し、はんだの融点以上に加熱しておく。次に、アクチュエータを備えたシリンジで、はんだ槽から溶融はんだを吸い上げ、シリンダ内に貯える。次に、半導体素子の電極に対して隙間を介して配置した外部電極の貫通孔上にシリンジを移動し、シリンジ内のはんだを貫通孔上で吐出する。吐出されたはんだは、貫通孔を通じて半導体素子の電極に滴下され、貫通孔を充填するまで供給されて半導体素子の電極上を濡れ広がりフィレットを形成する。その後、はんだ、外部電極、及び金属板が冷却され、はんだが凝固し作業を完了する。またこの接合作業は、はんだの酸化を抑制するために、窒素などの不活性ガス、又は水素などの還元ガスで満たされた低酸素濃度の雰囲気内で実施される。
第4の方法として、特許文献4の図1に示される方法がある。半導体チップの上面主電極にはんだ材で面接合したヒートスプレッダの上面に接続導体としてストラップ状金属箔を超音波接合する方法で、金属箔との接合面域はヒートスプレッダの上面周域に余白を残した領域であることを特徴としている。
特開2004−303869号公報 特開2012−81481号公報 特開2008−182074号公報 特開2006−173509号公報
しかしながら上述した従来技術では以下のような問題がある。
即ち、特許文献1の技術では、外部電極と半導体素子の電極とを、毛細管現象が生じる隙間に均一に保持する必要がある。また、毛細管現象によってはんだで電極間を埋めることから、処理に時間を要し、生産性が悪いという問題がある。
また、特許文献2の技術では、外部電極の上部から滴下した溶融はんだが、外部電極の端面を回り込み半導体素子の電極へ供給する方法であることから、外部電極が傾斜していると溶融はんだが流れ出してしまう。その結果、所望位置からのはんだの回り込みが行えず、半導体素子の電極へのはんだ供給ができないという問題がある。また、溶融はんだを半導体素子の電極上に直接滴下して、外部電極と半導体素子の電極との間に浸透させる方法にあっては、溶融はんだを滴下するために、予め、半導体素子の電極を外部電極よりも大きくする必要がある。そのため、半導体素子のサイズが大きくなり、コストアップの要因となる。また、導体(外部電極)の面積が小さくなることで、接合抵抗が大きくなり、特性が劣化するという問題もある。
また、特許文献3の技術では、溶融はんだを貫通穴を通して供給する方法であることから、貫通穴径は半導体素子の電極サイズよりも小さくする必要がある。よって半導体素子のサイズの縮小化に伴いその電極サイズ、さらに貫通穴も小さくなることから、溶融はんだの滴下が困難になるおそれがある。例えば、高耐圧化のために、半導体素子の材料として、Siの代わりにSiCが用いられつつあるが、SiCは高価であるため、チップサイズが小さくなり、電極サイズはSiの場合に比べて約30%になる。このような半導体素子のサイズ縮小に合うように、外部電極の貫通穴径を小さくすると、穴径が1mmとなり、溶融はんだの供給が困難になる場合もある。また、導体の電極に溶融はんだ滴下用の穴を開けた場合には、銅導体の面積が小さくなり電気特性の低下を考慮する必要も懸念される。
また、上述の各特許文献では、いずれも溶融はんだを半導体素子の電極と外部電極との間の隙間に供給することから、装置全体をはんだの溶融温度以上の加熱状態に維持する必要がある。したがって、接合装置が複雑になるとともに、複数の接合箇所へ同時に溶融はんだを供給できないことから、生産性が悪いという問題もある。
さらにまた、導体と半導体素子の電極との間への毛細管現象によるはんだ供給は長時間を要することから、はんだと半導体素子の電極との間に金属間化合物層が形成されてしまう。また、電極の表面層に設けたバリア作用の金属層、例えばNiがはんだ中へ拡散することから、この拡散量を見込んでNi層を厚く形成しておく必要がある。その結果、コストアップにつながるという問題もある。
また、特許文献4の技術では、超音波にて金属箔を接合する方法であるが、超音波接合では接合面内が均一に全面接合することは一般にありえない。その理由として、超音波を用いた接合では、金属箔とヒートスプレッダの金属同士が擦れ合い金属の新生面が露出したところが接合する。擦れ合う金属面は、微視的には表面に凹凸があり、凸部のみが擦れ合うため、擦れ合った凸部でのみ新生面が露出して金属接合が実現する。そのため、擦れ合った金属面の接合している面積は、約50%くらいである。したがって、接合していない箇所が存在することから、熱及び電気を流すときに、熱放散及び電気的なロスが生じる問題がある。
本発明は、上述したような問題点を解決するためになされたものであり、従来に比べて良好な生産性で、かつ低コストにて半導体装置を製造可能な、半導体装置の製造方法及び製造装置、並びにこの製造方法にて製造される半導体装置を提供することを目的とする。
上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の一態様における半導体装置の製造方法は、半導体素子の表面電極と外部電極とを第1はんだで接合し、上記半導体素子の裏面電極と基板の基板電極とを第2はんだで接合して形成される半導体装置の製造方法において、固体の第1はんだに、又は固体の第1はんだ及び固体の第2はんだに超音波振動を与え、上記固体の第1はんだ、上記表面電極、上記裏面電極、上記固体の第2はんだ、及び上記基板電極のそれぞれの界面において金属接合を形成する工程と、金属接合後、上記固体の第1はんだに上記外部電極を配置する工程と、上記外部電極の配置後、上記固体の第1はんだ及び上記固体の第2はんだを溶融させることにより、上記半導体素子と、上記基板電極及び上記外部電極とをそれぞれはんだ接合する工程と、を備えたことを特徴とする。
本発明の一態様における半導体装置の製造方法によれば、基板電極上に、第2はんだ、半導体素子、第1はんだを配置し、第1はんだに、又は第1はんだ及び第2はんだに、超音波振動を印加することで、第2はんだ、半導体素子、及び第1はんだを基板電極に金属接合する。よって、超音波振動を印加することで、第1はんだ、半導体素子及び第2はんだと、基板電極とを金属接合つまり固定することができ、従来に比べて生産性が大幅に向上し、低コスト化を実現することができる。
さらに、第1はんだ及び第2はんだの融点以上に加熱して第1及び第2はんだを溶融することから、基板電極に半導体素子及び外部電極をはんだ接合した半導体装置を作製することができる。はんだを用いて超音波接合したとき、擦られて露出した新生面で金属接合が行われるため、面内で不均一な接合になる。しかしながら、本発明の一態様では、金属接合後、はんだを溶融することから、はんだと各部材との界面で金属間化合物を均一に形成することができ、良好なはんだ接合が実現できる。そのため、超音波振動のみによって接合を行う場合に比べて、高い信頼性の接合を得ることができる。
本発明の実施の形態における半導体装置の製造方法によって製造された半導体装置の断面図である。 図1Aに示す半導体装置の平面図である。 (a)から(d)は、本発明の実施の形態1における半導体装置の製造方法を説明する図である。 図2の(b)に示す超音波ヘッドの変形例による超音波ヘッドにて超音波振動を印加した状態を示す図である。 図2に示す半導体装置の製造方法において、第1はんだ及び第2はんだを同じ組成のはんだを積層して製造する形態を示す図である。 (a)から(f)は、本発明の実施の形態2における半導体装置の製造方法を説明する図である。 (a)から(d)は、本発明の実施の形態3における半導体装置の製造方法を説明する図である。 (a)から(d)は、本発明の実施の形態4における半導体装置の製造方法を説明する図である。 本発明の実施の形態における半導体装置の製造方法を示すフローチャートである。 本発明の実施の形態における半導体装置の製造装置の概略構成を示すブロック図である。
本発明の実施形態である半導体装置の製造方法、及びこの製造方法で製造される半導体装置、並びに上記製造方法を実行する半導体製造装置について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。また、以下の説明が不必要に冗長になるのを避け当業者の理解を容易にするため、既によく知られた事項の詳細説明及び実質的に同一の構成に対する重複説明を省略する場合がある。また、以下の説明及び添付図面の内容は、特許請求の範囲に記載の主題を限定することを意図するものではない。
本発明の実施形態である半導体装置の製造方法の一態様として、図8に示すような下記の構成がある。
即ち、半導体素子の表面電極と外部電極とを第1はんだで接合し、上記半導体素子の裏面電極と基板の基板電極とを第2はんだで接合して形成される半導体装置の製造方法において、固体の第1はんだに、又は、固体の第1はんだ及び固体の第2はんだに超音波振動を与え、固体の第1はんだ、表面電極、裏面電極、固体の第2はんだ、及び基板電極のそれぞれの界面において金属接合を形成する工程と(図8のステップS1)、この金属接合の後、固体の第1はんだの上面に外部電極を配置する工程と(図8のステップS2)、外部電極を配置した後、固体の第1はんだ及び固体の第2はんだを溶融させることにより、半導体素子と、基板電極及び外部電極とをそれぞれはんだ接合する工程と(図8のステップS3)、を備えた構成である。
以下では、特に上述の金属接合を行う工程に関して詳しく説明を行う。
実施の形態1.
図1Aには、本発明の実施の形態による半導体装置製造方法で製造される半導体装置101の断面図を、図1Bにはその平面図を示す。尚、図1A及び図1Bを総称して図1と呼ぶ。半導体装置101は、基本的構成部分として、半導体素子1(本実施の形態では、2種類の半導体素子1a,1b)と、基板8と、外部電極4とを有し、少なくとも基板8及び外部電極4の一部を露出させ、その他の構成部分をモールド樹脂10で封止して製造される。このような半導体装置101の構成について、以下に説明する。
本実施の形態では、第1の半導体素子1aは、例えばIGBT(Insulated Gate Bipolar Transistor)であり、第2の半導体素子1bは、例えばダイオードである。尚、第1の半導体素子1a及び第2の半導体素子1bを合わせて「半導体素子1」と記す。また半導体素子1は、上述のような能動素子に限定されるものではない。
第1の半導体素子1aにおいて、対向する2つの表、裏面には、裏面側にてコレクタ電極に相当する裏面電極3aが、また、表面側にてエミッタ電極に相当する表面電極2a及びゲート電極に相当する第2表面電極2cが、それぞれ形成されている。
第2の半導体素子1bにおいて、対向する2つの表、裏面には、裏面側にてカソード電極に相当する裏面電極3bが、また、表面側にてアノード電極に相当する表面電極2bが、それぞれ形成されている。尚、表面電極2a、第2表面電極2c、及び表面電極2bを総称して表面電極2と、裏面電極3a及び裏面電極3bを総称して裏面電極3とそれぞれ呼ぶ場合がある。
これらの第1の半導体素子1a及び第2の半導体素子1bは、それぞれの裏面電極3a、3bを基板8に対向させて、基板8の上方に同一又は略同一の高さで互いに隣接して基板8の基板電極81に第2はんだ7で接合される。ここで、第2はんだ7としては、例えばSn系のSn−3Ag−0.5Cu、Sn−3.5Ag、Sn−0.7Cuなどのはんだを用いることができる。
また、第1の半導体素子1aの表面電極2a及び第2の半導体素子1bの表面電極2bの上方には、帯状の外部電極4が、半導体素子1a、1bの配列方向に沿って、かつ表面電極2a、2bに略平行に延在する。表面電極2a、2bのそれぞれと、外部電極4とは、第1はんだ5によって接合される。第1はんだ5及び第2はんだ7による接合方法については、後述の製造方法の説明にて詳しく述べる。
外部電極4は、小さい電気抵抗が要求されることから、本実施の形態では銅を用いている。このような外部電極4のサイズは、一例として、幅70mm、長さ200mm、厚さ0.6mmである。
また、第1の半導体素子1aの第2表面電極2cは、Au又はAlなどの金属ワイヤ42によって第2外部電極41と接続されている。この第2外部電極41も、その一部(端部)をモールド樹脂10の外側へ露出させる。
基板8は、放熱の必要から、本実施の形態では、熱伝導が良く電気伝導の良い銅を用いるが、銅に限定されず、熱伝導のよいAlN、SiNなどのセラミック材で、その表面に銅などの導体層を設けた配線板を用いてもよい。
以上のように構成される半導体装置101の製造方法について、図2を参照して以下に説明する。
図2は、第1の半導体素子1a及び第2の半導体素子1bの表面電極2a、2bと外部電極4との第1はんだ5による接合方法、及び、第1の半導体素子1a及び第2の半導体素子1bの裏面電極3a、3bと基板電極81との第2はんだ7による接合方法を、一般化して図示したものである。既に説明したように、第1の半導体素子1a及び第2の半導体素子1bを半導体素子1とし、表面電極2a、2bを表面電極2とし、裏面電極3a、3bを裏面電極3として、図2では表記している。
図2の(a)は、半導体製造装置における保持装置210によって吸引などにて固定されている基板8の基板電極81に、第2はんだ7、半導体素子1、半導体素子1の表面電極2に第1はんだ5を積層して載置した状態を示す。ここで、第1はんだ5及び第2はんだ7について、固体状態、つまり溶融状態ではないはんだには、第1はんだ5a、及び第2はんだ7aと符番する。第1はんだ5a、及び第2はんだ7aは、本実施形態では、Sn系のPbフリーはんだを用いている。本実施の形態では、第1はんだ5a及び第2はんだ7aとして、Sn−0.7Cuを用いたが、第1はんだ5a及び第2はんだ7aを互いに異なるはんだを用いてもよい。
尚、図9には上記半導体製造装置の概略構成を示している。当該半導体製造装置250は、超音波装置205、保持装置210、装着装置215、加熱装置220、及び制御装置230を備える。各電極及び各固体はんだ同士の配置動作は、装着装置215にて行う。また、制御装置230は、半導体製造装置250の動作を制御して半導体装置101の製造方法を実行する。
図2の(b)は、第1はんだ5aの面積よりも小さい面積の超音波ヘッド201を第1はんだ5aに押圧して、第1はんだ5aに超音波ヘッド201による凹部51を形成した状態で、超音波振動202を印加している状態を示す。尚、超音波ヘッド201の押圧動作及び超音波振動動作は、超音波装置205にて実行される。ここで本実施形態では、一例として、超音波ヘッド201は3mm×3mm、第1はんだ5aは4mm×10mm、厚0.4mmの大きさである。また、超音波ヘッド201の超音波振動方向の長さは、第1はんだ5aの振動方向の長さよりも短くしている。但し、平面において、超音波振動方向に直角な方向における超音波ヘッド201の長さは、第1はんだ5aの同方向における長さよりも長くてもよい。
超音波振動は、金属同士の接合に用いられている。例えば、超音波フリップチップボンディング技術を用いたシステムインパッケージの開発、(9thSymposium on“Microjoining and Assembly Technology in Electronics”February6-7,2003,Yokohana)、にあるように、 半導体素子の電極上に形成したAuのバンプと基板のAu電極との接合に用いられている。
この場合は、半導体素子の裏面に超音波ヘッドを押し付けて、半導体素子を振動させる。これにより半導体素子の電極上に形成したAuのバンプと基板上のAuの電極とを擦り合わせることで、Au界面に新生面を露出させて、バンプのAuと電極のAuとが金属接合をする。この方法では超硬合金で作製した超音波ヘッドで硬脆材料の半導体素子を振動させる場合、互いに硬い材料である超音波ヘッドの面と半導体素子の裏面とが擦り合わせることになる。よって、回数を増やしていくと、超音波ヘッドの面が摩耗し、摩擦係数が小さくなり、超音波振動が効率よく伝わらなくなる。そのため、超音波エネルギーのロスが大きくなる。よって半導体素子のAuバンプと基板のAu電極との間で効率よい擦れ合いができないため、半導体素子のAuバンプと基板の電極表面で新生面の露出面積が減ることになり、金属接合が得らる面積が小さくなる。そのため、所望の接合力が得られなくなる。
本実施の形態では、平板状の第1はんだ5aに超音波ヘッド201を押し付けて、超硬合金製の超音波ヘッド201よりも約1/100ほど軟らかい第1はんだ5a表面に凹部51を形成する。これにより、超音波ヘッド201が振動方向に拘束され、第1はんだ5aの表面を滑ることなく、振動エネルギーをロスなく第1はんだ5aに伝えることができる。そのため、積層した半導体素子1と第2はんだ7aと基板8の電極81とのそれぞれの界面での金属接合が可能になる。
また、本実施の形態では、以下に説明するように、第1はんだ5a、表面電極2、裏面電極3、第2はんだ7a、及び基板電極81の各はんだと各電極との間の各界面のすべてにおいて一度に金属接合を形成する。具体的には、一例として、第1はんだ5aの寸法が□4×9mm、厚さ0.4mm、半導体素子1の寸法□10mm、厚さ0.3mm、第2はんだ7aの寸法□10mm、厚さ0.4mm、の条件下において、第1はんだ5aの超音波接合条件として、振幅が4μm、振動数40kHz、第1はんだ5aあたり10MPaの圧力、時間0.5秒で実施した。しかしながらこれらの値に限定されることなく、振幅3〜10μmの範囲、振動数30〜60kHzの範囲、第1はんだ5aあたりの圧力7〜45MPaの範囲で同じ接合が得られる。
第1はんだ5aに印加された超音波振動202は、下方(基板8の方)に伝導される。ここで保持装置210に固定された基板8の基板電極81に、第2はんだ7a、半導体素子1、第1はんだ5aを積層した状態で、第1はんだ5aに超音波振動202を印加した場合の接合を観察した。超音波ヘッド201を第1はんだ5aに押圧したため、第1はんだ5aに凹部51を形成した超音波ヘッド201は、超音波ヘッド201と第1はんだ5aとの界面で滑ることなく、超音波エネルギーを下方に伝導する。よって、保持装置210に固定された基板8の基板電極81と第2はんだ7aとが接合され、次に、第2はんだ7aと半導体素子1の裏面電極3とが接合し、次に、半導体素子1の表面電極2と第1はんだ5aとが接合し、保持装置210に固定した基板8の基板電極81と第2はんだ7aから順に上方に向けて接合することが新たにわかった。ここでの「接合」は、各界面において合金層を伴うことを意味する。
本実施の形態において、超音波エネルギーを効率よく下方へ伝導する手段としては、振動方向における超音波ヘッド201の長さが第1はんだ5aにおける同方向の長さよりも短い超音波ヘッド201を用い、第1はんだ5aに凹部51を形成することで実現できた。一方、図3に示すように、下面に凹凸203を形成した超音波ヘッド201Aを用いて、第1はんだ5aに凹凸部を形成して、超音波ヘッド201Aと第1はんだ5aとが滑らないようにしても同じ効果が得られる。
上述のように各界面間に金属接合を形成した後、図2の(c)に示すように、開口部4aを有する外部電極4を第1はんだ5aの上面に配置する。基板8の基板電極81のサイズ及び半導体素子1の表面電極2及び裏面電極3のサイズに対応して決定される第1はんだ5a及び第2はんだ7aは、外部電極4を配置した段階では溶融していない。よって、半導体素子1の表面電極2のサイズが異なる複数の半導体素子1間で、それぞれの高さは同じ又は略同じになる。よって、外部電極4を配置しても、外部電極4が傾斜することはほとんどなく、基板8の表面8bに平行又は略平行に、外部電極4が配置される。したがって、各半導体素子1間で安定したはんだ接合が可能になるという効果が得られる。
尚、本実施の形態では、開口部4aを有する外部電極4を用いたが、開口部4aのない外部電極4を用いることも可能である。
外部電極4を配置した後、図2の(d)に示すように、内側を還元雰囲気に維持可能な加熱装置220を用いて、図2の(d)に示す状態を支持可能にして、半導体素子1、外部電極4、基板8等を、第1はんだ5a及び第2はんだ7aの融点(状態図で液相温度)以上に加熱する。この加熱により、第1はんだ5a及び第2はんだ7aは溶融し、基板8の基板電極81と半導体素子1の裏面電極3との間で第2はんだ7が濡れ拡がり、及び、半導体素子1の表面電極2と外部電極4との間で第1はんだ5が濡れ拡がる。これにより、外部電極4、半導体素子1、及び基板8がはんだ接合される。
以上説明したように、まず、金属接合により各電極に固体はんだを接合することで、はんだ量の管理が容易になり、安定した品質のはんだ接合を行うことが可能である。
また、本実施の形態では、基板電極81上に、第2はんだ7a、半導体素子1、第1はんだ5aを配置した状態で、第1はんだ5aに超音波振動202を印加することで、第1はんだ5aと半導体素子1の表面電極2とを、半導体素子1の裏面電極3と第2はんだ7aとを、第2はんだ7aと基板電極81とを、一度で金属接合つまり固定することができ、従来に比べて生産性が大幅に向上し、低コスト化を実現することができる。
さらにまた、金属接合後、第1はんだ5a及び第2はんだ7aを溶融することで、各はんだと各部材とのそれぞれの界面で金属間化合物を均一に形成するため、良好なはんだ接合が実現できる。そのため、超音波振動202のみによって接合を行う場合に比べて、高い信頼性の接合を得ることができる。また、各はんだの溶融は1回のみの加熱プロセスで実現できるため、コスト低減が図れる。さらに、熱処理が1回で済むため、半導体素子1の裏面電極3及び基板電極81のバリアメタルであるNiのはんだ中への拡散を抑えられる。このため、バリアメタル層の厚さを薄くすることができるため、半導体素子の製造コストの低減を図ることができる。
本実施の形態では、図2の(a)に示す段階において、第1はんだ5a及び第2はんだ7aとして、固体のはんだペレットを1枚だけ配置したが、複数枚を積層して配置してもよい。図4の(a)から(c)には、このような、はんだを積層して配置した場合の構成例を示す。図4の(a)には、第1はんだ5a及び第2はんだ7aとして、各3枚を積層した状態を示す。図4の(b)は、図2の(b)に対応する図であり、3層の第1はんだ5aに超音波ヘッド201を押圧して、超音波振動202を印加した状態を示す。図4の(c)は、図2の(d)に対応する図であり、加熱装置220を用いて、半導体素子1、外部電極4、基板8等を、第1はんだ5a及び第2はんだ7aの融点(状態図で液相温度)以上に加熱する状態を示す。この加熱により、積層した第1はんだ5a及び第2はんだ7aはそれぞれ溶融し、基板8の基板電極81と半導体素子1の裏面電極3との間で第2はんだ7が濡れ拡がり、半導体素子1の表面電極2と外部電極4との間で第1はんだ5が濡れ拡がり、外部電極4、半導体素子1、及び基板8がはんだ接合される。
このように積層したはんだを用いることで、所望の厚みのはんだ得るために、それぞれ厚さが異なる個々のはんだを用意する必要はなく、積層枚数で厚さ調節が可能となることから、容易に低コストでの供給が可能となる。
実施の形態2.
本実施の形態2における半導体装置について説明を行う。本実施の形態2においても、図1に示す半導体装置101を例に採る。よって、半導体装置101の構成についての説明は省略し、以下では、相違する製造方法について説明を行う。
実施の形態1における製造方法では、基板電極81上に、第2はんだ7a、半導体素子1、第1はんだ5aを配置した状態で、第1はんだ5aに超音波振動202を印加することで、基板電極81、第2はんだ7a及び半導体素子1を、並びに、半導体素子1及び第1はんだ5aを、それぞれ同時に一度で金属接合した。これに対して本実施の形態2における製造方法では、まず第2はんだ7aに超音波振動202を印加して基板電極81と第2はんだ7aとを金属接合する。その後、第2はんだ7aに、半導体素子1及び第1はんだ5aを配置して、第1はんだ5aに超音波振動202を印加して、第2はんだ7a、半導体素子1及び第1はんだ5aの金属接合を行う。以下に詳しく説明する。
実施の形態2における半導体装置101の製造方法について、図5に示す断面図を参照して以下に説明する。
実施の形態1では、図2に示すように、半導体素子1の表面電極2が半導体素子1のほぼ中央に存在する場合を例に説明した。一方、図1に示す第1の半導体素子1aのように、表面電極2が中央より偏って存在する場合もある。本実施の形態における製造方法は、表面電極2が半導体素子1の中央より偏って存在する場合に特に有効となる。
有効である理由は、超音波接合すると、超音波ヘッドを押し付けて接合したところを中心に接合していない部分が凹面状に反る傾向にある。半導体素子1の電極の位置が中心よりずれた電極に第1はんだ5aを配置して超音波接合すると、偏った電極を中心に凹面状に反るため、半導体素子1は凹面状の反りの他に、傾きが発生する。このため、外部電極4との均一なはんだ接合が実現できないことが懸念される。
そのため、先に第2はんだ7aを接合しておくことで、半導体素子1の傾きを低減することができる。
まず、図5の(a)に示すように、基板8の基板電極81に第2はんだ7aを配置する。次に、図5の(b)に示すように、第2はんだ7aに超音波ヘッド201を押圧し、超音波振動202を第2はんだ7aに印加する。超音波振動202を印加することで、第2はんだ7aは基板8の基板電極81に接合される。尚、超音波振動202の印加条件及び接合条件は、実施の形態1の場合と同じである。
第2はんだ7aを基板電極81に金属接合した後、図5の(c)に示すように、第2はんだ7aの上に半導体素子1を、詳しくは半導体素子1の裏面電極3を、さらに半導体素子1の表面電極2に第1はんだ5aを積層して配置する。ここで、半導体素子1における表面電極2は、図示するように半導体素子1の中央には位置しておらず中央から偏って存在する。よって第1はんだ5aも、半導体素子1の中央から偏って位置する。
配置後、図5の(d)に示すように、第1はんだ5aに超音波ヘッド201を押圧して超音波振動202を印加する。超音波エネルギーは、下方(基板8の方向)に伝導され、第2はんだ7aに半導体素子1の裏面電極3が金属接合され、半導体素子1の表面電極2に第1はんだ5aが金属接合される。
この金属接合後、図5の(e)に示すように、第1はんだ5aの上面に外部電極4を配置する。
外部電極4の配置後、図5の(f)に示され、また図2の(d)を用いて説明したように、内側を還元雰囲気に維持可能な加熱装置220を用いて、半導体素子1、外部電極4、基板8等を、第1はんだ5a及び第2はんだ7aの融点以上に加熱する。この加熱により、第1はんだ5a及び第2はんだ7aが溶融し、基板電極81と半導体素子1の裏面電極3との間に第2はんだ7が濡れ拡がり、半導体素子1の表面電極2と外部電極4との間に第1はんだ5が濡れ拡がる。これにより、外部電極4と半導体素子1及び基板8とがはんだ接合される。
本実施の形態2のように、半導体素子1の表面電極2の位置が半導体素子1の中央よりも偏った位置のある形態に対して、実施の形態1と同様に、第1はんだ5a及び第2はんだ7aに対して同時に超音波振動202を印加して接合した場合、接合部が中央よりもずれることから、半導体素子1が傾く。
そこで本実施の形態2では、上述したように、第2はんだ7aの中央に超音波ヘッド201を押圧して、まず、第2はんだ7aを基板電極81に接合しておく。こうすることで、第1はんだ5aに超音波ヘッド201を押圧して超音波振動202を印加したときにおける半導体素子1の傾きを防止することができる。
実施の形態3.
本実施の形態3における半導体装置について説明を行う。本実施の形態3においても、図1に示す半導体装置101を例に採る。但し、半導体素子については、実施の形態1,2で使用したものよりも、厚みが薄い半導体素子11を用いる。その他の半導体装置101の構成は同じであるので、ここでの説明は省略する。以下では、相違する製造方法について説明を行う。
実施の形態1における製造方法では、基板電極81上に、第2はんだ7a、半導体素子1、第1はんだ5aを配置した状態で、第1はんだ5aに超音波振動202を印加することで、基板電極81、第2はんだ7a及び半導体素子1を、並びに、半導体素子1及び第1はんだ5aを、それぞれ同時に一度で金属接合した。これに対して本実施の形態3における製造方法では、まず半導体素子1の表面電極2と第1はんだ5aとの金属接合を行う。次に第1はんだ5aが接合された半導体素子1を、基板電極81に第2はんだ7aを介して配置し、第1はんだ5aに再度超音波振動202を印加する。以下に詳しく説明する。
この実施の形態3では、実施の形態1,2における厚さ300μmの半導体素子1に比べて厚さ50μm程度の薄い半導体素子11を用い、図6の(a)に示すように、この半導体素子11の表面電極2に第1はんだ5aを配置する。ここで、半導体素子11の厚さは、一例として0.05mm程度であり、第1はんだ5aの厚さは、一例として0.4mmである。
尚、半導体素子の厚さは半導体素子の反りに影響する。反りが大きくなると、はんだ付けの際のはんだ層が均一でなくなる。通常、反りが100μm程度以下であれば、はんだ層をほぼ均一に保持することができる。本実施の形態3では、このような反りが100μmを超える可能性がある半導体素子の一例として上述の半導体素子11を例に採る。
半導体素子11に第1はんだ5aを配置した後、図6の(a)に示すように、第1はんだ5aに超音波ヘッド201を押圧し、超音波振動202を印加して、第1はんだ5aと半導体素子11の表面電極2とを金属接合する。上述のように半導体素子11は、通常の半導体素子1に比べて厚みが薄いが、第1はんだ5aを接合することで、半導体素子11の剛性が高くなり、半導体素子11を破損することなく半導体素子11の取り扱いが容易になるという効果がある。
半導体素子11の表面電極2に第1はんだ5aを金属接合した後、図6の(b)に示すように、基板8の基板電極81に第2はんだ7aと第1はんだ5aを接合した半導体素子11とを配置する。
配置後、第1はんだ5aに再び超音波ヘッド201を押圧し、超音波振動202を印加する。超音波振動202が下方に伝導されることにより、基板電極81と第2はんだ7aとが金属接合され、次に第2はんだ7aと半導体素子11の裏面電極3とが金属接合する。
尚、超音波振動202の印加条件及び接合条件は、実施の形態1の場合と同じである。
第2はんだ7aが基板電極81及び裏面電極3と金属接合した後、図6の(c)に示すように、第1はんだ5aの上に外部電極4を配置する。
外部電極4の配置後、図6の(d)に示され図2の(d)と同様に、内側を還元雰囲気に維持可能な加熱装置220を用いて、半導体素子11、外部電極4、基板8等を第1はんだ5aと第2はんだ7aの融点以上に加熱する。この加熱により、第1はんだ5a及び第2はんだ7aが溶融し、基板電極81と半導体素子11の裏面電極3との間に第2はんだ7が濡れ拡がり、半導体素子11の表面電極2と外部電極4との間に第1はんだ5が濡れ拡がる。これにより、外部電極4と半導体素子11及び基板8とがはんだで接合される。
実施の形態4.
本実施の形態4における半導体装置について図7を参照して説明を行う。本実施の形態4においても、図1に示す半導体装置101を例に採る。但し、実施の形態1では、第1はんだ5a及び第2はんだ7aは、それぞれ単一組成のはんだで構成している。例えば、第1はんだ5aとしてSn−0.7Cuであり、第2はんだ7aとしてSn−3Ag−0.5Cuである。このように両者間では組成が異なっても、第1はんだ5a及び第2はんだ7aは、それぞれ単一組成のはんだである。これに対して本実施の形態4では、第1はんだ5a及び第2はんだ7aは、各はんだ内で異なる組成で構成されている。
本発明の実施の形態4における半導体装置101−2について以下に説明する。
図7の(a)に示すように、第2はんだ7aは、第1層701、第2層702、及び第1層701を有し、第2層702を、その厚み方向において両側から第1層701にて挟んだ構成であり、また、第1はんだ5aは、第1層501、第2層502、及び第1層501を有し、第2層502を、その厚み方向において両側から第1層501にて挟んだ構成である。そして図7の(a)に示すように、基板8の厚み方向8aにおいて、基板電極81には、第2はんだ7aとして第1層701、第2層702及び第1層701が積層され、半導体素子1の表面電極2には、第1はんだ5aとして第1層501、第2層502及び第1層501が積層される。ここで、第1はんだ5aにおける第2層502は、第1層501に比べて高い融点を有し、第2はんだ7aにおける第2層702は、第1層701に比べて高い融点を有する。ここでの融点とは、はんだの状態図で液相温度と定義する。低融点はんだとしての第1層501(701)は、例えばSn−0.7Cu(融点229℃)が使用でき、高融点はんだとしての第2層502(702)は、Sn−3Cu(融点300℃)が使用可能である。
次に、図7の(b)に示すように、第1はんだ5aにおける上面側の第1層501に超音波ヘッド201を押圧し、超音波振動202を印加する。この超音波振動の印加により、第1はんだ5aの第1層501、第2層502、及び第1層501は互いに金属接合し、また、第2はんだ7aの第1層701、第2層702、及び第1層701も互いに金属接合する。さらに、実施の形態1における場合と同様に、基板8の基板電極81と第2はんだ7a(701,702,701)とが接合され、また、第2はんだ7aと半導体素子1の裏面電極3とが接合し、さらに、半導体素子1の表面電極2と第1はんだ5a(501,502,501)とが接合する。
また、本実施の形態4でも実施の形態1の場合と同様に、第1はんだ5a、表面電極2、裏面電極3、第2はんだ7a、及び基板電極81の各はんだと各電極との間の各界面のすべてにおいて一度に金属接合を形成する。
尚、超音波振動202の印加条件及び接合条件は、実施の形態1の場合と同じである。
金属接合後、図7の(c)に示すように、第1はんだ5aの上面の第1層501に外部電極4を配置する。
次に、図7の(d)に示され図2の(d)の場合と同様に、内側を還元雰囲気に維持可能な加熱装置220を用いて、半導体素子1、外部電極4、基板8等を、第1はんだ5a及び第2はんだ7aを構成する低融点はんだの、第1層501及び第1層701の液相温度以上に加熱する。
この加熱により、第1はんだ5a及び第2はんだ7aを構成する低融点はんだの第1層501及び第1層701が溶融し、高融点はんだの、第2層502及び第2層702との界面で混ざり合う。よって、高融点はんだの、第2層502及び第2層702の液相温度まで温度上昇することなく、高融点はんだの、第2層502及び第2層702を含んだはんだ接合を低温にて実現することができる。
これによってさらに、半導体装置1のそりの低減、及び半導体素子1の裏面電極3及び基板電極81の各表面層におけるバリアメタルを薄くすることが可能になり、コスト低減を図ることも可能になる。
ここで用いた高融点はんだ(第2層502及び第2層702)の組成Sn−3Cuは、半導体素子1の表面電極2及び裏面電極3、並びに基板電極81の表面を構成するNiの、はんだ中への拡散を防止する作用がある。よって、基板電極81、並びに、半導体素子1の表面電極2及び裏面電極3を構成するNi層を薄くすることでき、コスト低減に有効である。本方法を用いることにより、容易に適用が可能になる。
また、本実施の形態4では、第1はんだ5a及び第2はんだ7aのそれぞれについて、Sn−Cuの同じ組成で液相温度の異なるはんだを用いたが、第1はんだ5a及び第2はんだ7a間でも組成が異なるはんだを用いることも可能である。
また、上述した各実施の形態を組み合わせた構成を採ることも可能であり、また、異なる実施の形態に示される構成部分同士を組み合わせることも可能である。
1、1a、1b、11 半導体素子、 2、2a、2b 表面電極、
3、3a、3b 裏面電極、 4 外部電極、 5 第1はんだ、
5a 固体の第1はんだ、 7 第2はんだ、 7a 固体の第2はんだ、
8 基板、 81 基板電極、 10 モールド樹脂、
101、101−2 半導体装置、 201 超音波ヘッド、 202 超音波振動、
205 超音波装置、 220 加熱装置。

Claims (8)

  1. 半導体素子の表面電極と外部電極とを第1はんだで接合し、上記半導体素子の裏面電極と基板の基板電極とを第2はんだで接合して形成される半導体装置の製造方法において、
    固体の第1はんだに、又は固体の第1はんだ及び固体の第2はんだに超音波振動を与え、上記固体の第1はんだ、上記表面電極、上記裏面電極、上記固体の第2はんだ、及び上記基板電極のそれぞれの界面において金属接合を形成する工程と、
    金属接合後、上記固体の第1はんだに上記外部電極を配置する工程と、
    上記外部電極の配置後、上記固体の第1はんだ及び上記固体の第2はんだを溶融させることにより、上記半導体素子と、上記基板電極及び上記外部電極とをそれぞれはんだ接合する工程と、
    を備えたことを特徴とする半導体装置の製造方法。
  2. 上記金属接合を形成する工程は、
    上記基板、上記固体の第2はんだ、上記半導体素子、及び上記固体の第1はんだをこの順に積層した状態において上記半導体素子の表面電極に配置した上記固体の第1はんだに超音波振動を印加することにより、上記固体の第1はんだ、上記表面電極、上記裏面電極、上記固体の第2はんだ、及び上記基板電極のそれぞれの界面において金属接合を形成する、請求項1に記載の半導体装置の製造方法。
  3. 上記金属接合を形成する工程は、
    上記基板電極に載置した上記固体の第2はんだに超音波振動を印加することにより、上記基板電極と上記固体の第2はんだとを金属接合する工程と、
    接合された上記固体の第2はんだに上記半導体素子を、及びこの半導体素子の上記表面電極に上記固体の第1はんだをそれぞれ載置する工程と、
    載置後、上記固体の第1はんだに超音波振動を印加することにより、上記固体の第1はんだ、上記表面電極、上記裏面電極、及び上記固体の第2はんだのそれぞれの界面において金属接合を形成する工程と、を有する、請求項1に記載の半導体装置の製造方法。
  4. 上記金属接合を形成する工程は、
    上記表面電極に載置した上記固体の第1はんだに超音波振動を印加することにより、上記表面電極と上記固体の第1はんだとを金属接合する工程と、
    上記固体の第1はんだを接合した半導体素子の裏面電極を上記固体の第2はんだを介して上記基板電極に載置する工程と、
    載置後、上記固体の第1はんだに超音波振動を印加することにより、上記裏面電極、上記固体の第2はんだ、及び上記基板電極のそれぞれの界面において金属接合を形成する工程と、を有する、請求項1に記載の半導体装置の製造方法。
  5. 上記固体の第1はんだ及び上記固体の第2はんだの少なくとも一方は、組成が異なる複数枚のはんだ層を積層して形成される、請求項1から4のいずれか1項に記載の半導体装置の製造方法。
  6. 上記表面電極と上記外部電極とが溶融した第1はんだにて、及び、上記裏面電極と上記基板電極とが溶融した第2はんだにて、それぞれはんだ接合された後、上記外部電極及び上記基板の各一部を露出させた状態で、上記外部電極、上記半導体素子、及び上記基板をモールド樹脂にて封止する、請求項1から5のいずれか1項に記載の半導体装置の製造方法。
  7. 請求項1から6のいずれか1項に記載の半導体装置の製造方法により製造されたことを特徴とする半導体装置。
  8. 半導体素子の表面電極と外部電極とを第1はんだで接合し、上記半導体素子の裏面電極と基板の基板電極とを第2はんだで接合して形成される半導体装置の製造装置において、
    固体の第1はんだに、又は固体の第1はんだ及び固体の第2はんだに超音波振動を与え、上記固体の第1はんだ、上記表面電極、上記裏面電極、上記固体の第2はんだ、及び上記基板電極のそれぞれの界面において金属接合を形成する超音波装置と、
    上記外部電極を配置した上記固体の第1はんだ、及び上記固体の第2はんだを溶融させて、上記半導体素子と、上記基板電極及び上記外部電極とをそれぞれはんだ接合する加熱装置と、
    を備えたことを特徴とする半導体装置の製造装置。
JP2015000353A 2015-01-05 2015-01-05 半導体装置の製造方法及び製造装置、並びに半導体装置 Pending JP2016127163A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015000353A JP2016127163A (ja) 2015-01-05 2015-01-05 半導体装置の製造方法及び製造装置、並びに半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000353A JP2016127163A (ja) 2015-01-05 2015-01-05 半導体装置の製造方法及び製造装置、並びに半導体装置

Publications (1)

Publication Number Publication Date
JP2016127163A true JP2016127163A (ja) 2016-07-11

Family

ID=56359756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000353A Pending JP2016127163A (ja) 2015-01-05 2015-01-05 半導体装置の製造方法及び製造装置、並びに半導体装置

Country Status (1)

Country Link
JP (1) JP2016127163A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165085A (ja) * 2018-03-19 2019-09-26 新電元工業株式会社 電子部品の製造方法および導電性接続材マスク

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165085A (ja) * 2018-03-19 2019-09-26 新電元工業株式会社 電子部品の製造方法および導電性接続材マスク

Similar Documents

Publication Publication Date Title
JP4904767B2 (ja) 半導体装置
CN109314063B (zh) 电力用半导体装置
JPWO2016199621A1 (ja) 電力用半導体装置の製造方法および電力用半導体装置
JP6448388B2 (ja) 電力用半導体装置
JP2014135411A (ja) 半導体装置および半導体装置の製造方法
JP2018157157A (ja) 半導体装置とその製造方法
JP2019216214A (ja) 半導体装置、リードフレーム及び半導体装置の製造方法
JP5252024B2 (ja) 半導体装置
JP2013201330A (ja) パワーモジュールの製造方法、及びパワーモジュール
JP2006066716A (ja) 半導体装置
WO2013108706A1 (ja) 半導体装置および半導体装置の製造方法
JP7215206B2 (ja) 半導体装置の製造方法
JP4877046B2 (ja) 半導体装置およびその製造方法
WO2019163145A1 (ja) 半導体装置の製造方法
JP2014146645A (ja) 半導体装置
JP5919625B2 (ja) 半導体装置及びその製造方法、電源装置
JP2015144169A (ja) 半導体モジュール
JP2016127163A (ja) 半導体装置の製造方法及び製造装置、並びに半導体装置
JP2006196765A (ja) 半導体装置
JP6000227B2 (ja) 半導体装置の製造方法
JP6423147B2 (ja) 電力用半導体装置およびその製造方法
JP2018056152A (ja) 半導体装置
JP2004296901A (ja) 熱電モジュール
JP2021125546A (ja) 半導体モジュール及び半導体モジュールの製造方法
JP2006140403A (ja) 半導体装置の製造方法および製造装置